-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexp_runner.py
584 lines (483 loc) · 21.6 KB
/
exp_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import startup
from itertools import chain
import subprocess
import socket
import os
import sys
import time
import logging
from itertools import chain, cycle
from pathlib import Path
import numpy as np
from omegaconf import DictConfig, OmegaConf
import trimesh
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import imageio
import util.config as config
from logger.factory import create_logger
from models.factory import load_datasets
from models.renderer_factory import factory as renderer_factory
from models.raysampler import sample_random_rays, rays_to_world, sample_image_pixels, sample_rays_on_grid
from models.camera import CameraManager, PerspectiveCamera
from models.transform import TransformManager, SymmetryManager
from models.dataset_wrapper import DatasetWrapper
from models.camera import RayBundle
from util.test_video import generate_eval_video_cameras
from util.checkpoint import delete_old_checkpoints
from util.coord import transform_points
from util.webvis import start_http_server, vis_mesh
from util.filesystem import mkdir_shared
def find_latest_checkpoint(ckpt_dir):
model_list_raw = os.listdir(ckpt_dir)
model_list = []
for model_name in model_list_raw:
if model_name[-3:] == 'pth':
model_list.append(model_name)
model_list.sort()
latest_model_name = model_list[-1]
return latest_model_name
class Runner:
def __init__(self, cfg):
self.device = torch.device('cuda')
# Configuration
self.cfg = cfg
mode, is_continue = cfg.mode, cfg.is_continue
self.fp16 = cfg.fp16 # Half precision
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16)
self.base_exp_dir = os.getcwd()
self.dataset, self.val_dataset = load_datasets(cfg)
self.camera_manager = CameraManager(self.dataset.cameras, cfg)
self.learn_symmetry = cfg.model.renderer.learn_symmetry
if self.learn_symmetry:
self.transform_manager = SymmetryManager(cfg)
else:
self.transform_manager = TransformManager(cfg)
self.iter_step = 0
# Weights
self.is_continue = is_continue
self.mode = mode
self.end_iter = cfg.train.end_iter
self.renderer = renderer_factory(cfg)(
cfg,
bbox_min=self.dataset.object_bbox_min,
bbox_max=self.dataset.object_bbox_max
)
self.renderer.set_device(self.device)
# Networks
nets = self.renderer.get_networks()
for key, net in nets.items():
nets[key] = net.to(self.device)
# Pretrain SDF network
cfg.model.sdf_network.pretrain_sdf = getattr(cfg.model.sdf_network, "pretrain_sdf", False)
if cfg.model.sdf_network.pretrain_sdf:
nets['sdf_network'].pretrain(self.device)
if cfg.mode == 'train':
self.create_optimizer()
nets["camera_manager"] = self.camera_manager
nets["transform_manager"] = self.transform_manager
self.networks = nets
# Load checkpoint
init_model = cfg.train.init_model
if is_continue:
ckpt_dir = self.get_checkpoint_dir()
if cfg.test.checkpoint == - 1:
checkpoint_file = find_latest_checkpoint(ckpt_dir)
else:
checkpoint_file = self.get_checkpoint_name(cfg.test.checkpoint)
logging.info('Find checkpoint: {}'.format(checkpoint_file))
if checkpoint_file is not None:
checkpoint = ckpt_dir.joinpath(checkpoint_file)
self.load_checkpoint(checkpoint)
elif init_model:
ckpt_dir = Path(init_model, cfg.dataset.instance, 'checkpoints')
latest_model_name = find_latest_checkpoint(ckpt_dir)
checkpoint = ckpt_dir.joinpath(latest_model_name)
logging.info(f"Initialising model from: {checkpoint}")
logging.info(f"Loading networks: {cfg.train.init_networks}")
