-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathreferences.bib
2691 lines (2376 loc) · 105 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{scharstein2002taxonomy,
title={A taxonomy and evaluation of dense two-frame stereo correspondence algorithms},
author={Scharstein, Daniel and Szeliski, Richard},
journal={International journal of computer vision},
volume={47},
pages={7--42},
year={2002},
publisher={Springer}
}
@inproceedings{hirschmuller2007evaluation,
title={Evaluation of cost functions for stereo matching},
author={Hirschmuller, Heiko and Scharstein, Daniel},
booktitle={2007 IEEE conference on computer vision and pattern recognition},
pages={1--8},
year={2007},
organization={IEEE}
}
@article{mattoccia2013stereo,
title={Stereo vision: Algorithms and applications},
author={Mattoccia, Stefano},
journal={University of Bologna},
volume={22},
year={2013},
publisher={Citeseer}
}
@article{laga2020survey,
title={A survey on deep learning techniques for stereo-based depth estimation},
author={Laga, Hamid and Jospin, Laurent Valentin and Boussaid, Farid and Bennamoun, Mohammed},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={44},
number={4},
pages={1738--1764},
year={2020},
publisher={IEEE}
}
@article{poggi2021synergies,
title={On the synergies between machine learning and binocular stereo for depth estimation from images: a survey},
author={Poggi, Matteo and Tosi, Fabio and Batsos, Konstantinos and Mordohai, Philippos and Mattoccia, Stefano},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume={44},
number={9},
pages={5314--5334},
year={2021},
publisher={IEEE}
}
@inproceedings{poggi2017quantitative,
title={Quantitative evaluation of confidence measures in a machine learning world},
author={Poggi, Matteo and Tosi, Fabio and Mattoccia, Stefano},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={5228--5237},
year={2017}
}
@article{poggi2021confidence,
title={On the confidence of stereo matching in a deep-learning era: a quantitative evaluation},
author={Poggi, Matteo and Kim, Seungryong and Tosi, Fabio and Kim, Sunok and Aleotti, Filippo and Min, Dongbo and Sohn, Kwanghoon and Mattoccia, Stefano},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={44},
number={9},
pages={5293--5313},
year={2021},
publisher={IEEE}
}
@article{guo2023openstereo,
title={OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline},
author={Guo, Xianda and Lu, Juntao and Zhang, Chenming and Wang, Yiqi and Duan, Yiqun and Yang, Tian and Zhu, Zheng and Chen, Long},
journal={arXiv preprint arXiv:2312.00343},
year={2023}
}
@inproceedings{scharstein2014high,
title={High-resolution stereo datasets with subpixel-accurate ground truth},
author={Scharstein, Daniel and Hirschm{\"u}ller, Heiko and Kitajima, York and Krathwohl, Greg and Ne{\v{s}}i{\'c}, Nera and Wang, Xi and Westling, Porter},
booktitle={Pattern Recognition: 36th German Conference, GCPR 2014, M{\"u}nster, Germany, September 2-5, 2014, Proceedings 36},
pages={31--42},
year={2014},
organization={Springer}
}
@inproceedings{geiger2012we,
title={Are we ready for autonomous driving? the kitti vision benchmark suite},
author={Geiger, Andreas and Lenz, Philip and Urtasun, Raquel},
booktitle={2012 IEEE conference on computer vision and pattern recognition},
pages={3354--3361},
year={2012},
organization={IEEE}
}
@inproceedings{menze2015object,
title={Object scene flow for autonomous vehicles},
author={Menze, Moritz and Geiger, Andreas},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3061--3070},
year={2015}
}
@inproceedings{schops2017multi,
title={A multi-view stereo benchmark with high-resolution images and multi-camera videos},
author={Schops, Thomas and Schonberger, Johannes L and Galliani, Silvano and Sattler, Torsten and Schindler, Konrad and Pollefeys, Marc and Geiger, Andreas},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3260--3269},
year={2017}
}
@InProceedings{Yang_2019_CVPR,
author = {Yang, Guorun and Song, Xiao and Huang, Chaoqin and Deng, Zhidong and Shi, Jianping and Zhou, Bolei},
title = {DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@inproceedings{wang2019web,
title={Web stereo video supervision for depth prediction from dynamic scenes},
