Skip to content

binomialCDF

Fabian Kindermann edited this page Apr 1, 2021 · 11 revisions
function binomialCDF(k, n, p)

Description:

Calculates the cumulative distribution function
$$
F(k) = \begin{cases}
0 & \text{for } k \lt 0\\
\sum_{i=0}^k \begin{pmatrix}n\\ i\end{pmatrix}\cdot p^i\cdot (1-p)^{n-i} \enspace& \text{for } k \in \{0, 1, \ldots, n\}\\
1 & \text{for } k \gt n
\end{cases}
$$
of the binomial distribution with draws and a probability to draw a value of .

Input arguments:

  • integer :: k
    The point where to evaluate the cumulative distribution function of the binomial distribution.
  • integer :: n
    The number of independent draws. Note that this input parameter can not be negative.
  • real*8 :: p
    The probability that a value of is drawn in each experiment. Note that this input parameter needs to be in the interval .

Return Value:

  • real*8 :: binomialCDF
    The value of the cumulative distribution function at k.

References

  • For further reading refer to:
    • Toral, R. & Colet, P. (2014). Stochastic Numerical Methods: An Introduction for Students and Scientists. Weinheim: Wiley.
  • This routine is used in the following programs:
    • prog02_15.f90
Clone this wiki locally