self.load_checkpoint(checkpoint, True, cfg.train.init_networks)
def create_optimizer(self):
cfg_t = self.cfg.train
nets = self.renderer.get_networks()
variance_group = ["variance_network"]
slow_group = cfg_t.ramp_lr_nets
groups = [variance_group, slow_group]
# the rest
constant_group = [x for x in nets.keys() if x not in chain(*groups)]
groups += [constant_group]
group_names = ["variance_group", "slow_group", "constant_group"]
lrs = {
"slow_group": cfg_t.learning_rate,
"constant_group": cfg_t.learning_rate,
"variance_group": cfg_t.learning_rate_variance
}
param_groups = []
for k, group in enumerate(groups):
name = group_names[k]
params_to_train = list(
chain.from_iterable(
nets[name].parameters() for name in group
)
)
param_groups.append({
"params": params_to_train,
"lr": lrs[name],
"name": name
})
if (self.learn_symmetry and not cfg_t.freeze_symmetry_transform): # also learn params if estimating ground plane
transform_params = self.transform_manager.parameters()
transform_lr = cfg_t.learning_rate_symmetry
param_groups += [{
"params": transform_params,
"lr": transform_lr,
"name": "global_alignment"
}]
self.optimizer = torch.optim.Adam(param_groups, lr=cfg_t.learning_rate)
def train_single_view(self):
cfg = self.cfg
cfg_t = cfg.train
self.logger = create_logger(cfg)
print("Experiment name:", cfg.config.exp_name)
self.update_learning_rate()
res_step = cfg_t.end_iter - self.iter_step
image_perm = self.get_image_perm()
dataset = self.dataset
for iter_i in tqdm(range(res_step)):
image_idx = image_perm[self.iter_step % len(image_perm)]
camera = self.camera_manager.get_camera(image_idx).cuda()
xy = sample_random_rays(camera, cfg_t.batch_size, self.device)
rays = rays_to_world(camera, xy)
true_rgb = sample_image_pixels(dataset.images[image_idx], rays)
self.training_step(rays, true_rgb)
if self.iter_step % len(image_perm) == 0:
image_perm = self.get_image_perm()
def get_image_perm(self):
return torch.randperm(self.dataset.n_images)
def train(self):
# save checkpoint with the initial network parameters
# for subsequent reinitialization
self.train_loop()
self.save_checkpoint()
def train_loop(self):
cfg = self.cfg
cfg_t = cfg.train
self.logger = create_logger(cfg)
print("Experiment name:", cfg.config.exp_name)
self.update_learning_rate()
res_step = cfg_t.end_iter - self.iter_step
dataset = self.dataset
ds_wrapper = DatasetWrapper(cfg, dataset)
data_loader = DataLoader(ds_wrapper,
shuffle=True,
num_workers=4,
batch_size=cfg.train.batch_size,
pin_memory=True)
for batch in tqdm(cycle(data_loader), total=res_step):
batch = batch.cuda()
frame_idx = batch[:, 0].type(torch.int64)
camera = self.camera_manager.get_cameras(frame_idx)
xy = RayBundle(xys=batch[:, 1:3])
rays = rays_to_world(camera, xy)
true_rgb = batch[:, 3:]
self.training_step(rays, true_rgb)
if self.iter_step == cfg_t.end_iter:
break
def training_step(self, rays, true_rgb):
cfg = self.cfg
cfg_t = cfg.train
batch_size = true_rgb.shape[0]
renderer = self.renderer
dataset = self.dataset
renderer.set_training_step(self.iter_step)
near, far = dataset.near_far_from_sphere(rays)
background_rgb = None
if cfg_t.use_white_bkgd:
background_rgb = torch.ones([1, 3])
mask = torch.ones((batch_size, 1), dtype=torch.float32).cuda()
inputs = self.form_extra_inputs()
if getattr(cfg_t, "sfm_supervision_weight", 0) > 0:
pcl = dataset.point_cloud_xyz_canonical
transform = self.camera_manager.get_learnable_4x4_transform().squeeze() # Fails now
perm = torch.randperm(pcl.shape[0])
sfm_batch_size = cfg_t.sfm_batch_size
idx = perm[:sfm_batch_size]
pcl = pcl[idx, ...]