author={Wang, Chaoyang and Lucey, Simon and Perazzi, Federico and Wang, Oliver},
booktitle={2019 International Conference on 3D Vision (3DV)},
pages={348--357},
year={2019},
organization={IEEE}
}
@inproceedings{wang2019flickr1024,
title={Flickr1024: A large-scale dataset for stereo image super-resolution},
author={Wang, Yingqian and Wang, Longguang and Yang, Jungang and An, Wei and Guo, Yulan},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops},
pages={0--0},
year={2019}
}
@InProceedings{Ramirez_2022_CVPR,
author = {Ramirez, Pierluigi Zama and Tosi, Fabio and Poggi, Matteo and Salti, Samuele and Mattoccia, Stefano and Di Stefano, Luigi},
title = {Open Challenges in Deep Stereo: The Booster Dataset},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {21168-21178}
}
@article{hua2020holopix50k,
title={Holopix50k: A large-scale in-the-wild stereo image dataset},
author={Hua, Yiwen and Kohli, Puneet and Uplavikar, Pritish and Ravi, Anand and Gunaseelan, Saravana and Orozco, Jason and Li, Edward},
journal={arXiv preprint arXiv:2003.11172},
year={2020}
}
@article{bao2020instereo2k,
title={Instereo2k: a large real dataset for stereo matching in indoor scenes},
author={Bao, Wei and Wang, Wei and Xu, Yuhua and Guo, Yulan and Hong, Siyu and Zhang, Xiaohu},
journal={Science China Information Sciences},
volume={63},
pages={1--11},
year={2020},
publisher={Springer}
}
@InProceedings{Treible_2017_CVPR,
author = {Treible, Wayne and Saponaro, Philip and Sorensen, Scott and Kolagunda, Abhishek and O'Neal, Michael and Phelan, Brian and Sherbondy, Kelly and Kambhamettu, Chandra},
title = {CATS: A Color and Thermal Stereo Benchmark},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
@inproceedings{zhi2018deep,
title={Deep material-aware cross-spectral stereo matching},
author={Zhi, Tiancheng and Pires, Bernardo R and Hebert, Martial and Narasimhan, Srinivasa G},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1916--1925},
year={2018}
}
@article{zhu2018multivehicle,
title={The multivehicle stereo event camera dataset: An event camera dataset for 3D perception},
author={Zhu, Alex Zihao and Thakur, Dinesh and {\"O}zaslan, Tolga and Pfrommer, Bernd and Kumar, Vijay and Daniilidis, Kostas},
journal={IEEE Robotics and Automation Letters},
volume={3},
number={3},
pages={2032--2039},
year={2018},
publisher={IEEE}
}
@article{gehrig2021dsec,
title={Dsec: A stereo event camera dataset for driving scenarios},
author={Gehrig, Mathias and Aarents, Willem and Gehrig, Daniel and Scaramuzza, Davide},
journal={IEEE Robotics and Automation Letters},
volume={6},
number={3},
pages={4947--4954},
year={2021},
publisher={IEEE}
}
@inproceedings{tosi2022rgb,
title={RGB-Multispectral matching: Dataset, learning methodology, evaluation},
author={Tosi, Fabio and Ramirez, Pierluigi Zama and Poggi, Matteo and Salti, Samuele and Mattoccia, Stefano and Di Stefano, Luigi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={15958--15968},
year={2022}
}
@inproceedings{chaney2023m3ed,
title={M3ed: Multi-robot, multi-sensor, multi-environment event dataset},
author={Chaney, Kenneth and Cladera, Fernando and Wang, Ziyun and Bisulco, Anthony and Hsieh, M Ani and Korpela, Christopher and Kumar, Vijay and Taylor, Camillo J and Daniilidis, Kostas},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4015--4022},
year={2023}
}
@inproceedings{walz2023gated,
title={Gated Stereo: Joint Depth Estimation from Gated and Wide-Baseline Active Stereo Cues},
author={Walz, Stefanie and Bijelic, Mario and Ramazzina, Andrea and Walia, Amanpreet and Mannan, Fahim and Heide, Felix},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13252--13262},
year={2023}
}
@InProceedings{Shin_2023_CVPR,
author = {Shin, Ukcheol and Park, Jinsun and Kweon, In So},
title = {Deep Depth Estimation From Thermal Image},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {1043-1053}
}
@inproceedings{butler2012naturalistic,
title={A naturalistic open source movie for optical flow evaluation},
author={Butler, Daniel J and Wulff, Jonas and Stanley, Garrett B and Black, Michael J},
booktitle={Computer Vision--ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12},
