-
Notifications
You must be signed in to change notification settings - Fork 0
{% include list.liquid all=true %}
36 + 36 - 6 partitions = 72 - 6 = 66 = 30+36 = 6x11
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+---------
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36 » 6®
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+---------
| 5 | 17
3 +-----+ } 36 » 6®
| 6 | 19
-----+-----+---------
#!/usr/bin/env python
import numpy as np
from scipy import linalg
class SU3(np.matrix):
GELLMANN_MATRICES = np.array([
np.matrix([ #lambda_1
[0, 1, 0],
[1, 0, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_2
[0,-1j,0],
[1j,0, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_3
[1, 0, 0],
[0,-1, 0],
[0, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_4
[0, 0, 1],
[0, 0, 0],
[1, 0, 0],
], dtype=np.complex),
np.matrix([ #lambda_5
[0, 0,-1j],
[0, 0, 0 ],
[1j,0, 0 ],
], dtype=np.complex),
np.matrix([ #lambda_6
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
], dtype=np.complex),
np.matrix([ #lambda_7
[0, 0, 0 ],
[0, 0, -1j],
[0, 1j, 0 ],
], dtype=np.complex),
np.matrix([ #lambda_8
[1, 0, 0],
[0, 1, 0],
[0, 0,-2],
], dtype=np.complex) / np.sqrt(3),
])
def computeLocalAction(self):
pass
@classmethod
def getMeasure(self):
pass
Now the following results: Due to the convolution and starting from the desired value of the prime position pairs, the product templates and prime numbers templates of the prime number 7 lie in the numerical Double strand parallel opposite.
In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n.
Integers can be considered either in themselves or as solutions to equations (Diophantine geometry).
[Young diagrams](https://commons.wikimedia.org/wiki/Category:Young_diagrams) associated to the partitions of the positive integers 1 through 8. They are arranged so that images under the reflection about the main diagonal of the square are conjugate partitions _([Wikipedia](https://en.wikipedia.org/wiki/Partition_(number_theory)))_.
By parsering [π(1000)=168 primes](https://www.eq19.com/sitemap.xml) of the 1000 id's across **π(π(10000))-1=200** of this syntax then the (Δ1) would be _[initiated](https://eq19.github.io/init.js)_. Based on Assigning Sitemap [priority values](https://www.microsystools.com/products/sitemap-generator/help/xml-sitemaps-creator-importance/) You may see them are set 0.75 – 1.0 on the [sitemap's index](https://www.eq19.com/sitemap.xml):
Priority Page Name
1 Homepage
0.9 Main landing pages
0.85 Other landing pages
0.8 Main links on navigation bar
0.75 Other pages on site
0.8 Top articles/blog posts
0.75 Blog tag/category pages
0.4 – 0.7 Articles, blog posts, FAQs, etc.
0.0 – 0.3 Outdated information or old news that has become less relevant
By this object orientation then the reinjected primes from the π(π(10000))-1=200 will be (168-114)+(160-114)=54+46=100. Here are our layout that is provided using Jekyll/Liquid to facilitate the cycle:
100 + 68 + 32 = 200
$True Prime Pairs:
(5,7), (11,13), (17,19)
layer | node | sub | i | f. MEC 30 / 2
------+------+-----+-----+------ ‹--------------------------- 30 {+1/2} √
| | | 1 | --------------------------
| | 1 +-----+ |
| 1 | | 2 | (5) |
| |-----+-----+ |
| | | 3 | |
1 +------+ 2 +-----+---- |
| | | 4 | |
| +-----+-----+ |
| 2 | | 5 | (7) |
| | 3 +-----+ |
| | | 6 | 11s
------+------+-----+-----+------ } (36) |
| | | 7 | |
| | 4 +-----+ |
| 3 | | 8 | (11) |
| +-----+-----+ |
| | | 9 |‹-- |
2 +------| 5* +-----+----- |
| | | 10 | |
| |-----+-----+ |
| 4 | | 11 | (13) --------------------- 32 √
| | 6 +-----+ ‹------------------------------ 15 {0} √
| | | 12 |---------------------------
------+------+-----+-----+------------ |
| | | 13 | |
| | 7 +-----+ |
| 5 | | 14 | (17) |
| |-----+-----+ |
| | | 15 | 7s = f(1000)
3* +------+ 8 +-----+----- } (36) |
| | | 16 | |
| |-----+-----+ |
| 6 | | 17 | (19) |
| | 9 +-----+ |
| | | 18 | -------------------------- 68 √
------|------|-----+-----+----- ‹------ 0 {-1/2} √
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 ◄--- #29 ◄--- #61 👈 1st spin
3 2 0 1 0 2 👉 2
4 3 1 1 0 3 👉 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 👉 11 + 29 = 37 + 3 = 40
6 👉 11s Composite Partition ◄--- 102 👈 4th spin
6 7 3 1 0 7 ◄--- #23 👈 7+23 = 30 ✔️
7 11 4 1 0 11 ◄--- #19 👈 11+19 = 30 ✔️
8 13 5 1 0 13 ◄--- #17 ◄--- #49 👈 13+17 = 30 ✔️
9 17 0 1 1 17 ◄--- 7th prime👈 17+7 != 30❓
18 👉 7s Composite Partition ◄--- 168 👈 7th spin
10 19 1 1 1 ∆1 ◄--- 0th ∆prime ◄--- Fibonacci Index #18
-----
11 23 2 1 1 ∆2 ◄--- 1st ∆prime ◄--- Fibonacci Index #19 ◄--- #43
..
..
40 163 5 1 0 ∆31 ◄- 11th ∆prime ◄-- Fibonacci Index #29 👉 11
-----
41 167 0 1 1 ∆0
42 173 0 -1 1 ∆1
43 179 0 1 1 ∆2 ◄--- ∆∆1
44 181 1 1 1 ∆3 ◄--- ∆∆2 ◄--- 1st ∆∆prime ◄--- Fibonacci Index #30
..
..
100 521 0 -1 2 ∆59 ◄--- ∆∆17 ◄--- 7th ∆∆prime ◄--- Fibonacci Index #36 👉 7s
-----
By taking a distinc function between f(π) as P vs f(i) as NP where eiπ + 1 = 0 then theoretically they shall be correlated to get an expression of the prime platform similar to the Mathematical Elementary Cell 30 (MEC30).
∆17 + ∆49 = ∆66
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 ◄--- #29 ◄--- #61 👈 1st spin
3 2 0 1 0 2 👉 2
4 3 1 1 0 3 👉 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 👉 11 + 29 = 37 + 3 = 40
6 👉 11s Composite Partition ◄--- 102 👈 4th spin
6 7 3 1 0 7 ◄--- #23 👈 part of MEC30 ✔️
7 11 4 1 0 11 ◄--- #19 👈 part of MEC30 ✔️
8 13 5 1 0 13 ◄--- #17 ◄--- #49 👈 part of MEC30 ✔️
9 17 0 1 1 17 ◄--- 7th prime👈 not part of MEC30 ❓
18 👉 7s Composite Partition ◄--- 168 👈 7th spin
10 19 1 1 1 ∆1 ◄--- 0th ∆prime ◄--- Fibonacci Index #18
-----
11 23 2 1 1 ∆2 ◄--- 1st ∆prime ◄--- Fibonacci Index #19 ◄--- #43
..
..
40 163 5 1 0 ∆31 ◄- 11th ∆prime ◄-- Fibonacci Index #29 👉 11
-----
41 167 0 1 1 ∆0
42 173 0 -1 1 ∆1
43 179 0 1 1 ∆2 ◄--- ∆∆1
44 181 1 1 1 ∆3 ◄--- ∆∆2 ◄--- 1st ∆∆prime ◄--- Fibonacci Index #30
..
..