pcl = pcl.cuda()
pcl = transform_points(transform, pcl)
inputs["points_xyz"] = pcl
# Initial mesh and renders
if self.iter_step == 0:
self.save_intermediate_mesh()
with torch.cuda.amp.autocast(enabled=self.fp16):
render_out = renderer.render(rays, near, far,
inputs=inputs,
background_rgb=background_rgb,
cos_anneal_ratio=self.get_cos_anneal_ratio())
loss, to_log = renderer.evaluate_loss(render_out, true_rgb, mask)
self.optimizer.zero_grad()
# self.optimizer2.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
# self.scaler.step(self.optimizer2)
self.scaler.update()
self.iter_step += 1
# log learned camera parameters
to_log.update({
't/x': self.transform_manager.t_[0, 0],
't/y': self.transform_manager.t_[0, 1],
't/z': self.transform_manager.t_[0, 2],
't/norm': self.transform_manager.t_[0, :].norm(),
'r/x': self.transform_manager.r_[0, 0],
'r/y': self.transform_manager.r_[0, 1],
'r/z': self.transform_manager.r_[0, 2],
'r/norm': self.transform_manager.r_[0, :].norm(),
})
self.logger.log(to_log, self.iter_step)
if self.iter_step % cfg_t.report_freq == 0:
print('iter:{:8>d} loss = {} lr={}'.format(self.iter_step, loss, self.optimizer.param_groups[0]['lr']))
if self.iter_step % cfg_t.save_freq == 0:
self.save_checkpoint()
if self.iter_step % cfg_t.val_mesh_freq == 0:
self.save_intermediate_mesh()
if self.iter_step % cfg.train.render_views_freq == 0 or self.iter_step == 10000:
torch.cuda.empty_cache()
renderer.set_inference_mode(True)
images = self.render_test_video_impl(4, 4)
renderer.set_inference_mode(False)
for img_idx, img in enumerate(images):
img = img.astype(np.float32) / 255
self.logger.upload_image(f"render/{img_idx:01}", img)
torch.cuda.empty_cache()
self.update_learning_rate()
def form_extra_inputs(self):
inputs = {
"ground_plane_offset": self.dataset.get_ground_plane_z(), # fixed offset from transformed origin
"transform_manager": self.transform_manager,
}
return inputs
def get_cos_anneal_ratio(self):
cfg_t = self.cfg.train
if cfg_t.anneal_end == 0.0:
return 1.0
else:
return np.min([1.0, self.iter_step / cfg_t.anneal_end])
def update_learning_rate(self):
cfg_t = self.cfg.train
warm_up_end = cfg_t.warm_up_end
if self.iter_step < warm_up_end:
t = self.iter_step / warm_up_end
ramp_lr_end = 1.0
learning_factor = cfg_t.ramp_lr_start * (1.0 - t) + t * ramp_lr_end
learning_factors = {
"slow_group": learning_factor,
"constant_group": 1.0,
"global_alignment": learning_factor,
"variance_group": learning_factor
}
else:
alpha = cfg_t.learning_rate_alpha
progress = (self.iter_step - warm_up_end) / (self.end_iter - warm_up_end)
learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha
learning_factors = {
"slow_group": learning_factor,
"constant_group": learning_factor,
"global_alignment": learning_factor,
"variance_group": learning_factor
}
for g in self.optimizer.param_groups:
g['lr'] = cfg_t.learning_rate * learning_factors[g["name"]]
def load_checkpoint(self, checkpoint_file, init_model=False, network_names=None):
checkpoint = torch.load(checkpoint_file, map_location=self.device)
names = self.networks.keys() if network_names is None else network_names
for k in names:
if k in checkpoint:
if k == "camera_manager" and not hasattr(self.networks[k], "r_") and "r_" in checkpoint[k]: # some neus experiments have dummy r_
continue
self.networks[k].load_state_dict(checkpoint[k])
if not init_model and self.cfg.mode == 'train':
