-
Notifications
You must be signed in to change notification settings - Fork 230
/
Copy pathembed.py
264 lines (228 loc) · 9.83 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch as th
import numpy as np
import logging
import argparse
from hype.adjacency_matrix_dataset import AdjacencyDataset
from hype import train
from hype.graph import load_adjacency_matrix, load_edge_list, eval_reconstruction
from hype.checkpoint import LocalCheckpoint
from hype.rsgd import RiemannianSGD
import sys
import json
import torch.multiprocessing as mp
import shutil
from hype.graph_dataset import BatchedDataset # @manual=fbcode//deeplearning/projects/hyperbolic-embeddings:graph_dataset/hype/graph_dataset
from hype import MANIFOLDS, MODELS, build_model
from hype.hypernymy_eval import main as hype_eval
th.manual_seed(42)
np.random.seed(42)
def reconstruction_eval(adj, opt, epoch, elapsed, loss, pth, best):
chkpnt = th.load(pth, map_location='cpu')
model = build_model(opt, chkpnt['embeddings'].size(0))
model.load_state_dict(chkpnt['model'])
meanrank, maprank = eval_reconstruction(adj, model)
sqnorms = model.manifold.norm(model.lt)
return {
'epoch': epoch,
'elapsed': elapsed,
'loss': loss,
'sqnorm_min': sqnorms.min().item(),
'sqnorm_avg': sqnorms.mean().item(),
'sqnorm_max': sqnorms.max().item(),
'mean_rank': meanrank,
'map_rank': maprank,
'best': bool(best is None or loss < best['loss']),
}
def hypernymy_eval(epoch, elapsed, loss, pth, best):
_, summary = hype_eval(pth, cpu=True)
return {
'epoch': epoch,
'elapsed': elapsed,
'loss': loss,
'best': bool(
best is None or summary['eval_hypernymy_avg'] > best['eval_hypernymy_avg'])
,
**summary
}
def async_eval(adj, q, logQ, opt):
best = None
while True:
temp = q.get()
if temp is None:
return
if not q.empty():
continue
epoch, elapsed, loss, pth = temp
if opt.eval == 'reconstruction':
lmsg = reconstruction_eval(adj, opt, epoch, elapsed, loss, pth, best)
elif opt.eval == 'hypernymy':
lmsg = hypernymy_eval(epoch, elapsed, loss, pth, best)
else:
raise ValueError(f'Unrecognized evaluation: {opt.eval}')
best = lmsg if lmsg['best'] else best
logQ.put((lmsg, pth))
# Adapated from:
# https://thisdataguy.com/2017/07/03/no-options-with-argparse-and-python/
class Unsettable(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
super(Unsettable, self).__init__(option_strings, dest, nargs='?', **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
val = None if option_string.startswith('-no') else values
setattr(namespace, self.dest, val)
def main():
parser = argparse.ArgumentParser(description='Train Hyperbolic Embeddings')
parser.add_argument('-checkpoint', default='/tmp/hype_embeddings.pth',
help='Where to store the model checkpoint')
parser.add_argument('-dset', type=str, required=True,
help='Dataset identifier')
parser.add_argument('-dim', type=int, default=20,
help='Embedding dimension')
parser.add_argument('-manifold', type=str, default='lorentz',
choices=MANIFOLDS.keys())
parser.add_argument('-model', type=str, default='distance',
choices=MODELS.keys(), help='Energy function model')
parser.add_argument('-lr', type=float, default=1000,
help='Learning rate')
parser.add_argument('-epochs', type=int, default=100,
help='Number of epochs')
parser.add_argument('-batchsize', type=int, default=12800,
help='Batchsize')
parser.add_argument('-negs', type=int, default=50,
help='Number of negatives')
parser.add_argument('-burnin', type=int, default=20,
help='Epochs of burn in')
parser.add_argument('-dampening', type=float, default=0.75,
help='Sample dampening during burnin')
parser.add_argument('-ndproc', type=int, default=8,
help='Number of data loading processes')
parser.add_argument('-eval_each', type=int, default=1,
help='Run evaluation every n-th epoch')
parser.add_argument('-fresh', action='store_true', default=False,
help='Override checkpoint')
parser.add_argument('-debug', action='store_true', default=False,
help='Print debuggin output')
parser.add_argument('-gpu', default=0, type=int,
help='Which GPU to run on (-1 for no gpu)')
parser.add_argument('-sym', action='store_true', default=False,
help='Symmetrize dataset')
parser.add_argument('-maxnorm', '-no-maxnorm', default='500000',
action=Unsettable, type=int)
parser.add_argument('-sparse', default=False, action='store_true',
help='Use sparse gradients for embedding table')
parser.add_argument('-burnin_multiplier', default=0.01, type=float)
parser.add_argument('-neg_multiplier', default=1.0, type=float)
parser.add_argument('-quiet', action='store_true', default=False)
parser.add_argument('-lr_type', choices=['scale', 'constant'], default='constant')
parser.add_argument('-train_threads', type=int, default=1,
help='Number of threads to use in training')
parser.add_argument('-margin', type=float, default=0.1, help='Hinge margin')
parser.add_argument('-eval', choices=['reconstruction', 'hypernymy'],
default='reconstruction', help='Which type of eval to perform')
opt = parser.parse_args()
# setup debugging and logigng
log_level = logging.DEBUG if opt.debug else logging.INFO
log = logging.getLogger('lorentz')
logging.basicConfig(level=log_level, format='%(message)s', stream=sys.stdout)
if opt.gpu >= 0 and opt.train_threads > 1:
opt.gpu = -1
log.warning(f'Specified hogwild training with GPU, defaulting to CPU...')
