-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdist_metrics.pyx
1147 lines (942 loc) · 40 KB
/
dist_metrics.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# !python
# cython: boundscheck=False
# cython: wraparound=False
# cython: cdivision=True
# By Jake Vanderplas (2013) <jakevdp@cs.washington.edu>
# written for the scikit-learn project
# modified for HDBSCAN Dual Tree Boruvka algorithm
# License: BSD
import numpy as np
cimport numpy as np
np.import_array() # required in order to use C-API
from libc.math cimport fabs, sqrt, exp, cos, pow, log, acos, M_PI
DTYPE = np.double
ITYPE = np.intp
######################################################################
# Numpy 1.3-1.4 compatibility utilities
cdef DTYPE_t[:, ::1] get_memview_DTYPE_2D(
np.ndarray[DTYPE_t, ndim=2, mode='c'] X):
return <DTYPE_t[:X.shape[0], :X.shape[1]:1]> (<DTYPE_t*> X.data)
cdef DTYPE_t* get_vec_ptr(np.ndarray[DTYPE_t, ndim=1, mode='c'] vec):
return &vec[0]
cdef DTYPE_t* get_mat_ptr(np.ndarray[DTYPE_t, ndim=2, mode='c'] mat):
return &mat[0, 0]
######################################################################
# First, define a function to get an ndarray from a memory bufffer
cdef extern from "numpy/arrayobject.h":
object PyArray_SimpleNewFromData(int nd, np.npy_intp* dims,
int typenum, void* data)
cdef inline np.ndarray _buffer_to_ndarray(DTYPE_t* x, np.npy_intp n):
# Wrap a memory buffer with an ndarray. Warning: this is not robust.
# In particular, if x is deallocated before the returned array goes
# out of scope, this could cause memory errors. Since there is not
# a possibility of this for our use-case, this should be safe.
# Note: this Segfaults unless np.import_array() is called above
return PyArray_SimpleNewFromData(1, &n, DTYPECODE, <void*>x)
# some handy constants
from libc.math cimport fabs, sqrt, exp, pow, cos, sin, asin
cdef DTYPE_t INF = np.inf
######################################################################
# newObj function
# this is a helper function for pickling
def newObj(obj):
return obj.__new__(obj)
######################################################################
# metric mappings
# These map from metric id strings to class names
METRIC_MAPPING = {'euclidean': EuclideanDistance,
'l2': EuclideanDistance,
'minkowski': MinkowskiDistance,
'p': MinkowskiDistance,
'manhattan': ManhattanDistance,
'cityblock': ManhattanDistance,
'l1': ManhattanDistance,
'chebyshev': ChebyshevDistance,
'infinity': ChebyshevDistance,
'seuclidean': SEuclideanDistance,
'mahalanobis': MahalanobisDistance,
'wminkowski': WMinkowskiDistance,
'hamming': HammingDistance,
'canberra': CanberraDistance,
'braycurtis': BrayCurtisDistance,
'matching': MatchingDistance,
'jaccard': JaccardDistance,
'dice': DiceDistance,
'kulsinski': KulsinskiDistance,
'rogerstanimoto': RogersTanimotoDistance,
'russellrao': RussellRaoDistance,
'sokalmichener': SokalMichenerDistance,
'sokalsneath': SokalSneathDistance,
'haversine': HaversineDistance,
'cosine': ArccosDistance,
'arccos': ArccosDistance,
'pyfunc': PyFuncDistance}
def get_valid_metric_ids(L):
"""Given an iterable of metric class names or class identifiers,
return a list of metric IDs which map to those classes.
Examples
--------
>>> L = get_valid_metric_ids([EuclideanDistance, 'ManhattanDistance'])
>>> sorted(L)
['cityblock', 'euclidean', 'l1', 'l2', 'manhattan']
"""
return [key for (key, val) in METRIC_MAPPING.items()
if (val.__name__ in L) or (val in L)]
######################################################################
# Distance Metric Classes
cdef class DistanceMetric:
"""DistanceMetric class
This class provides a uniform interface to fast distance metric
functions. The various metrics can be accessed via the `get_metric`
class method and the metric string identifier (see below).
