-
Notifications
You must be signed in to change notification settings - Fork 0
/
AOT_syntax.ML
537 lines (517 loc) · 25 KB
/
AOT_syntax.ML
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
fun AOT_binder_trans thy bnd syntaxConst =
(Lexicon.mark_const (Sign.full_name thy bnd),
K (fn trms => Term.list_comb (Const (syntaxConst, dummyT),trms)))
datatype AOT_VariableKind = AOT_Variable of (term*term) option | AOT_MetaVariable
structure AOT_VariablePrefix = Theory_Data (
type T = (AOT_VariableKind*string) Symtab.table
val empty = Symtab.empty
val extend = I
(* TODO: probably better to remove conflicts than to ignore them *)
val merge = Symtab.merge (K true)
);
structure AOT_PremiseSetPrefix = Theory_Data (
type T = unit Symtab.table
val empty = Symtab.empty
val extend = I
val merge = Symtab.merge (K true)
);
structure AOT_Constraints = Theory_Data (
type T = (term*term) Symtab.table
val empty = Symtab.empty
val extend = I
val merge = Symtab.merge (fn ((x,y),(x',y')) => x = x' andalso y = y')
)
structure AOT_Restriction = Theory_Data (
type T = (term*term) Symtab.table
val empty = Symtab.empty
val extend = I
val merge = Symtab.merge (fn ((x,y),(x',y')) => x = x' andalso y = y')
)
fun AOT_IsPremiseSetPrefix ctxt = Local_Theory.raw_theory_result
(fn thy => (AOT_PremiseSetPrefix.get thy, thy)) ctxt
|> fst |> Symtab.lookup #> Option.isSome
fun term_of_sort S =
let
val class = Syntax.const o Lexicon.mark_class;
fun classes [c] = class c
| classes (c :: cs) = Syntax.const "_classes" $ class c $ classes cs
| classes _ = raise Fail "Unexpected.";
in
if S = dummyS then Syntax.const "_dummy_sort"
else
(case S of
[] => Syntax.const "_topsort"
| [c] => class c
| cs => Syntax.const "_sort" $ classes cs)
end
fun term_of (Type (a, Ts)) =
Term.list_comb (Syntax.const (Lexicon.mark_type a), map term_of Ts)
| term_of (TFree ("'_dummy_",sort)) =
(Const ("_dummy_ofsort", dummyT) $ term_of_sort sort)
| term_of (t as TFree _) = (@{print} t; raise Term.TYPE ("", [t], []))
| term_of (TVar _) = raise Fail "";
fun fetchTermCategory ctxt = Local_Theory.raw_theory_result (fn thy =>
(Symtab.lookup (AOT_VariablePrefix.get thy), thy)) ctxt |> fst
fun maybeGetConstraint ctxt unary name = Local_Theory.raw_theory_result (fn thy =>
((if unary then Option.map fst else Option.map snd)
(Symtab.lookup (AOT_Constraints.get thy) name), thy)) ctxt |> fst
fun getConstraint ctxt unary name =
(case maybeGetConstraint ctxt unary name of SOME c => c |
_ => raise Fail ("Unknown type category: " ^ name))
fun fetchTermConstraint ctxt name unary =
Local_Theory.raw_theory_result (fn thy =>
(Option.map (fn (meta, category) => (meta, getConstraint ctxt unary category))
((Symtab.lookup o AOT_VariablePrefix.get) thy (hd (Symbol.explode name))), thy)
) ctxt |> fst
fun register_constraint (name:string, (unaryConstraint,naryConstraint)) thy = (
let
fun trmOf constr = term_of (Syntax.parse_typ (Proof_Context.init_global thy) constr)
val unaryConstraint = trmOf unaryConstraint
val naryConstraint = (case naryConstraint of
(SOME constraint) => trmOf constraint
| _ => unaryConstraint
)
in
AOT_Constraints.map (Symtab.update (name, (unaryConstraint, naryConstraint))) thy
end
)
fun register_variable_name meta (category, prefices) thy =
let
val restr = (Symtab.lookup (AOT_Restriction.get thy) category)
val kind = if meta then AOT_MetaVariable else AOT_Variable restr
in
fold (fn prefix => AOT_VariablePrefix.map
(Symtab.update (prefix, (kind, category)))) prefices thy
end
val _ =
Outer_Syntax.command \<^command_keyword>\<open>AOT_register_variable_names\<close>
"Register variable names for type categories."
