-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtypecheck.ml
537 lines (492 loc) · 23.6 KB
/
typecheck.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
open Utils
module Ctx = Typecheck_ctx
module A = Ast
module P = String_of_ast
module StringSet = Set.Make(String)
type typed_contract = {
ctx: Ctx.t;
storage_type: A.etype;
param_type: A.etype;
result_type: A.etype;
storage_init: A.expr option;
code: A.expr }
let _DEBUG_ = ref false
let debug_indent = ref 0
(* Translates a pattern, and the type it matches, into type constraints
* added to `ctx`;
* Pushes the pattern variables into ctx' expression variables;
* Keeps a bookmark to allow the removal of those evars.
*)
let rec push_pattern_bindings ctx pattern etype : (Ctx.t*Ctx.bookmark) =
match pattern with
| A.PId id ->
let scheme = ([], etype) in
Ctx.push_evars [id, scheme] ctx
| A.PAny -> ctx, Ctx.bookmark_empty
| A.PTuple plist ->
let tlist = List.map (fun _ -> A.fresh_tvar ~prefix:"tuple" ()) plist in
let ctx, _ = Ctx.unify ctx etype (A.ttuple tlist) in
let fold (ctx, bmrk) p t =
let ctx, bmrk' = push_pattern_bindings ctx p t in
ctx, bmrk @ bmrk' in
List.fold_left2 fold (ctx, Ctx.bookmark_empty) plist tlist
| A.PProduct tagged_pattern_list ->
(* Assume that etype has the corresponding product's type,
* and that every field has the corresponding field type *)
let pname = Ctx.name_of_product_tag ctx (fst @@ List.hd tagged_pattern_list) in
let tprod, tagged_type_list = Ctx.instantiate_composite pname @@ Ctx.product_of_name ctx pname in
let ctx, _ = Ctx.unify ctx etype tprod in
let fold (ctx, bmrk) (tag, pattern) =
let etype = List.assoc tag tagged_type_list in
let ctx, bmrk' = push_pattern_bindings ctx pattern etype in
ctx, bmrk@bmrk' in
List.fold_left fold (ctx, Ctx.bookmark_empty) tagged_pattern_list
let rec typecheck_expr ctx expr =
if !_DEBUG_ then begin
print_endline (String.make (2 * !debug_indent) ' '^"Typing "^P.string_of_expr expr);
incr debug_indent
end;
let ctx, t = match expr with
| A.ELit(_, c) -> begin match c with
| A.LNat _ -> ctx, A.tprim "nat"
| A.LInt _ -> ctx, A.tprim "int"
| A.LString _ -> ctx, A.tprim "string"
| A.LTez _ -> ctx, A.tprim "tez"
| A.LSig _ -> ctx, A.tprim "sig"
| A.LTime _ -> ctx, A.tprim "time"
| A.LKey _ -> ctx, A.tprim "key"
end
| A.EColl(_, A.CList, list) -> typecheck_EColl_CList ctx list
| A.EColl(_, A.CMap, list) -> typecheck_EColl_CMap ctx list
| A.EColl(_, A.CSet, list) -> typecheck_EColl_CSet ctx list
| A.EId(_, id) ->
let scheme = Ctx.scheme_of_evar ctx id in
ctx, Ctx.instantiate_scheme scheme
| A.ELambda(_, p_prm, t_prm, e_res) -> typecheck_ELambda ctx expr p_prm t_prm e_res
| A.ELet(_, id, t_id, e0, e1) -> typecheck_ELetIn ctx id t_id e0 e1
| A.EApp(_, f, arg) -> typecheck_EApp ctx f arg
| A.ETypeAnnot(_, e, t) -> let ctx, te = typecheck_expr ctx e in Ctx.unify ctx te t
| A.ETuple(_, list) -> typecheck_ETuple ctx list
| A.ESequence(_, list) -> typecheck_ESequence ctx list
| A.ETupleGet(_, e, n) -> typecheck_ETupleGet ctx e n
| A.EProduct(_, pairs) -> typecheck_EProduct ctx pairs
| A.EProductGet(_, e, tag) -> typecheck_EProductGet ctx e tag
| A.EProductSet(_, e0, tag, e1) -> typecheck_EProductSet ctx e0 tag e1
| A.EStoreSet(_, v, e0, e1) -> typecheck_EStoreSet ctx v e0 e1