Examples
--------
For example, to use the Euclidean distance:
>>> dist = DistanceMetric.get_metric('euclidean')
>>> X = [[0, 1, 2],
[3, 4, 5]])
>>> dist.pairwise(X)
array([[ 0. , 5.19615242],
[ 5.19615242, 0. ]])
Available Metrics
The following lists the string metric identifiers and the associated
distance metric classes:
**Metrics intended for real-valued vector spaces:**
============== ==================== ======== ===============================
identifier class name args distance function
-------------- -------------------- -------- -------------------------------
"euclidean" EuclideanDistance - ``sqrt(sum((x - y)^2))``
"manhattan" ManhattanDistance - ``sum(|x - y|)``
"chebyshev" ChebyshevDistance - ``sum(max(|x - y|))``
"minkowski" MinkowskiDistance p ``sum(|x - y|^p)^(1/p)``
"wminkowski" WMinkowskiDistance p, w ``sum(w * |x - y|^p)^(1/p)``
"seuclidean" SEuclideanDistance V ``sqrt(sum((x - y)^2 / V))``
"mahalanobis" MahalanobisDistance V or VI ``sqrt((x - y)' V^-1 (x - y))``
============== ==================== ======== ===============================
**Metrics intended for two-dimensional vector spaces:** Note that the haversine
distance metric requires data in the form of [latitude, longitude] and both
inputs and outputs are in units of radians.
============ ================== ========================================
identifier class name distance function
------------ ------------------ ----------------------------------------
"haversine" HaversineDistance 2 arcsin(sqrt(sin^2(0.5*dx)
+ cos(x1)cos(x2)sin^2(0.5*dy)))
============ ================== ========================================
**Metrics intended for integer-valued vector spaces:** Though intended
for integer-valued vectors, these are also valid metrics in the case of
real-valued vectors.
============= ==================== ========================================
identifier class name distance function
------------- -------------------- ----------------------------------------
"hamming" HammingDistance ``N_unequal(x, y) / N_tot``
"canberra" CanberraDistance ``sum(|x - y| / (|x| + |y|))``
"braycurtis" BrayCurtisDistance ``sum(|x - y|) / (sum(|x|) + sum(|y|))``
============= ==================== ========================================
**Metrics intended for boolean-valued vector spaces:** Any nonzero entry
is evaluated to "True". In the listings below, the following
abbreviations are used:
- N : number of dimensions
- NTT : number of dims in which both values are True
- NTF : number of dims in which the first value is True, second is False
- NFT : number of dims in which the first value is False, second is True
- NFF : number of dims in which both values are False
- NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT
- NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT
================= ======================= ===============================
identifier class name distance function
----------------- ----------------------- -------------------------------
"jaccard" JaccardDistance NNEQ / NNZ
"maching" MatchingDistance NNEQ / N
"dice" DiceDistance NNEQ / (NTT + NNZ)
"kulsinski" KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
"rogerstanimoto" RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
"russellrao" RussellRaoDistance NNZ / N
"sokalmichener" SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
"sokalsneath" SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)
================= ======================= ===============================
**User-defined distance:**
=========== =============== =======
identifier class name args
----------- --------------- -------
"pyfunc" PyFuncDistance func
=========== =============== =======
Here ``func`` is a function which takes two one-dimensional numpy
arrays, and returns a distance. Note that in order to be used within
the BallTree, the distance must be a true metric:
i.e. it must satisfy the following properties
1) Non-negativity: d(x, y) >= 0
2) Identity: d(x, y) = 0 if and only if x == y
3) Symmetry: d(x, y) = d(y, x)
4) Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)
Because of the Python object overhead involved in calling the python
function, this will be fairly slow, but it will have the same
scaling as other distances.