(Parse.and_list1 ((Parse.short_ident --| Parse.$$$ ":" )
-- Scan.repeat1 Parse.short_ident)
>> (Toplevel.theory o (fold (register_variable_name false))));
val _ =
Outer_Syntax.command \<^command_keyword>\<open>AOT_register_metavariable_names\<close>
"Register meta-variable names for type categories."
(Parse.and_list1 ((Parse.short_ident --| Parse.$$$ ":")
-- Scan.repeat1 Parse.short_ident)
>> (Toplevel.theory o (fold (register_variable_name true))));
val _ =
Outer_Syntax.command \<^command_keyword>\<open>AOT_register_premise_set_names\<close>
"Register names for premise sets."
(Scan.repeat1 Parse.short_ident
>> (Toplevel.theory o fold
(fn prefix => AOT_PremiseSetPrefix.map (Symtab.update (prefix,())))));
val _ =
Outer_Syntax.command \<^command_keyword>\<open>AOT_register_type_constraints\<close>
"Register constraints for term types."
(Parse.and_list1 ((Parse.short_ident --| Parse.$$$ ":")
-- (Parse.typ -- Scan.option Parse.typ))
>> (Toplevel.theory o fold register_constraint));
fun decode_pos str =
case (Term_Position.decode str) of SOME pos => pos
| _ => raise Fail "expected position"
fun unconstrain_var
(Ast.Appl [Ast.Constant "_constrain", Ast.Variable name, Ast.Variable pos]) =
(name, decode_pos pos)
| unconstrain_var ast = raise Ast.AST
("Expected position constrained variable.", [ast])
fun make_constrained_var sx =
(Ast.Appl [Ast.Constant "_constrain", Ast.Variable (Symbol_Pos.implode sx),
Ast.Variable (Term_Position.encode
(Position.range_position (Symbol_Pos.range sx)))])
fun implode_pos x = (Symbol_Pos.implode_range (Symbol_Pos.range x) x) |>
(fn (x,y) => (x,Position.range_position y))
fun splitFormulaParts x = x |> unconstrain_var |> Symbol_Pos.explode |>
Scan.finite Symbol_Pos.stopper (Scan.repeat (
(Scan.one (Symbol_Pos.symbol #> Symbol.is_letter) --
(((Scan.repeat (Symbol_Pos.$$ "\<^sub>" --
(Scan.one (Symbol_Pos.symbol #> Symbol.is_digit)) >>
(fn (x,y) => [x,y])) >> List.concat)
-- (Scan.repeat (Symbol_Pos.$$ "'"))) >> (fn (x,y) => x@y)))))
fun parseFormulaParts x = (case splitFormulaParts x of
(parts,[]) => parts |> map (fn (x,y) => implode_pos (x::y))
| _ => raise Ast.AST ("Expected one or more variable or term names.", [x]))
fun foldAppl const = List.rev #> (fn list => fold (fn a => fn b =>
(Ast.mk_appl (Ast.Constant const) [a,b])) (tl list) (hd list))
fun dropConstraints (Const ("_constrain", _) $ x $ _) = dropConstraints x
| dropConstraints (Const ("_constrainAbs", _) $ x $ _) = dropConstraints x
| dropConstraints (Abs (a, b, x)) = Abs (a, b, dropConstraints x)
| dropConstraints (x$y) = dropConstraints x $ dropConstraints y
| dropConstraints x = x
local
fun constrain (name, pos) = Ast.mk_appl (Ast.Constant "_constrain")
[Ast.Variable name, Ast.Variable (Term_Position.encode pos)]
in
fun AOT_split_exe_vars [x] = x |> parseFormulaParts |> map constrain |>
map (fn x => Ast.mk_appl (Ast.Constant "_AOT_term_var") [x]) |>
foldAppl "_AOT_exe_args"
fun AOT_split_lambda_args [x] = x |> parseFormulaParts |> map constrain |>
map (fn x => Ast.mk_appl (Ast.Constant "_AOT_var") [x]) |>
foldAppl \<^const_syntax>\<open>Pair\<close>
fun AOT_check_var [x] = x |> parseFormulaParts |> map constrain |>
(fn [x] => Ast.mk_appl (Ast.Constant "_AOT_var") [x]