| A.ESum(_, tag, e) -> typecheck_ESum ctx tag e
| A.ESumCase(_, e, cases) -> typecheck_ESumCase ctx e cases
| A.EBinOp(loc, a, op, b) -> typecheck_EBinOp ctx loc a op b
| A.EUnOp(_, op, a) -> typecheck_EUnOp ctx op a
in
let t = Ctx.expand_type ctx t in
let ctx = Ctx.save_type expr t ctx in
if !_DEBUG_ then begin
decr debug_indent;
print_endline (String.make (2 * !debug_indent) ' '^"Result "^P.string_of_expr expr^" :: "^P.string_of_type t);
end;
ctx, t
and typecheck_EColl_CList ctx elts =
let fold (ctx, t0) elt =
let ctx, t1 = typecheck_expr ctx elt in
Ctx.unify ctx t0 t1 (* TODO order? *)
in
let ctx, elt_type = List.fold_left fold (ctx, A.fresh_tvar ~prefix:"elt" ()) elts in
ctx, A.TApp(A.noloc, "list", [elt_type])
and typecheck_EColl_CMap ctx elts =
let rec split (klist, vlist) = function
| k :: v :: rest -> split (k :: klist, v :: vlist) rest
| [] -> (klist, vlist)
| [_] -> assert false
in
let klist, vlist = split ([], []) elts in
let ctx, types = list_fold_map typecheck_expr ctx elts in
let ctx, types = list_fold_map typecheck_expr ctx elts in
let fold (ctx, t0) elt =
let ctx, t1 = typecheck_expr ctx elt in
Ctx.unify ctx t0 t1 (* TODO order? *)
in
let ctx, k_type = List.fold_left fold (ctx, A.fresh_tvar ~prefix:"key" ()) klist in
let ctx, v_type = List.fold_left fold (ctx, A.fresh_tvar ~prefix:"val" ()) vlist in
ctx, A.TApp(A.noloc, "map", [k_type; v_type])
and typecheck_EColl_CSet ctx elts =
let fold (ctx, t0) elt =
let ctx, t1 = typecheck_expr ctx elt in
Ctx.unify ctx t0 t1 (* TODO order? *)
in
let ctx, elt_type = List.fold_left fold (ctx, A.fresh_tvar ~prefix:"elt" ()) elts in
ctx, A.TApp(A.noloc, "set", [elt_type])
and typecheck_ELambda ctx l p_prm t_prm e_res =
(* TODO forbid global vars shadowing? *)
(* Type e supposing that id has type t_arg. *)
let cmb = (* Combinator or closure? *)
let prm = A.pattern_binds_list p_prm in
let globals = Standard_ctx.globals in
let free_evars = A.get_free_evars ~except:(prm@globals) e_res in
A.M.is_empty free_evars in
let ctx, bmrk = push_pattern_bindings ctx p_prm t_prm in
let ctx, t_res = typecheck_expr ctx e_res in
let ctx = Ctx.pop_evars bmrk ctx in
let tlambda = A.TLambda(A.noloc, t_prm, t_res, cmb) in
ctx, tlambda
and typecheck_ELetIn ctx pattern sp e0 e1 =
(* TODO forbid global vars shadowing? *)
if fst sp <> [] then unsupported "Polymorphic types";
let ctx, t0 = typecheck_expr ctx e0 in
let ctx, t0 = Ctx.unify ctx t0 (snd sp) in
let ctx, bmrk = push_pattern_bindings ctx pattern (snd sp) in
(* TODO let-gen: tvars in bookmarked evars which don't occur anywhere else
* in `ctx` can be generalized in these evars' type schemes. *)
let ctx, t1 = typecheck_expr ctx e1 in
let ctx = Ctx.pop_evars bmrk ctx in
ctx, t1
and typecheck_ETuple ctx list =
let ctx, types = list_fold_map typecheck_expr ctx list in
ctx, A.TTuple(A.noloc, types)
and typecheck_ESequence ctx list =
let rlist = List.rev list in
let last = List.hd rlist in
let but_last = List.rev (List.tl rlist) in
let fold ctx e =
let ctx, t = typecheck_expr ctx e in
let ctx, _ = Ctx.unify ctx t A.tunit in
ctx in
let ctx = List.fold_left fold ctx but_last in
typecheck_expr ctx last
and typecheck_EApp ctx f arg =
let ctx, t_f = typecheck_expr ctx f in
let ctx, t_arg = typecheck_expr ctx arg in
let t_prm, t_res = match t_f with