"""
def __cinit__(self):
self.p = 2
self.vec = np.zeros(1, dtype=DTYPE, order='c')
self.mat = np.zeros((1, 1), dtype=DTYPE, order='c')
self.vec_ptr = get_vec_ptr(self.vec)
self.mat_ptr = get_mat_ptr(self.mat)
self.size = 1
def __reduce__(self):
"""
reduce method used for pickling
"""
return (newObj, (self.__class__,), self.__getstate__())
def __getstate__(self):
"""
get state for pickling
"""
if self.__class__.__name__ == "PyFuncDistance":
return (float(self.p), self.vec, self.mat, self.func, self.kwargs)
return (float(self.p), self.vec, self.mat)
def __setstate__(self, state):
"""
set state for pickling
"""
self.p = state[0]
self.vec = state[1]
self.mat = state[2]
if self.__class__.__name__ == "PyFuncDistance":
self.func = state[3]
self.kwargs = state[4]
self.vec_ptr = get_vec_ptr(self.vec)
self.mat_ptr = get_mat_ptr(self.mat)
self.size = 1
@classmethod
def get_metric(cls, metric, **kwargs):
"""Get the given distance metric from the string identifier.
See the docstring of DistanceMetric for a list of available metrics.
Parameters
----------
metric : string or class name
The distance metric to use
**kwargs
additional arguments will be passed to the requested metric
"""
if isinstance(metric, DistanceMetric):
return metric
if callable(metric):
return PyFuncDistance(metric, **kwargs)
# Map the metric string ID to the metric class
if isinstance(metric, type) and issubclass(metric, DistanceMetric):
pass
else:
try:
metric = METRIC_MAPPING[metric]
except:
raise ValueError("Unrecognized metric '%s'" % metric)
# In Minkowski special cases, return more efficient methods
if metric is MinkowskiDistance:
p = kwargs.pop('p', 2)
if p == 1:
return ManhattanDistance(**kwargs)
elif p == 2:
return EuclideanDistance(**kwargs)
elif np.isinf(p):
return ChebyshevDistance(**kwargs)
else:
return MinkowskiDistance(p, **kwargs)
else:
return metric(**kwargs)
def __init__(self):
if self.__class__ is DistanceMetric:
raise NotImplementedError("DistanceMetric is an abstract class")
cdef DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
"""Compute the distance between vectors x1 and x2
This should be overridden in a base class.
"""
return -999
cdef DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
"""Compute the reduced distance between vectors x1 and x2.
This can optionally be overridden in a base class.
The reduced distance is any measure that yields the same rank as the
distance, but is more efficient to compute. For example, for the
Euclidean metric, the reduced distance is the squared-euclidean
distance.
"""
return self.dist(x1, x2, size)
cdef int pdist(self, DTYPE_t[:, ::1] X, DTYPE_t[:, ::1] D) except -1:
"""compute the pairwise distances between points in X"""
cdef ITYPE_t i1, i2
for i1 in range(X.shape[0]):
for i2 in range(i1, X.shape[0]):
D[i1, i2] = self.dist(&X[i1, 0], &X[i2, 0], X.shape[1])
D[i2, i1] = D[i1, i2]
return 0
cdef int cdist(self, DTYPE_t[:, ::1] X, DTYPE_t[:, ::1] Y,
DTYPE_t[:, ::1] D) except -1:
"""compute the cross-pairwise distances between arrays X and Y"""
cdef ITYPE_t i1, i2
if X.shape[1] != Y.shape[1]:
raise ValueError('X and Y must have the same second dimension')
for i1 in range(X.shape[0]):
for i2 in range(Y.shape[0]):
D[i1, i2] = self.dist(&X[i1, 0], &Y[i2, 0], X.shape[1])
return 0
cdef DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
"""Convert the reduced distance to the distance"""
return rdist
cdef DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
"""Convert the distance to the reduced distance"""
return dist
def rdist_to_dist(self, rdist):
"""Convert the Reduced distance to the true distance.
The reduced distance, defined for some metrics, is a computationally
more efficent measure which preserves the rank of the true distance.
For example, in the Euclidean distance metric, the reduced distance
is the squared-euclidean distance.
"""
return rdist
def dist_to_rdist(self, dist):
"""Convert the true distance to the reduced distance.
The reduced distance, defined for some metrics, is a computationally
more efficent measure which preserves the rank of the true distance.
For example, in the Euclidean distance metric, the reduced distance
is the squared-euclidean distance.