100 521 0 -1 2 ∆59 ◄--- ∆∆17 ◄--- 7th ∆∆prime ◄--- Fibonacci Index #36 👉 7s
-----
∆102 - ∆2 - ∆60 = ∆40
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 ◄--- #29 ◄--- #61 👈 1st spin
3 2 0 1 0 2 👉 2
4 3 1 1 0 3 👉 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 👉 11 + 29 = 37 + 3 = 40
6 👉 11s Composite Partition ◄--- 102 👈 4th spin
6 7 3 1 0 7 ◄--- #23 👈 30 ◄--- break MEC30 symmetry ✔️
7 11 4 1 0 11 ◄--- #19 👈 30 ✔️
8 13 5 1 0 13 ◄--- #17 ◄--- #49 👈 30 ✔️
9 17 0 1 1 17 ◄--- 7th prime👈 not part of MEC30 ❓
18 👉 7s Composite Partition ◄--- 168 👈 7th spin
10 19 1 1 1 ∆1 ◄--- 0th ∆prime ◄--- Fibonacci Index #18
-----
11 23 2 1 1 ∆2 ◄--- 1st ∆prime ◄--- Fibonacci Index #19 ◄--- #43
..
..
40 163 5 1 0 ∆31 ◄- 11th ∆prime ◄-- Fibonacci Index #29 👉 11
-----
41 167 0 1 1 ∆0
42 173 0 -1 1 ∆1
43 179 0 1 1 ∆2 ◄--- ∆∆1
44 181 1 1 1 ∆3 ◄--- ∆∆2 ◄--- 1st ∆∆prime ◄--- Fibonacci Index #30
..
..
100 521 0 -1 2 ∆59 ◄--- ∆∆17 ◄--- 7th ∆∆prime ◄--- Fibonacci Index #36 👉 7s
-----
***The partitions of odd composite numbers (Cw) are as important as the partitions of prime numbers or Goldbach partitions (Gw)***. The number of partitions Cw is fundamental for defining the available lines (Lwd) in a Partitioned Matrix that explain the existence of partitions Gw or Goldbach partitions. _([Partitions of even numbers - pdf](https://github.com/eq19/maps/files/13722898/Partitions_of_even_numbers.pdf))_
30s + 36s (addition) = 6 x 11s (multiplication) = 66s
p r i m e s
1 0 0 0 0 0
2 1 0 0 0 1 ◄--- #29 ◄--- #61 👈 1st spin
3 2 0 1 0 2 👉 2
4 3 1 1 0 3 👉 89 - 29 = 61 - 1 = 60
5 5 2 1 0 5 👉 11 + 29 = 37 + 3 = 40
6 👉 11s Composite Partition ◄--- 102 👈 4th spin
6 7 3 1 0 7 ◄--- #23 👈 f(#30) ◄--- break MEC30 symmetry
7 11 4 1 0 11 ◄--- #19 👈 30
8 13 5 1 0 13 ◄--- #17 ◄--- #49 👈 30
9 17 0 1 1 17 ◄--- 7th prime 👈 f(#36) ◄--- antisymmetric state ✔️
18 👉 7s Composite Partition ◄--- 168 👈 7th spin
10 19 1 1 1 ∆1 ◄--- 0th ∆prime ◄--- Fibonacci Index #18
-----
11 23 2 1 1 ∆2 ◄--- 1st ∆prime ◄--- Fibonacci Index #19 ◄--- #43
..
..
40 163 5 1 0 ∆31 ◄- 11th ∆prime ◄-- Fibonacci Index #29 👉 11
-----
41 167 0 1 1 ∆0
42 173 0 -1 1 ∆1
43 179 0 1 1 ∆2 ◄--- ∆∆1
44 181 1 1 1 ∆3 ◄--- ∆∆2 ◄--- 1st ∆∆prime ◄--- Fibonacci Index #30
..
..