| A.TLambda(_, t_prm, t_res, _) -> t_prm, t_res
| _ -> type_error (A.loc_of_expr f) "Applying a non-function" in
let ctx, _ = Ctx.unify ctx t_arg t_prm in
ctx, t_res
and typecheck_ETupleGet ctx e n =
let ctx, t_e = typecheck_expr ctx e in
begin match t_e with
| A.TTuple(_, types) ->
begin try ctx, List.nth types n
with Failure _ -> type_error (A.loc_of_expr e) "Out of tuple index" end
| _ -> type_error (A.loc_of_expr e) "Not a tuple"
end
and typecheck_EProduct ctx e_pairs =
let tag0 = fst (List.hd e_pairs) in
let name = Ctx.name_of_product_tag ctx tag0 in
let t_result, t_items = Ctx.instantiate_composite name (Ctx.product_of_name ctx name) in
let f ctx (tag, e) =
let ctx, t = typecheck_expr ctx e in
let ctx, t = Ctx.unify ctx t (List.assoc tag t_items) in
ctx, (tag, t) in
let ctx, t_pairs = list_fold_map f ctx e_pairs in
ctx, t_result
and typecheck_ESumCase ctx e e_cases =
let tag0, _ = List.hd e_cases in
let name = try Ctx.name_of_sum_tag ctx tag0
with Not_found -> type_error (A.loc_of_expr e) (tag0^" is not a sum tag") in
let t_sum, case_types = Ctx.instantiate_composite name (Ctx.sum_of_name ctx name) in
let ctx, t_e = typecheck_expr ctx e in
let ctx, _ = Ctx.unify ctx t_e t_sum in
(* TODO check that declaration and case domains are equal. *)
let ctx, t_pairs = list_fold_map
(fun ctx (tag, (p, e)) ->
(* TODO forbid global vars shadowing? *)
let t = List.assoc tag case_types in
let ctx, bmrk = push_pattern_bindings ctx p t in
let ctx, t = typecheck_expr ctx e in
let ctx = Ctx.pop_evars bmrk ctx in
ctx, (tag, t))
ctx e_cases in
let ctx, t = List.fold_left
(fun (ctx, t) (tag, t') -> Ctx.unify ctx t t') (* TODO order? *)
(ctx, snd(List.hd t_pairs)) (List.tl t_pairs) in
ctx, t
and typecheck_EProductGet ctx e_product tag =
let name = try Ctx.name_of_product_tag ctx tag
with Not_found -> type_error (A.loc_of_expr e_product) (tag^" is not a product tag") in
let t_product0, field_types = Ctx.instantiate_composite name (Ctx.product_of_name ctx name) in
let ctx, t_product1 = typecheck_expr ctx e_product in
let ctx, _ = Ctx.unify ctx t_product1 t_product0 in
let t = List.assoc tag field_types in
ctx, t
and typecheck_EProductSet ctx e_product tag e_field =
let name = try Ctx.name_of_product_tag ctx tag
with Not_found -> type_error (A.loc_of_expr e_product) (tag^" is not a product tag") in
let t_product0, field_types = Ctx.instantiate_composite name (Ctx.product_of_name ctx name) in
let ctx, t_product1 = typecheck_expr ctx e_product in
let ctx, t_product2 = Ctx.unify ctx t_product1 t_product0 in
let t_field0 = List.assoc tag field_types in
let ctx, t_field1 = typecheck_expr ctx e_field in
let ctx, _ = Ctx.unify ctx t_field1 t_field0 in
ctx, t_product2
and typecheck_EStoreSet ctx v e_field e =
let _, field_types = Ctx.instantiate_composite "@" (Ctx.product_of_name ctx "@") in
let t_field0 = List.assoc v field_types in
let ctx, t_field1 = typecheck_expr ctx e_field in
let ctx, _ = Ctx.unify ctx t_field1 t_field0 in
typecheck_expr ctx e
and typecheck_ESum ctx tag e =
let name = try Ctx.name_of_sum_tag ctx tag
with Not_found -> type_error (A.loc_of_expr e) (tag^" is not a sum tag") in
let t_sum, case_types = Ctx.instantiate_composite name (Ctx.sum_of_name ctx name) in
let ctx, t_e = typecheck_expr ctx e in
