-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathpolyline.m
474 lines (472 loc) · 15.6 KB
/
polyline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
% Matlab class implementing a set of tools to work with linearly interpolated functions
% Written by Fedor Iskhakov, Australian National University, 2016
classdef polyline
% This class defines a function linearly interpolated on a grid
% and implements the tools for working with arrays of these lines
%
% Objects of this class can be put in arrays and manipulated in bulk
% Methods: len() to return the number of points
% sort() to sort the points
% interpolate() to compute the function
% upper_envelope() to find upper envelope of a set of lines
% inset() to insert a new point
% chop() to break one line into two
% grow() to join multiple lines together
% thinout() to delete points by index
% diff() to compare two polylines
% plot() to make a plot of the function
%
% Fedor Iskhakov, 2016
% Australian National University
%
properties (Access=public)
x=[]; %x-grid points
y=[]; %functional values
label=''; %label of this line
% correct_for_incomplete_loopbacks_for_dcegm=true;
end
methods
%----------------------------------------------
function obj = polyline(varargin)
%create interpolated function
%optional inputs: x, y, label
if nargin>0
obj.x=reshape(varargin{1},1,[]);
end
if nargin>1
obj.y=reshape(varargin{2},1,[]);
end
if nargin>2 && ischar(varargin{3})
obj.label=varargin{3};
end
end
%----------------------------------------------
% function res=get.len(obj)
function res=len(obj)
%number of gridpoints in this line/function
%if obj is not scalar, multiple outputs are produced
for k=1:numel(obj)
res(k)=numel(obj(k).x);
if res(k)~=numel(obj(k).y);
error (sprintf('Polyline with mismatch of the number of points: x has %d while y has %d elements',numel(obj(k).x),numel(obj(k).y)))
end
end
res=reshape(res,size(obj)); %return the same shape when numel(obj)>1
end
%----------------------------------------------
function res=sort(obj)
%this function sorts the polylines on x grid
%returns the sorted polylines, original obj is not modified
for i=1:numel(obj)
[~,i1]=sort(obj(i).x);
res(i)=polyline(obj(i).x(i1),obj(i).y(i1),obj(i).label);
end
res=reshape(res,size(obj));
end
%----------------------------------------------
function [res extrapflag]=interpolate(obj,x)
%compute the func value in given point(s)
%linear extrapolation allowed, indicator is created if nargsout==2
if numel(obj)==1
%when polyline is scalar (only one)
try
res=interp1(obj.x,obj.y,x,'linear','extrap');
catch ME
steps=reshape(obj.x(2:end)-obj.x(1:end-1),[],1);
fprintf('\n\nInterpolation error!\npolyline dims are (%d,%d)\nRepeated points: %d\nInverted steps: %d\n', ...
size(obj,1),size(obj,2),sum(abs(steps)<eps),sum(steps<0));
fprintf('Identifier: %s\nCall stack: ',ME.identifier);
for i=0:numel(ME.stack)-1
if i>0
fprintf(' >>> ');
end
fprintf('%s (line %d)',ME.stack(end-i).name,ME.stack(end-i).line)
end
fprintf('\n')
fprintf('INTERACTIVE KEYBOARD MODE\nVariable steps contains the steps of the grid\n');
keyboard
end
if nargout>1
extrapflag=~(x>=min(obj.x) & x<=max(obj.x));
end
else
%interpolate each polyline if there are many
%output matrix with rows for each polyline, colums of interpolated values
xx=reshape(x,1,[]);%but make x row vector to output one matrix
for k=1:numel(obj)
try
res(k,1:numel(x))=interp1(obj(k).x,obj(k).y,xx,'linear','extrap');
catch ME
steps=@(nn) reshape(obj(nn).x(2:end)-obj(nn).x(1:end-1),[],1);
fprintf('\n\nInterpolation error!\nk=%d, polyline dims are (%d,%d)\nRepeated points: %d\nInverted steps: %d\n', ...
