██████╗ ██╗ ██╗███████╗██╗ ██╗ ███████╗██╗ ██╗ █████╗ ██████╗
██╔══██╗██║ ██║██╔════╝██║ ██║ ██╔════╝██║ ██║██╔══██╗██╔══██╗
██████╔╝██║ ██║███████╗███████║ ███████╗██║ █╗ ██║███████║██████╔╝
██╔═══╝ ██║ ██║╚════██║██╔══██║ ╚════██║██║███╗██║██╔══██║██╔═══╝
██║ ╚██████╔╝███████║██║ ██║ ███████║╚███╔███╔╝██║ ██║██║
╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚══════╝ ╚══╝╚══╝ ╚═╝ ╚═╝╚═╝
This project involves sorting data on a stack, with a limited set of instructions,
and the smallest number of moves.
To make this happen, you will have to manipulate various sorting algorithms and
choose the most appropriate solution(s) for optimized data sorting.
Skills | Grade |
---|---|
[Unix] [Rigor] [Algorithmis & AI] [Imperative programming] | ✅ 100% |
The goal is to sort in ascending order numbers into stack_a using the following operations:
command | action |
---|---|
sa |
swap a - swap the first 2 elements at the top of stack_a |
sb |
swap b - swap the first 2 elements at the top of stack_b |
ss |
sa and sb at the same time |
pa |
push a - take the first element at the top of b and put it at the top of a. Do nothing if b is empty |
pb |
push b - take the first element at the top of a and put it at the top of b. Do nothing if a is empty |
ra |
rotate a - shift up all elements of stack_a by 1. The first element becomes the last one |
rb |
rotate b - shift up all elements of stack_b by 1. The first element becomes the last one |
rr |
ra and rb at the same time |
rra |
reverse rotate a - shift down all elements of stack_a by 1. The last element becomes the first one |
rrb |
reverse rotate b - shift down all elements of stack_b by 1. The last element becomes the first one |
rrr |
rra and rrb at the same time |
git clone git@github.com:faleite/42_push_swap.git
cd push_swap
make
./pushswap <numbers to be sorted>
- as single arguments
./push_swap 1 3 7 4 2
- as a string
./push_swap "1 3 7 4 2"
- as an environment variable
ARG="1 3 7 4 2"; ./push_swap $ARG
by duarte3333
Here reviewed by me
This explanation is made for an example of 10 elements, however, to organize
a larger amount of numbers the procedure is exactly the same,
without any changes.
- Find the average value. At first it is 11.1, in this example.
- If the number is below the average value, push b (pb).
- If the number is above the average value, rotate the stack A (ra)
Stack A | Stack B |
---|---|
6 | |
52 | |
10 | |
3 | |
2 | |
7 | |
5 | |
4 | |
21 | |
1 | |
Stack A | Stack B |
- Since 6 is below average, the number will be pushed to B.
- Then, the average will be recalculated again and becomes 11.66.
Stack A | Stack B |
---|---|
52 | |
10 | |
3 | |
2 | |
7 | |
5 | |
4 | |
21 | |
1 | 6 |
Stack A | Stack B |
- For number 52 -> ra
- For the number 10 -> pb and the new average is 11.87
- For the number 3 -> pb and the new average is 13.14
- For the number 2 -> pb and the new average is 15
- For the number 7 -> pb and the new average is 16.6
Stack A | Stack B |
---|---|
5 | 7 |
4 | 2 |
21 | 3 |
1 | 10 |
52 | 6 |
Stack A | Stack B |
- This procedure ends when stack A has 5 elements.
- Then a function is created to organize the 5 elements that remained in A.
- In this case it would be done with the following: pb; rra; bp; sa; shovel; shovel
- If we have 100 numbers, after this procedure we will have 5 in stack A and 95 in stack B.
Stack A | Stack B |
---|---|
1 | 7 |
4 | 2 |
5 | 3 |
21 | 10 |
52 | 6 |
Stack A | Stack B |
- Next step: Find the best friend of each number in stack A
Friend of 7? | Friend of 2? | Friend of 3? |
---|---|---|
1-7=-6 | 1-2=-1 | 1-3=-2 |
4-7=-3 | 4-2=2 | 4-3=1 |
5-7=-2 | 5-2=3 | 5-3=2 |
21-7=14 | 21-2=19 | 21-3=18 |
52-7=45 | 52-2=50 | 52-3=49 |
Best friend is 21 | Best friend is 4 | Best friend is 4 |
- Repeating the process we obtain the best friends of the rest of the numbers:
- 10's best friend is 21
- 6's best friend is 21
- Rules for choosing the best friend:
- The number in A must be greater than the number in B
Best friend | Number | Moves to put your best friend on top | Moves to get the number to the top | Cost |
---|---|---|---|---|
21 | 7 | 2 | 0 | 2 |
4 | 2 | 1 | 1 | 2 |
4 | 3 | 1 | 2 | 3 |
21 | 10 | 2 | 2 | 4 |
21 | 6 | 2 | 1 | 3 |
- The winner was 7, because all costs were greater than or equal. Therefore, the winner
and best friend will be placed on top of your stacks. - After that the movement push a (pa) will be made, which means that the number will be
added to your best friend.
