This repository has been archived by the owner on May 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
209 lines (171 loc) · 6.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import pandas as pd
import numpy as np
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from collections import deque
from pytorch_lightning.loggers import WandbLogger
from sklearn.model_selection import train_test_split
import wandb
from dataset import MyDataset
from model import TripletNet
from collate_fn import collate_fn
"""
This script demonstrates the process of training a Triplet Network using PyTorch Lightning and logging the training progress with WandB.
Triplet Networks are commonly used for learning similarity metrics, where the network aims to bring similar samples closer and dissimilar
samples farther apart in the learned embedding space.
The script covers the major components required to set up and train such a network.
Note: Make sure to replace "insert key HERE" with your actual WandB API key for authentication, and ensure that you have the necessary dependencies (libraries, datasets, etc.)
installed and set up for this script to run successfully.
"""
# Authenticate the account and initilize the project
wandb.login(
key="insert key HERE",
)
FILE_LIST_PATH = "./datasets/MSD/MSD_audio_limit=all.csv"
DATASET_NAME = "Million Song Dataset"
BATCH_SIZE = 8
CLIP_DURATION = 15.0
SAMPLE_RATE = 16000
LOSS_TYPE = "triplet"
STRIDES = [3, 3, 3, 3, 3, 3, 3, 3, 3]
OUT_DIM = 128
SUPERVISED = False
MAX_EPOCHS = 1000
PATIENCE = 50
LOG_EVERY_N_STEPS = 10
PRECISION = "16-mixed"
PROJECT_NAME = "MASTER THESIS"
#CPU_COUNT = multiprocessing.cpu_count()
CPU_COUNT = 16
def load_file_list(file_list_path):
_, file_extension = os.path.splitext(file_list_path)
if file_extension == ".csv":
file_list = pd.read_csv(file_list_path)["file_path"].tolist()
elif file_extension == ".npy":
file_list = np.load(file_list_path).tolist()
else:
raise ValueError(
f"Unsupported file extension '{file_extension}'. Please use a CSV or NumPy file."
)
return file_list
def get_train_val_datasets(train_files, val_files):
train_set = MyDataset(
file_list=train_files,
clip_duration=CLIP_DURATION,
sample_rate=SAMPLE_RATE,
loss_type=LOSS_TYPE,
)
val_set = MyDataset(
file_list=val_files,
clip_duration=CLIP_DURATION,
sample_rate=SAMPLE_RATE,
loss_type=LOSS_TYPE,
)
return train_set, val_set
def create_data_loaders(train_set, val_set):
train_loader = DataLoader(
dataset=train_set,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=lambda b: collate_fn(b, loss_type=train_set.loss_type),
num_workers=CPU_COUNT,
drop_last=True,
pin_memory=True,
)
validation_loader = DataLoader(
dataset=val_set,
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=lambda b: collate_fn(b, loss_type=val_set.loss_type),
num_workers=CPU_COUNT,
drop_last=True,
pin_memory=True,
)
return train_loader, validation_loader
def init_model_and_logger(config):
model = TripletNet(
strides=STRIDES,
supervised=SUPERVISED,
out_dim=OUT_DIM,
loss_type=LOSS_TYPE,
)
wandb_logger = WandbLogger(
project=PROJECT_NAME,
log_model=True,
save_dir="./wandb",
config=config,
group=None,
)
return model, wandb_logger
class CustomModelCheckpoint(ModelCheckpoint):
def __init__(self, dirpath, monitor, mode, save_weights_only, save_top_k, save_last_k):
super().__init__(dirpath=dirpath, monitor=monitor, mode=mode,
save_weights_only=save_weights_only, save_top_k=save_top_k)
self.save_last_k = save_last_k
self.last_k_paths = deque(maxlen=self.save_last_k)
def on_validation_end(self, trainer, pl_module):
super().on_validation_end(trainer, pl_module)
# Save last N checkpoints
if len(self.last_k_paths) == self.save_last_k:
try:
os.remove(self.last_k_paths[0])
except:
pass
self.last_k_paths.append(self.last_model_path)
def create_callbacks():
checkpoint_callback = CustomModelCheckpoint(
dirpath="./checkpoints",
monitor="val_loss",
mode="min",
save_weights_only=False,
save_top_k=5,
save_last_k=5,
)
early_stopping_callback = EarlyStopping(
monitor="val_loss", patience=PATIENCE, verbose=True, mode="min"
)
return [early_stopping_callback, checkpoint_callback], checkpoint_callback
def train_model(model, train_loader, validation_loader, wandb_logger):
callbacks, checkpoint_callback = create_callbacks()
trainer = Trainer(
default_root_dir="./checkpoints",
logger=wandb_logger,
max_epochs=MAX_EPOCHS,
precision="16-mixed" if PRECISION == "16-mixed" else 32,
sync_batchnorm=True,
callbacks=callbacks,
enable_checkpointing=True,
)
fit = trainer.fit(
model, train_dataloaders=train_loader, val_dataloaders=validation_loader
)
best_model_path = checkpoint_callback.best_model_path
return fit, best_model_path
def main():
config = {
"batch_size": BATCH_SIZE,
"clip_duration": CLIP_DURATION,
"sample_rate": SAMPLE_RATE,
"loss_type": LOSS_TYPE,
"strides": STRIDES,
"out_dim": OUT_DIM,
"supervised": SUPERVISED,
"max_epochs": MAX_EPOCHS,
"patience": PATIENCE,
"log_every_n_steps": LOG_EVERY_N_STEPS,
"precision": PRECISION,
"dataset_name": DATASET_NAME,
}
file_list = load_file_list(FILE_LIST_PATH)
train_files, val_files = train_test_split(file_list, test_size=0.2, random_state=42)
train_set, val_set = get_train_val_datasets(train_files, val_files)
train_loader, validation_loader = create_data_loaders(train_set, val_set)
model, wandb_logger = init_model_and_logger(config)
fit, best_model_path = train_model(
model, train_loader, validation_loader, wandb_logger
)
return fit, best_model_path
if __name__ == "__main__":
main()