-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_net_hos.py
executable file
·147 lines (120 loc) · 4.63 KB
/
train_net_hos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
import os, pdb, random
import torch
import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import (
COCOEvaluator,
DatasetEvaluators,
LVISEvaluator,
SemSegEvaluator,
verify_results,
)
from detectron2.projects.point_rend import ColorAugSSDTransform, add_pointrend_config
from detectron2.data import MetadataCatalog
from hos.data.datasets.epick import register_epick_instances
from hos.data.hos_datasetmapper import HOSMapper
# register dataset
version = 'datasets/epick_visor_coco_hos'
register_epick_instances("epick_visor_2022_train_hos", {}, f"{version}/annotations/train.json", f"{version}/train")
register_epick_instances("epick_visor_2022_val_hos", {}, f"{version}/annotations/val.json", f"{version}/val")
MetadataCatalog.get("epick_visor_2022_train_hos").thing_classes = ["hand", "object"]
MetadataCatalog.get("epick_visor_2022_val_hos").thing_classes = ["hand", "object"]
def build_sem_seg_train_aug(cfg):
augs = [
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
)
]
if cfg.INPUT.CROP.ENABLED:
augs.append(
T.RandomCrop_CategoryAreaConstraint(
cfg.INPUT.CROP.TYPE,
cfg.INPUT.CROP.SIZE,
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
)
)
if cfg.INPUT.COLOR_AUG_SSD:
augs.append(ColorAugSSDTransform(img_format=cfg.INPUT.FORMAT))
# augs.append(T.RandomFlip())
return augs
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "coco":
return COCOEvaluator(dataset_name, output_dir=output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg))
else:
mapper = None
mapper = HOSMapper(cfg)
print(f'Dataset mapper used: {mapper}, {cfg.MODEL.META_ARCHITECTURE}')
return build_detection_train_loader(cfg, mapper=mapper)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_pointrend_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# number of classes
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.POINT_HEAD.NUM_CLASSES = 2
#! no random flipping in HOS since left and right will be predicted
if args.dataset in ['epick_hos']:
cfg.INPUT.RANDOM_FLIP = "none"
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
print(f'here are the configs:\n {cfg}')
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument('--dataset', required=True, default="epick_hos", help='Dataset to train the model.')
args = parser.parse_args()
args.dist_url = f"tcp://127.0.0.1:8889"
print("Command Line Args:", args)
# run
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)