Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement binary EEA inversion for faster BNADD precompile #21515

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions core/vm/contracts.go
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ func runBn256Add(input []byte) ([]byte, error) {
}
res := new(bn256.G1)
res.Add(x, y)
return res.Marshal(), nil
return res.MarshalVariableTime(), nil
}

// bn256Add implements a native elliptic curve point addition conforming to
Expand Down Expand Up @@ -376,7 +376,7 @@ func runBn256ScalarMul(input []byte) ([]byte, error) {
}
res := new(bn256.G1)
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
return res.Marshal(), nil
return res.MarshalVariableTime(), nil
}

// bn256ScalarMulIstanbul implements a native elliptic curve scalar
Expand Down
26 changes: 26 additions & 0 deletions crypto/bn256/cloudflare/bn256.go
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,32 @@ func (e *G1) Marshal() []byte {
return ret
}

// Marshal converts e to a byte slice.
// Uses variable time algorithms for inversion
// for transformation to affine coordinates
func (e *G1) MarshalVariableTime() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8

if e.p == nil {
e.p = &curvePoint{}
}

e.p.MakeAffineVariableTime()
ret := make([]byte, numBytes*2)
if e.p.IsInfinity() {
return ret
}
temp := &gfP{}

montDecode(temp, &e.p.x)
temp.Marshal(ret)
montDecode(temp, &e.p.y)
temp.Marshal(ret[numBytes:])

return ret
}

// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
Expand Down
67 changes: 67 additions & 0 deletions crypto/bn256/cloudflare/bn256_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,73 @@ func TestTripartiteDiffieHellman(t *testing.T) {
}
}

func TestBinaryEAA(t *testing.T) {
for i := 0; i < 10000; i++ {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
t.Fatal(err)
}
tmpLittleFermat := &gfP{}
tmpLittleFermat.Invert(&Ga.p.x)

tmpBinaryEAA := &gfP{}
tmpBinaryEAA.InvertVariableTime(&Ga.p.x)

tmpBinaryEAASelfSet := &gfP{}
tmpBinaryEAASelfSet.Set(&Ga.p.x)
tmpBinaryEAASelfSet.InvertVariableTime(tmpBinaryEAASelfSet)

eq := equals(tmpLittleFermat, tmpBinaryEAA)
if eq == false {
t.Fatalf("results of different inversion do not agree")
}

eq = equals(tmpLittleFermat, tmpBinaryEAASelfSet)
if eq == false {
t.Fatalf("self-assigned inversion is invalid")
}
}
}

func BenchmarkLittleFermatInversion(b *testing.B) {
el := gfP{0x0, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}

b.ResetTimer()

tmp := &gfP{}
for i := 0; i < b.N; i++ {
tmp.Invert(&el)
}
}

func BenchmarkBinaryEEAInversion(b *testing.B) {
el := gfP{0x0, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}

b.ResetTimer()

tmp := &gfP{}
for i := 0; i < b.N; i++ {
tmp.InvertVariableTime(&el)
}
}

func BenchmarkG1AddAndMakeAffine(b *testing.B) {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
b.Fatal(err)
}
_, Gb, err := RandomG1(rand.Reader)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()

for i := 0; i < b.N; i++ {
e := new(G1).Add(Ga, Gb)
e.p.MakeAffine()
}
}

func BenchmarkG1(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer()
Expand Down
24 changes: 24 additions & 0 deletions crypto/bn256/cloudflare/curve.go
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,30 @@ func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
c.Set(sum)
}

func (c *curvePoint) MakeAffineVariableTime() {
if c.z == *newGFp(1) {
return
} else if c.z == *newGFp(0) {
c.x = gfP{0}
c.y = *newGFp(1)
c.t = gfP{0}
return
}

zInv := &gfP{}
zInv.InvertVariableTime(&c.z)

t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv)
gfpMul(zInv2, zInv, zInv)

gfpMul(&c.x, &c.x, zInv2)
gfpMul(&c.y, t, zInv2)

c.z = *newGFp(1)
c.t = *newGFp(1)
}

func (c *curvePoint) MakeAffine() {
if c.z == *newGFp(1) {
return
Expand Down
128 changes: 128 additions & 0 deletions crypto/bn256/cloudflare/gfp.go
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ package bn256
import (
"errors"
"fmt"
"math/bits"
)

type gfP [4]uint64
Expand Down Expand Up @@ -79,3 +80,130 @@ func (e *gfP) Unmarshal(in []byte) error {

func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }

func isZero(a *gfP) bool {
return (a[0] | a[1] | a[2] | a[3]) == 0
}

func isEven(a *gfP) bool {
return bits.TrailingZeros64((a[0])) > 0
shamatar marked this conversation as resolved.
Show resolved Hide resolved
}

func div2(a *gfP) {
a[0] = a[0]>>1 | a[1]<<63
a[1] = a[1]>>1 | a[2]<<63
a[2] = a[2]>>1 | a[3]<<63
a[3] = a[3] >> 1
}

func (e *gfP) addNocarry(f *gfP) {
carry := uint64(0)
e[0], carry = bits.Add64(e[0], f[0], carry)
e[1], carry = bits.Add64(e[1], f[1], carry)
e[2], carry = bits.Add64(e[2], f[2], carry)
e[3], _ = bits.Add64(e[3], f[3], carry)
}