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.iter_step = checkpoint['iter_step']
if 'scaler' in checkpoint:
self.scaler.load_state_dict(checkpoint['scaler'])
logging.info('End')
def get_checkpoint_dir(self):
return Path(self.base_exp_dir, 'checkpoints')
def save_checkpoint(self):
checkpoint = {k: v.state_dict() for k, v in self.networks.items()}
checkpoint.update({
'optimizer': self.optimizer.state_dict(),
'iter_step': self.iter_step,
'scaler': self.scaler.state_dict()
})
ckpt_dir = self.get_checkpoint_dir()
mkdir_shared(ckpt_dir)
ckpt_file = ckpt_dir.joinpath(self.get_checkpoint_name(self.iter_step))
torch.save(checkpoint, str(ckpt_file.resolve()))
if not self.cfg.train.keep_old_checkpoints:
delete_old_checkpoints(ckpt_dir)
def get_checkpoint_name(self, iter_step):
return 'ckpt_{:0>6d}.pth'.format(iter_step)
def render_test_video_impl(self, resolution_level, num_cameras, out_dir=None):
ds = self.dataset
cfg = self.cfg
test_batch_size = cfg.test.batch_size
device = self.device
inputs = self.form_extra_inputs()
bbox_scale = torch.from_numpy(ds.bbox_scale_transform)
traj_radius = 2.0 / bbox_scale[0, 0]
test_cameras = generate_eval_video_cameras(cfg, ds.get_cameras(), traj_radius, n_eval_cams=num_cameras)
test_cameras = [PerspectiveCamera.from_pytorch3d(cam) for cam in test_cameras]
test_cameras = [cam.left_transformed(bbox_scale) for cam in test_cameras]
for cam in test_cameras:
cam.cuda()
if self.learn_symmetry:
_, T_inv = self.transform_manager.get_transform(return_inverse=True)
test_cameras = [cam.left_transformed(T_inv.squeeze()) for cam in test_cameras]
images = []
for frame_idx, cam in enumerate(tqdm(test_cameras)):
xys, H, W = sample_rays_on_grid(cam, resolution_level, device)
rays = rays_to_world(cam, xys)
rays = rays.split(test_batch_size)
out_rgb = []
for rays_batch in rays:
near, far = self.dataset.near_far_from_sphere(rays_batch)
background_rgb = torch.ones([1, 3], device=device) if cfg.test.white_bkgd else None
render_out = self.renderer.render(rays_batch, near, far,
inputs=inputs,
background_rgb=background_rgb,
cos_anneal_ratio=self.get_cos_anneal_ratio())
if cfg.test.rendering_output != "full":
color_out = render_out['custom_color']
else:
color_out = render_out['color']
out_rgb.append(color_out.detach().cpu().numpy())
img = (np.concatenate(out_rgb, axis=0).reshape([H, W, 3]) * 256).clip(0, 255)
img = img.astype(np.uint8)
images.append(img)
if out_dir is not None:
imageio.imwrite(out_dir.joinpath(f"{frame_idx:04}.png"), img)
return images
def render_test_video(self):
cfg = self.cfg
self.renderer.set_inference_mode(True)
out_dir = Path(cfg.test.video_out_dir)
mkdir_shared(out_dir)
print(f"Writing frames8 to: {str(out_dir.resolve())}")
resolution_level = cfg.test.nvs_resolution
num_cameras = cfg.test.num_cams
if not out_dir.joinpath(f"{num_cameras-1:04}.png").exists():
self.render_test_video_impl(resolution_level, num_cameras, out_dir)
else:
print("frames already rendered, skipping")
self.gen_video_file(out_dir)
def gen_video_file(self, out_dir):
out_video_file = out_dir.joinpath(f"video.mp4")
# use ffmpeg from conda
ffmpeg_exec = f"{os.path.dirname(sys.executable)}/ffmpeg"
print("ffmpeg exec", ffmpeg_exec)
cmd = [ffmpeg_exec, "-y", "-f", "image2", "-i", out_dir.joinpath("%04d.png"), "-b:v", "6000k", "-c:v", "libopenh264", out_video_file]
result = subprocess.run(cmd, capture_output=True, text=True)
print(result.stdout)
print(result.stderr)
