-
Notifications
You must be signed in to change notification settings - Fork 63
/
attgan.py
317 lines (276 loc) · 13 KB
/
attgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (C) 2018 Elvis Yu-Jing Lin <elvisyjlin@gmail.com>
#
# This work is licensed under the MIT License. To view a copy of this license,
# visit https://opensource.org/licenses/MIT.
"""AttGAN, generator, and discriminator."""
import torch
import torch.nn as nn
from nn import LinearBlock, Conv2dBlock, ConvTranspose2dBlock
from torchsummary import summary
# This architecture is for images of 128x128
# In the original AttGAN, slim.conv2d uses padding 'same'
MAX_DIM = 64 * 16 # 1024
class Generator(nn.Module):
def __init__(self, enc_dim=64, enc_layers=5, enc_norm_fn='batchnorm', enc_acti_fn='lrelu',
dec_dim=64, dec_layers=5, dec_norm_fn='batchnorm', dec_acti_fn='relu',
n_attrs=13, shortcut_layers=1, inject_layers=0, img_size=128):
super(Generator, self).__init__()
self.shortcut_layers = min(shortcut_layers, dec_layers - 1)
self.inject_layers = min(inject_layers, dec_layers - 1)
self.f_size = img_size // 2**enc_layers # f_size = 4 for 128x128
layers = []
n_in = 3
for i in range(enc_layers):
n_out = min(enc_dim * 2**i, MAX_DIM)
layers += [Conv2dBlock(
n_in, n_out, (4, 4), stride=2, padding=1, norm_fn=enc_norm_fn, acti_fn=enc_acti_fn
)]
n_in = n_out
self.enc_layers = nn.ModuleList(layers)
layers = []
n_in = n_in + n_attrs # 1024 + 13
for i in range(dec_layers):
if i < dec_layers - 1:
n_out = min(dec_dim * 2**(dec_layers-i-1), MAX_DIM)
layers += [ConvTranspose2dBlock(
n_in, n_out, (4, 4), stride=2, padding=1, norm_fn=dec_norm_fn, acti_fn=dec_acti_fn
)]
n_in = n_out
n_in = n_in + n_in//2 if self.shortcut_layers > i else n_in
n_in = n_in + n_attrs if self.inject_layers > i else n_in
else:
layers += [ConvTranspose2dBlock(
n_in, 3, (4, 4), stride=2, padding=1, norm_fn='none', acti_fn='tanh'
)]
self.dec_layers = nn.ModuleList(layers)
def encode(self, x):
z = x
zs = []
for layer in self.enc_layers:
z = layer(z)
zs.append(z)
return zs
def decode(self, zs, a):
a_tile = a.view(a.size(0), -1, 1, 1).repeat(1, 1, self.f_size, self.f_size)
z = torch.cat([zs[-1], a_tile], dim=1)
for i, layer in enumerate(self.dec_layers):
z = layer(z)
if self.shortcut_layers > i: # Concat 1024 with 512
z = torch.cat([z, zs[len(self.dec_layers) - 2 - i]], dim=1)
if self.inject_layers > i:
a_tile = a.view(a.size(0), -1, 1, 1) \
.repeat(1, 1, self.f_size * 2**(i+1), self.f_size * 2**(i+1))
z = torch.cat([z, a_tile], dim=1)
return z
def forward(self, x, a=None, mode='enc-dec'):
if mode == 'enc-dec':
assert a is not None, 'No given attribute.'
return self.decode(self.encode(x), a)
if mode == 'enc':
return self.encode(x)
if mode == 'dec':
assert a is not None, 'No given attribute.'
return self.decode(x, a)
raise Exception('Unrecognized mode: ' + mode)
class Discriminators(nn.Module):
