-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalc_assoc_prob.m
43 lines (40 loc) · 1.63 KB
/
calc_assoc_prob.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [beta, nc] = calc_assoc_prob(Omega, F, type, PDt, lambda, V)
%CALC_ASSOC_PROB Calculate table with all marginal probabilities of
% association events for the joint probabilistic data association filter
%
% Usage:
% [beta, nc] = calc_assoc_prob(Omega, F, type, PDt, lambda, V)
%
% Inputs:
% Omega = Validation matrix with all possible association events
% F = Matrix of joint probabilities of measurements to targets
% type = method of calculation of the marginal probabilities for assignments:
% 'parametric' = default JPDAF with parametric clutter model
% 'non-parametric' = default JPDAF with parametric clutter model
% 'tree' = JPDAF with association tree
% 'lbp' = JPDAF with loopy belief propagation
% PDt = detection probability of target
% lambda = spatial density of false measurements / clutter density
% V = volume of validation region (row vector - for each target)
%
% Outputs:
% beta = Matrix of marginal probabilities of association events
% nc = Number of combinations for valid events
%
% Coded by:
% Flavio Eler de Melo (flavio.eler@gmail.com)
% University of Liverpool, August, 2013
%
% Target t = 0 (no detection) shall not be included
% Already taken into account in the probability of false detection
switch lower(type)
case {'parametric' 'non-parametric'}
[beta, nc] = calc_assoc_prob_dflt(Omega, F, type, PDt, lambda, V);
case 'tree'
[beta, nc] = calc_assoc_prob_tree(Omega, F, PDt, lambda, V);
case 'lbp'
[beta, nc] = calc_assoc_prob_lbp(Omega, F, PDt, lambda, V);
otherwise
error('Error: Unknown type.');
end
end