"""
return dist
def pairwise(self, X, Y=None):
"""Compute the pairwise distances between X and Y
This is a convenience routine for the sake of testing. For many
metrics, the utilities in scipy.spatial.distance.cdist and
scipy.spatial.distance.pdist will be faster.
Parameters
----------
X : array_like
Array of shape (Nx, D), representing Nx points in D dimensions.
Y : array_like (optional)
Array of shape (Ny, D), representing Ny points in D dimensions.
If not specified, then Y=X.
Returns
-------
dist : ndarray
The shape (Nx, Ny) array of pairwise distances between points in
X and Y.
"""
cdef np.ndarray[DTYPE_t, ndim=2, mode='c'] Xarr
cdef np.ndarray[DTYPE_t, ndim=2, mode='c'] Yarr
cdef np.ndarray[DTYPE_t, ndim=2, mode='c'] Darr
Xarr = np.asarray(X, dtype=DTYPE, order='C')
if Y is None:
Darr = np.zeros((Xarr.shape[0], Xarr.shape[0]),
dtype=DTYPE, order='C')
self.pdist(get_memview_DTYPE_2D(Xarr),
get_memview_DTYPE_2D(Darr))
else:
Yarr = np.asarray(Y, dtype=DTYPE, order='C')
Darr = np.zeros((Xarr.shape[0], Yarr.shape[0]),
dtype=DTYPE, order='C')
self.cdist(get_memview_DTYPE_2D(Xarr),
get_memview_DTYPE_2D(Yarr),
get_memview_DTYPE_2D(Darr))
return Darr
# ------------------------------------------------------------
# Euclidean Distance
# d = sqrt(sum(x_i^2 - y_i^2))
cdef class EuclideanDistance(DistanceMetric):
"""Euclidean Distance metric
.. math::
D(x, y) = \sqrt{ \sum_i (x_i - y_i) ^ 2 }
"""
def __init__(self):
self.p = 2
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return euclidean_dist(x1, x2, size)
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return euclidean_rdist(x1, x2, size)
cdef inline DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
return sqrt(rdist)
cdef inline DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
return dist * dist
def rdist_to_dist(self, rdist):
return np.sqrt(rdist)
def dist_to_rdist(self, dist):
return dist ** 2
# ------------------------------------------------------------
# SEuclidean Distance
# d = sqrt(sum((x_i - y_i2)^2 / v_i))
cdef class SEuclideanDistance(DistanceMetric):
"""Standardized Euclidean Distance metric
.. math::
D(x, y) = \sqrt{ \sum_i \frac{ (x_i - y_i) ^ 2}{V_i} }
"""
def __init__(self, V):
self.vec = np.asarray(V, dtype=DTYPE)
self.vec_ptr = get_vec_ptr(self.vec)
self.size = self.vec.shape[0]
self.p = 2
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
if size != self.size:
with gil:
raise ValueError('SEuclidean dist: size of V does not match')
cdef DTYPE_t tmp, d=0
cdef np.intp_t j
for j in range(size):
tmp = x1[j] - x2[j]
d += tmp * tmp / self.vec_ptr[j]
return d
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return sqrt(self.rdist(x1, x2, size))
cdef inline DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
return sqrt(rdist)
cdef inline DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
return dist * dist
def rdist_to_dist(self, rdist):
return np.sqrt(rdist)
def dist_to_rdist(self, dist):
return dist ** 2
# ------------------------------------------------------------
# Manhattan Distance
# d = sum(abs(x_i - y_i))
cdef class ManhattanDistance(DistanceMetric):
"""Manhattan/City-block Distance metric
.. math::
D(x, y) = \sum_i |x_i - y_i|
"""
def __init__(self):
self.p = 1
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef DTYPE_t d = 0
cdef np.intp_t j
for j in range(size):
d += fabs(x1[j] - x2[j])
return d
# ------------------------------------------------------------
# Chebyshev Distance
# d = max_i(abs(x_i), abs(y_i))
cdef class ChebyshevDistance(DistanceMetric):
"""Chebyshev/Infinity Distance
.. math::
D(x, y) = max_i (|x_i - y_i|)
"""
def __init__(self):
self.p = INF
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef DTYPE_t d = 0
cdef np.intp_t j
for j in range(size):
d = fmax(d, fabs(x1[j] - x2[j]))
return d
# ------------------------------------------------------------
# Minkowski Distance
# d = sum(x_i^p - y_i^p) ^ (1/p)
cdef class MinkowskiDistance(DistanceMetric):
"""Minkowski Distance
.. math::
D(x, y) = [\sum_i (x_i - y_i)^p] ^ (1/p)
Minkowski Distance requires p >= 1 and finite. For p = infinity,
use ChebyshevDistance.