k,size(obj,1),size(obj,2),sum(abs(steps(k))<eps),sum(steps(k)<0));
fprintf('Identifier: %s\nCall stack: ',ME.identifier);
for i=0:numel(ME.stack)-1
if i>0
fprintf(' >>> ');
end
fprintf('%s (line %d)',ME.stack(end-i).name,ME.stack(end-i).line)
end
fprintf('\n')
fprintf('INTERACTIVE KEYBOARD MODE\nUse steps(i) function to analyze the grids\n');
keyboard
end
if nargout>1
extrapflag(k,1:numel(x))=~(xx>=min(obj(k).x) & xx<=max(obj(k).x));
end
end
end
end
%----------------------------------------------
function res=grow(obj,in2,front)
%add polyline2 to the end (or the front) of polyline1
%many-to-many extending is allowed
%return is matrix with obj in rows, in2 in columns
if nargin<3
front=false;%to the end by default
end
for k1=1:numel(obj)
for k2=1:numel(in2)
if front
res(k1,k2)=polyline( ...
[reshape(in2(k2).x,1,[]) reshape(obj(k1).x,1,[])], ...
[reshape(in2(k2).y,1,[]) reshape(obj(k1).y,1,[])], ...
sprintf('%s + %s',in2(k2).label,obj(k1).label));
else
res(k1,k2)=polyline( ...
[reshape(obj(k1).x,1,[]) reshape(in2(k2).x,1,[])], ...
[reshape(obj(k1).y,1,[]) reshape(in2(k2).y,1,[])], ...
sprintf('%s + %s',obj(k1).label,in2(k2).label));
end
end
end
end
%----------------------------------------------
function res=inset(obj,x,y,j)
%this function inserts a point (x,y) after position j
%in the current grid (so j=0 grows first point)
%if x and y are vectors, multiple points are inserted
%if j is missing, the point is added in the end
%inset into each polyline if there are many
%Cases in the function to minimize overal runtime
res=obj;
if numel(x)>1
mx=numel(x);
my=numel(y);
for k=1:numel(obj)
if nargin<=3 || j>=numel(obj(k).x);
res(k).x(end+1:end+mx)=x;
res(k).y(end+1:end+my)=y;
else
res(k).x(j+mx+1:end+mx)=obj(k).x(j+1:end);
res(k).x(j+1:j+mx)=x(:);
res(k).y(j+my+1:end+my)=obj(k).y(j+1:end);
res(k).y(j+1:j+my)=y(:);
end
end
elseif numel(obj)>1
for k=1:numel(obj)
if nargin<=3 || j>=numel(obj(k).x);
res(k).x(end+1)=x;
res(k).y(end+1)=y;
else
res(k).x(j+2:end+1)=obj(k).x(j+1:end);
res(k).x(j+1)=x;
res(k).y(j+2:end+1)=obj(k).y(j+1:end);
res(k).y(j+1)=y;
end
end
else
if nargin<=3 || j>=numel(obj.x);
res.x(end+1)=x;
res.y(end+1)=y;
else
res.x(j+2:end+1)=obj.x(j+1:end);
res.x(j+1)=x;
res.y(j+2:end+1)=obj.y(j+1:end);
res.y(j+1)=y;
end
end
end
%----------------------------------------------
function res=thinout(obj,indx)
%this removes the indexed points from polylines
res=obj;%copy input to output
for k=1:numel(res)
ii=intersect(1:numel(res(k).x),indx);
res(k).x(ii)=[];
res(k).y(ii)=[];
end
end
%----------------------------------------------
function indx=diff(obj,pl2,significance)
%this function returns the indexes of points in obj that are not in pl2
%obj can have multiple elements, pl2 is treated as scalar polyline
if nargin<3
significance=5; %equality is measured up to 10^-singif
end
x1=round(pl2(1).x*(10^significance)) * 10^(-significance);
y1=round(pl2(1).y*(10^significance)) * 10^(-significance);
for k=1:numel(obj)
x=round(obj(k).x*(10^significance)) * 10^(-significance);
y=round(obj(k).y*(10^significance)) * 10^(-significance);
indx{k}=find(~ismember(x,x1) | ~ismember(y,y1));
end
if numel(indx)==1
indx=indx{1}; %return vector if scalar obj
else
indx=reshape(indx,size(obj));
end
end
%----------------------------------------------
function [res1 res2]=chop(obj,j,repeat)
%separate the grid into 1,..,j and j+1,.. parts
%if repeat=true, the boundary points are repeated in both resulting polylines
if nargin<2
error 'Have to have one input for .chop'
end
%chop each polyline if there are many
for k=1:numel(obj)
if j>obj(k).len
warning 'Producing empty polyline by chopping at index j>len'
j=obj(k).len;
end
res1(k)=polyline(obj(k).x(1:j),obj(k).y(1:j), ...
