-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbrain2mesh.m
558 lines (518 loc) · 22.1 KB
/
brain2mesh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
function [brain_n,brain_el,brain_f] = brain2mesh(seg,varargin)
%
% Brain2mesh: a one-liner for human brain 3D mesh generation
%
% Author: Qianqian Fang <q.fang at neu.edu>
% Other contributors: see AUTHORS.txt for details
% Version: 0.8
% URL: http://mcx.space/brain2mesh
% License: GPL version 3
% Reference:
% Anh Phong Tran, Shijie Yan and Qianqian Fang, "Improving model-based
% fNIRS analysis using mesh-based anatomical and light-transport models,"
% Neurophotonics, 7(1), 015008, URL: http://dx.doi.org/10.1117/1.NPh.7.1.015008
%
% == Format ==
% [node,elem,face] = brain2mesh(seg)
% or
% [node,elem,face] = brain2mesh(seg,cfg);
%
% == Input ==
% seg: pre-segmented brain volume (supporting both probalistic tissue
% segmentation and labeled volume). Two formats are accepted
% 1. a structure with subfields (wm,gm,csf,skull,scalp)
% e.g.: seg.wm, seg.gm, seg.csf represents the white-matter,
% gray-matter and csf segmentaions, respectively,
% or
% 2. a 4D array for with tissued sorted in outer-to-inner order
% the 4th dimension of the array can 3-6, with the following assumptions
% size(seg,4) == 6 assumes 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM, 6-air pockets
% size(seg,4) == 5 assumes 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM
% size(seg,4) == 4 assumes 1-Scalp, 2-CSF, 3-GM, 4-WM
% size(seg,4) == 3 assumes 1-CSF, 2-GM, 3-WM
%
% cfg: a struct defining the options for the resulting tetrahedral mesh
% default values are applied if field is not defined
% cfg.radbound.{wm,gm,csf,skull,scalp}
% Radius of the Delaunay sphere used in the sampling the surfaces.
% Default values are 1.7, 1.7, 2, 2.5 and 3, respectively (reference values for 1x1x1mm^3)
% Scale proportionally for denser volumes. Lower values correspond to denser, higher
% fidelity surface extraction, but also results in denser meshes.
% cfg.maxnode: [100000] - when the value cfg.sampling__ creates surfaces that are too
% dense. This limits the maximum of number of nodes extracted for a given surface.
% cfg.maxvol: [100] indicates the volumetric maximum size of elements
% Lowering this value helps with obtaining a denser tetrahedral
% mesh. For dense meshes, values close to 3-5 are recommended.
% cfg.smooth: [0] - number of iterations to smooth each tissue surface
% cfg.ratio: [1.414] radius-edge ratio. Lower values increase
% the quality of tetrahedral elements, but results in denser meshes
% cfg.dorelabel: [0] or 1 - This step removes most of the assumptions
% created by the layered meshing workflow. Currently only works if all five tissue types are present.
% When deactivated, a 1 voxel length gap is assumed between each of the tissue layers.
% cfg.doairseg: 0 or [1]. Within the skull layer, additional segmentations can be found.
% By default, these regions are merged to the skull because they can be ambiguously be
% vessels or air. When the option 1 is chosen, these regions are labeled as air instead.
% cfg.dotruncate: ['-z' or 1], or one of +x/-x/+y/-y/+z/-z, 0 to
% disable. by default, brain2mesh assumes the neck is
% positioned at the -z direction of the volume, the mesh is
% truncated by cfg.marginsize voxels in the -z direction below
% the lowest pixel containing CSF to focus on the brain areas.
% A value of 0 gives a complete head mesh.
% cfg.marginsize: [4]. when dotruncate is set, this flag
% determines how many voxels below the CSF mesh to truncate
% towards the neck.
% cfg.imfill: ['imfill'], 'mri_fillholes' etc, the function name
% for 3D image hole-filling function, default is imfill,
% requires MATLAB image processing toolbox or octave-image
% toolbox
%
% == Outputs ==
% node: node coordinates of the tetrahedral mesh
% elem: element list of the tetrahedral mesh / the last column denotes the boundary ID
% face: mesh surface element list of the tetrahedral mesh
%
% Tissue ID for the outputs are as follow:
% 0-Air/background, 1-Scalp, 2-Skull, 3-CSF, 4-GM, 5-WM, 6-air pockets
%
% == Reference ==
% If you use Brain2Mesh in your publication, the authors of this toolbox
% apprecitate if you can cite our Neurophotonics paper listed above.
