-
-
Notifications
You must be signed in to change notification settings - Fork 71
/
matchExposures.m
113 lines (102 loc) · 2.91 KB
/
matchExposures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
function [ newImgs ] = matchExposures( imgs, transforms, loop )
nImgs = size(imgs, 4);
% pairwise matching
gammas = ones(nImgs, 1);
for i = 2 : nImgs
gammas(i) = matchPair(imgs(:, :, :, i - 1), imgs(:, :, :, i), transforms(:, :, i));
end
% accumulating gammas
if loop
% global optimization
logGammas = log(gammas);
logGammas(1) = [];
A = eye(nImgs - 2);
A = [A; -ones(1, nImgs - 2)];
newLogGammas = A \ logGammas;
newLogGammas = [0; newLogGammas];
newGammas = exp(newLogGammas);
accGammas = ones(nImgs, 1);
for i = 2 : nImgs - 1
accGammas(i) = accGammas(i - 1) * newGammas(i);
end
else
accGammas = ones(nImgs, 1);
for i = 2 : nImgs
accGammas(i) = accGammas(i - 1) * gammas(i);
end
end
% gamma correction
newImgs = zeros(size(imgs), 'uint8');
for i = 1 : nImgs
newImgs(:, :, :, i) = correctGamma(imgs(:, :, :, i), accGammas(i));
end
end
%% match a pair of images
% input: img1 - reference image
% img2 - source image
% transform - matrix to transform img2 to img1
% output: gamma - gamma value to match exposures
function [ gamma ] = matchPair(img1, img2, transform)
% parameters
sampleRatio = 0.01;
outlierThreshold = 1.0;
nIters = 1000;
alpha = 1; % learning rate
% image information
width = size(img1, 2);
height = size(img1, 1);
% coverting to La*b*
labImg1 = rgb2lab(img1);
labImg2 = rgb2lab(img2);
% sampling correspondences
nPxs = numel(img1);
nSmps = round(nPxs * sampleRatio);
smps = zeros(nSmps, 2);
k = 1;
while true
p2 = [randi([1 height]); randi([1 width]); 1];
p1 = transform * p2;
p1 = p1 ./ p1(3);
if p1(1) >= 1 && p1(1) < height && p1(2) >= 1 && p1(2) < width
i = floor(p1(2));
a = p1(2) - i;
j = floor(p1(1));
b = p1(1) - j;
smp1 = (1 - a) * (1 - b) * labImg1(j, i, 1)...
+ a * (1 - b) * labImg1(j, i + 1, 1)...
+ a * b * labImg1(j + 1, i + 1, 1)...
+ (1 - a) * b * labImg1(j + 1, i, 1);
smp2 = labImg2(p2(1), p2(2), 1);
if smp1 > outlierThreshold && smp2 > outlierThreshold
smps(k, 1) = smp1 / 100;
smps(k, 2) = smp2 / 100;
k = k + 1;
if k > nSmps
break;
end
end
end
end
% fitting correction curve
gamma = 1;
for i = 1 : nIters
gamma = gamma - alpha * sum((smps(:, 2) .^ gamma - smps(:, 1)) .*...
log(smps(:, 2)) .* (smps(:, 2) .^ gamma)) / nSmps;
end
% visualizing results
% figure;
% scatter(smps(:, 2), smps(:, 1));
% hold on;
% xplot = 0:0.01:1;
% yplot = xplot .^ gamma;
% plot(xplot, yplot);
end
%% apply gamma correction
% input: img - source image
% gamma - gamma value to match exposures
% output: newImg - gamma corrected image
function [ newImg ] = correctGamma(img, gamma)
labImg = rgb2lab(img);
labImg(:, :, 1) = (labImg(:, :, 1) / 100) .^ gamma * 100;
newImg = lab2rgb(labImg, 'OutputType', 'uint8');
end