# set default tensor type
th.set_default_tensor_type('torch.DoubleTensor')
# set device
device = th.device(f'cuda:{opt.gpu}' if opt.gpu >= 0 else 'cpu')
if 'csv' in opt.dset:
log.info('Using edge list dataloader')
idx, objects, weights = load_edge_list(opt.dset, opt.sym)
data = BatchedDataset(idx, objects, weights, opt.negs, opt.batchsize,
opt.ndproc, opt.burnin > 0, opt.dampening)
else:
log.info('Using adjacency matrix dataloader')
dset = load_adjacency_matrix(opt.dset, 'hdf5')
log.info('Setting up dataset...')
data = AdjacencyDataset(dset, opt.negs, opt.batchsize, opt.ndproc,
opt.burnin > 0, sample_dampening=opt.dampening)
objects = dset['objects']
model = build_model(opt, len(objects))
# set burnin parameters
data.neg_multiplier = opt.neg_multiplier
train._lr_multiplier = opt.burnin_multiplier
# Build config string for log
log.info(f'json_conf: {json.dumps(vars(opt))}')
if opt.lr_type == 'scale':
opt.lr = opt.lr * opt.batchsize
# setup optimizer
optimizer = RiemannianSGD(model.optim_params(), lr=opt.lr)
# setup checkpoint
checkpoint = LocalCheckpoint(
opt.checkpoint,
include_in_all={'conf' : vars(opt), 'objects' : objects},
start_fresh=opt.fresh
)
# get state from checkpoint
state = checkpoint.initialize({'epoch': 0, 'model': model.state_dict()})
model.load_state_dict(state['model'])
opt.epoch_start = state['epoch']
adj = {}
for inputs, _ in data:
for row in inputs:
x = row[0].item()
y = row[1].item()
if x in adj:
adj[x].add(y)
else:
adj[x] = {y}
controlQ, logQ = mp.Queue(), mp.Queue()
control_thread = mp.Process(target=async_eval, args=(adj, controlQ, logQ, opt))
control_thread.start()
# control closure
def control(model, epoch, elapsed, loss):
"""
Control thread to evaluate embedding
"""
lt = model.w_avg if hasattr(model, 'w_avg') else model.lt.weight.data
model.manifold.normalize(lt)
checkpoint.path = f'{opt.checkpoint}.{epoch}'
checkpoint.save({
'model': model.state_dict(),
'embeddings': lt,
'epoch': epoch,
'model_type': opt.model,
})
controlQ.put((epoch, elapsed, loss, checkpoint.path))
while not logQ.empty():
lmsg, pth = logQ.get()
shutil.move(pth, opt.checkpoint)
if lmsg['best']:
shutil.copy(opt.checkpoint, opt.checkpoint + '.best')
log.info(f'json_stats: {json.dumps(lmsg)}')
control.checkpoint = True
model = model.to(device)
if hasattr(model, 'w_avg'):
model.w_avg = model.w_avg.to(device)
if opt.train_threads > 1:
threads = []
model = model.share_memory()
args = (device, model, data, optimizer, opt, log)
kwargs = {'ctrl': control, 'progress' : not opt.quiet}
for i in range(opt.train_threads):
kwargs['rank'] = i
threads.append(mp.Process(target=train.train, args=args, kwargs=kwargs))
threads[-1].start()
[t.join() for t in threads]
else:
train.train(device, model, data, optimizer, opt, log, ctrl=control,
progress=not opt.quiet)
controlQ.put(None)
control_thread.join()
while not logQ.empty():
lmsg, pth = logQ.get()
shutil.move(pth, opt.checkpoint)
log.info(f'json_stats: {json.dumps(lmsg)}')
if __name__ == '__main__':
main()