%
%
% -- this function is part of brain2mesh toolbox (http://mcx.space/brain2mesh)
% License: GPL v3 or later, see LICENSE.txt for details
%
%% Handling the inputs
if nargin == 0
help brain2mesh
return;
end
if(~exist('v2m','file'))
error('Missing dependency. You must download and addpath to Iso2Mesh Toolbox, URL: https://github.com/fangq/iso2mesh')
end
if(~exist('imfill','file'))
error('Missing dependency. You must install MATLAB image processing toolbox')
end
if(~exist('intriangulation','file'))
error('Missing dependency. You must download and addpath to intriangulation.m, URL: https://www.mathworks.com/matlabcentral/fileexchange/43381-intriangulation-vertices-faces-testp-heavytest')
end
density=struct('wm',2,'gm',2,'csf',5,'skull',4,'scalp',8);
adaptiveness=struct('wm',1,'gm',1,'csf',1,'skull',1,'scalp',1);
cfg=varargin2struct(varargin{:});
radbound=jsonopt('radbound',density,cfg);
distbound=jsonopt('distbound',adaptiveness,cfg);
qratio=jsonopt('ratio',1.414,cfg);
%sizefield=jsonopt('sizefield',100,cfg);
maxvol=jsonopt('maxvol',100,cfg);
maxnode=jsonopt('maxnode',100000,cfg);
dotruncate=jsonopt('dotruncate',1,cfg);
dorelabel=jsonopt('dorelabel',0,cfg);
doairseg=jsonopt('doairseg',1,cfg);
threshold=jsonopt('threshold',0.5,cfg);
smooth=jsonopt('smooth',0,cfg);
surfonly=jsonopt('surfonly',0,cfg);
marginsize=jsonopt('marginsize',4,cfg);
segname=fieldnames(density);
imfillstr=jsonopt('imfill','imfill',cfg);
imfillparam='holes';
imfill3d=str2func(imfillstr);
if isstruct(seg)
tpm = seg;
elseif(ndims(seg)==4)
for i=1:size(seg,4)
tpm.(segname{i})=seg(:,:,:,i);
end
else
fprintf('This seg input is currently not supported \n')
end
% normalizing segmentation inputs to 0-1
normalizer=@(x) double(x)*( ~isinteger(x) + (isinteger(x))*(1/double(max(x(:)))) );
tpm=structfun(normalizer, tpm,'UniformOutput',false);
opt=struct;
for i = 1:size(fieldnames(tpm))
opt(i).maxnode = maxnode;
if(isfield(radbound,segname{i}))
opt(i).radbound= radbound.(segname{i});
end
opt(i).distbound= distbound.(segname{i});
end
cube3=true(3,3,3);
%% Pre-processing steps to create separations between the tissues in the
% volume space
dim = size(tpm.wm);
tpm.wm = imfill3d(tpm.wm>0,imfillparam);
p_wm = tpm.wm;
p_pial = p_wm+tpm.gm;
p_pial = max(p_pial,imdilate(p_wm,cube3));
p_pial = imfill3d(p_pial>0,imfillparam);
expandedGM = p_pial - tpm.wm - tpm.gm;
expandedGM = imdilate(expandedGM,cube3);
if(isfield(tpm,'csf'))
p_csf = p_pial+tpm.csf;
p_csf(p_csf>1) = 1;
p_csf = max(p_csf,imdilate(p_pial,cube3));
expandedCSF = p_csf - tpm.wm - tpm.gm - tpm.csf - expandedGM;
expandedCSF = imdilate(expandedCSF,cube3);
end
if isfield(tpm,'skull') && isfield(tpm,'scalp') && isfield(tpm,'csf')
p_bone = p_csf + tpm.skull;
p_bone(p_bone>1) = 1;
p_bone = max(p_bone,imdilate(p_csf,cube3));
p_skin = p_bone + tpm.scalp;
p_skin(p_skin>1) = 1;
p_skin = max(p_skin,imdilate(p_bone,cube3));
expandedSkull = p_bone - tpm.wm - tpm.gm - tpm.csf - tpm.skull - expandedCSF - expandedGM;
expandedSkull = imdilate(expandedSkull,cube3);
elseif isfield(tpm,'scalp') && ~isfield(tpm,'skull')
p_skin = p_csf + tpm.scalp;
p_skin(p_skin>1) = 1;
