-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
383 lines (310 loc) · 17.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
Set config.py before running this file
Use this file to read NRD (after running data_pipeline.py), and to train and optimize models
Note that the HGLM and LASSO are trained according to CCS disease categories (as in the Yale-New Haven report),
and are thus trained differently than the NN's.
The data (NRD) is quite big, so make sure you have the right hardware.
Because the data is so big, a batch_generator has to be used.
Additionally, because the hosp array is huge and therefore sparse, we cannot calculate the error metrics in a normal way.
For this we have to use the metrics_callback.
"""
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras import backend as K
config = tf.ConfigProto(allow_soft_placement=True)
#config.gpu_options.pser_process_gpu_memory_fraction = 0.5
#config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
import pandas as pd
import numpy as np
import scipy as sp
from models import NN, REGR
from plot import PlotResults
from config import *
from sklearn.preprocessing import OneHotEncoder, StandardScaler, MultiLabelBinarizer
from sklearn.model_selection import train_test_split, ParameterGrid
from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, log_loss, roc_curve, precision_recall_curve, auc
from sklearn.utils.class_weight import compute_class_weight
from keras.callbacks import ModelCheckpoint
from clr_callback import *
from metrics_callback import *
import gc
import time
t_begin = time.time()
# This step takes long, so you can turn it off if you're not training any models with this parameter
read_ccs = True
def load_sparse_csr(filename):
loader = np.load(filename)
return sp.sparse.csr_matrix((loader['arr_0'], loader['indices'], loader['indptr']), shape=loader['shape'])
def batch_generator(y, diag, patient, hosp, cohort=None):
"""
Generate batches because the hospital sparse array cannot fit into RAM if it is dense
Source: https://stackoverflow.com/questions/37609892/keras-sparse-matrix-issue?rq=1
"""
samples_per_epoch = y.shape[0]
number_of_batches = samples_per_epoch/batch_size
counter=0
index = np.arange(np.shape(y)[0])
while 1:
index_batch = index[batch_size*counter:batch_size*(counter+1)]
y_batch = y[index_batch]
patient_batch = patient[index_batch,:]
hosp_batch = hosp[index_batch,:].todense()
diag_batch = diag[index_batch,:]
if cohort is not None:
cohort_batch = cohort[index_batch,:].todense()
diag_batch = diag_batch.todense()
counter += 1
x_batch = [np.array(diag_batch), np.array(patient_batch), np.array(hosp_batch)]
if cohort is not None:
x_batch.append(np.array(cohort_batch))
yield x_batch, y_batch
if (counter >= number_of_batches): #after using all data of the training set
counter=0
np.random.shuffle(index) #shuffle so next epoch uses different batch order
def train(model, model_type, savedir):
"""
Train neural network
"""
filepath=savedir+'weights-'+model_type+'.hdf5'
n = int(1e5)
# data to evaluate after each epoch
if model_type == 'hglm' or model_type == 'lasso':
x_train = X_diag_train, patient_train, hosp_train, X_cohort_train
x_val = X_diag_val, patient_val, hosp_val, X_cohort_val
eval_x_train = [np.array(X_diag_train[:n].todense()), np.array(patient_train[:n]), np.array(hosp_train[:n].todense()), np.array(X_cohort_train[:n].todense())]
eval_x_val = [np.array(X_diag_val[:n].todense()), np.array(patient_val[:n]), np.array(hosp_val[:n].todense()), np.array(X_cohort_val[:n].todense())]
else:
x_train = diag_train, patient_train, hosp_train
x_val = diag_val, patient_val, hosp_val
eval_x_train = [np.array(diag_train[:n]), np.array(patient_train[:n]), np.array(hosp_train[:n].todense())]
eval_x_val = [np.array(diag_val[:n]), np.array(patient_val[:n]), np.array(hosp_val[:n].todense())]
# compute class weights
class_weights = compute_class_weight('balanced', np.unique(y_train.squeeze()), y_train.squeeze())
# callbacks
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, mode='min', save_best_only=True) #model checkpoint
clr_triangular = CyclicLR(mode='triangular', step_size=1000.) #cyclic learning rate
metrics = Metrics(training_data=(eval_x_train, y_train[:n]), validation_data=(eval_x_val, y_val[:n]))
earlystopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=patience)
callbacks_list = [checkpoint, metrics, clr_triangular, earlystopping]
# fit model (use generator for unsparsing hospital array
model.fit_generator(generator = batch_generator(y_train, *x_train),
steps_per_epoch = np.ceil(y_train.shape[0] / batch_size),
epochs = epochs,
verbose = 1,
callbacks = callbacks_list,
class_weight=class_weights,
validation_data = batch_generator(y_val, *x_val),
validation_steps = np.ceil(y_val.shape[0] / batch_size))
# load weights of best model
model.load_weights(filepath)
model.metrics = metrics
# save training and validation metrics
results = pd.DataFrame.from_dict(model.history.history).join(pd.DataFrame.from_dict(model.metrics.metrics))
results.to_csv(savedir+'training_metrics_mean.csv')
# plot training and validation metrics
PlotResults(savedir).plot_training_metrics(model)
return model
def evaluate(y_true, y_pred, cohort, savedir, plotting=False):
"""
Calculate precision, recall, f1, bce, roc-auc and pr-auc given the true values (y_true) and prediction probabilities (y_pred)
t = the probability threshold for binary classification labels.