let ctx, _ = Ctx.unify ctx t_e (List.assoc tag case_types) in
ctx, t_sum
and typecheck_EBinOp ctx loc a op b =
let prims_in candidates responses = List.for_all (fun t-> List.mem t responses) candidates in
let p n = A.TApp(A.noloc, n, []) in
let ctx, ta = typecheck_expr ctx a in
let ctx, tb = typecheck_expr ctx b in
let error op = type_error loc ("Cannot "^op^" "^P.string_of_type ta^" and "^P.string_of_type tb) in
match op with
| A.BConcat ->
let ctx, _ = Ctx.unify ctx ta (p "string") in
let ctx, _ = Ctx.unify ctx tb (p "string") in
ctx, A.TApp(A.noloc, "string", [])
| A.BAdd ->
(* nat² -> nat | (nat|int)² -> int | nat time -> time | tez² -> tez *)
begin match ta, tb with
| A.TApp(_, "nat", []), A.TApp(_, "nat", []) -> ctx, p "nat"
| A.TApp(_, t0, []), A.TApp(_, t1, []) when prims_in [t0; t1] ["int"; "nat"] -> ctx, p "int"
(* TODO shouldn't this be time int->time instead? *)
| A.TApp(_, "nat", []), A.TApp(_, "time", []) | A.TApp(_, "time", []), A.TApp(_, "nat", []) -> ctx, p "time"
| A.TApp(_, "tez", []), A.TApp(_, "tez", []) -> ctx, p "tez"
| A.TId(_, id), A.TApp(_, "nat", []) | A.TApp(_, "nat", []), A.TId(_, id) ->
type_error loc ("Need more type annotation to determine wether addition is "^
"(nat, int) -> int, (nat, nat) -> nat or (nat, time) -> time.")
(* let ctx, _ = Ctx.unify ctx (A.TId(_, id)) (p "int") in ctx, p "int" *)
| (A.TId _ as tid), A.TApp(_, "int", []) | A.TApp(_, "int", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "int") in ctx, p "int"
| (A.TId _ as tid), A.TApp(_, "tez", []) | A.TApp(_, "tez", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "tez") in ctx, p "tez"
| (A.TId _ as tid), A.TApp(_, "time", []) | A.TApp(_, "time", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "nat") in ctx, p "nat"
| A.TId(_, id0), A.TId(_, id1) ->
type_error loc ("Need more type annotation to determine addition type.")
| _ -> error "add"
end
| A.BSub ->
(* (int|nat)² -> int | tez² -> tez *)
begin match ta, tb with
| A.TApp(_, t0, []), A.TApp(_, t1, []) when prims_in [t0; t1] ["int"; "nat"] -> ctx, p "int"
| A.TApp(_, "tez", []), A.TApp(_, "tez", []) -> ctx, p "tez"
| (A.TId _ as tid), A.TApp(_, t, []) | A.TApp(_, t, []), (A.TId _ as tid) when prims_in [t] ["nat"; "int"] ->
let ctx, _ = Ctx.unify ctx tid (p "int") in ctx, p "int"
| (A.TId _ as tid), A.TApp(_, "tez", []) | A.TApp(_, "tez", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "tez") in ctx, p "tez"
| A.TId(_, id0), A.TId(_, id1) ->
type_error loc ("Need more annotations to determine substraction type.")
(* let ctx, _ = Ctx.unify ctx ta (p "int") in
let ctx, _ = Ctx.unify ctx tb (p "int") in
ctx, p "int" *)
| _ -> error "substract"
end
| A.BMul ->
(* nat² -> nat | (int|nat)² -> int | tez nat -> tez*)
begin match ta, tb with
| A.TApp(_, "nat", []), A.TApp(_, "nat", []) -> ctx, p "nat"
| A.TApp(_, t0, []), A.TApp(_, t1, []) when prims_in [t0; t1] ["int"; "nat"] -> ctx, p "int"
| A.TApp(_, "tez", []), A.TApp(_, "nat", []) | A.TApp(_, "nat", []), A.TApp(_, "tez", []) -> ctx, p "tez"
| A.TId(_, id), A.TApp(_, "nat", []) | A.TApp(_, "nat", []), A.TId(_, id) ->
type_error loc ("Need more type annotation to determine wether multiplication is "^
"(nat, int) -> int, (nat, nat) -> nat or (nat, tez) -> tez.")