pages={611--625},
year={2012},
organization={Springer}
}
@article{cabon2020virtual,
title={Virtual kitti 2},
author={Cabon, Yohann and Murray, Naila and Humenberger, Martin},
journal={arXiv preprint arXiv:2001.10773},
year={2020}
}
@inproceedings{wang2020tartanair,
title={Tartanair: A dataset to push the limits of visual slam},
author={Wang, Wenshan and Zhu, Delong and Wang, Xiangwei and Hu, Yaoyu and Qiu, Yuheng and Wang, Chen and Hu, Yafei and Kapoor, Ashish and Scherer, Sebastian},
booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={4909--4916},
year={2020},
organization={IEEE}
}
@inproceedings{he2021semi,
title={Semi-synthesis: A fast way to produce effective datasets for stereo matching},
author={He, Ju and Zhou, Enyu and Sun, Liusheng and Lei, Fei and Liu, Chenyang and Sun, Wenxiu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2884--2893},
year={2021}
}
@inproceedings{wang2021irs,
title={Irs: A large naturalistic indoor robotics stereo dataset to train deep models for disparity and surface normal estimation},
author={Wang, Qiang and Zheng, Shizhen and Yan, Qingsong and Deng, Fei and Zhao, Kaiyong and Chu, Xiaowen},
booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
pages={1--6},
year={2021},
organization={IEEE}
}
@article{jospin2022active,
title={Active-Passive SimStereo-Benchmarking the Cross-Generalization Capabilities of Deep Learning-based Stereo Methods},
author={Jospin, Laurent and Antony, Allen and Xu, Lian and Laga, Hamid and Boussaid, Farid and Bennamoun, Mohammed},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={29235--29247},
year={2022}
}
@InProceedings{Mehl2023,
author = {Lukas Mehl and Jenny Schmalfuss and Azin Jahedi and Yaroslava Nalivayko and Andr\'es Bruhn},
title = {Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo},
booktitle = {Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2023}
}
@inproceedings{chen2015deep_Deep_Embed,
title={A deep visual correspondence embedding model for stereo matching costs},
author={Chen, Zhuoyuan and Sun, Xun and Wang, Liang and Yu, Yinan and Huang, Chang},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={972--980},
year={2015}
}
@article{vzbontar2016stereo_MC-CNN,
title={Stereo matching by training a convolutional neural network to compare image patches},
author={{{Z}}bontar, Jure and LeCun, Yann},
journal={Journal of Machine Learning Research},
volume={17},
number={65},
pages={1--32},
year={2016}
}
@inproceedings{zbontar2015computing,
title={Computing the stereo matching cost with a convolutional neural network},
author={Zbontar, Jure and LeCun, Yann},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1592--1599},
year={2015}
}
@inproceedings{luo2016efficient,
title={Efficient deep learning for stereo matching},
author={Luo, Wenjie and Schwing, Alexander G and Urtasun, Raquel},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5695--5703},
year={2016}
}
@article{park2016look,
title={Look wider to match image patches with convolutional neural networks},
author={Park, Haesol and Lee, Kyoung Mu},
journal={IEEE Signal Processing Letters},
volume={24},
number={12},
pages={1788--1792},
year={2016},
publisher={IEEE}
}
@article{zhang2017fundamental,
title={Fundamental principles on learning new features for effective dense matching},
author={Zhang, Feihu and Wah, Benjamin W},
journal={IEEE Transactions on Image Processing},
volume={27},
number={2},
pages={822--836},
year={2017},
publisher={IEEE}
}
@inproceedings{tulyakov2017weakly,
title={Weakly supervised learning of deep metrics for stereo reconstruction},
author={Tulyakov, Stepan and Ivanov, Anton and Fleuret, Francois},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1339--1348},
year={2017}
}
@inproceedings{batsos2018cbmv,
title={CBMV: A coalesced bidirectional matching volume for disparity estimation},
author={Batsos, Konstantinos and Cai, Changjiang and Mordohai, Philippos},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={2060--2069},
year={2018}
}
@inproceedings{schuster2019sdc,
title={Sdc-stacked dilated convolution: A unified descriptor network for dense matching tasks},