"""
# determine classification threshold
fpr, tpr, thres = roc_curve(y_true, y_pred)
roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=np.arange(len(tpr)) ), 'threshold' : pd.Series(thres, index=np.arange(len(tpr)))})
t = roc.iloc[(roc.tf-0).abs().argsort()[:1]]['threshold'].values[0]
y_label = (y_pred > t).astype(np.int)
# scores
precision = precision_score(y_true, y_label)
recall = recall_score(y_true, y_label)
f1 = f1_score(y_true, y_label)
bce = log_loss(y_true, y_pred)
roc_auc = roc_auc_score(y_true, y_pred)
# plot roc and precision-recall curves
precisions, recalls, _ = precision_recall_curve(y_true, y_pred)
pr_auc = auc(recalls, precisions)
if plotting:
PlotResults(savedir).plot_roc_curve(fpr, tpr, roc_auc, cohort)
PlotResults(savedir).plot_pr_curve(precisions, recalls, pr_auc, cohort, balance)
return [precision, recall, f1, bce, roc_auc, pr_auc], [fpr, tpr], [precisions, recalls]
def test(model, model_type, savedir):
"""
Test performance on test set and on individual cohorts
Input
model - (trained) keras model to be evaluated
"""
cohorts = ['cr', 'cv', 'me', 'ne', 'su']
metrics = ['precision', 'recall', 'f1', 'bce', 'roc-auc', 'pr-auc']
score = dict()
# evaluate performance per cohort
for c in cohorts:
idx = (cohort_test == c).squeeze()
if model_type == 'hglm' or model_type == 'lasso':
x_test = [X_diag_test[idx,:], patient_test[idx,:], hosp_test[idx,:], X_cohort_test[idx,:]]
else:
x_test = [diag_test[idx,:], patient_test[idx,:], hosp_test[idx,:]]
y_pred = model.predict(x_test)
score[c], _, _ = evaluate(y_test[idx,:], y_pred, c, savedir)
# evaluate performanec on total test set
if model_type == 'hglm' or model_type == 'lasso':
x_test = [X_diag_test, patient_test, hosp_test, X_cohort_test]
else:
x_test = [diag_test, patient_test, hosp_test]
y_pred = model.predict(x_test)
score['tot'], roc, pr = evaluate(y_test, y_pred, 'tot', savedir)
score = pd.DataFrame.from_dict(score, orient = 'index', columns = metrics)
score.to_csv(savedir+'test_metrics.csv', index=False)
score.to_latex(savedir+'cohort_performance_'+model_type+'.tex')
return score, roc, pr, y_pred
def gridsearch(savedir, param_grid, name='nn'):
grid = list(ParameterGrid(param_grid[name]))
np.save(savedir+'param_grid.npy', np.array(grid))
metrics = ['val_loss', 'loss', 'precision', 'recall', 'f1', 'bce', 'roc-auc', 'pr-auc', 'val_precision', 'val_recall', 'val_f1', 'val_bce', 'val_roc-auc', 'val_pr-auc']
simple_keys = {'dropout':'do', 'layers_diag':'ld', 'layers_patient':'lp', 'nodes_diag':'nd', 'nodes_patient':'np', 'lambda_1':'l1', 'lambda_2':'l2'}
results = np.empty((len(grid)), dtype=object)
optim_results = pd.DataFrame(columns=metrics, index=np.arange(len(grid))) #note that the optimal metric for each hyperparameter combination is evaluated for all different metrics, (so not that the minimal loss is taken and the rest of the columns contain metrics corresponding to that epoch)
sort_params = pd.DataFrame(columns=metrics, index=np.arange(len(grid)))
for i, g in enumerate(grid):
dir_gs = '_'.join([simple_keys[k]+str(v) for k,v in g.items()])
if not os.path.exists(savedir+dir_gs):
os.mkdir(savedir+dir_gs)
if name == 'nn':
mod = NN(name, diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], num_hosp, np.mean(y_train), **g)
elif name == 'hglm':
mod = REGR(name, X_diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], X_cohort_train.shape[1], num_hosp, np.mean(y_train), **g)
elif name == 'lasso':
mod = REGR(name, X_diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], X_cohort_train.shape[1], num_hosp, np.mean(y_train), **g)
mod.model = train(mod.model, name, savedir+dir_gs+'/')
