Skip to content

Latest commit

 

History

History
260 lines (204 loc) · 18 KB

README.ja.md

File metadata and controls

260 lines (204 loc) · 18 KB

DB-GPT: データベースとの対話を革新するプライベートLLM技術

DB-GPTとは何か?

🤖 DB-GPTは、AWEL(エージェントワークフロー式言語)とエージェントを備えたオープンソースのAIネイティブデータアプリ開発フレームワークです。

大規模モデルの分野でのインフラを構築することを目的としており、SMMF(マルチモデル管理)、Text2SQL効果の最適化、RAGフレームワークと最適化、マルチエージェントフレームワークの協力、AWEL(エージェントワークフローのオーケストレーション)など、複数の技術機能の開発を通じて、データを使用した大規模モデルアプリケーションをよりシンプルで便利にします。

🚀 データ3.0時代には、モデルとデータベースを基盤として、企業や開発者がより少ないコードで独自のアプリケーションを構築できます。

AIネイティブデータアプリ



Data-awels

Data-Apps

dashboard-images

目次

紹介

DB-GPTのアーキテクチャは以下の図に示されています:

コア機能には以下の部分が含まれます:

  • RAG(Retrieval Augmented Generation):現在、RAGは最も実用的に実装され、緊急に必要とされる領域です。DB-GPTは、RAGの機能を使用して知識ベースのアプリケーションを構築できるようにする、RAGに基づくフレームワークをすでに実装しています。

  • GBI(Generative Business Intelligence):Generative BIはDB-GPTプロジェクトのコア機能の1つであり、企業のレポート分析とビジネスインサイトを構築するための基本的なデータインテリジェンス技術を提供します。

  • ファインチューニングフレームワーク:モデルのファインチューニングは、任意の企業が垂直およびニッチなドメインで実装するために不可欠な機能です。DB-GPTは、DB-GPTプロジェクトとシームレスに統合される完全なファインチューニングフレームワークを提供します。最近のファインチューニングの取り組みでは、Spiderデータセットに基づいて82.5%の実行精度を達成しています。

  • データ駆動型マルチエージェントフレームワーク:DB-GPTは、データに基づいて継続的に意思決定を行い、実行するためのデータ駆動型自己進化型マルチエージェントフレームワークを提供します。

  • データファクトリー:データファクトリーは、主に大規模モデルの時代における信頼できる知識とデータのクリーニングと処理に関するものです。

  • データソース:DB-GPTのコア機能に生産ビジネスデータをシームレスに接続するために、さまざまなデータソースを統合します。

サブモジュール

  • DB-GPT-Hub 大規模言語モデル(LLM)上での教師ありファインチューニング(SFT)を適用することにより、高性能なText-to-SQLワークフロー。

  • dbgpts dbgptsは、DB-GPT上で構築されたいくつかのデータアプリ、AWELオペレータ、AWELワークフローテンプレート、およびエージェントを含む公式リポジトリです。

Text2SQLファインチューニング

  • サポートされているLLM

    • LLaMA
    • LLaMA-2
    • BLOOM
    • BLOOMZ
    • Falcon
    • Baichuan
    • Baichuan2
    • InternLM
    • Qwen
    • XVERSE
    • ChatGLM2
  • SFT精度 2023年10月10日現在、このプロジェクトを使用して130億パラメータのオープンソースモデルをファインチューニングすることにより、SpiderデータセットでGPT-4を超える実行精度を達成しました!

Text2SQLファインチューニングに関する詳細情報

  • DB-GPT-Plugins Auto-GPTプラグインを直接実行できるDB-GPTプラグイン
  • GPT-Vis 可視化プロトコル

インストール

Docker Linux macOS Windows

使用チュートリアル

特徴

現在、私たちはいくつかの主要な機能を紹介して、現在の能力を示しています:

画像

🌐 AutoDLイメージ

言語切り替え

.env設定ファイルでLANGUAGEパラメータを変更して、異なる言語に切り替えることができます。デフォルトは英語です(中国語:zh、英語:en、他の言語は後で追加されます)。

貢献

  • 新しい貢献のための詳細なガイドラインを確認するには、貢献方法を参照してください。

貢献者ウォール

ライセンス

MITライセンス(MIT)

引用

もしDB-GPTがあなたの研究や開発に役立つと感じた場合、以下の論文を引用してください。

DB-GPTの全体的なアーキテクチャについて知りたい場合は、論文論文を引用してください。

DB-GPTを使用してAgent開発に関する内容について知りたい場合は、論文を引用してください。

@article{xue2023dbgpt,
      title={DB-GPT: Empowering Database Interactions with Private Large Language Models}, 
      author={Siqiao Xue and Caigao Jiang and Wenhui Shi and Fangyin Cheng and Keting Chen and Hongjun Yang and Zhiping Zhang and Jianshan He and Hongyang Zhang and Ganglin Wei and Wang Zhao and Fan Zhou and Danrui Qi and Hong Yi and Shaodong Liu and Faqiang Chen},
      year={2023},
      journal={arXiv preprint arXiv:2312.17449},
      url={https://arxiv.org/abs/2312.17449}
}
@misc{huang2024romasrolebasedmultiagentdatabase,
      title={ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning}, 
      author={Yi Huang and Fangyin Cheng and Fan Zhou and Jiahui Li and Jian Gong and Hongjun Yang and Zhidong Fan and Caigao Jiang and Siqiao Xue and Faqiang Chen},
      year={2024},
      eprint={2412.13520},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2412.13520}, 
}
@inproceedings{xue2024demonstration,
      title={Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models}, 
      author={Siqiao Xue and Danrui Qi and Caigao Jiang and Wenhui Shi and Fangyin Cheng and Keting Chen and Hongjun Yang and Zhiping Zhang and Jianshan He and Hongyang Zhang and Ganglin Wei and Wang Zhao and Fan Zhou and Hong Yi and Shaodong Liu and Hongjun Yang and Faqiang Chen},
      year={2024},
      booktitle = "Proceedings of the VLDB Endowment",
      url={https://arxiv.org/abs/2404.10209}
}

連絡先情報

コミュニティを構築するために取り組んでいます。コミュニティの構築に関するアイデアがあれば、お気軽にお問い合わせください。

Star History Chart