print("Generated video file", out_video_file.resolve())
def make_mesh_dir(self):
path = Path("meshes")
mkdir_shared(path)
return path
def out_mesh_file(self):
path = self.make_mesh_dir()
return path.joinpath("mesh.ply")
def visualise_mesh(self, world_space=False, resolution=None, export=False, out_filename=None):
threshold = self.cfg.test.mcube_threshold
if resolution is None:
resolution = self.cfg.test.mcube_resolution
dataset = self.dataset
bound_min = torch.tensor(dataset.object_bbox_min, dtype=torch.float32)
bound_max = torch.tensor(dataset.object_bbox_max, dtype=torch.float32)
if not self.cfg.test.nvs_cut_box:
bound_min = torch.min(bound_min).repeat(3)
bound_max = torch.max(bound_max).repeat(3)
learnt_t = self.transform_manager.t_.detach().to(bound_min.device).squeeze()
learnt_t[1] = 0
bound_min += learnt_t # TODO: verify correctness of sign here
bound_max += learnt_t
renderer = self.renderer
renderer.set_inference_mode(False)
inputs = self.form_extra_inputs()
renderer.setup_rendering(inputs)
vertices, triangles =\
renderer.extract_geometry(bound_min, bound_max, resolution=resolution, threshold=threshold)
if vertices.shape[0] == 0 or triangles.shape[0] == 0:
return None
if world_space:
vertices = vertices * dataset.scale_mats_np[0][0, 0] + dataset.scale_mats_np[0][:3, 3][None]
mesh = trimesh.Trimesh(vertices, triangles)
if self.cfg.test.vis_symm_plane:
verts_symm, tris_symm = self.transform_manager.vis_symmetry_plane()
verts_symm = verts_symm.numpy().astype(np.float64)
tris_symm = tris_symm.numpy().astype(np.uint64)
mesh_symm = trimesh.Trimesh(verts_symm, tris_symm)
mesh = trimesh.util.concatenate([mesh, mesh_symm])
if export:
if not out_filename:
out_filename = self.out_mesh_file()
if out_filename.exists():
os.remove(out_filename)
mesh.export(out_filename)
return mesh
def save_intermediate_mesh(self):
cfg = self.cfg
cfg_t = cfg.train
vis_bbox = cfg.visualisation.show_bounding_box
mcube_resolution = 128
torch.cuda.empty_cache()
mesh = self.visualise_mesh(export=True, resolution=mcube_resolution)
if mesh is not None:
if cfg_t.save_all_meshes:
html_file = f"index_{self.iter_step:06}.html"
else:
html_file = "index.html"
path = self.make_mesh_dir()
html_path = path.joinpath(html_file)
if html_path.exists():
os.remove(html_path)
bbox_size = self.dataset.raw_bbox_max if vis_bbox else None
vis_mesh(str(html_path),
mesh,
half_bbox_size=bbox_size,
vis_axes=cfg.visualisation.show_axes)
self.logger.upload_file("mesh", str(html_path))
torch.cuda.empty_cache()
else:
logging.info('Mesh generation failed')
@config.main(default_config="config/config.yaml")
def main(cfg: DictConfig) -> None:
print(f"HOST: {socket.gethostname()}")
FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)
torch.cuda.set_device(cfg.gpu)
print("GPU:", cfg.gpu)
if cfg.mode in ['visualise_mesh', 'test_video']:
cfg.is_continue = True
runner = Runner(cfg)
if cfg.mode == 'train':
if cfg.train.multi_view_batch:
runner.train()
else:
runner.train_single_view()
runner.visualise_mesh(export=True)
elif cfg.mode == 'visualise_mesh':
mesh = runner.visualise_mesh(export=True)
if cfg.test.web_vis:
path = Path("meshes")
mkdir_shared(path)
html_path = path.joinpath("index.html")
if html_path.exists():
os.remove(html_path)
vis_mesh(str(html_path), mesh)
start_http_server(path, cfg.visualisation.port)
elif cfg.mode == 'test_video':
runner.render_test_video()
if __name__ == '__main__':
main()