author={Schuster, Ren{\'e} and Wasenmuller, Oliver and Unger, Christian and Stricker, Didier},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2556--2565},
year={2019}
}
@inproceedings{mao2019semi,
title={Semi-dense stereo matching using dual CNNs},
author={Mao, Wendong and Wang, Mingjie and Zhou, Jun and Gong, Minglun},
booktitle={2019 IEEE Winter Conference on Applications of Computer Vision (WACV)},
pages={1588--1597},
year={2019},
organization={IEEE}
}
@inproceedings{spyropoulos2014learning,
title={Learning to detect ground control points for improving the accuracy of stereo matching},
author={Spyropoulos, Aristotle and Komodakis, Nikos and Mordohai, Philippos},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1621--1628},
year={2014}
}
@inproceedings{park2015leveraging,
title={Leveraging stereo matching with learning-based confidence measures},
author={Park, Min-Gyu and Yoon, Kuk-Jin},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={101--109},
year={2015}
}
@inproceedings{seki2017sgm,
title={Sgm-nets: Semi-global matching with neural networks},
author={Seki, Akihito and Pollefeys, Marc},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={231--240},
year={2017}
}
@inproceedings{gidaris2017detect,
title={Detect, replace, refine: Deep structured prediction for pixel wise labeling},
author={Gidaris, Spyros and Komodakis, Nikos},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5248--5257},
year={2017}
}
@article{ye2017efficient,
title={Efficient stereo matching leveraging deep local and context information},
author={Ye, Xiaoqing and Li, Jiamao and Wang, Han and Huang, Hexiao and Zhang, Xiaolin},
journal={IEEE Access},
volume={5},
pages={18745--18755},
year={2017},
publisher={IEEE}
}
@inproceedings{batsos2018recresnet,
title={Recresnet: A recurrent residual cnn architecture for disparity map enhancement},
author={Batsos, Konstantinos and Mordohai, Philippos},
booktitle={2018 International Conference on 3D Vision (3DV)},
pages={238--247},
year={2018},
organization={IEEE}
}
@inproceedings{jie2018left,
title={Left-right comparative recurrent model for stereo matching},
author={Jie, Zequn and Wang, Pengfei and Ling, Yonggen and Zhao, Bo and Wei, Yunchao and Feng, Jiashi and Liu, Wei},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={3838--3846},
year={2018}
}
@article{knobelreiter2021learned,
title={Learned collaborative stereo refinement},
author={Kn{\"o}belreiter, Patrick and Pock, Thomas},
journal={International Journal of Computer Vision},
volume={129},
pages={2565--2582},
year={2021},
publisher={Springer}
}
@inproceedings{ferrera2019fast,
title={Fast stereo disparity maps refinement by fusion of data-based and model-based estimations},
author={Ferrera, Maxime and Boulch, Alexandre and Moras, Julien},
booktitle={2019 International Conference on 3D Vision (3DV)},
pages={9--17},
year={2019},
organization={IEEE}
}
@inproceedings{mayer2016large,
title={A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation},
author={Mayer, Nikolaus and Ilg, Eddy and Hausser, Philip and Fischer, Philipp and Cremers, Daniel and Dosovitskiy, Alexey and Brox, Thomas},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4040--4048},
year={2016}
}
@inproceedings{pang2017cascade,
title={Cascade residual learning: A two-stage convolutional neural network for stereo matching},
author={Pang, Jiahao and Sun, Wenxiu and Ren, Jimmy SJ and Yang, Chengxi and Yan, Qiong},
booktitle={Proceedings of the IEEE international conference on computer vision workshops},
pages={887--895},
year={2017}
}
@inproceedings{liang2018learning_iResNet,
title={Learning for disparity estimation through feature constancy},
author={Liang, Zhengfa and Feng, Yiliu and Guo, Yulan and Liu, Hengzhu and Chen, Wei and Qiao, Linbo and Zhou, Li and Zhang, Jianfeng},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2811--2820},
year={2018}
}
@inproceedings{ilg2018occlusions,
title={Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation},
author={Ilg, Eddy and Saikia, Tonmoy and Keuper, Margret and Brox, Thomas},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={614--630},
year={2018}
}
@inproceedings{saikia2019autodispnet,
title={Autodispnet: Improving disparity estimation with automl},
