-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_qvae.py
195 lines (165 loc) · 7.55 KB
/
train_qvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os
import pickle
import time
import matplotlib.pyplot as plt
import numpy as np
import PIL
import torch
import torch.optim as optim
import torchvision
from PIL import Image
from torch import nn
from torch.nn import functional as F
from models.vanilla_vae_q import QuaternionVanillaVAE
#pylint:disable=E1101
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_num', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--n_epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--latent_dim', type=int, default=20, help="Dimension of the latent space.")
parser.add_argument('--image_size', type=int, default=64)
parser.add_argument('--n_channels', type=int, default=4, help="3 for real-valued inputs, 4 for quaternion-valued inputs.")
parser.add_argument('--kld_weight', type=float, default=0.00001)
parser.add_argument('--cuda', type=bool, default=True)
parser.add_argument('--patience_epochs', type=int, default=10)
parser.add_argument('--epochs_no_improve', type=int, default=10)
parser.add_argument('--train_root_dir', type=str, default='../Datasets/img_align_celeba/train')
parser.add_argument('--val_root_dir', type=str, default='../Datasets/img_align_celeba/val')
parser.add_argument('--test_root_dir', type=str, default='../Datasets/img_align_celeba/test')
opt = parser.parse_args()
# Set parameters same as DFC-VAE
opt.batch_size = 64
opt.lr = 0.0005
opt.latent_dim = 100
if opt.cuda:
torch.cuda.set_device(opt.gpu_num)
if opt.cuda:
device = "cuda:%i" %opt.gpu_num
else:
device = "cpu"
# Set seed
seed = 1656079
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def weights_init_normal(m):
''' Initialize weights.'''
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.01) # according to kingma,2013
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.01)
torch.nn.init.constant_(m.bias.data, 0.0)
def loss_function(recons, input, mu, log_var, kld_weight=opt.kld_weight) -> dict:
'''Computes QVAE loss function.
QVAEloss function is composed of BCE reconstruction loss and weighted KL divergence.
Quaternion-valued KL divergence is defined according to the paper.'''
recons_loss = F.binary_cross_entropy(recons, input)
kld_loss = torch.mean(0.5 * (torch.sum(log_var.exp() + mu**2 - 1, dim=2)) - 2 * torch.sum(log_var, dim=2)), dim=0)
kld_loss = torch.sum(kld_loss)
loss = recons_loss + opt.kld_weight * kld_loss
return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'KLD':-kld_loss}
def early_stopping(val_loss, train_loss, min_val_loss, patience_epochs, epochs_no_improve):
early_stop = False
if val_loss < min_val_loss:
min_val_loss = val_loss
epochs_no_improve = 0
else:
epochs_no_improve += 1
if epochs_no_improve == patience_epochs and train_loss < val_loss:
print("Early stopping...")
early_stop = True
return early_stop, min_val_loss, epochs_no_improve
##### DATASET #####
# Prepare CelebA dataset
class CelebaDataset(torch.utils.data.Dataset):
def __init__(self, root_dir, im_name_list, resize_dim, transform=None):
self.root_dir = root_dir
self.im_list = im_name_list
self.resize_dim = resize_dim
self.transform = transform
def __len__(self):
return len(self.im_list)
def __getitem__(self, idx):
im = Image.open(os.path.join(self.root_dir, self.im_list[idx])).resize(self.resize_dim, resample=PIL.Image.NEAREST)
im = np.array(im)
im = im / 255
if self.transform:
im = self.transform(im)
# Manipulation for quaternion net
npad = ((1, 0), (0, 0), (0, 0))
im = np.pad(im, pad_width=npad, mode='constant', constant_values=0)
return im
# Define train set
train_celeba_dataset = CelebaDataset(opt.train_root_dir, os.listdir(opt.train_root_dir), (opt.image_size, opt.image_size),
torchvision.transforms.Compose([torchvision.transforms.ToTensor()]))
train_loader = torch.utils.data.DataLoader(train_celeba_dataset, batch_size=opt.batch_size, shuffle=True)
# Define validation set
val_celeba_dataset = CelebaDataset(opt.val_root_dir, os.listdir(opt.val_root_dir), (opt.image_size, opt.image_size),
torchvision.transforms.Compose([torchvision.transforms.ToTensor()]))
val_loader = torch.utils.data.DataLoader(val_celeba_dataset, batch_size=opt.batch_size, shuffle=True)
# Define test set
test_celeba_dataset = CelebaDataset(opt.test_root_dir, os.listdir(opt.test_root_dir), (opt.image_size, opt.image_size),
torchvision.transforms.Compose([torchvision.transforms.ToTensor()]))
test_loader = torch.utils.data.DataLoader(test_celeba_dataset, batch_size=opt.batch_size, shuffle=True)
##### MODEL SETUP #####
qvae = QuaternionVanillaVAE(in_channels=opt.n_channels, latent_dim=opt.latent_dim)
print("Number of parameters", sum(p.numel() for p in qvae.parameters() if p.requires_grad))
if opt.cuda:
qvae.cuda()
optimizer = optim.Adam(qvae.parameters(), lr=opt.lr)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
loss_train = []
loss_val = []
##### TRAINING #####
def train(model):
model.train()
start = time.time()
for epoch in range(opt.n_epochs):
min_val_loss = 1.0
epochs_no_improve = 0
# Training
temp_loss_train = []
for idx, data in enumerate(train_loader):
data = data.type(torch.FloatTensor).to(device)
optimizer.zero_grad()
# Apply model
recons, input, mu, log_var = model(data)
# Compute loss function
loss = loss_function(recons, input, mu, log_var)['loss']
loss_train.append(loss.detach().item())
temp_loss_train.append(loss.detach().item())
loss.backward()
optimizer.step()
# Validation
with torch.no_grad():
temp_loss_val = []
for val_data in val_loader:
val_data = val_data.type(torch.FloatTensor).to(device)
# Evaluate model
val_recons, val_input, val_mu, val_log_var = model(val_data)
# Compute loss function
loss = loss_function(val_recons, val_input, val_mu, val_log_var)['loss']
temp_loss_val.append(loss.item())
loss_val.append(loss.item())
end = time.time()
print("[Epoch: %i][Train loss: %f][Val loss: %f][Time: %f]" % (epoch, np.mean(temp_loss_train), np.mean(temp_loss_val), end-start))
scheduler.step()
# Store losses
with open('checkpoints/loss_train_midqvae_linearlayers_epoch%i' %epoch, 'wb') as fp:
pickle.dump(loss_train, fp)
with open('checkpoints/loss_val_midqvae_linearlayers_epoch%i' %epoch, 'wb') as f:
pickle.dump(loss_val, f)
# Store model
torch.save(model.state_dict(), "checkpoints/model_midqvae_newloss_epoch%i" %epoch)
# Early stopping
early_stop, min_val_loss, epochs_no_improve = early_stopping(np.mean(temp_loss_val), np.mean(temp_loss_train), min_val_loss, opt.patience_epochs, epochs_no_improve)
if early_stop:
print("Early stopped!")
break
train(qvae)