| _ => raise Ast.AST ("Expected single variable.", [x]))
end
fun parseVar unary ctxt [var as Const ("_constrain", _) $ Free (x,_) $ Free _] =
Const ("_constrain", dummyT) $ var $ (case fetchTermConstraint ctxt x unary of
SOME (AOT_MetaVariable,_) => raise Term.TERM
("Expected variable prefix, but got metavariable prefix.", [var])
| SOME (AOT_Variable _, constraint) => constraint
| _ => raise Term.TERM ("Unknown variable prefix.", [var]))
| parseVar _ _ var = raise Term.TERM ("Expected constrained free variable.", var)
fun constrainTrm ctxt forceMeta unary (Free (var, _)) = (fn trm =>
case fetchTermConstraint ctxt var unary of
SOME (AOT_MetaVariable,constraint) =>
Const ("_constrain", dummyT) $ trm $ constraint
| SOME (AOT_Variable restr, constraint) =>
if forceMeta then Const ("_constrain", dummyT) $ trm $ constraint
else Const ("_constrain", dummyT) $
(Const (\<^const_name>\<open>AOT_term_of_var\<close>, dummyT) $
(case restr of SOME (_,r) => r $ trm | _ => trm)) $
constraint
| _ => raise Term.TERM ("Unknown variable or metavariable prefix.", [trm]))
| constrainTrm _ _ _ (Bound _) = (fn var => var)
| constrainTrm _ _ _ trm = raise Term.TERM
("Expected free or bound variable.", [trm])
fun isPremiseVar ctxt (Free (var, _)) =
AOT_IsPremiseSetPrefix ctxt (hd (Symbol.explode var))
| isPremiseVar _ _ = false
fun getVarConstraint ctxt unary (Free (var, _)) =
(case fetchTermConstraint ctxt var unary of
SOME (AOT_MetaVariable,_) => NONE
| SOME (AOT_Variable Rep_term,_) => Option.map fst Rep_term
| _ => NONE)
| getVarConstraint _ _ _ = NONE
fun getVarConstraints ctxt (Const (\<^syntax_const>\<open>_AOT_term_var\<close>, _) $ v) =
(case (getVarConstraint ctxt true (dropConstraints v)) of SOME c => [(c,v)]
| _ => [])
| getVarConstraints ctxt (Const ("_AOT_term_vars", _) $ v) =
(case (getVarConstraint ctxt true (dropConstraints v)) of SOME c => [(c,v)]
| _ => [])
| getVarConstraints _ (Const (\<^syntax_const>\<open>_AOT_verbatim\<close>, _) $ _) = []
| getVarConstraints ctxt (x $ y) =
getVarConstraints ctxt x @ getVarConstraints ctxt y
| getVarConstraints ctxt (Abs (_,_,z)) = getVarConstraints ctxt z
| getVarConstraints _ _ = []
fun processFreesForceMeta forceMeta premiseVars ctxt
(Const (\<^syntax_const>\<open>_AOT_term_var\<close>, _) $ v) = (
if isPremiseVar ctxt (dropConstraints v)
then (dropConstraints v, if List.find (fn x => x = v) premiseVars = NONE
then v::premiseVars else premiseVars)
else (constrainTrm ctxt forceMeta true (dropConstraints v) v, premiseVars))
| processFreesForceMeta forceMeta premiseVars ctxt
(Const ("_AOT_term_vars", _) $ v) = (if isPremiseVar ctxt (dropConstraints v)
then (v, if List.find (fn x => x = v) premiseVars = NONE
then v::premiseVars else premiseVars)
else (constrainTrm ctxt forceMeta false (dropConstraints v) v, premiseVars)
)
| processFreesForceMeta _ premiseVars _
(Const (\<^syntax_const>\<open>_AOT_verbatim\<close>, _) $ v) = (v, premiseVars)
| processFreesForceMeta forceMeta premiseVars ctxt (x $ y) = let
val (x, premiseVars) = processFreesForceMeta forceMeta premiseVars ctxt x
val (y, premiseVars) = processFreesForceMeta forceMeta premiseVars ctxt y
in (x $ y, premiseVars) end
| processFreesForceMeta forceMeta premiseVars ctxt (Abs (x,y,z)) = let