author={Saikia, Tonmoy and Marrakchi, Yassine and Zela, Arber and Hutter, Frank and Brox, Thomas},
booktitle={Proceedings of the ieee/cvf international conference on computer vision},
pages={1812--1823},
year={2019}
}
@inproceedings{yin2019hierarchical,
title={Hierarchical discrete distribution decomposition for match density estimation},
author={Yin, Zhichao and Darrell, Trevor and Yu, Fisher},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={6044--6053},
year={2019}
}
@inproceedings{song2019edgestereo,
title={Edgestereo: A context integrated residual pyramid network for stereo matching},
author={Song, Xiao and Zhao, Xu and Hu, Hanwen and Fang, Liangji},
booktitle={Computer Vision--ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2--6, 2018, Revised Selected Papers, Part V 14},
pages={20--35},
year={2019},
organization={Springer}
}
@inproceedings{xu2020aanet,
title={Aanet: Adaptive aggregation network for efficient stereo matching},
author={Xu, Haofei and Zhang, Juyong},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={1959--1968},
year={2020}
}
@InProceedings{Badki_2020_CVPR_Bi3D,
author = {Badki, Abhishek and Troccoli, Alejandro and Kim, Kihwan and Kautz, Jan and Sen, Pradeep and Gallo, Orazio},
title = {Bi3D: Stereo Depth Estimation via Binary Classifications},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{kendall2017end_GC-NET,
title={End-to-end learning of geometry and context for deep stereo regression},
author={Kendall, Alex and Martirosyan, Hayk and Dasgupta, Saumitro and Henry, Peter and Kennedy, Ryan and Bachrach, Abraham and Bry, Adam},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={66--75},
year={2017}
}
@inproceedings{yu2018deep,
title={Deep stereo matching with explicit cost aggregation sub-architecture},
author={Yu, Lidong and Wang, Yucheng and Wu, Yuwei and Jia, Yunde},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={32},
number={1},
year={2018}
}
@inproceedings{chang2018pyramid,
title={Pyramid Stereo Matching Network},
author={Chang, Jia-Ren and Chen, Yong-Sheng},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5410--5418},
year={2018}
}
@inproceedings{yang2019hierarchical,
title={Hierarchical deep stereo matching on high-resolution images},
author={Yang, Gengshan and Manela, Joshua and Happold, Michael and Ramanan, Deva},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={5515--5524},
year={2019}
}
@inproceedings{guo2019group,
title={Group-wise correlation stereo network},
author={Guo, Xiaoyang and Yang, Kai and Yang, Wukui and Wang, Xiaogang and Li, Hongsheng},
booktitle=CVPR,
year={2019}
}
@InProceedings{Nie_2019_CVPR,
author = {Nie, Guang-Yu and Cheng, Ming-Ming and Liu, Yun and Liang, Zhengfa and Fan, Deng-Ping and Liu, Yue and Wang, Yongtian},
title = {Multi-Level Context Ultra-Aggregation for Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@article{cheng2019learning,
title={Learning depth with convolutional spatial propagation network},
author={Cheng, Xinjing and Wang, Peng and Yang, Ruigang},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={42},
number={10},
pages={2361--2379},
year={2019},
publisher={IEEE}
}
@inproceedings{zhang2019ga,
title={Ga-net: Guided aggregation net for end-to-end stereo matching},
author={Zhang, Feihu and Prisacariu, Victor and Yang, Ruigang and Torr, Philip HS},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={185--194},
year={2019}
}
@inproceedings{chabra2019stereodrnet,
title={Stereodrnet: Dilated residual stereonet},
author={Chabra, Rohan and Straub, Julian and Sweeney, Christopher and Newcombe, Richard and Fuchs, Henry},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={11786--11795},
year={2019}
}
@article{tulyakov2018practical,
title={Practical deep stereo (pds): Toward applications-friendly deep stereo matching},
author={Tulyakov, Stepan and Ivanov, Anton and Fleuret, Francois},
journal={Advances in neural information processing systems},
volume={31},
year={2018}
}
@InProceedings{Gu_2020_CVPR_CasStereo,
author = {Gu, Xiaodong and Fan, Zhiwen and Zhu, Siyu and Dai, Zuozhuo and Tan, Feitong and Tan, Ping},
title = {Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{yang2020waveletstereo,
