-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathreconstruct_sparse.py
96 lines (77 loc) · 4.27 KB
/
reconstruct_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import subprocess
import shutil
import os
import time
import glob
import argparse
import pycolmap
from utils.lib import *
# Function to parse command-line arguments
def parse_args():
parser = argparse.ArgumentParser(description='COLMAP Reconstruction Script')
parser.add_argument('--input_videos', type=str, default='input_videos.txt',
help='A file with list of vidoes to be processed in all stages')
parser.add_argument('--sparse_reconstuctions_root', type=str, default='colmap_models/sparse',
help='Path to the sparsely reconstructed models.')
parser.add_argument('--epic_kithens_root', type=str, default='.',
help='Path to epic kitchens images.')
parser.add_argument('--logs_path', type=str, default='logs/sparse/out_logs_terminal',
help='Path to store the log files.')
parser.add_argument('--summary_path', type=str, default='logs/sparse/out_summary',
help='Path to store the summary files.')
parser.add_argument('--sampled_images_path', type=str, default='sampled_frames',
help='Path to the directory containing sampled image files.')
parser.add_argument('--gpu_index', type=int, default=0,
help='Index of the GPU to use.')
return parser.parse_args()
args = parse_args()
gpu_index = args.gpu_index
videos_list = read_lines_from_file(args.input_videos)
videos_list = sorted(videos_list)
print('GPU: %d' % (gpu_index))
os.makedirs(args.logs_path, exist_ok=True)
os.makedirs(args.summary_path, exist_ok=True)
os.makedirs(args.sparse_reconstuctions_root, exist_ok=True)
i = 0
for video in videos_list:
pre = video.split('_')[0]
if (not os.path.exists(os.path.join(args.sparse_reconstuctions_root, '%s' % video))):
# check the number of images in this video
with open(os.path.join(args.sampled_images_path, '%s_selected_frames.txt' % (video)), 'r') as f:
lines = f.readlines()
num_lines = len(lines)
#print(f'The file {video} contains {num_lines} lines.')
if num_lines < 100000: #it's too large, so it would take days!
print('Processing: ', video, '(',num_lines, 'images )')
start_time = time.time()
# Define the path to the shell script
script_path = 'scripts/reconstruct_sparse.sh'
# Create a unique copy of the script
script_copy_path = video + '_' + str(os.getpid()) + '_' + os.path.basename(script_path)
shutil.copy(script_path, script_copy_path)
# Output file
output_file_path = os.path.join(args.logs_path, script_copy_path.replace('.sh', '.out'))
# Define the command to execute the script
command = ["bash", script_copy_path, video,args.sparse_reconstuctions_root,args.epic_kithens_root,args.sampled_images_path,args.summary_path,str(gpu_index)]
# Open the output file in write mode
with open(output_file_path, 'w') as output_file:
# Run the command and capture its output in real time
process = subprocess.Popen(command, stdout=output_file, stderr=subprocess.PIPE, text=True)
while True:
output = process.stderr.readline()
if output == '' and process.poll() is not None:
break
if output:
output_file.write(output)
output_file.flush()
# Once the script has finished running, you can delete the copy of the script
os.remove(script_copy_path)
#In case of having multiple models, will keep the one with largest number of images and rename it as 0
reg_images = keep_model_with_largest_images(os.path.join(args.sparse_reconstuctions_root,video,'sparse'))
if reg_images > 0:
print(f"Registered_images/total_images: {reg_images}/{num_lines} = {round(reg_images/num_lines*100)}%")
else:
print('The video reconstruction fails!! no reconstruction file is found!')
print("Execution time: %s minutes" % round((time.time() - start_time)/60, 0))
print('-----------------------------------------------------------')
i += 1