# No instancenorm in fcs in source code, which is different from paper.
def __init__(self, dim=64, norm_fn='instancenorm', acti_fn='lrelu',
fc_dim=1024, fc_norm_fn='none', fc_acti_fn='lrelu', n_layers=5, img_size=128):
super(Discriminators, self).__init__()
self.f_size = img_size // 2**n_layers
layers = []
n_in = 3
for i in range(n_layers):
n_out = min(dim * 2**i, MAX_DIM)
layers += [Conv2dBlock(
n_in, n_out, (4, 4), stride=2, padding=1, norm_fn=norm_fn, acti_fn=acti_fn
)]
n_in = n_out
self.conv = nn.Sequential(*layers)
self.fc_adv = nn.Sequential(
LinearBlock(1024 * self.f_size * self.f_size, fc_dim, fc_norm_fn, fc_acti_fn),
LinearBlock(fc_dim, 1, 'none', 'none')
)
self.fc_cls = nn.Sequential(
LinearBlock(1024 * self.f_size * self.f_size, fc_dim, fc_norm_fn, fc_acti_fn),
LinearBlock(fc_dim, 13, 'none', 'none')
)
def forward(self, x):
h = self.conv(x)
h = h.view(h.size(0), -1)
return self.fc_adv(h), self.fc_cls(h)
import torch.autograd as autograd
import torch.nn.functional as F
import torch.optim as optim
# multilabel_soft_margin_loss = sigmoid + binary_cross_entropy
class AttGAN():
def __init__(self, args):
self.mode = args.mode
self.gpu = args.gpu
self.multi_gpu = args.multi_gpu if 'multi_gpu' in args else False
self.lambda_1 = args.lambda_1
self.lambda_2 = args.lambda_2
self.lambda_3 = args.lambda_3
self.lambda_gp = args.lambda_gp
self.G = Generator(
args.enc_dim, args.enc_layers, args.enc_norm, args.enc_acti,
args.dec_dim, args.dec_layers, args.dec_norm, args.dec_acti,
args.n_attrs, args.shortcut_layers, args.inject_layers, args.img_size
)
self.G.train()
if self.gpu: self.G.cuda()
summary(self.G, [(3, args.img_size, args.img_size), (args.n_attrs, 1, 1)], batch_size=4, device='cuda' if args.gpu else 'cpu')
self.D = Discriminators(
args.dis_dim, args.dis_norm, args.dis_acti,
args.dis_fc_dim, args.dis_fc_norm, args.dis_fc_acti, args.dis_layers, args.img_size
)
self.D.train()
if self.gpu: self.D.cuda()
summary(self.D, [(3, args.img_size, args.img_size)], batch_size=4, device='cuda' if args.gpu else 'cpu')
if self.multi_gpu:
self.G = nn.DataParallel(self.G)
self.D = nn.DataParallel(self.D)
self.optim_G = optim.Adam(self.G.parameters(), lr=args.lr, betas=args.betas)
self.optim_D = optim.Adam(self.D.parameters(), lr=args.lr, betas=args.betas)
def set_lr(self, lr):
for g in self.optim_G.param_groups:
g['lr'] = lr
for g in self.optim_D.param_groups:
g['lr'] = lr
def trainG(self, img_a, att_a, att_a_, att_b, att_b_):
for p in self.D.parameters():
p.requires_grad = False
zs_a = self.G(img_a, mode='enc')
img_fake = self.G(zs_a, att_b_, mode='dec')
img_recon = self.G(zs_a, att_a_, mode='dec')
d_fake, dc_fake = self.D(img_fake)
if self.mode == 'wgan':
gf_loss = -d_fake.mean()
if self.mode == 'lsgan': # mean_squared_error
gf_loss = F.mse_loss(d_fake, torch.ones_like(d_fake))
if self.mode == 'dcgan': # sigmoid_cross_entropy
gf_loss = F.binary_cross_entropy_with_logits(d_fake, torch.ones_like(d_fake))
gc_loss = F.binary_cross_entropy_with_logits(dc_fake, att_b)
gr_loss = F.l1_loss(img_recon, img_a)
g_loss = gf_loss + self.lambda_2 * gc_loss + self.lambda_1 * gr_loss
self.optim_G.zero_grad()
g_loss.backward()
self.optim_G.step()
errG = {
'g_loss': g_loss.item(), 'gf_loss': gf_loss.item(),
'gc_loss': gc_loss.item(), 'gr_loss': gr_loss.item()
}
return errG
def trainD(self, img_a, att_a, att_a_, att_b, att_b_):
for p in self.D.parameters():
p.requires_grad = True
img_fake = self.G(img_a, att_b_).detach()
d_real, dc_real = self.D(img_a)
d_fake, dc_fake = self.D(img_fake)
def gradient_penalty(f, real, fake=None):
def interpolate(a, b=None):
if b is None: # interpolation in DRAGAN
beta = torch.rand_like(a)
b = a + 0.5 * a.var().sqrt() * beta
alpha = torch.rand(a.size(0), 1, 1, 1)
alpha = alpha.cuda() if self.gpu else alpha
inter = a + alpha * (b - a)
return inter
x = interpolate(real, fake).requires_grad_(True)
pred = f(x)
if isinstance(pred, tuple):
pred = pred[0]
grad = autograd.grad(
outputs=pred, inputs=x,