val (z, premiseVars) = processFreesForceMeta forceMeta premiseVars ctxt z
in (Abs (x,y,z), premiseVars) end
| processFreesForceMeta _ premiseVars _ x = (x, premiseVars)
fun processFrees ctxt trm =
(case processFreesForceMeta false [] ctxt trm of (r,[]) => r
| _ => raise Term.TERM ("No premise set expected in term.", [trm]))
fun processFreesAlwaysMeta ctxt trm =
(case processFreesForceMeta true [] ctxt trm of (r,[]) => r
| _ => raise Term.TERM ("No premise set expected in term.", [trm]))
val processFreesAndPremises = processFreesForceMeta false []
local
fun makeArgList (Const (\<^syntax_const>\<open>_AOT_exe_args\<close>, _) $ y $ z) =
makeArgList y @ makeArgList z
| makeArgList t = [t]
fun makePairs (x::[]) = x
| makePairs (x::xs) = Const (\<^const_syntax>\<open>Pair\<close>, dummyT) $ x $ makePairs xs
fun makeExeArgs y = makePairs (makeArgList y)
in
fun foldPremises world (Const (\<^syntax_const>\<open>_AOT_premises\<close>, _) $ p1 $ p2) y =
@{const "Pure.imp"} $ (p1 $ world) $ foldPremises world p2 y
| foldPremises world x y =
@{const "Pure.imp"} $ (x $ world) $
HOLogic.mk_Trueprop (@{const AOT_model_valid_in} $ world $ y)
fun parseExe ctxt [x,y] = (Const (\<^const_syntax>\<open>AOT_exe\<close>, dummyT) $ x $ makeExeArgs y)
fun parseEnc ctxt [x,y] = (Const ("AOT_enc", dummyT) $ makeExeArgs x $ y)
fun parseEquivDef ctxt [lhs,rhs] =
let
val constraints = getVarConstraints ctxt lhs
fun collectConstraints c [] = c
| collectConstraints NONE ((x,y)::xs) = collectConstraints (SOME (x $ y)) xs
| collectConstraints (SOME c) ((x,y)::xs) =
collectConstraints (SOME (Const ("AOT_conj", dummyT) $ c $ (x $ y))) xs
val rhs = (case collectConstraints NONE constraints
of SOME c => Const ("AOT_conj", dummyT) $ c $ rhs
| _ => rhs)
in
HOLogic.mk_Trueprop (\<^const>\<open>AOT_model_equiv_def\<close> $ processFreesAlwaysMeta ctxt lhs $
processFreesAlwaysMeta ctxt rhs)
end
| parseEquivDef _ terms = raise Term.TERM ("Expected definition arguments.", terms)
fun parseIdDef ctxt [lhs, rhs] =
let
val lhs = processFreesAlwaysMeta ctxt lhs
val rhs = processFreesAlwaysMeta ctxt rhs
fun add_frees (Free _) frees = frees
| add_frees (Const _) frees = frees
| add_frees (Free _ $ args) frees = Term.add_frees args frees
| add_frees (Const _ $ args) frees = Term.add_frees args frees
| add_frees (args $ args') frees =
Term.add_frees args' (Term.add_frees args frees)
| add_frees trm _ = raise Term.TERM ("Expected definition term.", [trm])
val lhs' = dropConstraints lhs
val rhs' = dropConstraints rhs
val frees = add_frees lhs' []
val _ = frees = add_frees rhs' frees orelse
raise Term.TERM ("Invalid free variables on RHS.", [lhs,rhs])
fun mkabs trm = if frees = []
then Const (\<^const_name>\<open>case_unit\<close>, dummyT) $ trm
else fold_rev
(fn (s, T) => fn t => Const (\<^const_name>\<open>case_prod\<close>, dummyT) $
Term.absfree (s, T) t)
(List.rev (tl frees)) (Term.absfree (hd frees) trm)
val lhs_abs = mkabs lhs
val rhs_abs = mkabs rhs
in
(Const ("_constrain", dummyT) $
Const (\<^const_name>\<open>AOT_model_id_def\<close>, dummyT) $
(Const (\<^type_syntax>\<open>fun\<close>, dummyT) $
(Const (\<^type_syntax>\<open>fun\<close>, dummyT) $ Const (\<^type_syntax>\<open>dummy\<close>, dummyT) $