(* let ctx, _ = Ctx.unify ctx (A.TId(_, id)) (p "int") in ctx, p "int" *)
| (A.TId _ as tid), A.TApp(_, "int", []) | A.TApp(_, "int", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "int") in ctx, p "int"
| (A.TId _ as tid), A.TApp(_, "tez", []) | A.TApp(_, "tez", []), (A.TId _ as tid) ->
let ctx, _ = Ctx.unify ctx tid (p "nat") in ctx, p "tez"
| A.TId(_, id0), A.TId(_, id1) ->
type_error loc ("Need more annotations to determine multiplication type.")
(* let ctx, _ = Ctx.unify ctx ta (p "int") in
let ctx, _ = Ctx.unify ctx tb (p "int") in
ctx, p "int" *)
| _ -> error "multiply"
end
| A.BDiv ->
(* nat² -> option (nat*nat) | (nat|int)² -> option(int*nat)
| tez nat -> option(tez*tez) | tez tez -> option(nat*tez) *)
let op x y = A.TApp(A.noloc, "option", [A.TTuple(A.noloc, [A.TApp(A.noloc, x, []); A.TApp(A.noloc, y, [])])]) in
begin match ta, tb with
| A.TApp(_, "nat", []), A.TApp(_, "nat", []) -> ctx, op "nat" "nat"
| A.TApp(_, t0, []), A.TApp(_, t1, []) when prims_in [t0; t1] ["int"; "nat"] -> ctx, op "int" "nat"
| A.TApp(_, "tez", []), A.TApp(_, "nat", []) -> ctx, op "tez" "tez"
| A.TApp(_, "tez", []), A.TApp(_, "tez", []) -> ctx, op "nat" "tez"
| (A.TId _ as tid), A.TApp(_, t, []) | A.TApp(_, t, []), (A.TId _ as tid) when prims_in [t] ["int"; "nat"] ->
let ctx, _ = Ctx.unify ctx tid (p "int") in ctx, op "int" "nat"
| (A.TId _ as tid), A.TApp(_, "tez", []) ->
let ctx, _ = Ctx.unify ctx tid (p "tez") in ctx, op "nat" "tez"
| A.TApp(_, "tez", []), (A.TId _ as tid) -> (* `t1` Could be either tez or nat; let's arbitrarily pick nat *)
let ctx, _ = Ctx.unify ctx tid (p "nat") in ctx, op "tez" "tez"
| A.TId(_, id0), A.TId(_, id1) ->
let ctx, _ = Ctx.unify ctx ta (p "int") in
let ctx, _ = Ctx.unify ctx tb (p "int") in
ctx, p "int"
| _ -> error "divide"
end
| A.BEq | A.BNeq | A.BLt | A.BLe | A.BGt | A.BGe ->
(* a² -> bool *)
let ctx, _ = Ctx.unify ctx ta tb in ctx, p "bool"
| A.BOr | A.BAnd | A.BXor ->
(* bool² -> bool | nat² -> nat *)
begin match ta, tb with
| A.TApp(_, "bool", []), A.TApp(_, "bool", []) -> ctx, p "bool"
| A.TApp(_, "nat", []), A.TApp(_, "nat", []) -> ctx, p "nat"
| A.TId(_, id), A.TApp(_, t, []) | A.TApp(_, t, []), A.TId(_, id) when prims_in [t] ["nat"; "bool"] ->
let ctx, _ = Ctx.unify ctx ta tb in ctx, p t
| A.TId(_, id0), A.TId(_, id1) -> (* have to choose arbitrarily between bool and nat *)
let ctx, _ = Ctx.unify ctx ta (p "bool") in
let ctx, _ = Ctx.unify ctx tb (p "bool") in
ctx, p "bool"
| _ -> error "apply logical operator"
end
| A.BLsl | A.BLsr ->
(* nat² -> nat *)
begin match ta, tb with
| A.TApp(_, "nat", []), A.TApp(_, "nat", []) -> ctx, p "nat"
| A.TId(_, id), A.TApp(_, "nat", []) | A.TApp(_, "nat", []), A.TId(_, id) ->
let ctx, _ = Ctx.unify ctx ta tb in ctx, p "nat"
| A.TId(_, id0), A.TId(_, id1) -> (* have to choose arbitrarily between bool and nat *)
let ctx, _ = Ctx.unify ctx ta (p "nat") in
let ctx, _ = Ctx.unify ctx tb (p "nat") in
ctx, p "nat"
| _ -> error "bit-shift"
end
and typecheck_EUnOp ctx op a =
let p n = A.TApp(A.noloc, n, []) in
let ctx, ta = typecheck_expr ctx a in
match op with
| A.UAbs ->