p_skin = max(p_skin,imdilate(p_csf,cube3));
elseif isfield(tpm,'skull') && ~isfield(tpm,'scalp')
p_bone = p_csf + tpm.skull;
p_bone(p_bone>1) = 1;
p_bone = max(p_bone,imdilate(p_csf,cube3));
end
%% Grayscale/Binary extractions of the surface meshes for the different
% tissues
thresh=0.5;
if(~isstruct(threshold))
thresh=threshold;
end
[wm_n,wm_f] = v2s(p_wm,jsonopt('wm',thresh,threshold),opt(1),'cgalsurf');
[pial_n,pial_f] = v2s(p_pial,jsonopt('gm',thresh,threshold),opt(2),'cgalsurf');
[wm_n,wm_f]=meshcheckrepair(wm_n,wm_f(:,1:3),'isolated');
[pial_n,pial_f]=meshcheckrepair(pial_n,pial_f(:,1:3),'isolated');
if(isfield(tpm,'csf'))
[csf_n,csf_f] = v2s(p_csf,jsonopt('csf',thresh,threshold),opt(3),'cgalsurf');
[csf_n,csf_f]=meshcheckrepair(csf_n,csf_f(:,1:3),'isolated');
end
if isfield(tpm,'skull')
optskull=struct('radbound',radbound.skull,'maxnode',maxnode);
[bone_n,bone_f] = v2s(p_bone,jsonopt('skull',thresh,threshold),optskull,'cgalsurf');
[bone_node,el_bone] = s2m(bone_n,bone_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
for i = 1:length(unique(el_bone(:,5)))
vol_bone(i) = sum(elemvolume(bone_node,el_bone(el_bone(:,5)==i,1:4)));
end
[maxval,I] = max(vol_bone);
if (length(unique(el_bone(:,5)))>1)
no_air2 = bone_node; el_air2 = el_bone(el_bone(:,5)~=I,:);
[no_air2,el_air2]=removeisolatednode(no_air2,el_air2);
f_air2 = volface(el_air2(:,1:4));
end
bone_n2 = bone_node;
[bone_f2] = volface(el_bone(:,1:4));
bone_f2 = removedupelem(bone_f2);
[bone_n2,bone_f2]=removeisolatednode(bone_n2,bone_f2);
if doairseg == 0
bone_n = bone_n2; bone_f = bone_f2;
end
end
if isfield(tpm,'scalp')
optscalp=struct('radbound',radbound.scalp,'maxnode',maxnode);
[skin_n,skin_f] = v2s(p_skin,jsonopt('scalp',thresh,threshold),optscalp,'cgalsurf');
end
if(isstruct(smooth) || smooth>0)
scount=0;
if(~isstruct(smooth))
scount=smooth;
end
if(jsonopt('wm',scount,smooth)>0)
wm_n=sms(wm_n,wm_f(:,1:3),jsonopt('wm',scount,smooth),0.5,'lowpass');
[wm_n,wm_f]=meshcheckrepair(wm_n,wm_f(:,1:3),'meshfix');
end
if(jsonopt('gm',scount,smooth)>0)
pial_n=sms(pial_n,pial_f(:,1:3),jsonopt('gm',scount,smooth),0.5,'lowpass');
[pial_n,pial_f]=meshcheckrepair(pial_n,pial_f(:,1:3),'meshfix');
end
if(isfield(tpm,'csf') && jsonopt('csf',scount,smooth)>0)
csf_n=sms(csf_n,csf_f(:,1:3),jsonopt('csf',scount,smooth),0.5,'lowpass');
[csf_n,csf_f]=meshcheckrepair(csf_n,csf_f(:,1:3),'meshfix');
end
if(isfield(tpm,'skull') && jsonopt('skull',scount,smooth)>0)
bone_n=sms(bone_n,bone_f(:,1:3),jsonopt('skull',scount,smooth),0.5,'lowpass');
[bone_n,bone_f]=meshcheckrepair(bone_n,bone_f(:,1:3),'meshfix');
end
if(isfield(tpm,'scalp') && jsonopt('scalp',scount,smooth)>0)
skin_n=sms(skin_n,skin_f(:,1:3),jsonopt('scalp',scount,smooth),0.5,'lowpass');
[skin_n,skin_f]=meshcheckrepair(skin_n,skin_f(:,1:3),'meshfix');
end
end
if(surfonly==1)
wm_f(:,4)=1;
pial_f(:,4)=2;
[brain_n,brain_el]=mergemesh(wm_n,wm_f,pial_n,pial_f);
if(isfield(tpm,'csf'))
csf_f(:,4)=3;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,csf_n,csf_f);
if(isfield(tpm,'skull'))
bone_f(:,4)=4;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,bone_n,bone_f);