(getConstraint ctxt false "Term")) $
(Const (\<^type_syntax>\<open>dummy\<close>, dummyT)))
)
$ lhs_abs $ rhs_abs
end
| parseIdDef _ terms = raise Term.TERM ("Expected definition arguments.", terms)
end
fun parseEllipseList constName _ [s,e] =
let
val (start_name, start_pos) = unconstrain_var s
val (end_name, end_pos) = unconstrain_var e
val _ = let val h = hd (Symbol.explode start_name) in
if (h = hd (Symbol.explode end_name))
then h else raise Ast.AST ("Invalid ellipses.", [s,e])
end
val name = (Symbol_Pos.explode (start_name, start_pos)) @
(Symbol_Pos.explode (end_name, end_pos))
in
Ast.mk_appl (Ast.Constant constName) [make_constrained_var name]
end
| parseEllipseList _ _ _ = raise Fail "Invalid ellipse parsing."
datatype PrintVarKind = SingleVariable of string |
Ellipses of string*string | Verbatim of string
fun printVarKind name = let
fun splitFormulaParts x = x |> Symbol.explode |>
Scan.finite Symbol.stopper (Scan.repeat (
(Scan.one (Symbol.is_letter) --
(((Scan.repeat ($$ "\<^sub>" -- (Scan.one (Symbol.is_char)) >>
(fn (x,y) => [x,y])) >> List.concat )
-- (Scan.repeat ($$ "'"))) >> (fn (x,y) => x@y)))))
val parts = splitFormulaParts (Name.clean name)
val isSingleVariableName = case parts of
([_],[]) => true | _ => false
(* TODO: ellipses handling is very fragile *)
val (isEllipses,s,e) = case parts
of ([(n,s),(m,e)],[]) => (n = m, n^String.concat s, m^String.concat e)
| _ => (false,"","")
in
if isSingleVariableName then SingleVariable name else
if isEllipses then Ellipses (s,e)
else Verbatim name
end
local
fun addFunct (x,f) g = (x, fn y => g (f y))
fun unconstrain (Ast.Appl (Ast.Constant "_constrain"::x::tl)) =
addFunct (unconstrain x) (fn x => Ast.Appl (Ast.Constant "_constrain"::x::tl))
| unconstrain (Ast.Appl (Ast.Constant "_free"::[x])) =
addFunct (unconstrain x) (fn x => Ast.Appl (Ast.Constant "_free"::[x]))
| unconstrain (Ast.Appl (Ast.Constant "_bound"::[x])) =
addFunct (unconstrain x) (fn x => Ast.Appl (Ast.Constant "_bound"::[x]))
| unconstrain (Ast.Appl (Ast.Constant "_var"::[x])) =
addFunct (unconstrain x) (fn x => Ast.Appl (Ast.Constant "_var"::[x]))
| unconstrain trm = (trm, fn x => x)
fun isDefinedConst ctxt name = let
val unmarkedName = Lexicon.unmark {case_class = fn str => NONE,
case_type = fn name => NONE,
case_const = fn name => SOME name,
case_fixed = fn name => NONE,
case_default = fn name => SOME name} name
val cons = Option.mapPartial (fn name => try (Proof_Context.read_const
{proper = true, strict = true} ctxt) name) unmarkedName
val defined = case cons of
SOME cons =>
Termtab.defined (AOT_DefinedConstants.get (Proof_Context.theory_of ctxt)) cons
orelse (case cons of Const (name,_) => name = \<^const_name>\<open>AOT_concrete\<close>
| _ => false)
| _ => false
in defined end
in
val AOT_print_individual_term = (fn ctxt =>
(fn [trm as Ast.Appl (Ast.Constant \<^const_syntax>\<open>AOT_term_of_var\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_desc\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_free_var_ellipse\<close>::_)] => trm
| [trm as Ast.Constant _] => trm
| [trm] => (case unconstrain trm
of (Ast.Variable name,c) => (case printVarKind name
of SingleVariable x => c (Ast.Variable name)
| Ellipses (x,y) =>
(Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_exe_arg_ellipse\<close>)
[c (Ast.Variable x), c (Ast.Variable y)])
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| (Ast.Constant name,c) =>
if isDefinedConst ctxt name
then c (Ast.Constant name)
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
| (trm' as Ast.Appl (Ast.Constant name::_),c) =>
if isDefinedConst ctxt name
then c trm'
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| trms => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) trms))
val AOT_print_relation_term = (fn ctxt =>
(fn [Ast.Appl [Ast.Constant \<^const_syntax>\<open>AOT_term_of_var\<close>,
Ast.Constant \<^const_syntax>\<open>AOT_concrete\<close>]] =>
Ast.Constant \<^syntax_const>\<open>_AOT_concrete\<close>
| [trm as Ast.Appl (Ast.Constant \<^const_syntax>\<open>AOT_term_of_var\<close>::_)] =>
Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_explicitRelation\<close>) [trm]
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_lambda\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^const_syntax>\<open>AOT_lambda\<close>::_)] => trm
| [trm] => (case unconstrain trm
of (Ast.Variable name,c) =>
(case printVarKind name
of SingleVariable _ =>
(Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_explicitRelation\<close>)
[c (Ast.Variable name)])
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| (Ast.Constant name,c) =>
if isDefinedConst ctxt name
then c (Ast.Constant name)
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
| (trm' as Ast.Appl (Ast.Constant name::_),c) =>
if isDefinedConst ctxt name
then (Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_explicitRelation\<close>) [c trm'])
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| trms => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) trms))
val AOT_print_generic_term = (fn ctxt =>
(fn [Ast.Appl [Ast.Constant \<^const_syntax>\<open>AOT_term_of_var\<close>,
Ast.Constant \<^const_syntax>\<open>AOT_concrete\<close>]] =>
Ast.Constant \<^syntax_const>\<open>_AOT_concrete\<close>
| [trm as Ast.Appl (Ast.Constant \<^const_syntax>\<open>AOT_term_of_var\<close>::_)] =>
(* Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_explicitRelation\<close>) [trm] *)
trm
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_desc\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_free_var_ellipse\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^syntax_const>\<open>_AOT_lambda\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant \<^const_syntax>\<open>AOT_lambda\<close>::_)] => trm
| [trm as Ast.Appl (Ast.Constant "_AOT_raw_appl"::_)] => trm
| [trm] => (case unconstrain trm
of (Ast.Variable name,c) =>
(case printVarKind name
of SingleVariable x => c (Ast.Variable name)
| Ellipses (x,y) =>
(Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_exe_arg_ellipse\<close>)
[c (Ast.Variable x), c (Ast.Variable y)])
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
)
| (Ast.Constant name,c) =>
if isDefinedConst ctxt name
then c (Ast.Constant name)
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm]
| (trm' as Ast.Appl (Ast.Constant name::_),c) =>
(if isDefinedConst ctxt name
then c trm'
else Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| _ => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) [trm])
| trms => Ast.mk_appl (Ast.Constant \<^syntax_const>\<open>_AOT_quoted\<close>) trms))
end
fun AOT_preserve_binder_abs_tr' constName syntaxConst
(ellipseConst,includesSyntaxConst) restrConnect = (constName, fn ctxt => fn terms =>
let
val term_opt = case terms of Abs (name, T, trm)::trms =>
let
val trm = case printVarKind name of SingleVariable name =>
let
val optBody = case fetchTermCategory ctxt (hd (Symbol.explode (name)))
of SOME (AOT_Variable _, category) =>
let
val (restr, _) = Local_Theory.raw_theory_result
(fn thy => (Symtab.lookup (AOT_Restriction.get thy) category, thy)) ctxt
in
case restr of SOME restr =>
(case trm of (Const (c,_) $ x $ trm) =>
if (c = restrConnect orelse Lexicon.unmark_const c = restrConnect)
then
if Term.could_unify (Abs ("x", dummyT, x),
Abs ("x", dummyT, Term.betapply (fst restr,(Bound 0)))) then
SOME trm
else
NONE
else NONE | _ => NONE)
| _ => NONE
end
| _ => NONE
val terms = case optBody of SOME trm => Abs (name, T, trm)::trms | _ => trms
in
snd (Syntax_Trans.preserve_binder_abs_tr' constName syntaxConst) ctxt terms
end
| Ellipses (s,e) =>
let
val body = Term.subst_bound (Const (\<^syntax_const>\<open>_AOT_free_var_ellipse\<close>, dummyT) $
Syntax_Trans.mark_bound_body (s,dummyT) $
Syntax_Trans.mark_bound_body (e,dummyT),
trm)
in
if includesSyntaxConst then
list_comb (Syntax.const ellipseConst $ Syntax_Trans.mark_bound_abs (s,dummyT) $
Syntax_Trans.mark_bound_abs (e,dummyT) $ body, trms)
else
list_comb (Syntax.const syntaxConst $
(Syntax.const ellipseConst $ Syntax_Trans.mark_bound_abs (s,dummyT) $
Syntax_Trans.mark_bound_abs (e,dummyT)) $ body, trms)
end
| Verbatim _ => (* TODO *)
snd (Syntax_Trans.preserve_binder_abs_tr' constName syntaxConst) ctxt terms
in SOME trm end
| _ => NONE
in
case term_opt of SOME trm => trm | _ =>
snd (Syntax_Trans.preserve_binder_abs_tr' constName syntaxConst) ctxt terms
end
)
fun AOT_restricted_binder const connect =
fn ctxt => (fn [a, b] => Ast.mk_appl (Ast.Constant const) [
let
val b = case a of (Ast.Appl [Ast.Constant "_AOT_var", var]) => (
case fetchTermCategory ctxt (hd (Symbol.explode (fst (unconstrain_var var))))
of SOME (AOT_Variable _, category) =>
let
val (restr, _) = Local_Theory.raw_theory_result
(fn thy => (Symtab.lookup (AOT_Restriction.get thy) category, thy)) ctxt
in
case restr of SOME _ => Ast.mk_appl (Ast.Constant connect)
[Ast.mk_appl (Ast.mk_appl (Ast.Constant "_AOT_restriction")
[Ast.Constant category]) [a], b] | _ => b end | _ => b) | _ => b
in
Ast.mk_appl (Ast.Constant "_abs") [a,b]
end] | _ => raise Match)
fun parseDDOT ctxt _ =
let
val trm = Proof_Context.get_fact_single ctxt
(Facts.named (Long_Name.localN ^ Long_Name.separator ^ Auto_Bind.thisN))
val trm = Thm.concl_of trm
fun mapTerms (Free (x,typ)) =
(case List.rev (String.explode x) of #"_" :: #"_" :: tl =>
Free (String.implode (List.rev tl), typ) | _ => Free (x,typ))
| mapTerms x = x
val trm = Term.map_aterms mapTerms trm
fun readThisRHS (Const ("HOL.Trueprop", _) $
(Const ("AOT_model.AOT_model_valid_in", _) $ _ $ (Const _ $ _ $ rhs))) = rhs
| readThisRHS _ = raise Term.TERM ("Could not expand ... from term.", [trm])
in
readThisRHS trm
end