forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor_flow_tutorial.py
154 lines (121 loc) · 5.23 KB
/
tensor_flow_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
def run_simple_graph():
# first, create a TensorFlow constant
const = tf.constant(2.0, name="const")
# create TensorFlow variables
b = tf.Variable(2.0, name='b')
c = tf.Variable(1.0, name='c')
# now create some operations
d = tf.add(b, c, name='d')
e = tf.add(c, 2, name='e')
a = tf.multiply(d, e, name='a')
# setup the variable initialisation
init_op = tf.global_variables_initializer()
# start the session
with tf.Session() as sess:
# initialise the variables
sess.run(init_op)
# compute the output of the graph
a_out = sess.run(a)
print("Variable a is {}".format(a_out))
def run_simple_graph_multiple():
# first, create a TensorFlow constant
const = tf.constant(2.0, name="const")
# create TensorFlow variables
b = tf.placeholder(tf.float32, [None, 1], name='b')
c = tf.Variable(1.0, name='c')
# now create some operations
d = tf.add(b, c, name='d')
e = tf.add(c, 2, name='e')
a = tf.multiply(d, e, name='a')
# setup the variable initialisation
init_op = tf.global_variables_initializer()
# start the session
with tf.Session() as sess:
# initialise the variables
sess.run(init_op)
# compute the output of the graph
a_out = sess.run(a, feed_dict={b: np.arange(0, 10)[:, np.newaxis]})
print("Variable a is {}".format(a_out))
def simple_with_tensor_board():
const = tf.constant(2.0, name="const")
# Create TensorFlow variables
b = tf.Variable(2.0, name='b')
c = tf.Variable(1.0, name='c')
# now create some operations
d = tf.add(b, c, name='d')
e = tf.add(c, const, name='e')
a = tf.multiply(d, e, name='a')
# setup the variable initialisation
init_op = tf.global_variables_initializer()
# start the session
with tf.Session() as sess:
# initialise the variables
sess.run(init_op)
# compute the output of the graph
a_out = sess.run(a)
print("Variable a is {}".format(a_out))
train_writer = tf.summary.FileWriter('C:\\Users\\Andy\\PycharmProjects')
train_writer.add_graph(sess.graph)
def nn_example():
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Python optimisation variables
learning_rate = 0.5
epochs = 10
batch_size = 100
# declare the training data placeholders
# input x - for 28 x 28 pixels = 784
x = tf.placeholder(tf.float32, [None, 784])
# now declare the output data placeholder - 10 digits
y = tf.placeholder(tf.float32, [None, 10])
# now declare the weights connecting the input to the hidden layer
W1 = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='W1')
b1 = tf.Variable(tf.random_normal([300]), name='b1')
# and the weights connecting the hidden layer to the output layer
W2 = tf.Variable(tf.random_normal([300, 10], stddev=0.03), name='W2')
b2 = tf.Variable(tf.random_normal([10]), name='b2')
# calculate the output of the hidden layer
hidden_out = tf.add(tf.matmul(x, W1), b1)
hidden_out = tf.nn.relu(hidden_out)
# now calculate the hidden layer output - in this case, let's use a softmax activated
# output layer
y_ = tf.nn.softmax(tf.add(tf.matmul(hidden_out, W2), b2))
# now let's define the cost function which we are going to train the model on
y_clipped = tf.clip_by_value(y_, 1e-10, 0.9999999)
cross_entropy = -tf.reduce_mean(tf.reduce_sum(y * tf.log(y_clipped)
+ (1 - y) * tf.log(1 - y_clipped), axis=1))
# add an optimiser
optimiser = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cross_entropy)
# finally setup the initialisation operator
init_op = tf.global_variables_initializer()
# define an accuracy assessment operation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# add a summary to store the accuracy
tf.summary.scalar('accuracy', accuracy)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('C:\\Users\\Andy\\PycharmProjects')
# start the session
with tf.Session() as sess:
# initialise the variables
sess.run(init_op)
total_batch = int(len(mnist.train.labels) / batch_size)
for epoch in range(epochs):
avg_cost = 0
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size=batch_size)
_, c = sess.run([optimiser, cross_entropy], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
print("Epoch:", (epoch + 1), "cost =", "{:.3f}".format(avg_cost))
summary = sess.run(merged, feed_dict={x: mnist.test.images, y: mnist.test.labels})
writer.add_summary(summary, epoch)
print("\nTraining complete!")
writer.add_graph(sess.graph)
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}))
if __name__ == "__main__":
run_simple_graph()
# run_simple_graph_multiple()
# simple_with_tensor_board()
# nn_example()