title={WaveletStereo: Learning Wavelet Coefficients of Disparity Map in Stereo Matching},
author={Yang, Shunsuke and Ikehata, Yohsuke and Kawasaki, Hiroshi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={3444--3453},
year={2020}
}
@inproceedings{shen2021cfnet,
title={CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching},
author={Shen, Zhelun and Dai, Yuchao and Rao, Zhibo},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13906--13915},
year={2021}
}
@InProceedings{Mao_2021_ICCV_UASNet,
author = {Mao, Yamin and Liu, Zhihua and Li, Weiming and Dai, Yuchao and Wang, Qiang and Kim, Yun-Tae and Lee, Hong-Seok},
title = {UASNet: Uncertainty Adaptive Sampling Network for Deep Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {6311-6319}
}
@inproceedings{deng2021parallax,
title={Parallax contextual representations for stereo matching},
author={Deng, Hui and Liao, Qingmin and Lu, Zongqing and Xue, Jing-Hao},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
pages={3193--3197},
year={2021},
organization={IEEE}
}
@inproceedings{shen2022pcw,
title={PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching},
author={Shen, Zhelun and Dai, Yuchao and Song, Xibin and Rao, Zhibo and Zhou, Dingfu and Zhang, Liangjun},
booktitle={European Conference on Computer Vision},
pages={280--297},
year={2022},
organization={Springer}
}
@inproceedings{kwon2023image,
title={Image-Coupled Volume Propagation for Stereo Matching},
author={Kwon, Oh-Hun and Zell, Eduard},
booktitle={2023 IEEE International Conference on Image Processing (ICIP)},
pages={2510--2514},
year={2023},
organization={IEEE}
}
@inproceedings{chen2023learning,
title={Learning the distribution of errors in stereo matching for joint disparity and uncertainty estimation},
author={Chen, Liyan and Wang, Weihan and Mordohai, Philippos},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={17235--17244},
year={2023}
}
@article{cheng2020hierarchical,
title={Hierarchical Neural Architecture Search for Deep Stereo Matching},
author={Cheng, Xuelian and Zhong, Yiran and Harandi, Mehrtash and Dai, Yuchao and Chang, Xiaojun and Li, Hongdong and Drummond, Tom and Ge, Zongyuan},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
}
@inproceedings{wang2022easnet,
title={EASNet: searching elastic and accurate network architecture for stereo matching},
author={Wang, Qiang and Shi, Shaohuai and Zhao, Kaiyong and Chu, Xiaowen},
booktitle={European Conference on Computer Vision},
pages={437--453},
year={2022},
organization={Springer}
}
@inproceedings{lipson2021raft,
title={RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching},
author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
booktitle={International Conference on 3D Vision (3DV)},
year={2021}
}
@inproceedings{wang2021scv,
title={SCV-Stereo: Learning stereo matching from a sparse cost volume},
author={Wang, Hengli and Fan, Rui and Liu, Ming},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
pages={3203--3207},
year={2021},
organization={IEEE}
}
@inproceedings{li2022practical,
title={Practical stereo matching via cascaded recurrent network with adaptive correlation},
author={Li, Jiankun and Wang, Peisen and Xiong, Pengfei and Cai, Tao and Yan, Ziwei and Yang, Lei and Liu, Jiangyu and Fan, Haoqiang and Liu, Shuaicheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16263--16272},
year={2022}
}
@inproceedings{zhao2022eai,
title={Eai-stereo: Error aware iterative network for stereo matching},
author={Zhao, Haoliang and Zhou, Huizhou and Zhang, Yongjun and Zhao, Yong and Yang, Yitong and Ouyang, Ting},
booktitle={Proceedings of the Asian Conference on Computer Vision},
pages={315--332},
year={2022}
}
@inproceedings{xu2023iterative,
title={Iterative geometry encoding volume for stereo matching},
author={Xu, Gangwei and Wang, Xianqi and Ding, Xiaohuan and Yang, Xin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={21919--21928},
year={2023}
}
@inproceedings{zhao2023high,
title={High-Frequency Stereo Matching Network},
author={Zhao, Haoliang and Zhou, Huizhou and Zhang, Yongjun and Chen, Jie and Yang, Yitong and Zhao, Yong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={1327--1336},
