From 65baaeed7de685af941de6f8351474b0283a3b8b Mon Sep 17 00:00:00 2001 From: Alexis Montoison Date: Sat, 20 Apr 2024 03:14:00 -0400 Subject: [PATCH] Fix another equation in ipm.tex --- tex/sections/ipm.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/tex/sections/ipm.tex b/tex/sections/ipm.tex index 07b5c1d..dc6478e 100644 --- a/tex/sections/ipm.tex +++ b/tex/sections/ipm.tex @@ -248,8 +248,8 @@ \subsection{Solving the KKT conditions with the interior-point method} \tag{$K_1$} \setlength\arraycolsep{3pt} \begin{bmatrix} - K & G^\top \\ - G & -\delta_c I \phantom{^\top} + K & \phantom{-} G^\top \\ + G & -\delta_c I \end{bmatrix} \begin{bmatrix} d_x \\ d_y @@ -273,7 +273,7 @@ \subsection{Solving the KKT conditions with the interior-point method} \end{equation} Using the solution of the system~\eqref{eq:kkt:condensed}, we recover the updates on the slacks and inequality multipliers with -$d_z = -C r_2 + D_H(H d_x + r_4)$ and $d_s = -(D_s + \delta_w I)^{-1}(r_2 - d_z)$. +$d_z = -C r_2 + D_H(H d_x + r_4)$ and $d_s = -(D_s + \delta_w I)^{-1}(r_2 + d_z)$. Using Sylvester's law of inertia, we can prove that \begin{equation} \label{eq:ipm:inertia}