-
Notifications
You must be signed in to change notification settings - Fork 2
/
simulation_agx.py
205 lines (157 loc) · 7.12 KB
/
simulation_agx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#|
#| Copyright (C) 2021-2023 Learning Algorithms and Systems Laboratory, EPFL, Switzerland
#| Authors: Harshit Khurana (maintainer)
#|
#| email: harshit.khurana@epfl.ch
#|
#| Other contributors:
#| Elise Jeandupeux (elise.jeandupeux@epfl.ch)
#|
#| website: lasa.epfl.ch
#|
#| This file is part of iam_dual_arm_control.
#| This work was supported by the European Community's Horizon 2020 Research and Innovation
#| programme (call: H2020-ICT-09-2019-2020, RIA), grant agreement 871899 Impact-Aware Manipulation.
#|
#| iam_dual_arm_control is free software: you can redistribute it and/or modify it under the terms
#| of the GNU General Public License as published by the Free Software Foundation,
#| either version 3 of the License, or (at your option) any later version.
#|
#| iam_dual_arm_control is distributed in the hope that it will be useful,
#| but WITHOUT ANY WARRANTY; without even the implied warranty of
#| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#| GNU General Public License for more details.
#|
import numpy as np
import time
import os
from ds import linear_hitting_ds_pre_impact, linear_ds
from controller import get_joint_velocities_qp_dir_inertia_specific_NS
from get_robot import sim_robot_env
from iiwa_environment import object
import functions as f
from scipy.spatial.transform import Rotation as R
from roboticstoolbox.robot.ERobot import ERobot
# AGX
from pclick import Client
from pclick import MessageFactory
def reset_sim_agx():
# Send 0 velocity
message = MessageFactory.create_controlmessage()
robot_msg = message.objects["robot"]
robot_msg.angleVelocities.extend([0, 0, 0, 0, 0, 0, 0])
client.send(message)
response = client.recv()
# Reset Sim
message = MessageFactory.create_resetmessage()
client.send(message)
response = client.recv()
def agx_send_vel_command(q_dot):
message = MessageFactory.create_controlmessage()
robot_msg = message.objects["robot"]
robot_msg.angleVelocities.extend(list(q_dot))
client.send(message)
response = client.recv()
def update_q_agx_pybullet():
message = MessageFactory.create_sensorrequestmessage()
client.send(message)
response = client.recv()
robot.q = np.array(response.objects['robot'].angleSensors)
iiwa.set_to_joint_position(robot.q)
if __name__ == "__main__":
# Connect to AGX sim
addr = f"tcp://localhost:5555"
client = Client()
print(f"Connecting to click server {addr}")
client.connect(addr)
# Reset pos AGX + 0 velocity
reset_sim_agx()
# Get Sensor message
message = MessageFactory.create_sensorrequestmessage()
client.send(message)
response = client.recv()
# Robot init pose
q_init = np.array(response.objects['robot'].angleSensors)
dq_init = np.array(response.objects['robot'].angleVelocitySensors)
torque_init = np.array(response.objects['robot'].torqueSensors)
# Box init pose
box_position_init = response.objects['Box'].objectSensors[0].position.arr
box_ori = response.objects['Box'].objectSensors[1].rpy.arr
r = R.from_euler('xzy', [box_ori[0], box_ori[1], box_ori[2]], degrees=True)
box_orientation_init = r.as_quat()
# Init Pybullet to get inertia
box = object.Box([0.2, 0.2, 0.2], 0.5)
iiwa = sim_robot_env(1, box)
iiwa.set_to_joint_position(q_init)
###################### Robot RBDyn ##################
robot = ERobot.URDF(os.path.dirname(os.path.realpath('__file__')) + "/urdf_models/iiwa-pybullet.urdf")
######################### PARAMETERS ###############################
trailDuration = 0 # Make it 0 if you don't want the trail to end
contactTime = 0.5 # This is the time that the robot will be in contact with the box
###################### INIT CONDITIONS #################################
X_init = [0.3, -0.2, 0.5]
robot.q = q_init
iiwa.set_to_joint_position(q_init)
Lambda_init = iiwa.get_inertia_matrix_specific(tuple(q_init))
##################### DS PROPERTIES ####################################
A = np.array([[-2, 0, 0], [0, -2, 0], [0, 0, -2]])
h_dir = np.array([0, 1, 0]) # This is the direction of the hitting
X_ref_grid = f.des_hitting_point_grid(box, box_position_init, 0, 5)
########################################################################
for X_ref in X_ref_grid:
X_ref = box_position_init
# Reset pos AGX + 0 velocity
reset_sim_agx()
robot.q = q_init
iiwa.set_to_joint_position(q_init)
Lambda_init = iiwa.get_inertia_matrix_specific(tuple(q_init))
lambda_dir = h_dir.T @ Lambda_init @ h_dir
is_hit = False
# take some time
time.sleep(1)
# initialise the time
time_init = time.time()
# Start the motion
box_position_prev = box_position_init
time_prev = time.time()
time_sim_prev = 0
while 1:
update_q_agx_pybullet()
X_qp = np.array(robot.fkine(robot.q))[:3, 3]
if not is_hit:
dX = linear_hitting_ds_pre_impact(
A, X_qp, X_ref, h_dir, 0.7, lambda_dir, box.mass)
else:
dX = linear_ds(A, X_qp, X_ref)
hit_dir = dX / np.linalg.norm(dX)
lambda_current = iiwa.get_inertia_matrix_specific(tuple(robot.q))
lambda_dir = hit_dir.T @ lambda_current @ hit_dir
jac = np.array(robot.jacob0(robot.q))[:3, :]
q_dot = get_joint_velocities_qp_dir_inertia_specific_NS(
dX, jac, iiwa, hit_dir, 0.15, lambda_dir)
agx_send_vel_command(q_dot)
message = MessageFactory.create_sensorrequestmessage()
client.send(message)
response = client.recv()
# Detect hit - Need something more here later
if (np.linalg.norm(np.array(response.objects['Box'].objectSensors[0].position.arr) - box_position_init) > 0.01):
is_hit = True
time_sim = response.simVars.simulatedTime
box_vel = (np.array(box_position_prev) -
np.array(response.objects['Box'].objectSensors[0].position.arr))/(time_sim_prev - time_sim)
box_vel_norm = np.linalg.norm(np.array(box_vel))
box_position_prev = response.objects['Box'].objectSensors[0].position.arr
robot.q = np.array(response.objects['robot'].angleSensors)
iiwa.set_to_joint_position(robot.q)
time_now = time.time()
time_prev = time_now
time_sim_prev = time_sim
if (is_hit and box_vel_norm < 0.001 and time_now - time_init > contactTime+3):
print("END")
message = MessageFactory.create_controlmessage()
robot_msg = message.objects["robot"]
robot_msg.angleVelocities.extend([0, 0, 0, 0, 0, 0, 0])
client.send(message)
response = client.recv()
break
# sudo python3 ../run-in-docker.py python3 click_application.py --model models/Projects/i_am_project/Scenes/IiwaPybullet.yml --timeStep 0.005 --agxOnly --rcs --portRange 5656 5658 --disableClickSync