Note that for p=1, ManhattanDistance is more efficient, and for
p=2, EuclideanDistance is more efficient.
"""
def __init__(self, p):
if p < 1:
raise ValueError("p must be greater than 1")
elif np.isinf(p):
raise ValueError("MinkowskiDistance requires finite p. "
"For p=inf, use ChebyshevDistance.")
self.p = p
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef DTYPE_t d=0
cdef np.intp_t j
for j in range(size):
d += pow(fabs(x1[j] - x2[j]), self.p)
return d
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return pow(self.rdist(x1, x2, size), 1. / self.p)
cdef inline DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
return pow(rdist, 1. / self.p)
cdef inline DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
return pow(dist, self.p)
def rdist_to_dist(self, rdist):
return rdist ** (1. / self.p)
def dist_to_rdist(self, dist):
return dist ** self.p
# ------------------------------------------------------------
# W-Minkowski Distance
# d = sum(w_i * (x_i^p - y_i^p)) ^ (1/p)
cdef class WMinkowskiDistance(DistanceMetric):
"""Weighted Minkowski Distance
.. math::
D(x, y) = [\sum_i w_i (x_i - y_i)^p] ^ (1/p)
Weighted Minkowski Distance requires p >= 1 and finite.
Parameters
----------
p : int
The order of the norm of the difference :math:`{||u-v||}_p`.
w : (N,) array_like
The weight vector.
"""
def __init__(self, p, w):
if p < 1:
raise ValueError("p must be greater than 1")
elif np.isinf(p):
raise ValueError("WMinkowskiDistance requires finite p. "
"For p=inf, use ChebyshevDistance.")
self.p = p
self.vec = np.asarray(w, dtype=DTYPE)
self.vec_ptr = get_vec_ptr(self.vec)
self.size = self.vec.shape[0]
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
if size != self.size:
with gil:
raise ValueError('WMinkowskiDistance dist: '
'size of w does not match')
cdef DTYPE_t d=0
cdef np.intp_t j
for j in range(size):
d += pow(self.vec_ptr[j] * fabs(x1[j] - x2[j]), self.p)
return d
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return pow(self.rdist(x1, x2, size), 1. / self.p)
cdef inline DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
return pow(rdist, 1. / self.p)
cdef inline DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
return pow(dist, self.p)
def rdist_to_dist(self, rdist):
return rdist ** (1. / self.p)
def dist_to_rdist(self, dist):
return dist ** self.p
# ------------------------------------------------------------
# Mahalanobis Distance
# d = sqrt( (x - y)^T V^-1 (x - y) )
cdef class MahalanobisDistance(DistanceMetric):
"""Mahalanobis Distance
.. math::
D(x, y) = \sqrt{ (x - y)^T V^{-1} (x - y) }
Parameters
----------
V : array_like
Symmetric positive-definite covariance matrix.
The inverse of this matrix will be explicitly computed.
VI : array_like
optionally specify the inverse directly. If VI is passed,
then V is not referenced.
