-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflops_computation.py
215 lines (189 loc) · 9.07 KB
/
flops_computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""Computes the flops needed for training/running transformer networks."""
import collections
# We checked this code with TensorFlow"s FLOPs counting, although we had to
# correct for this issue: https://github.com/tensorflow/tensorflow/issues/22071
# Assumptions going into the FLOPs counting
# - An "operation" is a mathematical operation, not a machine instruction. So
# an "exp" takes one opp like and add, even though in practice an exp
# might be slower. This is not too bad an assumption because
# matrix-multiplies dominate the compute for most models, so minor details
# about activation functions don"t matter too much. Similarly, we count
# matrix-multiplies as 2*m*n flops instead of m*n, as one might if
# if considering fused multiply-add ops.
# - Backward pass takes the same number of FLOPs as forward pass. No exactly
# right (e.g., for softmax cross entropy loss the backward pass is faster).
# Importantly, it really is the same for matrix-multiplies, which is most of
# the compute anyway.
# - We assume "dense" embedding lookups (i.e., multiplication by a one-hot
# vector). On some hardware accelerators, these dense operations are
# actually faster than sparse lookups.
# Please open a github issue if you spot a problem with this code!
# I am not sure if the below constants are 100% right, but they are only applied
# to O(hidden_size) activations, which is generally a lot less compute than the
# matrix-multiplies, which are O(hidden_size^2), so they don't affect the total
# number of FLOPs much.
# random number, >=, multiply activations by dropout mask, multiply activations
# by correction (1 / (1 - dropout_rate))
DROPOUT_FLOPS = 4
# compute mean activation (sum), computate variance of activation
# (square and sum), bias (add), scale (multiply)
LAYER_NORM_FLOPS = 5
# GELU: 0.5 * x * (1 + tanh(sqrt(2 / np.pi) * (x + 0.044715 * pow(x, 3))))
ACTIVATION_FLOPS = 8
# max/substract (for stability), exp, sum, divide
SOFTMAX_FLOPS = 5
class TransformerHparams(object):
"""Computes the train/inference FLOPs for transformers."""
def __init__(self, h, l, s=512, v=30522, e=None, i=None, heads=None,
head_size=None, output_frac=0.15625, sparse_embed_lookup=False,
decoder=False):
self.h = h # hidden size
self.l = l # number of layers
self.s = s # sequence length
self.v = v # vocab size
self.e = h if e is None else e # embedding size
self.i = h * 4 if i is None else i # intermediate size
self.kqv = h if head_size is None else head_size * heads # attn proj sizes
self.heads = max(h // 64, 1) if heads is None else heads # attention heads
self.output_frac = output_frac # percent of tokens using an output softmax
self.sparse_embed_lookup = sparse_embed_lookup # sparse embedding lookups
self.decoder = decoder # decoder has extra attn to encoder states
def get_block_flops(self):
"""Get the forward-pass FLOPs for a single transformer block."""
attn_mul = 2 if self.decoder else 1
block_flops = dict(
kqv=3 * 2 * self.h * self.kqv * attn_mul,
kqv_bias=3 * self.kqv * attn_mul,
attention_scores=2 * self.kqv * self.s * attn_mul,
attn_softmax=SOFTMAX_FLOPS * self.s * self.heads * attn_mul,
attention_dropout=DROPOUT_FLOPS * self.s * self.heads * attn_mul,
attention_scale=self.s * self.heads * attn_mul,
attention_weighted_avg_values=2 * self.h * self.s * attn_mul,
attn_output=2 * self.h * self.h * attn_mul,
attn_output_bias=self.h * attn_mul,
attn_output_dropout=DROPOUT_FLOPS * self.h * attn_mul,
attn_output_residual=self.h * attn_mul,
attn_output_layer_norm=LAYER_NORM_FLOPS * attn_mul,
intermediate=2 * self.h * self.i,
intermediate_act=ACTIVATION_FLOPS * self.i,
intermediate_bias=self.i,
output=2 * self.h * self.i,
output_bias=self.h,
output_dropout=DROPOUT_FLOPS * self.h,
output_residual=self.h,
output_layer_norm=LAYER_NORM_FLOPS * self.h,
)
return sum(block_flops.values()) * self.s
def get_embedding_flops(self, output=False):
"""Get the forward-pass FLOPs the transformer inputs or output softmax."""
