From b80ccb12b9f50e12d0629e19827f6bf3b0a99db9 Mon Sep 17 00:00:00 2001 From: Matteo Bettini Date: Mon, 29 Jul 2024 19:38:54 +0200 Subject: [PATCH] amend --- benchmarl/algorithms/common.py | 11 + benchmarl/conf/model/layers/gru.yaml | 11 + benchmarl/experiment/experiment.py | 9 +- benchmarl/models/__init__.py | 4 + benchmarl/models/common.py | 30 ++- benchmarl/models/gru.py | 290 +++++++++++++++++++++++++++ benchmarl/models/mlp.py | 2 +- 7 files changed, 349 insertions(+), 8 deletions(-) create mode 100644 benchmarl/conf/model/layers/gru.yaml create mode 100644 benchmarl/models/gru.py diff --git a/benchmarl/algorithms/common.py b/benchmarl/algorithms/common.py index e742d808..ed5efadc 100644 --- a/benchmarl/algorithms/common.py +++ b/benchmarl/algorithms/common.py @@ -142,6 +142,17 @@ def get_replay_buffer( """ memory_size = self.experiment_config.replay_buffer_memory_size(self.on_policy) sampling_size = self.experiment_config.train_minibatch_size(self.on_policy) + if ( + self.experiment.model_config.is_rnn + or self.experiment.critic_model_config.is_rnn + ): + sequence_length = -( + -self.experiment_config.collected_frames_per_batch(self.on_policy) + // self.experiment_config.n_envs_per_worker(self.on_policy) + ) + memory_size = -(-memory_size // sequence_length) + sampling_size = -(-sampling_size // sequence_length) + sampler = SamplerWithoutReplacement() if self.on_policy else RandomSampler() return TensorDictReplayBuffer( storage=LazyTensorStorage( diff --git a/benchmarl/conf/model/layers/gru.yaml b/benchmarl/conf/model/layers/gru.yaml new file mode 100644 index 00000000..5f0b47da --- /dev/null +++ b/benchmarl/conf/model/layers/gru.yaml @@ -0,0 +1,11 @@ + +name: gru + +hidden_size: 128 + +mlp_num_cells: [256, 256] +mlp_layer_class: torch.nn.Linear +mlp_activation_class: torch.nn.Tanh +mlp_activation_kwargs: null +mlp_norm_class: null +mlp_norm_kwargs: null diff --git a/benchmarl/experiment/experiment.py b/benchmarl/experiment/experiment.py index b09a7abc..05abaf48 100644 --- a/benchmarl/experiment/experiment.py +++ b/benchmarl/experiment/experiment.py @@ -383,7 +383,8 @@ def _setup_task(self): continuous_actions=self.continuous_actions, seed=self.seed, device=self.config.sampling_device, - ) + ), + self.task, )() env_func = self.model_config.process_env_fun( self.task.get_env_fun( @@ -391,7 +392,8 @@ def _setup_task(self): continuous_actions=self.continuous_actions, seed=self.seed, device=self.config.sampling_device, - ) + ), + self.task, ) transforms_env = self.task.get_env_transforms(test_env) @@ -610,7 +612,8 @@ def _collection_loop(self): for group in self.train_group_map.keys(): group_batch = batch.exclude(*self._get_excluded_keys(group)) group_batch = self.algorithm.process_batch(group, group_batch) - group_batch = group_batch.reshape(-1) + if not (self.model_config.is_rnn or self.critic_model_config.is_rnn): + group_batch = group_batch.reshape(-1) self.replay_buffers[group].extend(group_batch) training_tds = [] diff --git a/benchmarl/models/__init__.py b/benchmarl/models/__init__.py index 8bd743be..554ee985 100644 --- a/benchmarl/models/__init__.py +++ b/benchmarl/models/__init__.py @@ -8,6 +8,7 @@ from .common import Model, ModelConfig, SequenceModel, SequenceModelConfig from .deepsets import Deepsets, DeepsetsConfig from .gnn import Gnn, GnnConfig +from .gru import Gru, GruConfig from .mlp import Mlp, MlpConfig classes = [ @@ -19,6 +20,8 @@ "CnnConfig", "Deepsets", "DeepsetsConfig", + "Gru", + "GruConfig", ] model_config_registry = { @@ -26,4 +29,5 @@ "gnn": GnnConfig, "cnn": CnnConfig, "deepsets": DeepsetsConfig, + "gru": GruConfig, } diff --git a/benchmarl/models/common.py b/benchmarl/models/common.py index 85e07ee6..3870990e 100644 --- a/benchmarl/models/common.py +++ b/benchmarl/models/common.py @@ -298,17 +298,27 @@ def associated_class(): """ raise NotImplementedError - def process_env_fun(self, env_fun: Callable[[], EnvBase]) -> Callable[[], EnvBase]: + def process_env_fun( + self, + env_fun: Callable[[], EnvBase], + task, + model_index: int = 0, + ) -> Callable[[], EnvBase]: """ This function can be used to wrap env_fun Args: env_fun (callable): a function that takes no args and creates an enviornment + task (Task): the task Returns: a function that takes no args and creates an enviornment """ return env_fun + @property + def is_rnn(self) -> bool: + return False + @staticmethod def _load_from_yaml(name: str) -> Dict[str, Any]: yaml_path = ( @@ -451,11 +461,23 @@ def get_model( def associated_class(): return SequenceModel - def process_env_fun(self, env_fun: Callable[[], EnvBase]) -> Callable[[], EnvBase]: - for model_config in self.model_configs: - env_fun = model_config.process_env_fun(env_fun) + def process_env_fun( + self, + env_fun: Callable[[], EnvBase], + task, + model_index: int = 0, + ) -> Callable[[], EnvBase]: + for i, model_config in enumerate(self.model_configs): + env_fun = model_config.process_env_fun(env_fun, task, i) return env_fun + @property + def is_rnn(self) -> bool: + is_rnn = False + for model_config in self.model_configs: + is_rnn += model_config.is_rnn + return is_rnn + @classmethod def get_from_yaml(cls, path: Optional[str] = None): raise NotImplementedError diff --git a/benchmarl/models/gru.py b/benchmarl/models/gru.py new file mode 100644 index 00000000..cf266e74 --- /dev/null +++ b/benchmarl/models/gru.py @@ -0,0 +1,290 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# + +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# + +from __future__ import annotations + +from dataclasses import dataclass, MISSING +from typing import Callable, Optional, Sequence, Type + +import torch +from tensordict import TensorDictBase +from tensordict.utils import expand_as_right +from torch import nn +from torchrl.data.tensor_specs import CompositeSpec, UnboundedContinuousTensorSpec +from torchrl.envs import Compose, EnvBase, InitTracker, TensorDictPrimer, TransformedEnv +from torchrl.modules import GRUCell, MLP, MultiAgentMLP + +from benchmarl.models.common import Model, ModelConfig + + +class MultiAgentGRU(torch.nn.Module): + def __init__(self, input_size, hidden_size, n_agents, device): + super().__init__() + self.input_size = input_size + self.n_agents = n_agents + self.hidden_size = hidden_size + self.device = device + + self.gru = GRUCell(input_size, hidden_size, device=self.device) + + self.vmap_rnn = self.get_for_loop(self.gru) + # self.vmap_rnn_compiled = torch.compile( + # self.vmap_rnn, mode="reduce-overhead", fullgraph=True + # ) + + def forward( + self, + input, + is_init, + h_0=None, + ): + assert is_init is not None, "We need to pass is_init" + training = h_0 is None + if ( + not training + ): # In collection we emulate the sequence dimension and we have the hidden state + input = input.unsqueeze(1) + + # Check input + batch = input.shape[0] + seq = input.shape[1] + assert input.shape == (batch, seq, self.n_agents, self.input_size) + + if h_0 is not None: # Collection + assert h_0.shape == ( + batch, + self.n_agents, + self.hidden_size, + ) + if is_init is not None: # Set hidden to 0 when is_init + h_0 = torch.where(expand_as_right(is_init, h_0), 0, h_0) + + if not training: # If in collection emulate the sequence dimension + is_init = is_init.unsqueeze(1) + assert is_init.shape == (batch, seq, 1) + is_init = is_init.unsqueeze(-2).expand(batch, seq, self.n_agents, 1) + + if h_0 is None: + h_0 = torch.zeros( + batch, + self.n_agents, + self.hidden_size, + device=self.device, + dtype=torch.float, + ) + output = self.vmap_rnn(input, is_init, h_0) + h_n = output[..., -1, :, :] + + if not training: + output = output.squeeze(1) + return output, h_n + + # @torch.compile(mode="reduce-overhead", fullgraph=True) + + @staticmethod + def get_for_loop(rnn): + def for_loop(input, is_init, h, time_dim=-3): + hs = [] + for in_t, init_t in zip(input.unbind(time_dim), is_init.unbind(time_dim)): + h = torch.where(init_t, 0, h) + h = rnn(in_t, h) + hs.append(h) + output = torch.stack(hs, time_dim) + return output + + return torch.vmap(for_loop) + + +class Gru(Model): + def __init__( + self, + hidden_size: int, + **kwargs, + ): + + super().__init__( + input_spec=kwargs.pop("input_spec"), + output_spec=kwargs.pop("output_spec"), + agent_group=kwargs.pop("agent_group"), + input_has_agent_dim=kwargs.pop("input_has_agent_dim"), + n_agents=kwargs.pop("n_agents"), + centralised=kwargs.pop("centralised"), + share_params=kwargs.pop("share_params"), + device=kwargs.pop("device"), + action_spec=kwargs.pop("action_spec"), + ) + + self.hidden_size = hidden_size + + self.input_features = sum( + [spec.shape[-1] for spec in self.input_spec.values(True, True)] + ) + self.output_features = self.output_leaf_spec.shape[-1] + + if self.input_has_agent_dim: + self.gru = MultiAgentGRU( + self.input_features, self.hidden_size, self.n_agents, self.device + ) + + mlp_net_kwargs = { + "_".join(k.split("_")[1:]): v + for k, v in kwargs.items() + if k.startswith("mlp_") + } + if self.output_has_agent_dim: + self.mlp = MultiAgentMLP( + n_agent_inputs=self.hidden_size, + n_agent_outputs=self.output_features, + n_agents=self.n_agents, + centralised=self.centralised, + share_params=self.share_params, + device=self.device, + **mlp_net_kwargs, + ) + else: + self.mlp = nn.ModuleList( + [ + MLP( + in_features=self.hidden_size, + out_features=self.output_features, + device=self.device, + **mlp_net_kwargs, + ) + for _ in range(self.n_agents if not self.share_params else 1) + ] + ) + + def _perform_checks(self): + super()._perform_checks() + + input_shape = None + for input_key, input_spec in self.input_spec.items(True, True): + if (self.input_has_agent_dim and len(input_spec.shape) == 2) or ( + not self.input_has_agent_dim and len(input_spec.shape) == 1 + ): + if input_shape is None: + input_shape = input_spec.shape[:-1] + else: + if input_spec.shape[:-1] != input_shape: + raise ValueError( + f"GRU inputs should all have the same shape up to the last dimension, got {self.input_spec}" + ) + else: + raise ValueError( + f"GRU input value {input_key} from {self.input_spec} has an invalid shape, maybe you need a CNN?" + ) + if self.input_has_agent_dim: + if input_shape[-1] != self.n_agents: + raise ValueError( + "If the GRU input has the agent dimension," + f" the second to last spec dimension should be the number of agents, got {self.input_spec}" + ) + if ( + self.output_has_agent_dim + and self.output_leaf_spec.shape[-2] != self.n_agents + ): + raise ValueError( + "If the GRU output has the agent dimension," + " the second to last spec dimension should be the number of agents" + ) + + def _forward(self, tensordict: TensorDictBase) -> TensorDictBase: + # Gather in_key + input = torch.cat([tensordict.get(in_key) for in_key in self.in_keys], dim=-1) + h_0 = tensordict.get((self.agent_group, "_hidden_gru"), None) + is_init = tensordict.get("is_init") + + # Has multi-agent input dimension + if self.input_has_agent_dim and self.share_params and not self.centralised: + output, h_n = self.gru(input, is_init, h_0) + else: + pass + + # Mlp + if self.output_has_agent_dim: + output = self.mlp.forward(output) + else: + if not self.share_params: + output = torch.stack( + [net(output) for net in self.mlp], + dim=-2, + ) + else: + output = self.mlp[0](output) + + tensordict.set(self.out_key, output) + if h_0 is not None: + tensordict.set(("next", self.agent_group, "_hidden_gru"), h_n) + return tensordict + + +@dataclass +class GruConfig(ModelConfig): + """Dataclass config for a :class:`~benchmarl.models.Gru`.""" + + hidden_size: int = MISSING + + mlp_num_cells: Sequence[int] = MISSING + mlp_layer_class: Type[nn.Module] = MISSING + mlp_activation_class: Type[nn.Module] = MISSING + + mlp_activation_kwargs: Optional[dict] = None + mlp_norm_class: Type[nn.Module] = None + mlp_norm_kwargs: Optional[dict] = None + + @staticmethod + def associated_class(): + return Gru + + @property + def is_rnn(self) -> bool: + return True + + def process_env_fun( + self, + env_fun: Callable[[], EnvBase], + task, + model_index: int = 0, + ) -> Callable[[], EnvBase]: + """ + This function can be used to wrap env_fun + Args: + env_fun (callable): a function that takes no args and creates an enviornment + + Returns: a function that takes no args and creates an enviornment + + """ + + def model_fun(): + env = env_fun() + env = TransformedEnv( + env, + Compose( + InitTracker(init_key="is_init"), + TensorDictPrimer( + { + group: CompositeSpec( + { + "_hidden_gru": UnboundedContinuousTensorSpec( + shape=(len(agents), self.hidden_size) + ) + }, + shape=(len(agents),), + ) + for group, agents in task.group_map(env).items() + } + ), + ), + ) + return env + + return model_fun diff --git a/benchmarl/models/mlp.py b/benchmarl/models/mlp.py index ea810b00..66e2c3c4 100644 --- a/benchmarl/models/mlp.py +++ b/benchmarl/models/mlp.py @@ -99,7 +99,7 @@ def _perform_checks(self): if input_shape[-1] != self.n_agents: raise ValueError( "If the MLP input has the agent dimension," - " the second to last spec dimension should be the number of agents, got {self.input_spec}" + f" the second to last spec dimension should be the number of agents, got {self.input_spec}" ) if ( self.output_has_agent_dim