"""
def __init__(self, V=None, VI=None):
if VI is None:
VI = np.linalg.inv(V)
if VI.ndim != 2 or VI.shape[0] != VI.shape[1]:
raise ValueError("V/VI must be square")
self.mat = np.asarray(VI, dtype=float, order='C')
self.mat_ptr = get_mat_ptr(self.mat)
self.size = self.mat.shape[0]
# we need vec as a work buffer
self.vec = np.zeros(self.size, dtype=DTYPE)
self.vec_ptr = get_vec_ptr(self.vec)
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
if size != self.size:
with gil:
raise ValueError('Mahalanobis dist: size of V does not match')
cdef DTYPE_t tmp, d = 0
cdef np.intp_t i, j
# compute (x1 - x2).T * VI * (x1 - x2)
for i in range(size):
self.vec_ptr[i] = x1[i] - x2[i]
for i in range(size):
tmp = 0
for j in range(size):
tmp += self.mat_ptr[i * size + j] * self.vec_ptr[j]
d += tmp * self.vec_ptr[i]
return d
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
return sqrt(self.rdist(x1, x2, size))
cdef inline DTYPE_t _rdist_to_dist(self, DTYPE_t rdist) except -1:
return sqrt(rdist)
cdef inline DTYPE_t _dist_to_rdist(self, DTYPE_t dist) nogil except -1:
return dist * dist
def rdist_to_dist(self, rdist):
return np.sqrt(rdist)
def dist_to_rdist(self, dist):
return dist ** 2
# ------------------------------------------------------------
# Hamming Distance
# d = N_unequal(x, y) / N_tot
cdef class HammingDistance(DistanceMetric):
"""Hamming Distance
Hamming distance is meant for discrete-valued vectors, though it is
a valid metric for real-valued vectors.
.. math::
D(x, y) = \frac{1}{N} \sum_i \delta_{x_i, y_i}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int n_unequal = 0
cdef np.intp_t j
for j in range(size):
if x1[j] != x2[j]:
n_unequal += 1
return float(n_unequal) / size
# ------------------------------------------------------------
# Canberra Distance
# D(x, y) = sum[ abs(x_i - y_i) / (abs(x_i) + abs(y_i)) ]
cdef class CanberraDistance(DistanceMetric):
"""Canberra Distance
Canberra distance is meant for discrete-valued vectors, though it is
a valid metric for real-valued vectors.
.. math::
D(x, y) = \sum_i \frac{|x_i - y_i|}{|x_i| + |y_i|}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef DTYPE_t denom, d = 0
cdef np.intp_t j
for j in range(size):
denom = fabs(x1[j]) + fabs(x2[j])
if denom > 0:
d += fabs(x1[j] - x2[j]) / denom
return d
# ------------------------------------------------------------
# Bray-Curtis Distance
# D(x, y) = sum[abs(x_i - y_i)] / sum[abs(x_i) + abs(y_i)]
cdef class BrayCurtisDistance(DistanceMetric):
"""Bray-Curtis Distance
Bray-Curtis distance is meant for discrete-valued vectors, though it is
a valid metric for real-valued vectors.
.. math::
D(x, y) = \frac{\sum_i |x_i - y_i|}{\sum_i(|x_i| + |y_i|)}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef DTYPE_t num = 0, denom = 0
cdef np.intp_t j
for j in range(size):
num += fabs(x1[j] - x2[j])
denom += fabs(x1[j]) + fabs(x2[j])
if denom > 0:
return num / denom
else:
return 0.0
# ------------------------------------------------------------
# Jaccard Distance (boolean)
# D(x, y) = N_unequal(x, y) / N_nonzero(x, y)
cdef class JaccardDistance(DistanceMetric):
"""Jaccard Distance
Jaccard Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{N_{TF} + N_{FT}}{N_{TT} + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, n_eq = 0, nnz = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
nnz += (tf1 or tf2)
n_eq += (tf1 and tf2)
if nnz == 0:
return 0.0
return (nnz - n_eq) * 1.0 / nnz
# ------------------------------------------------------------
# Matching Distance (boolean)
# D(x, y) = n_neq / n
cdef class MatchingDistance(DistanceMetric):
"""Matching Distance
Matching Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{N_{TF} + N_{FT}}{N}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, n_neq = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
n_neq += (tf1 != tf2)
return n_neq * 1. / size
# ------------------------------------------------------------
# Dice Distance (boolean)
# D(x, y) = n_neq / (2 * ntt + n_neq)
cdef class DiceDistance(DistanceMetric):