sprintf('%s (1:%d)',obj(k).label,j));
if nargout>1
if exist('repeat') && repeat
res2(k)=polyline(obj(k).x(j:end),obj(k).y(j:end), ...
sprintf('%s (%d:%d)',obj(k).label,j,obj(k).len));
else
res2(k)=polyline(obj(k).x(j+1:end),obj(k).y(j+1:end), ...
sprintf('%s (%d:%d)',obj(k).label,j+1,obj(k).len));
end
end
end
res1=reshape(res1,size(obj)); %return same shape
if nargout>1
res2=reshape(res2,size(obj)); %return same shape
end
end
%----------------------------------------------
function [res intersections]=upper_envelope(obj,fullinterval)
%This function computes the upper envelop over the array of polylines
%It assumes that all grids are sorted or should be sorted, and treats them as sorted
%By default only the overlapping segments are used for upper envelope calculation
%When fullinterval=true all polylines are extended to union of intervals
if numel(obj)==1
warning 'Upper envelope is meant for an array of polylines'
res=obj;
if nargout>1
intersections=polyline([],[],'intersection points');
end
return;
end
l=obj.len;%check that x and y are of the same size
fullinterval=exist('fullinterval');%when second arg given, full interval
obj=obj(l>0); %disregard all polylines of zero length
pt=sort(unique([obj.x]));%collect all the x points in sorted row vector
%interpolate all lines on all points recording the extrapolation cases
[intr extr]=obj.interpolate(pt);
if ~fullinterval
%disregard points where at least one line is extrapolated
mask=sum(extr,1)>0;
intr(:,mask)=[];
pt(mask)=[];
n=sum(~mask);%number of point in the overlap region
else
%disregard only points where particular lines are extrapolated (full interval!)
intr(extr)=-Inf;
n=numel(pt);
end
%find lines on the top
maxintr=repmat(max(intr),size(intr,1),1);
top=intr==maxintr;
%build up the upper envelope
res=polyline(pt(1),maxintr(1,1),'upper envelope');
if nargout>1
intersections=polyline([],[],'intersection points');
end
k0=find(top(:,1),1,'first');%index of top line
%loop through all points
for j=2:n
k1=find(top(:,j),1,'first');%index of next top line
if k1~=k0
%check if there is an intersection point
%between the lines:
ln1=k0;ln2=k1; %intersections between these lines
pt1=pt(j-1);pt2=pt(j); %which lies between these points
[y1 extr1]=obj(ln1).interpolate([pt1 pt2]);
[y2 extr2]=obj(ln2).interpolate([pt1 pt2]); %and these function values (maybe extrapolated)
%check that neither is extrapolated in both points,
%and that intersection point is inside the interval <= func values are different at the borders
if all(~[extr1 extr2]) & all(abs(y1-y2)>0)
%find the intersection point or points
while true
pt3=fzero(@(x) obj(ln2).interpolate(x)-obj(ln1).interpolate(x),[pt1 pt2]);
pt3f=obj(ln1).interpolate(pt3);
%check if there are lines above the found intersection
[intr2 exrt2]=obj.interpolate(pt3);%interpolate all lines in the new point
intr2(exrt2)=-Inf; %disregard the extrapolated points
maxintr2=repmat(max(intr2),size(intr2,1),1);
ln3=find(intr2==maxintr2,1,'first');
if ln3==ln1 | ln3==ln2
%there are no other functions above!
%add the intersection point
res=res.inset(pt3,pt3f,res.len);
if nargout>1
intersections=intersections.inset(pt3,pt3f); %inset in the end
end
%maybe there are some more intersections before next point?