if(isfield(tpm,'scalp'))
skin_f(:,4)=5;
[brain_n,brain_el]=mergemesh(brain_n,brain_el,skin_n,skin_f);
end
end
end
[labels,ia,ib]=unique(brain_el(:,4));
labels=5:-1:(5-length(labels)+1);
brain_el(:,4)=labels(ib);
brain_f=[];
return;
end
%% Main loop for the meshing pipeline to combine the individual surface
% meshes or each of the tissues and to generate the detailed 3D tetrahedral
% mesh of the brain/head
for loop = 1:2
%% If the first pass fails, a second pass is called using the decoupled function
% to eliminate intersections between surface meshes
if (loop==2) && (exist('label_elem','var'))
continue;
end
if (loop==2) && (~exist('label_elem','var'))
if(exist('bone_n','var') && exist('skin_n','var'))
[bone_n,bone_f] = surfboolean(bone_n(:,1:3),bone_f(:,1:3),'decouple',skin_n(:,1:3),skin_f(:,1:3));
end
if(exist('bone_n','var') && exist('csf_n','var'))
[csf_n,csf_f] = surfboolean(csf_n(:,1:3),csf_f(:,1:3),'decouple',bone_n(:,1:3),bone_f(:,1:3));
end
if(exist('pial_n','var') && exist('csf_n','var'))
[pial_n,pial_f] = surfboolean(pial_n(:,1:3),pial_f(:,1:3),'decouple',csf_n(:,1:3),csf_f(:,1:3));
end
if(exist('pial_n','var') && exist('wm_n','var'))
[wm_n,wm_f] = surfboolean(wm_n(:,1:3),wm_f(:,1:3),'decouple',pial_n(:,1:3),pial_f(:,1:3));
end
end
if isfield(tpm,'wm') && isfield(tpm,'gm')
[surf_n,surf_f] = surfboolean(wm_n(:,1:3),wm_f(:,1:3),'resolve',pial_n,pial_f);
end
if isfield(tpm,'csf')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',csf_n,csf_f);
end
if isfield(tpm,'skull')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',bone_n,bone_f);
end
if isfield(tpm,'scalp')
[surf_n,surf_f] = surfboolean(surf_n,surf_f,'resolve',skin_n,skin_f);
end
final_surf_n=surf_n;
final_surf_f=surf_f;
if(surfonly==2)
brain_n=final_surf_n;
brain_el=final_surf_f;
brain_f=[];
return;
end
%% If the whole head option is deactivated, the cut is made at the base of the brain using a box cutting
if (dotruncate==1 || ischar(dotruncate))
dim=max(surf_n);
if isfield(tpm,'csf')
dim2 = min(csf_n);
else
dim2 = min(surf_n);
end
if(dotruncate == 1 || strcmp(dotruncate,'-z'))
[nbox,fbox,ebox]=meshabox([-1 -1 dim2(3)+marginsize],[dim(1)+1 dim(2)+1 dim(3)+1],500);
elseif(strcmp(dotruncate,'-y'))
[nbox,fbox,ebox]=meshabox([-1 dim2(2)+marginsize -1],[dim(1)+1 dim(2)+1 dim(3)+1],500);
elseif(strcmp(dotruncate,'-x'))
[nbox,fbox,ebox]=meshabox([dim2(1)+marginsize -1 -1],[dim(1)+1 dim(2)+1 dim(3)+1],500);
elseif(strcmp(dotruncate,'+z'))
[nbox,fbox,ebox]=meshabox([-1 -1 -1],[dim(1)+1 dim(2)+1 dim2(3)-marginsize],500);
elseif(strcmp(dotruncate,'+y'))
[nbox,fbox,ebox]=meshabox([-1 -1 -1],[dim(1)+1 dim2(2)-marginsize dim(3)+1],500);
elseif(strcmp(dotruncate,'+x'))
[nbox,fbox,ebox]=meshabox([-1 -1 -1],[dim2(1)-marginsize dim(2)+1 dim(3)+1],500);
end
fbox=volface(ebox);
[nbox,fbox]=removeisolatednode(nbox,fbox);
[final_surf_n,final_surf_f] = surfboolean(nbox,fbox,'first',surf_n,surf_f);
end
if(surfonly==3)
brain_n=final_surf_n;
brain_el=final_surf_f;
brain_f=[];
return;
end
%% Generates a coarse tetrahedral mesh of the combined tissues
try