results[i] = pd.DataFrame.from_dict(mod.model.history.history).join(pd.DataFrame.from_dict(mod.model.metrics.metrics))
results[i].to_csv(savedir+dir_gs+'/training_metrics_mean.csv')
np.save(savedir+'training_metrics_gridsearch.npy', results)
for m in metrics:
if 'loss' in m or 'bce' in m:
optim_results.loc[i, m] = np.amin(results[i][m])
else:
optim_results.loc[i,m] = np.amax(results[i][m])
optim_results.to_csv(savedir+'optim_training_metrics_gridsearch.csv')
PlotResults(savedir+dir_gs+'/').plot_training_metrics(mod.model)
test(mod.model, name, savedir+dir_gs+'/')
del mod ; gc.collect()
for m in metrics:
if 'loss' in m or 'bce' in m:
sort_params[m] = np.array(grid)[np.argsort(optim_results[m]).values]
else:
sort_params[m] = np.array(grid)[np.argsort(optim_results[m]).values[::-1]]
print("metric: ", m, "best params: ", sort_params[m][0])
sort_params.to_csv(savedir+'sorted_params_gridsearch.csv')
###----------------------------------- Read data -----------------------------------###
hosp = load_sparse_csr(datadir+'hosp.npz')
diag = pd.read_csv(datadir+'diag.csv', index_col = 0, header=None).values
patient = pd.read_csv(datadir+'patient.csv', index_col = 0)
y = pd.read_csv(datadir+'labels.csv', index_col = 0, header=None).values
#standardize patient age and gender
patient['age'] = StandardScaler().fit_transform(patient['age'].values.reshape(-1,1))
patient['gender'] = patient['gender'].replace(0,-1)
balance = np.mean(y)
charges = patient['charges'].values
hosp_id = patient['hosp_key'].values
y_train, y_val, patient_train, patient_val, hosp_train, hosp_val, diag_train, diag_val, hosp_id_train, hosp_id_val, cohort_train, cohort_val, \
idx_train, idx_val = train_test_split(y, patient[['gender','age']].values, hosp, diag,
hosp_id, patient['cohort'].values, np.arange(len(y)),
stratify=hosp_id, test_size=val_size, random_state=seed)
y_val, y_test, patient_val, patient_test, hosp_val, hosp_test, diag_val, diag_test, hosp_id_val, hosp_id_test, cohort_val, cohort_test, \
idx_val, idx_test = train_test_split(y_val, patient_val, hosp_val, diag_val,
hosp_id_val, cohort_val, idx_val,
stratify=hosp_id_val, test_size=test_size, random_state=seed)
# free some memory
patient.drop(columns=['gender','age', 'charges'])
del hosp, diag
gc.collect()
if train_models['hglm'] or train_models['lasso'] or read_ccs:
ccs = pd.read_csv(datadir+'ccs.csv', index_col = 0, header = None, dtype = 'Int64').values
ccs_train = ccs[idx_train]
ccs_val = ccs[idx_val]
ccs_test = ccs[idx_test]
#elements for one-hot encoding
enc1 = MultiLabelBinarizer(sparse_output=True)
enc1.fit(ccs) ; enc1.classes_ = enc1.classes_[~np.isnan(enc1.classes_.astype(float))]
X_diag_train = enc1.transform(ccs_train)
X_diag_val = enc1.transform(ccs_val)
X_diag_test = enc1.transform(ccs_test)
enc2 = OneHotEncoder(sparse=True)
X_cohort_test = enc2.fit_transform(cohort_test.astype(str).reshape(-1,1))
X_cohort_val = enc2.fit_transform(cohort_val.astype(str).reshape(-1,1))
X_cohort_train = enc2.fit_transform(cohort_train.astype(str).reshape(-1,1))
del ccs
hosp_test = hosp_test.todense()
num_hosp = len(np.unique(hosp_id_test))
t_end_data = time.time()
print("All data read, total time elapsed: ", t_end_data - t_begin, "(s)")
###----------------------------------- Models -----------------------------------###
M = { 'hospital_only': NN('hospital_only', diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], num_hosp, np.mean(y_train)),
'hglm': REGR('hglm', X_diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], X_cohort_train.shape[1], num_hosp, np.mean(y_train), lambda_2=1e-6),