year={2023}
}
@InProceedings{Karaev_2023_CVPR,
author = {Karaev, Nikita and Rocco, Ignacio and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea and Rupprecht, Christian},
title = {DynamicStereo: Consistent Dynamic Depth From Stereo Videos},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {13229-13239}
}
@InProceedings{Jing_2023_ICCV,
author = {Jing, Junpeng and Li, Jiankun and Xiong, Pengfei and Liu, Jiangyu and Liu, Shuaicheng and Guo, Yichen and Deng, Xin and Xu, Mai and Jiang, Lai and Sigal, Leonid},
title = {Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {3318-3327}
}
@inproceedings{wang2024selective,
title={Selective-Stereo: Adaptive Frequency Information Selection for Stereo Matching},
author={Wang, Xianqi and Xu, Gangwei and Jia, Hao and Yang, Xin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
@article{Liang_Li_2024_Any-Stereo,
title={Any-Stereo: Arbitrary Scale Disparity Estimation for Iterative Stereo Matching},
volume={38},
url={https://ojs.aaai.org/index.php/AAAI/article/view/28119},
DOI={10.1609/aaai.v38i4.28119},
number={4},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Liang, Zhaohuai and Li, Changhe},
year={2024},
month={Mar.},
pages={3333-3341}
}
@article{Feng_2024_3DV_MC-Stereo,
title={MC-Stereo: Multi-peak Lookup and Cascade Search Range for Stereo Matching},
author={Feng, Miaojie and Cheng, Junda and Jia, Hao and Liu, Longliang and Xu, Gangwei and Yang, Xin},
booktitle={International Conference on 3D Vision (3DV)},
year={2024}
}
@article{gong2024learning,
title={Learning Intra-view and Cross-view Geometric Knowledge for Stereo Matching},
author={Gong, Rui and Liu, Weide and Gu, Zaiwang and Yang, Xulei and Cheng, Jun},
journal={arXiv preprint arXiv:2402.19270},
year={2024}
}
@inproceedings{cheng2024stereo,
title={Stereo Matching in Time: 100+ FPS Video Stereo Matching for Extended Reality},
author={Cheng, Ziang and Yang, Jiayu and Li, Hongdong},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={8719--8728},
year={2024}
}
@InProceedings{Li_2021_ICCV_STTR,
author = {Li, Zhaoshuo and Liu, Xingtong and Drenkow, Nathan and Ding, Andy and Creighton, Francis X. and Taylor, Russell H. and Unberath, Mathias},
title = {Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective With Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {6197-6206}
}
@inproceedings{guo2022context_CEST,
title={Context-enhanced stereo transformer},
author={Guo, Weiyu and Li, Zhaoshuo and Yang, Yongkui and Wang, Zheng and Taylor, Russell H and Unberath, Mathias and Yuille, Alan and Li, Yingwei},
booktitle={European Conference on Computer Vision},
pages={263--279},
year={2022},
organization={Springer}
}
@InProceedings{Su_2022_CVPR_Chitransformer,
author = {Su, Qing and Ji, Shihao},
title = {Chitransformer: Towards Reliable Stereo From Cues},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {1939-1949}
}
@article{xu2023unifying,
title={Unifying flow, stereo and depth estimation},
author={Xu, Haofei and Zhang, Jing and Cai, Jianfei and Rezatofighi, Hamid and Yu, Fisher and Tao, Dacheng and Geiger, Andreas},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2023},
publisher={IEEE}
}
@inproceedings{croco_v2,
title={{CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow}},
author={Weinzaepfel, Philippe and Lucas, Thomas and Leroy, Vincent and Cabon, Yohann and Arora, Vaibhav and Br{\'e}gier, Romain and Csurka, Gabriela and Antsfeld, Leonid and Chidlovskii, Boris and Revaud, J{\'e}r{\^o}me},
booktitle={ICCV},
year={2023}
}
@inproceedings{lou2023elfnet,
title={Elfnet: Evidential local-global fusion for stereo matching},
author={Lou, Jieming and Liu, Weide and Chen, Zhuo and Liu, Fayao and Cheng, Jun},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={17784--17793},
year={2023}
}
@inproceedings{liu2024global,
title={Global Occlusion-Aware Transformer for Robust Stereo Matching},
author={Liu, Zihua and Li, Yizhou and Okutomi, Masatoshi},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={3535--3544},
year={2024}
}
@misc{guan2024neural,
title={Neural Markov Random Field for Stereo Matching},
author={Tongfan Guan and Chen Wang and Yun-Hui Liu},
year={2024},