embedding_flops = {}
if output or (not self.sparse_embed_lookup):
embedding_flops["main_multiply"] = 2 * self.e * self.v
# input embedding post-processing
if not output:
embedding_flops.update(dict(
tok_type_and_position=2 * self.e * (self.s + 2),
add_tok_type_and_position=2 * self.e,
emb_layer_norm=LAYER_NORM_FLOPS * self.e,
emb_dropout=DROPOUT_FLOPS * self.e
))
# projection layer if e != h
if self.e != self.h or output:
embedding_flops.update(dict(
hidden_kernel=2 * self.h * self.e,
hidden_bias=self.e if output else self.h
))
# extra hidden layer and output softmax
if output:
embedding_flops.update(dict(
hidden_activation=ACTIVATION_FLOPS * self.e,
hidden_layernorm=LAYER_NORM_FLOPS * self.e,
output_softmax=SOFTMAX_FLOPS * self.v,
output_target_word=2 * self.v
))
return self.output_frac * sum(embedding_flops.values()) * self.s
return sum(embedding_flops.values()) * self.s
def get_binary_classification_flops(self):
classification_flops = dict(
hidden=2 * self.h * self.h,
hidden_bias=self.h,
hidden_act=ACTIVATION_FLOPS * self.h,
logits=2 * self.h
)
return sum(classification_flops.values()) * self.s
def get_train_flops(self, batch_size, train_steps, discriminator=False):
"""Get the FLOPs for pre-training the transformer."""
# 2* for forward/backward pass
return 2 * batch_size * train_steps * (
(self.l * self.get_block_flops()) +
self.get_embedding_flops(output=False) +
(self.get_binary_classification_flops() if discriminator else
self.get_embedding_flops(output=True))
)
def get_infer_flops(self):
"""Get the FLOPs for running inference with the transformer on a
classification task."""
return ((self.l * self.get_block_flops()) +
self.get_embedding_flops(output=False) +
self.get_binary_classification_flops())
def get_electra_train_flops(
h_d, l_d, h_g, l_g, batch_size, train_steps, tied_embeddings,
e=None, s=512, output_frac=0.15625):
"""Get the FLOPs needed for pre-training ELECTRA."""
if e is None:
e = h_d
disc = TransformerHparams(
h_d, l_d, s=s, e=e,
output_frac=output_frac).get_train_flops(batch_size, train_steps, True)
gen = TransformerHparams(
h_g, l_g, s=s, e=e if tied_embeddings else None,
output_frac=output_frac).get_train_flops(batch_size, train_steps)
return disc + gen
MODEL_FLOPS = collections.OrderedDict([
# These runtimes were computed with tensorflow FLOPs counting instead of the
# script, as the neural architectures are quite different.
# 768648884 words in LM1b benchmark, 10 epochs with batch size 20,
# seq length 128, 568093262680 FLOPs per example.
("elmo", 2 * 10 * 768648884 * 568093262680 / (20.0 * 128)),
# 15064773691518 is FLOPs for forward pass on 32 examples.
# Therefore 2 * steps * batch_size * 15064773691518 / 32 is XLNet compute
("xlnet", 2 * 500000 * 8192 * 15064773691518 / 32.0),
# Runtimes computed with the script
("gpt", TransformerHparams(768, 12, v=40000, output_frac=1.0).get_train_flops(
128, 960800)),
("bert_small", TransformerHparams(256, 12, e=128, s=128).get_train_flops(128, 1.45e6)),
("bert_base", TransformerHparams(768, 12).get_train_flops(256, 1e6)),
("bert_large", TransformerHparams(1024, 24).get_train_flops(256, 1e6)),
("electra_small", get_electra_train_flops(256, 12, 64, 12, 128, 1e6, True, s=128, e=128)),
("electra_base", get_electra_train_flops(768, 12, 256, 12, 256, 766000, True)),
("electra_400k", get_electra_train_flops(1024, 24, 256, 24, 2048, 400000, True)),
("electra_1.75M", get_electra_train_flops(1024, 24, 256, 24, 2048, 1750000, True)),
# RoBERTa, ALBERT, and T5 have minor architectural differences from
# BERT/ELECTRA, but I believe they don't significantly effect the runtime,
# so we use this script for those models as well.
("roberta", TransformerHparams(1024, 24, v=50265).get_train_flops(8000, 500000)),
("albert", TransformerHparams(4096, 12, v=30000, e=128).get_train_flops(
4096, 1.5e6)),
("t5_11b", TransformerHparams(
1024, # hidden size
24, # layers
v=32000, # vocab size
i=65536, # ff intermediate hidden size
heads=128, head_size=128, # heads/head size
output_frac=0.0 # encoder has no output softmax
).get_train_flops(2048, 1e6) + # 1M steps with batch size 2048
TransformerHparams(
1024,
24,
v=32000,
i=65536,
heads=128, head_size=128,
output_frac=1.0, # decoder has output softmax for all positions
decoder=True
).get_train_flops(2048, 1e6))
])
def main():
for k, v in MODEL_FLOPS.items():
print(k, v)
if __name__ == "__main__":
main()