100 521 0 -1 2 ∆59 ◄--- ∆∆17 ◄--- 7th ∆∆prime ◄--- Fibonacci Index #36 👉 7s
-----
Scheme 13:9
===========
(1){1}-7: 7'
(1){8}-13: 6‘
(1)14-{19}: 6‘
------------- 6+6 -------
(2)20-24: 5' |
(2)25-{29}: 5' |
------------ 5+5 -------
(3)30-36: 7:{70,30,10²}|
------------ |
(4)37-48: 12• --- |
(5)49-59: 11° | |
--}30° 30• |
(6)60-78: 19° | |
(7)79-96: 18• --- |
-------------- |
(8)97-109: 13 |
(9)110-139:{30}=5x6 <--x-
--
{43}
The True Prime Pairs:
(5,7), (11,13), (17,19)
|-------------------------------- 2x96 -------------------------------|
|--------------- 7¤ ---------------|------------ 7¤ ------------------|
|-------------- {89} --------------|{12}|-- {30} -|-- {36} -|-- {25} -|
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 |{13}| 17 | 19 | 17 |{12}| 11 | 19 | 18 | 18 | 12 | 13 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
|--------- {53} ---------|---- {48} ----|---- {48} ----|---- {43} ----|
|---------- 5¤ ----------|------------ {96} -----------|----- 3¤ -----|
|-------- Bosons --------|---------- Fermions ---------|-- Gravitons--|
13 variations 48 variations 11 variations
The Prime Recycling ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...**infinity**
----------------------+-----+-----+-----+ ---
7 --------- 1,2:1| 1 | 30 | 40 | 71 (2,3) ‹-------------@---- |
| +-----+-----+-----+-----+ | |
| 8 ‹------ 3:2| 1 | 30 | 40 | 90 | 161 (7) ‹--- | 5¨ encapsulation
| | +-----+-----+-----+-----+ | | |
| | 6 ‹-- 4,6:3| 1 | 30 | 200 | 231 (10,11,12) ‹--|--- | |
| | | +-----+-----+-----+-----+ | | | ---
--|--|-----» 7:4| 1 | 30 | 40 | 200 | 271 (13) --› | {5®} | |
| | +-----+-----+-----+-----+ | | |
--|---› 8,9:5| 1 | 30 | 200 | 231 (14,15) ---------› | 7¨ abstraction
289 | +-----+-----+-----+-----+-----+ | |
| ----› 10:6| 20 | 5 | 10 | 70 | 90 | 195 (19) --› Φ | {6®} |
--------------------+-----+-----+-----+-----+-----+ | ---
67 --------› 11:7| 5 | 9 | 14 (20) --------› ¤ | |
| +-----+-----+-----+ | |
| 78 ‹----- 12:8| 9 | 60 | 40 | 109 (26) «------------ | 11¨ polymorphism
| | +-----+-----+-----+ | | |
| | 86‹--- 13:9| 9 | 60 | 69 (27) «-- 3xΔ9 (2xMEC30) | {2®} | |
| | | +-----+-----+-----+ | | ---
| | ---› 14:10| 9 | 60 | 40 | 109 (28) ------------- | |
| | +-----+-----+-----+ | |
| ---› 15,18:11| 1 | 30 | 40 | 71 (29,30,31,32) ---------- 13¨ inheritance
329 | +-----+-----+-----+ |
| ‹--------- 19:12| 10 | 60 | {70} (36) ‹--------------------- Φ |
-------------------+-----+-----+ ---
786 ‹------- 20:13| 90 | 90 (38) ‹-------------- ¤ |
| +-----+-----+ |
| 618 ‹- 21,22:14| 8 | 40 | 48 (40,41) ‹---------------------- 17¨ class
| | +-----+-----+-----+-----+-----+ | |
| | 594 ‹- 23:15| 8 | 40 | 70 | 60 | 100 | 278 (42) «-- |{6'®} |
| | | +-----+-----+-----+-----+-----+ | | ---
--|--|-»24,27:16| 8 | 40 | 48 (43,44,45,46) ------------|---- |
| | +-----+-----+ | |
--|---› 28:17| 100 | {100} (50) ------------------------» 19¨ object
168 | +-----+ |
| 102 -› 29:18| 50 | 50(68) ---------> ∆27-∆9=Δ18 |
----------------------+-----+ ---
-
(total pages)