eprint={2403.11193},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{khamis2018stereonet,
title={Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction},
author={Khamis, Sameh and Fanello, Sean and Rhemann, Christoph and Kowdle, Adarsh and Valentin, Julien and Izadi, Shahram},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={573--590},
year={2018}
}
@InProceedings{Yee_2020_WACV_FDCSC,
author = {Yee, Kyle and Chakrabarti, Ayan},
title = {Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {March},
year = {2020}
}
@InProceedings{Yao_2021_CVPR,
author = {Yao, Chengtang and Jia, Yunde and Di, Huijun and Li, Pengxiang and Wu, Yuwei},
title = {A Decomposition Model for Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {6091-6100}
}
@InProceedings{Xu_2022_CVPR,
author = {Xu, Gangwei and Cheng, Junda and Guo, Peng and Yang, Xin},
title = {Attention Concatenation Volume for Accurate and Efficient Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {12981-12990}
}
@InProceedings{Zeng_2023_ICCV,
author = {Zeng, Jiaxi and Yao, Chengtang and Yu, Lidong and Wu, Yuwei and Jia, Yunde},
title = {Parameterized Cost Volume for Stereo Matching},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {18347-18357}
}
@inproceedings{duggal2019deeppruner,
title={Deeppruner: Learning efficient stereo matching via differentiable patchmatch},
author={Duggal, Shivam and Wang, Shenlong and Ma, Wei-Chiu and Hu, Rui and Urtasun, Raquel},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={4384--4393},
year={2019}
}
@inproceedings{xu2021bilateral,
title={Bilateral grid learning for stereo matching networks},
author={Xu, Bin and Xu, Yuhua and Yang, Xiaoli and Jia, Wei and Guo, Yulan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12497--12506},
year={2021}
}
@inproceedings{xing2020mabnet,
title={MABNet: a lightweight stereo network based on multibranch adjustable bottleneck module},
author={Xing, Jiabin and Qi, Zhi and Dong, Jiying and Cai, Jiaxuan and Liu, Hao},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXVIII 16},
pages={340--356},
year={2020},
organization={Springer}
}
@inproceedings{rahim2021separable,
title={Separable convolutions for optimizing 3d stereo networks},
author={Rahim, Rafia and Shamsafar, Faranak and Zell, Andreas},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
pages={3208--3212},
year={2021},
organization={IEEE}
}
@inproceedings{Zhang2023TemporalStereo,
title = {TemporalStereo: Efficient Spatial-Temporal Stereo Matching Network},
author = {Zhang, Youmin and Poggi, Matteo and Mattoccia, Stefano},
booktitle = {IROS},
year = {2023}
}
@article{Li_Zhang_Su_Tao_2024_IINet,
title={IINet: Implicit Intra-inter Information Fusion for Real-Time Stereo Matching},
volume={38},
url={https://ojs.aaai.org/index.php/AAAI/article/view/28107},
DOI={10.1609/aaai.v38i4.28107},
number={4},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Li, Ximeng and Zhang, Chen and Su, Wanjuan and Tao, Wenbing},
year={2024},
month={Mar.},
pages={3225-3233}
}
@inproceedings{chang2023stereovae,
title={StereoVAE: A lightweight stereo-matching system using embedded GPUs},
author={Chang, Qiong and Li, Xiang and Xu, Xin and Liu, Xin and Li, Yun and Miyazaki, Jun},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={1982--1988},
year={2023},
organization={IEEE}
}
@inproceedings{wang2019anytime,
title={Anytime stereo image depth estimation on mobile devices},
author={Wang, Yan and Lai, Zihang and Huang, Gao and Wang, Brian H and Van Der Maaten, Laurens and Campbell, Mark and Weinberger, Kilian Q},
booktitle={2019 international conference on robotics and automation (ICRA)},
pages={5893--5900},
year={2019},
organization={IEEE}
}
@inproceedings{smolyanskiy2018importance,
title={On the importance of stereo for accurate depth estimation: An efficient semi-supervised deep neural network approach},
author={Smolyanskiy, Nikolai and Kamenev, Alexey and Birchfield, Stan},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition workshops},
pages={1007--1015},
year={2018}
}
@inproceedings{tonioni2019real,
title={Real-time self-adaptive deep stereo},
author={Tonioni, Alessio and Tosi, Fabio and Poggi, Matteo and Mattoccia, Stefano and Stefano, Luigi Di},