if ln2==k1
%no actually, because the left line is the one we started with
break;
else
%indeed, so update the interval of new search
ln1=ln2;
pt1=pt3;
ln2=k1;
pt2=pt(j);
end
else
%there is line ln3 above the found intersection point
%so, it is not on the upper envelope
%need to search again
ln2=ln3;%new candidate
pt2=pt3;%new border
end
end
end
end
if any(abs(obj(k1).x-pt(j))<eps) || j==n
% if ismember(pt(j),obj(k1).x) || j==n
%add new grid point to the end
res=res.inset(pt(j),maxintr(1,j)); %inset in the end
end
k0=k1;%next step
end
end
%----------------------------------------------
function [res indxremoved newdots]=secondary_envelope(obj)
%this function computes the secondary envelope of the polyline
%returns cleaned polylines, indexes of removed points and new points as a polyline
%in case of many polylines, clean up each
%indxremoved is cell array when obj has many elements
for k=1:numel(obj)
cur=obj(k);%current line
%identify the loop-back regions
ii=cur.x(2:end)>cur.x(1:end-1); %zeros for the loopback regions
sect=polyline;%sections
i=1;
while true
j=find(ii~=ii(1),1,'first');
if isempty(j)
%exit the loop if there are no more loop-backs
if i>1
%if sections already started, add the last one
sect(i)=cur;
end
break;
end
[sect(i) cur]=cur.chop(j,true); %true to repeat the boundary points
ii(1:j-1)=[];%chop ii array accordingly
i=i+1;
end
% perform secondary envelope if sections created
if numel(sect)>1
sect=sect.sort; %sort all sections since half of them are in opposite direction
[res(k) newdots(k)]=sect.upper_envelope(true); %true for full interval
%removed points indexes
indxremoved{k}=obj(k).diff(res(k),10); %index of dots in obj(k) but not in res(k)
else
%without loopbacks -- just copy the input
res(k)=obj(k);
indxremoved{k}=[];
newdots(k)=polyline;
end
end %next k
%return in same dimensions
res=reshape(res,size(obj));
indxremoved=reshape(indxremoved,size(obj));
if numel(obj)==1
%for a single polyline return indx as a vector
indxremoved=indxremoved{1};
end
end
%----------------------------------------------
function res=plot(obj,ax,varargin)
%plot the function on the given axes with optional line properties
%returns line handle(s)
%additional input arguments - line properties
%also additional arguments may contain 'sort' to sort the data
l=obj.len;%check that x and y are of the same size
if all(l==0)
warning 'Nothing to plot'
return
end
if nargin>1
if isempty(ax)
fig1=figure('Color','white');
ax=axes('Parent',fig1);
elseif ~ishandle(ax)
error 'First argument should be axes handle or []'
end
end
if nargin>2
mask=cellfun(@(x) ischar(x)&strcmp(x,'sort'),varargin);%find 'sort'
if sum(mask)>0
dosort=true;
else
dosort=false;
end
opts=varargin(~mask);
else
opts={'Marker','o','MarkerSize',3,'MarkerFaceColor','auto','MarkerEdgeColor','auto'};
dosort=false;%no sorting by default
end
for k=1:numel(obj) %draw all polylines if there are many
if l(k)>0
if dosort %sorting the points of the grid
[xx j]=sort(obj(k).x);
xx=reshape(xx,[],1);
yy=reshape(obj(k).y(j),[],1);
else
xx=reshape(obj(k).x,[],1);
yy=reshape(obj(k).y,[],1);
end
if exist('ax')
hold(ax,'all');
res(k)=plot(ax,xx,yy,opts{:},'DisplayName',obj(k).label);
else
fig1 = figure('Color','white');
ax = axes('Parent',fig1);
res(k)=plot(ax,xx,yy,opts{:},'DisplayName',obj(k).label);
end
end
end
res(l==0)=[];%delete null handles
end
%----------------------------------------------
function demo(obj,n,k)
%This is just a demo for the upper envelope function:
%computes the upper envelope of a set of randomized polylines
if ~exist('n')
n=10; %lines
end
if ~exist('k')
k=10; %points per line
end
for i=1:2:n
a(i)=polyline(sort([0 5+5*rand(1,k) 10]),[0 rand(1,k+1).*linspace(.5,10,k+1)],sprintf('%d',i));
a(i+1)=polyline([0 10],[10-i -(10-i)*10/i+10-i],sprintf('%d',i));
end
h=a.plot;
ax=get(h(1),'Parent');
[ue ix]=a.upper_envelope;
ue.plot(ax,'LineWidth',1,'Color','red','LineWidth',2);
ix.plot(ax,'MarkerFaceColor',[0 0 0],'MarkerEdgeColor',[0 0 0],...
'MarkerSize',4,'Marker','o','LineStyle','none');
set(ax,'Ylim',[0 10]);
end
end %methods
end %of classdef