'lasso': REGR('lasso', X_diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], X_cohort_train.shape[1], num_hosp, np.mean(y_train), lambda_1=1e-6, lambda_2=1e-6),
'black_box': NN('black_box', diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], num_hosp, np.mean(y_train), **hyper_params),
'nn':NN('nn', diag_train.shape[1], patient_train.shape[1], hosp_train.shape[1], num_hosp, np.mean(y_train), **hyper_params)}
results = {i:None for i in M.keys()}
roc = {i:None for i in M.keys()}
pr = {i:None for i in M.keys()}
y_pred = {i:None for i in M.keys()}
t_begin_model = time.time()
for name in M.keys():
print(name)
savedir = root + name + '/'
# optimize
if optimize_models[name]:
if not os.path.exists(savedir+'gridsearch/'):
os.mkdir(savedir+'gridsearch/')
gridsearch(savedir+'gridsearch/', param_grid, name=name)
# train
if train_models[name]:
M[name].model = train(M[name].model, name, savedir)
# only test
else:
M[name].model.load_weights(savedir+'weights-'+name+'.hdf5')
# hospital performance by cohort
results[name], roc[name], pr[name], y_pred[name] = test(M[name].model, name, savedir)
t_end_model = time.time()
print("Model fit and evaluated, time elapsed since begin fit: ", t_end_model - t_begin_model, "(s)")
t_begin_model = t_end_model
pd.concat(results.values(), keys=results.keys()).to_csv(root+'results.csv')
###----------------------------------- Compare models -----------------------------------###
fprs = [r[0] for r in roc.values()]
tprs = [r[1] for r in roc.values()]
precisions = [r[0] for r in pr.values()]
recalls = [r[1] for r in pr.values()]
rocauc = [r['roc-auc']['tot'] for r in results.values()]
prauc = [r['pr-auc']['tot'] for r in results.values()]
np.save(root+'fprs', fprs)
np.save(root+'tprs', tprs)
np.save(root+'precisions', precisions)
np.save(root+'recalls', recalls)
np.save(root+'rocauc', rocauc)
np.save(root+'prauc', prauc)
np.save(root+'balance', balance)
PlotResults(root).plot_roc_curves(fprs, tprs, rocauc, model_names)
PlotResults(root).plot_pr_curves(precisions, recalls, prauc, balance, model_names)
###----------------------------------- Infer hospital-specific performance -----------------------------------###
M_perf = ('hospital_only', 'hglm', 'nn')
omega = {i:M[i].model.get_layer("output").get_weights()[0][0:num_hosp,:].T[0] for i in M_perf}#weights of the output layer connecting to hospitals (ignore bias weight)
beta = {i:M[i].model.get_layer('output').get_weights()[0][-1][0] for i in M_perf} #weights of the output layer connecting to diagnosis + patient effect
bias = {i:M[i].model.get_layer('output').get_weights()[1][0] for i in M_perf} #bias weight
alpha = {i: omega[i] + bias[i] for i in M_perf}
pd.DataFrame.from_dict(omega).to_csv(root+'omegas.csv')
pd.DataFrame.from_dict(alpha).to_csv(root+'alphas.csv')
pd.DataFrame(beta, index=[0]).to_csv(root+'beta.csv')
pd.DataFrame(bias, index=[0]).to_csv(root+'bias.csv')
omega = pd.read_csv(root+'omegas.csv', index_col=0).to_dict('list')
alpha = pd.read_csv(root+'alphas.csv', index_col=0).to_dict('list')
beta = pd.read_csv(root+'beta.csv', index_col=0).to_dict('records')[0]
bias = pd.read_csv(root+'bias.csv', index_col=0).to_dict('records')[0]
limit_plot = max(abs(np.amin(omega['nn'])), np.amax(omega['nn']))
PlotResults(root).plot_dist_performance(omega['nn'], 'omega', bias['nn'], beta['nn'], xlim=(-limit_plot, limit_plot))
PlotResults(root).plot_dist_performance(alpha['nn'], 'alpha', bias['nn'], beta['nn'], xlim=(-limit_plot+bias['nn'], limit_plot+bias['nn']))
# Comparison hospital-specific performance
PlotResults(root).plot_dist_difference(omega, 'hglm', 'nn', 'omega', 'HGLM', 'Proposed model')