[final_n,final_e] = s2m(final_surf_n,final_surf_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
catch
fprintf('volumetric mesh generation failed, returning the intermediate surface model only');
brain_n=final_surf_n;
brain_f=final_surf_f;
brain_el=[];
return;
end
%% Removes the elements that are part of the box, but not the brain/head
if (dotruncate == 1 || ischar(dotruncate))
[maxval, M] = max(final_n);
k = find(final_e(:,1:4)==M(3),1);
final_e = final_e(final_e(:,5)~=final_e(rem(k,length(final_e(:,1))),5),:);
[final_n,final_e]=removeisolatednode(final_n,final_e);
end
%% Here the labels created through the coarse mesh generated through Tetgen are saved
% with the centroid of one of the elements for intriangulation seg(:,:,:,1)testing later
[label, label_elem] = unique(final_e(:,5));
label_centroid=meshcentroid(final_n,final_e(label_elem,1:4));
if isfield(tpm,'scalp')
[no_skin,el_skin] = s2m(skin_n,skin_f,1.0,maxvol,'tetgen1.5',[],[],'-A');
for i = 1:length(unique(el_skin(:,5)))
vol_skin(i) = sum(elemvolume(no_skin,el_skin(el_skin(:,5)==i,1:4)));
end
[maxval,I] = max(vol_skin);
if (length(unique(el_skin(:,5)))>1)
no_air = no_skin; el_air = el_skin(el_skin(:,5)~=I,:);
[no_air,el_air]=removeisolatednode(no_air,el_air);
f_air = volface(el_air(:,1:4));
f_air = removedupelem(f_air);
end
el_skin = el_skin(el_skin(:,5)==I,:);
[no_skin,el_skin]=removeisolatednode(no_skin,el_skin);
[f_skin] = volface(el_skin(:,1:4));
f_skin=removedupelem(f_skin);
end
%% When the label_elem does not exist, it often indicates a failure at the generation of a coarse
% tetrahedral mesh. The alternative meshing pathway using decoupling is then called to make a
% second attempt at creating the combined tetrahedral mesh.
if (~exist('label_elem'))&& (loop==1)
fprintf('Initial meshing procedure failed. The option parameter might need to be adjusted. \n')
fprintf('Activating alternative meshing pathway... \n')
pause(2)
continue;
end
%% The labels are given to each of the tissues
% WM(1) - GM(2) - CSF(3) - Bone(4) - Scalp(5) - Air(6)
newlabel = zeros(length(label_elem),1);
if (exist('bone_n') && exist('no_air2'))
newlabel= intriangulation(no_air2,f_air2(:,1:3),label_centroid);
end
if (exist('no_skin') && exist('no_air'))
newlabel= newlabel | intriangulation(no_air,f_air(:,1:3),label_centroid);
end
newlabel=double(newlabel);
idx=find(newlabel==0);
newtag=zeros(length(idx),1);
newtag=intriangulation(wm_n,wm_f(:,1:3),label_centroid(idx,:))*6;
newtag=max(newtag,intriangulation(pial_n,pial_f(:,1:3),label_centroid(idx,:))*5);
if(exist('csf_n','var'))
newtag=max(newtag,intriangulation(csf_n,csf_f(:,1:3),label_centroid(idx,:))*4);
end
if(exist('bone_n2','var'))
newtag=max(newtag,intriangulation(bone_n2,bone_f2(:,1:3),label_centroid(idx,:))*3);
end
if(exist('no_skin','var'))
newtag=max(newtag,intriangulation(no_skin,f_skin(:,1:3),label_centroid(idx,:))*2);
end
newlabel(idx)=newtag;
newlabel=7-newlabel;
final_e(:,5)=newlabel(final_e(:,5));
%% This step consolidates adjacent labels of the same tissue
new_label = unique(final_e(:,5));
face = [];
for i = 1:length(new_label)
face = [face; volface(final_e(final_e(:,5)==new_label(i),1:4))];