"""Dice Distance
Dice Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{N_{TF} + N_{FT}}{2 * N_{TT} + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, n_neq = 0, ntt = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
ntt += (tf1 and tf2)
n_neq += (tf1 != tf2)
return n_neq / (2.0 * ntt + n_neq)
# ------------------------------------------------------------
# Kulsinski Distance (boolean)
# D(x, y) = (ntf + nft - ntt + n) / (n_neq + n)
cdef class KulsinskiDistance(DistanceMetric):
"""Kulsinski Distance
Kulsinski Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = 1 - \frac{N_{TT}}{N + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, ntt = 0, n_neq = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
n_neq += (tf1 != tf2)
ntt += (tf1 and tf2)
return (n_neq - ntt + size) * 1.0 / (n_neq + size)
# ------------------------------------------------------------
# Rogers-Tanimoto Distance (boolean)
# D(x, y) = 2 * n_neq / (n + n_neq)
cdef class RogersTanimotoDistance(DistanceMetric):
"""Rogers-Tanimoto Distance
Rogers-Tanimoto Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{2 (N_{TF} + N_{FT})}{N + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, n_neq = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
n_neq += (tf1 != tf2)
return (2.0 * n_neq) / (size + n_neq)
# ------------------------------------------------------------
# Russell-Rao Distance (boolean)
# D(x, y) = (n - ntt) / n
cdef class RussellRaoDistance(DistanceMetric):
"""Russell-Rao Distance
Russell-Rao Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{N - N_{TT}}{N}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, ntt = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
ntt += (tf1 and tf2)
return (size - ntt) * 1. / size
# ------------------------------------------------------------
# Sokal-Michener Distance (boolean)
# D(x, y) = 2 * n_neq / (n + n_neq)
cdef class SokalMichenerDistance(DistanceMetric):
"""Sokal-Michener Distance
Sokal-Michener Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{2 (N_{TF} + N_{FT})}{N + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, n_neq = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
n_neq += (tf1 != tf2)
return (2.0 * n_neq) / (size + n_neq)
# ------------------------------------------------------------
# Sokal-Sneath Distance (boolean)
# D(x, y) = n_neq / (0.5 * n_tt + n_neq)
cdef class SokalSneathDistance(DistanceMetric):
"""Sokal-Sneath Distance
Sokal-Sneath Distance is a dissimilarity measure for boolean-valued
vectors. All nonzero entries will be treated as True, zero entries will
be treated as False.
.. math::
D(x, y) = \frac{N_{TF} + N_{FT}}{N_{TT} / 2 + N_{TF} + N_{FT}}
"""
cdef inline DTYPE_t dist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
cdef int tf1, tf2, ntt = 0, n_neq = 0
cdef np.intp_t j
for j in range(size):
tf1 = x1[j] != 0
tf2 = x2[j] != 0
n_neq += (tf1 != tf2)
ntt += (tf1 and tf2)
return n_neq / (0.5 * ntt + n_neq)
# ------------------------------------------------------------
# Haversine Distance (2 dimensional)
# D(x, y) = 2 arcsin{sqrt[sin^2 ((x1 - y1) / 2)
# + cos(x1) cos(y1) sin^2 ((x2 - y2) / 2)]}
cdef class HaversineDistance(DistanceMetric):
"""Haversine (Spherical) Distance
The Haversine distance is the angular distance between two points on
the surface of a sphere. The first distance of each point is assumed
to be the latitude, the second is the longitude, given in radians.
The dimension of the points must be 2:
.. math::
D(x, y) = 2\arcsin[\sqrt{\sin^2((x1 - y1) / 2)
+ cos(x1)cos(y1)sin^2((x2 - y2) / 2)}]
"""
cdef inline DTYPE_t rdist(self, DTYPE_t* x1, DTYPE_t* x2,
ITYPE_t size) nogil except -1:
if size != 2:
with gil:
raise ValueError("Haversine distance only valid "
"in 2 dimensions")
cdef DTYPE_t sin_0 = sin(0.5 * (x1[0] - x2[0]))
cdef DTYPE_t sin_1 = sin(0.5 * (x1[1] - x2[1]))
return (sin_0 * sin_0 + cos(x1[0]) * cos(x2[0]) * sin_1 * sin_1)