func (e *gfP) subNoborrow(f *gfP) {
borrow := uint64(0)
e[0], borrow = bits.Sub64(e[0], f[0], borrow)
e[1], borrow = bits.Sub64(e[1], f[1], borrow)
e[2], borrow = bits.Sub64(e[2], f[2], borrow)
e[3], _ = bits.Sub64(e[3], f[3], borrow)
}

func gte(a, b *gfP) bool {
// subtract b from a. If no borrow occures then a >= b
borrow := uint64(0)
_, borrow = bits.Sub64(a[0], b[0], borrow)
_, borrow = bits.Sub64(a[1], b[1], borrow)
_, borrow = bits.Sub64(a[2], b[2], borrow)
_, borrow = bits.Sub64(a[3], b[3], borrow)

return borrow == 0
}

func equals(a, b *gfP) bool {
return a[0] == b[0] && a[1] == b[1] && a[2] == b[2] && a[3] == b[3]
shamatar marked this conversation as resolved.
Show resolved Hide resolved
}

// Performs inversion of the field element using binary EEA.
// If element is zero (no inverse exists) then set `e` to zero
func (e *gfP) InvertVariableTime(f *gfP) {
if isZero(f) {
e.Set(&gfP{0, 0, 0, 0})
return
}

// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)

one := gfP{1, 0, 0, 0}

u, b := gfP{}, gfP{}
u.Set(f)
b.Set(r2)

v := gfP{p2[0], p2[1], p2[2], p2[3]}
shamatar marked this conversation as resolved.
Show resolved Hide resolved
c := gfP{0, 0, 0, 0}
modulus := gfP{p2[0], p2[1], p2[2], p2[3]}
shamatar marked this conversation as resolved.
Show resolved Hide resolved

for {
if equals(&u, &one) || equals(&v, &one) {
break
}
shamatar marked this conversation as resolved.
Show resolved Hide resolved

// while u is even
for {
if !isEven(&u) {
break
}

shamatar marked this conversation as resolved.
Show resolved Hide resolved
div2(&u)
if isEven(&b) {
div2(&b)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
b.addNocarry(&modulus)
div2(&b)
}
shamatar marked this conversation as resolved.
Show resolved Hide resolved
}

// while v is even
for {
if !isEven(&v) {
break
}

shamatar marked this conversation as resolved.
Show resolved Hide resolved
div2(&v)
if isEven(&c) {
div2(&c)
} else {
// we will not overflow a modulus here,
// so we can use specialized function
// do perform addition without reduction
c.addNocarry(&modulus)
div2(&c)
}
}

if gte(&v, &u) {
shamatar marked this conversation as resolved.
Show resolved Hide resolved
// v >= u
v.subNoborrow(&u)
gfpSub(&c, &c, &b)
} else {
// if v < u
u.subNoborrow(&v)
gfpSub(&b, &b, &c)
}
}

if equals(&u, &one) {
shamatar marked this conversation as resolved.
Show resolved Hide resolved
e.Set(&b)
} else {
e.Set(&c)
}
}
16 changes: 16 additions & 0 deletions crypto/bn256/cloudflare/gfp12.go
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,22 @@ func (e *gfP12) Square(a *gfP12) *gfP12 {
return e
}

func (e *gfP12) InvertVariableTime(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP6{}, &gfP6{}

t1.Square(&a.x)
t2.Square(&a.y)
t1.MulTau(t1).Sub(t2, t1)
t2.InvertVariableTime(t1)

e.x.Neg(&a.x)
e.y.Set(&a.y)
e.MulScalar(e, t2)
return e
}

func (e *gfP12) Invert(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
Expand Down
18 changes: 18 additions & 0 deletions crypto/bn256/cloudflare/gfp2.go
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,24 @@ func (e *gfP2) Square(a *gfP2) *gfP2 {
return e
}

func (e *gfP2) InvertVariableTime(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP{}, &gfP{}
gfpMul(t1, &a.x, &a.x)
gfpMul(t2, &a.y, &a.y)
gfpAdd(t1, t1, t2)

inv := &gfP{}
inv.InvertVariableTime(t1)

gfpNeg(t1, &a.x)

gfpMul(&e.x, t1, inv)
gfpMul(&e.y, &a.y, inv)
return e
}

func (e *gfP2) Invert(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
Expand Down
44 changes: 44 additions & 0 deletions crypto/bn256/cloudflare/gfp6.go
Original file line number Diff line number Diff line change
Expand Up @@ -211,3 +211,47 @@ func (e *gfP6) Invert(a *gfP6) *gfP6 {
e.z.Mul(A, F)
return e
}

func (e *gfP6) InvertVariableTime(a *gfP6) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf

// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := (&gfP2{}).Mul(&a.x, &a.y)
t1.MulXi(t1)

A := (&gfP2{}).Square(&a.z)
A.Sub(A, t1)

B := (&gfP2{}).Square(&a.x)
B.MulXi(B)
t1.Mul(&a.y, &a.z)
B.Sub(B, t1)

C := (&gfP2{}).Square(&a.y)
t1.Mul(&a.x, &a.z)
C.Sub(C, t1)

F := (&gfP2{}).Mul(C, &a.y)
F.MulXi(F)
t1.Mul(A, &a.z)
F.Add(F, t1)
t1.Mul(B, &a.x).MulXi(t1)
F.Add(F, t1)

F.InvertVariableTime(F)

e.x.Mul(C, F)
e.y.Mul(B, F)
e.z.Mul(A, F)
return e
}
Loading