(* int -> nat *)
begin match ta with
| A.TApp(_, "int", []) -> ctx, p "nat"
| A.TApp(_, "nat", []) -> type_error (A.loc_of_expr a) "no point in getting the absolute val of a nat"
| A.TId(_, id) -> let ctx, _ = Ctx.unify ctx ta (p "int") in ctx, p "nat"
| _ -> type_error (A.loc_of_expr a) "Cannot get abs of that"
end
| A.UNot ->
(* bool -> bool | (nat|int) -> int *)
begin match ta with
| A.TApp(_, "int", []) | A.TApp(_, "nat", []) -> ctx, p "int"
| A.TApp(_, "bool", []) -> ctx, p "bool"
| A.TId(_, id) -> let ctx, _ = Ctx.unify ctx ta (p "bool") in ctx, p "bool"
| _ -> type_error (A.loc_of_expr a) "Cannot get opposite of that"
end
| A.UNeg ->
(* (nat|int) -> int *)
begin match ta with
| A.TApp(_, "int", []) | A.TApp(_, "nat", []) -> ctx, p "int"
| A.TId(_, id) -> let ctx, _ = Ctx.unify ctx ta (p "int") in ctx, p "int"
| _ -> type_error (A.loc_of_expr a) "Cannot get the negation of that"
end
let typecheck_decl ctx = function
| A.DPrim(_, var, params) -> Ctx.add_prim var params ctx
| A.DAlias(_, var, params, t) -> Ctx.add_alias var (params, t) ctx
| A.DProduct(_, var, params, cases) -> Ctx.add_product var params cases ctx
| A.DSum(_, var, params, cases) -> Ctx.add_sum var params cases ctx
let typecheck_store (tag, etype, init) (ctx, fields, inits) =
if List.mem_assoc tag fields then unsound("Storage field "^tag^" redefined");
let ctx, inits = match inits, init with
| None, _ | _, None -> ctx, None
| Some inits, Some init ->
let ctx, t_init = typecheck_expr ctx init in
let ctx, _ = Ctx.unify ctx etype t_init in
ctx, Some ((tag, init)::inits)
in
(ctx, (tag, etype)::fields, inits)
let check_contract_calls expr =
let rec forbidden list where =
if List.exists f list
then unsupported ("Contract calls forbidden in "^where)
else false
and f = function
| A.ELit _ | A.EId _ -> false
| A.EProductGet(_, e, _) | A.ESum(_, _, e) | A.EUnOp(_, _, e) | A.ETypeAnnot(_, e, _) -> f e
| A.ESumCase(_, e, list) -> List.exists (fun (v, (_, e)) -> v<>"call-contract" && f e) list
| A.ESequence(_, list) -> List.exists f list
| A.EColl(_, _, list) -> forbidden list "collections"
| A.ELambda(_, A.PId "call-contract", _, _) -> false
| A.ELambda(_, _, _, e) -> forbidden [e] "functions"
| A.EApp(_, e0, e1) -> forbidden [e0; e1] "function applications"
| A.EBinOp(_, e0, _, e1) -> forbidden [e0; e1] "binary operators"
| A.EProductSet(_, e0, _, e1) -> forbidden [e0; e1] "product updates"
| A.EStoreSet(_, _, e0, e1) -> forbidden [e0; e1] "stored field updates"
| A.ETuple(_, list) -> forbidden list "tuples"
| A.EProduct(_, list) -> forbidden (List.map snd list) "product types"
| A.ETupleGet(_, e, _) -> f e
| A.ELet(_, A.PId "call-contract", _, _, _) -> false
| A.ELet(_, _, _, e0, e1) -> f e0 || f e1
in let _ = f expr in
()
let check_store_set expr =
let rec forbidden list where =
if List.exists f list
then unsupported ("Storage updates forbidden in "^where)
else false
and f = function
| A.ELit _ | A.EId _ -> false
| A.EProductGet(_, e, _) | A.ESum(_, _, e) | A.EUnOp(_, _, e) | A.ETypeAnnot(_, e, _) -> f e
| A.ESumCase(_, e, list) -> f e || List.exists (fun (v, (_, e)) -> f e) list