end
face = sort(face,2);
face = unique(face,'rows');
[node,face] = removeisolatednode(final_n,face);
%% The final mesh is generated here with the desired properties
cmdopt = sprintf('-A -pq%fa%f',qratio,maxvol);
%node(:,4) = sizefield(:).*ones(length(node(:,1)),1);
[brain_n,brain_el] = s2m(node,face,1.0,maxvol,'tetgen1.5',[],[],cmdopt);
[label2, label_brain_el] = unique(brain_el(:,5));
label_centroid2=meshcentroid(brain_n,brain_el(label_brain_el,1:4));
%% The labeling process is repeated for the final mesh
% WM(1) - GM(2) - CSF(3) - Bone(4) - Scalp(5) - Air(6)
newlabel = zeros(length(label_brain_el),1);
if (exist('bone_n') && exist('no_air2'))
newlabel= intriangulation(no_air2,f_air2(:,1:3),label_centroid2);
end
if (exist('no_skin') && exist('no_air'))
newlabel= newlabel | intriangulation(no_air,f_air(:,1:3),label_centroid2);
end
newlabel=double(newlabel);
idx=find(newlabel==0);
newtag=zeros(length(idx),1);
newtag=intriangulation(wm_n,wm_f(:,1:3),label_centroid2(idx,:))*6;
newtag=max(newtag,intriangulation(pial_n,pial_f(:,1:3),label_centroid2(idx,:))*5);
if(exist('csf_n','var'))
newtag=max(newtag,intriangulation(csf_n,csf_f(:,1:3),label_centroid2(idx,:))*4);
end
if(exist('bone_n2','var'))
newtag=max(newtag,intriangulation(bone_n2,bone_f2(:,1:3),label_centroid2(idx,:))*3);
end
if(exist('no_skin','var'))
newtag=max(newtag,intriangulation(no_skin,f_skin(:,1:3),label_centroid2(idx,:))*2);
end
newlabel(idx)=newtag;
newlabel=7-newlabel;
brain_el(:,5)=newlabel(brain_el(:,5));
end
%% Relabeling step to remove layered assumptions
if dorelabel == 1 && (isfield(tpm,'skull') && isfield(tpm,'scalp'))
centroid = meshcentroid(brain_n(:,1:3),brain_el(:,1:4));centroid = ceil(centroid);
tag = zeros(length(brain_el(:,1)),1);
facenb = faceneighbors(brain_el(:,1:4));
for i = 1:length(brain_el(:,1))
if (expandedGM(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 2)
if tpm.scalp(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 5;
elseif tpm.skull(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 4;
else
brain_el(i,5) = 3;
end
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
elseif (expandedCSF(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 3)
if tpm.scalp(centroid(i,1),centroid(i,2),centroid(i,3)) > 0.5
brain_el(i,5) = 5;
else
brain_el(i,5) = 4;
end
brain_el(i,5) = 4;
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
elseif (expandedSkull(centroid(i,1),centroid(i,2),centroid(i,3))>0.5) && (brain_el(i,5) == 4)
brain_el(i,5) = 5;
tag(i) = 1;
for j = 1:4
if facenb(i,j) > 0
tag(facenb(i,j),1) = 1;
end
end
end
end
labels = zeros(length(brain_el(:,1)),4);
labels2 = zeros(length(brain_el(:,1)),6);
for i = 1:length(brain_el(:,1))
for j = 1:4
if facenb(i,j) > 0
labels(i,j) = brain_el(facenb(i,j),5);
labels2(i,labels(i,j)) = labels2(i,labels(i,j)) + 1;
else
labels(i,j) = 0;
end
end
end
[labels(:,5),labels(:,6)] = max(labels2,[],2);
for i = 1:length(brain_el(:,1))
if tag(i) == 1
if (labels(i,5) > 2) && (brain_el(i,5) ~= labels(i,6))
brain_el(i,5) = labels(i,6);
end
end
end
end
brain_el(:,5) = 6 - brain_el(:,5);
if(nargout>2)
brain_f=layersurf(brain_el);
end