grad_outputs=torch.ones_like(pred),
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad = grad.view(grad.size(0), -1)
norm = grad.norm(2, dim=1)
gp = ((norm - 1.0) ** 2).mean()
return gp
if self.mode == 'wgan':
wd = d_real.mean() - d_fake.mean()
df_loss = -wd
df_gp = gradient_penalty(self.D, img_a, img_fake)
if self.mode == 'lsgan': # mean_squared_error
df_loss = F.mse_loss(d_real, torch.ones_like(d_fake)) + \
F.mse_loss(d_fake, torch.zeros_like(d_fake))
df_gp = gradient_penalty(self.D, img_a)
if self.mode == 'dcgan': # sigmoid_cross_entropy
df_loss = F.binary_cross_entropy_with_logits(d_real, torch.ones_like(d_real)) + \
F.binary_cross_entropy_with_logits(d_fake, torch.zeros_like(d_fake))
df_gp = gradient_penalty(self.D, img_a)
dc_loss = F.binary_cross_entropy_with_logits(dc_real, att_a)
d_loss = df_loss + self.lambda_gp * df_gp + self.lambda_3 * dc_loss
self.optim_D.zero_grad()
d_loss.backward()
self.optim_D.step()
errD = {
'd_loss': d_loss.item(), 'df_loss': df_loss.item(),
'df_gp': df_gp.item(), 'dc_loss': dc_loss.item()
}
return errD
def train(self):
self.G.train()
self.D.train()
def eval(self):
self.G.eval()
self.D.eval()
def save(self, path):
states = {
'G': self.G.state_dict(),
'D': self.D.state_dict(),
'optim_G': self.optim_G.state_dict(),
'optim_D': self.optim_D.state_dict()
}
torch.save(states, path)
def load(self, path):
states = torch.load(path, map_location=lambda storage, loc: storage)
if 'G' in states:
self.G.load_state_dict(states['G'])
if 'D' in states:
self.D.load_state_dict(states['D'])
if 'optim_G' in states:
self.optim_G.load_state_dict(states['optim_G'])
if 'optim_D' in states:
self.optim_D.load_state_dict(states['optim_D'])
def saveG(self, path):
states = {
'G': self.G.state_dict()
}
torch.save(states, path)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--img_size', dest='img_size', type=int, default=128)
parser.add_argument('--shortcut_layers', dest='shortcut_layers', type=int, default=1)
parser.add_argument('--inject_layers', dest='inject_layers', type=int, default=0)
parser.add_argument('--enc_dim', dest='enc_dim', type=int, default=64)
parser.add_argument('--dec_dim', dest='dec_dim', type=int, default=64)
parser.add_argument('--dis_dim', dest='dis_dim', type=int, default=64)
parser.add_argument('--dis_fc_dim', dest='dis_fc_dim', type=int, default=1024)
parser.add_argument('--enc_layers', dest='enc_layers', type=int, default=5)
parser.add_argument('--dec_layers', dest='dec_layers', type=int, default=5)
parser.add_argument('--dis_layers', dest='dis_layers', type=int, default=5)
parser.add_argument('--enc_norm', dest='enc_norm', type=str, default='batchnorm')
parser.add_argument('--dec_norm', dest='dec_norm', type=str, default='batchnorm')
parser.add_argument('--dis_norm', dest='dis_norm', type=str, default='instancenorm')
parser.add_argument('--dis_fc_norm', dest='dis_fc_norm', type=str, default='none')
parser.add_argument('--enc_acti', dest='enc_acti', type=str, default='lrelu')
parser.add_argument('--dec_acti', dest='dec_acti', type=str, default='relu')
parser.add_argument('--dis_acti', dest='dis_acti', type=str, default='lrelu')
parser.add_argument('--dis_fc_acti', dest='dis_fc_acti', type=str, default='relu')
parser.add_argument('--lambda_1', dest='lambda_1', type=float, default=100.0)
parser.add_argument('--lambda_2', dest='lambda_2', type=float, default=10.0)
parser.add_argument('--lambda_3', dest='lambda_3', type=float, default=1.0)
parser.add_argument('--lambda_gp', dest='lambda_gp', type=float, default=10.0)
parser.add_argument('--mode', dest='mode', default='wgan', choices=['wgan', 'lsgan', 'dcgan'])
parser.add_argument('--lr', dest='lr', type=float, default=0.0002, help='learning rate')
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5)
parser.add_argument('--beta2', dest='beta2', type=float, default=0.999)
parser.add_argument('--gpu', action='store_true')
args = parser.parse_args()
args.n_attrs = 13
args.betas = (args.beta1, args.beta2)
attgan = AttGAN(args)