Stack A | Stack B |
---|---|
21 | 7 |
52 | 2 |
1 | 3 |
4 | 10 |
5 | 6 |
Stack A | Stack B |
<------------------------- |
---|
pa |
Stack A | Stack B |
---|---|
7 | |
21 | |
52 | 2 |
1 | 3 |
4 | 10 |
5 | 6 |
Stack A | Stack B |
- Repeating the process, now the winner is 6 and his best friend is 7.
Stack A | Stack B |
---|---|
6 | |
7 | |
21 | |
52 | |
1 | 2 |
4 | 3 |
5 | 10 |
Stack A | Stack B |
- Repeating the process, now the winner is 2 and his best friend is 4.
Stack A | Stack B |
---|---|
2 | |
4 | |
5 | |
6 | |
7 | |
21 | |
52 | 3 |
1 | 10 |
Stack A | Stack B |
- Repeating the process, now the winner is 3 and his best friend is 4.
Stack A | Stack B |
---|---|
3 | |
4 | |
5 | |
6 | |
7 | |
21 | |
52 | |
1 | |
2 | 10 |
Stack A | Stack B |
- Repeating the process, now the winner is 10 and his best friend is 21.
Stack A | Stack B |
---|---|
10 | |
21 | |
52 | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
Stack A | Stack B |
- This procedure ends when there are no more elements in stack B.
- Finally, simply rotate the A stack until the last element is the largest in the stack.
Stack A | Stack B |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
10 | |
21 | |
52 | |
Stack A | Stack B |
- Using this algorithm it is possible to organize stacks of any size,
the method is always the same.
- Linked list
- Memory Process
- A journey to find most efficient sorting algorithm
- The least amount of moves with two stacks
- Radix Algorithm
- "Spiral rule" and "Right to left" rule to read hard declarations in C
- CS50 Data Structures 2020
- CS50 Data Structures 2023
- Short introduction to header files in C
- How pointer strings are immutable in C?
- The C programming language: Declarations, not that simple bro!
- Push swap tutorial by Duarte3333
- Push swap tutorial by Paula Hemsi
- Random list
- push swap visualizer by o-reo
- push swap simulator by Paula Hemsi
- push swap tester by LeoFu
Click to expand
- Verificar se a entrada é valida
- se argc == 1, sair do programa
- se argc == 2, continuar
- se argv[1][0] == NULL, sair do programa
- se argv[1][0] != NULL, continuar
- separar numeros de argv[1] para colocar na stack a (use ft_split)
- Você pode adicionar em malloc do array mais 2 espaços: para NULL
e para o argv[0] que é o nome do programa. (Mais facil para inicializar a stack)
- Você pode adicionar em malloc do array mais 2 espaços: para NULL
- se argc > 2, continuar
- se argvs não forem numeros, sair do programa com Error
- ex: --12, hello, 12a, 12.3, 12.3.4, 12,3,4,
- Converter os num em inteiros
- use ft_atol (long int)
- prototype: long int ft_atol(const char *str);
- verificar se num esta dentro do limite de inteiros
- se num > INT_MAX (2147483647), sair do programa com Error
- se num < INT_MIN (-2147483648), sair do programa com Error
- verificar se num é duplicado, se duplicado, sair do programa com Error
- se tudo ok, adicionar num na stack a
- Watch this video: What is a static variable
- Criar uma struct de stack
- Ex declaração: t_stack_node
- criar stack a e b -> t_stack_node *a, t_stack_node *b;
- atribuir NULL para os ponteiros *a e *b, para evitar lixo de memória
- criar função que inicializa a stack
- Funcões uteis para manipular a stack
- retornar o tamanho da stack
- Somar cada valor na stack e retornar seu total
- adicionar node no final da stack
- criar função que libera a stack (free)
- Implementações de comandos para a stack
- Swap (Trocar os dois primeiros elementos do topo da stack)
- Rotate (O node do topo da stack se torna o ultimo node da stack)
- Ex: 1 2 3 4 5 -> 2 3 4 5 1
- Reverse Rotate (O ultimo node da stack se torna o node do topo da stack)
- Ex: 1 2 3 4 5 -> 5 1 2 3 4
- Push (Tira o node do topo da stack a e coloca no topo da stack b)
- Ordenação de poucos numeros, 2, 3, 4 e 5
- se tamanho da stack == 3 (apenas 3 nodes), função de ordenação especifica
- Se o primeiro node é o maior, envie-o para o final da stack (ra)
- Se eu sei que o maior numero esta no final da stack:
- Eu verifico se o segundo node é o menor, se for, eu faço swap (sa)
- se tamanho da stack == 1, fazer nada
- se tamanho da stack == 2, fazer swap (sa)
- se tamanho da stack == 5, fazer ordenação especifica
- se tamanho da stack == 3 (apenas 3 nodes), função de ordenação especifica
- Criar função para verificar se os numeros da linha de argumento esta ordenada
- Ordenação de muitos numeros...
- se tamanho da stack > 5, inplementar Algoritimo de ordenção de grandes numeros.