| A.ESequence(_, list) -> List.exists f list
| A.EColl(_, _, list) -> forbidden list "collections"
| A.ELambda(_, _, _, e) -> forbidden [e] "functions"
| A.EApp(_, e0, e1) -> forbidden [e0; e1] "function applications"
| A.EBinOp(_, e0, _, e1) -> forbidden [e0; e1] "binary operators"
| A.EProductSet(_, e0, _, e1) -> forbidden [e0; e1] "product updates"
| A.EStoreSet(_, _, e0, e1) -> forbidden [e0; e1] " surrounding updates"
| A.ETuple(_, list) -> forbidden list "tuples"
| A.ETupleGet(_, e, _) -> f e
| A.EProduct(_, list) -> forbidden (List.map snd list) "product types"
| A.ELet(_, A.PId"call-contract", _, _, _) -> false
| A.ELet(_, _, _, e0, e1) -> f e0 || f e1
in let _ = f expr in
()
let typecheck_contract ctx (type_declarations, storage_fields, code) =
(* TODO is the arity of A.TApp() type properly checked? *)
(* Incorporate type declarations in the context. *)
let ctx = List.fold_left typecheck_decl ctx type_declarations in
(* Turn store declarations into a sum declaration and product. *)
let ctx, store_fields, init_fields = List.fold_right typecheck_store storage_fields (ctx, [], Some []) in
let ctx = match store_fields with
| [] -> let ctx = Ctx.add_alias "@" ([], A.tunit) ctx in
Ctx.add_evar "@" ([], A.tunit) ctx
| _ -> let ctx = Ctx.add_product "@" [] store_fields ctx in
Ctx.add_evar "@" ([], A.tprim "@") ctx in
let ctx, storage_init = match init_fields with None -> ctx, None | Some fields ->
(* The expression must be typechecked, in order to be registered for Ctx.retrive_type. *)
let e = if fields=[] then A.eunit else A.EProduct(A.noloc, fields) in
let ctx, _ = typecheck_expr ctx e in
ctx, Some e
in
(* Compile the code itself *)
let ctx, t_code = typecheck_expr ctx code in
let t_prm, t_res = match t_code with
(* type will be combinator or closure depending on whether `@` is used in it. *)
| A.TLambda(_, t_prm, t_res, _) -> t_prm, t_res
| _ -> type_error A.noloc
("Bad contract type "^String_of_ast.string_of_type t_code)
in
let t_store = Ctx.expand_type ctx (A.tid "@") in
let ctx = Ctx.add_evar "@" ([], A.TApp(A.noloc, "@", [])) ctx in
begin match code with
| A.ELambda(_, _, _, res) -> check_contract_calls res; check_store_set res;
| _ -> unsupported "Contract code must be a litteral lambda"
end;
(* Check for unresolved polymorphism. *)
(* TODO reassociate TId with their EId. reverse lookup in ctx? Or
* just reference them when first met in Typecheck. *)
(* TODO Tolerate the parameter to be untypable, and make it a unit. *)
let f_code = A.get_free_tvars t_code in
if f_code <> [] then type_error
(A.loc_of_expr code)
("Unresolved types "^String.concat ", " f_code^
" in code type: "^P.string_of_type t_code^"; add type annotations.");
let f_store = A.get_free_tvars t_store in
if f_store <> [] then type_error
(A.loc_of_expr code)
("Unresolved types "^String.concat ", " f_store^
" in storage type: "^P.string_of_type t_code^"; add type annotations.");
(* TODO migrate contract-call and EStoreSet checks here. *)
{ ctx = ctx;
storage_type = t_store;
param_type = t_prm;
result_type = t_res;
storage_init = storage_init;
code = code }