-
Notifications
You must be signed in to change notification settings - Fork 46
binomialCDF
Fabian Kindermann edited this page Apr 1, 2021
·
11 revisions
function binomialCDF(k, n, p)
Calculates the cumulative distribution function
$$
F(k) = \begin{cases}
0 & \text{for } k \lt 0\\
\sum_{i=0}^k \begin{pmatrix}n\\ i\end{pmatrix}\cdot p^i\cdot (1-p)^{n-i} \enspace& \text{for } k \in \{0, 1, \ldots, n\}\\
1 & \text{for } k \gt n
\end{cases}
$$
of the binomial distribution with draws and a probability to draw a value of .
-
integer :: k
The point where to evaluate the cumulative distribution function of the binomial distribution. -
integer :: n
The number of independent draws. Note that this input parameter can not be negative. -
real*8 :: p
The probability that a value of is drawn in each experiment. Note that this input parameter needs to be in the interval .
-
real*8 :: binomialCDF
The value of the cumulative distribution function atk
.
- For further reading refer to:
- Toral, R. & Colet, P. (2014). Stochastic Numerical Methods: An Introduction for Students and Scientists. Weinheim: Wiley.
- This routine is used in the following programs:
prog02_15.f90