-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcphd_filter.py
307 lines (264 loc) · 13.5 KB
/
cphd_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# -*- coding: utf-8 -*-
# File: cphd_filter.py #
# Project: Multi-object Filters #
# File Created: Tuesday, 8th June 2021 5:35:34 pm #
# Author: Flávio Eler De Melo #
# ----- #
# This package/module implements the Cardinalized PHD filter as proposed in: #
# #
# B.-T. Vo, B.-N. Vo and A. Cantoni, "Analytic implementations of the Cardinalized Probability Hypothesis #
# Density Filter," IEEE Trans Signal Processing, Vol. 55, No. 7, part 2, pp. 3553-3567, 2007. #
# #
# BibTeX entry: #
# @ARTICLE{CPHD2007, #
# author={B.-T. Vo and B.-N. Vo and A. Cantoni}, #
# journal={IEEE Transactions on Signal Processing}, #
# title={Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter}, #
# year={2007}, #
# month={July}, #
# volume={55}, #
# number={7}, #
# pages={3553-3567}} #
# ----- #
# Last Modified: Tuesday, 29th June 2021 1:47:38 pm #
# Modified By: Flávio Eler De Melo (flavio.eler@gmail.com>) #
# ----- #
# License: Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0>) #
import numpy as np
from scipy.stats import chi2
from time import perf_counter
from termcolor import cprint
from dependencies.kalman_predict_multiple import kalman_predict_multiple
from dependencies.gate_measurements import gate_measurements
from dependencies.esf import esf
from dependencies.kalman_update_multiple import kalman_update_multiple
from dependencies.gm_management import gm_prune, gm_merge, gm_cap
VAL_MIN = np.spacing(0)
LOG_VAL_MIN = np.log(VAL_MIN)
REAL_MIN = 2.0 ** -1022.0
class CPHDFilter(object):
def __init__(self, model, gate_flag=True):
# Multi-object filter id
self.id = 'CPHD'
self.has_labels = False
# Number of time steps
self.K = 0
# Point process model
self.model = model
# Estimates
self.X = {}
self.mu = {}
self.var = {}
self.N = {}
self.labels = {}
self.label_max = 0
# Filter parameters
self.max_num_of_components = 300 # limit on number of Gaussians
self.prune_threshold = 1e-5 # pruning threshold
self.merge_threshold = 4 # merging threshold
# Specific to the CPHD
self.N_max = 2 * model.num_of_targets
self.p_g = 0.99 # gate size in percentage
self.gamma = chi2.ppf(self.p_g, model.n_z) # inverse chi square cdf
self.gate_flag = gate_flag # gating on or off 1/0
self.print_flag = False
self.prd_time = 0.0
self.gat_time = 0.0
self.upd_time = 0.0
self.mgm_time = 0.0
# Reset
def reset_estimates(self):
# Number of time steps
self.K = 0
# Estimates
self.X = {}
self.mu = {}
self.var = {}
self.N = {}
self.labels = {}
self.prd_time = 0.0
self.gat_time = 0.0
self.upd_time = 0.0
self.mgm_time = 0.0
# Recursive filtering
def run(self, measurement_set, print_flag=False):
# Reset estimates
self.reset_estimates()
# Print flag
self.print_flag = print_flag
# Input parameters
self.K = measurement_set.K
w_update = np.array([])
m_update = np.array([[]])
P_update = np.array([[[]]])
prd_time = self.prd_time
gat_time = self.gat_time
upd_time = self.upd_time
mgm_time = self.mgm_time
model = self.model
# Cardinality
cdn_update = np.zeros((self.N_max + 1, ))
cdn_update[0] = 1 # first positions is for the null cardinality (zero targets)
survive_cdn_predict = np.zeros((self.N_max + 1, ))
cdn_predict = np.zeros((self.N_max + 1, ))
# Precompute factors
log_1_n = np.log(np.arange(1, self.N_max + 1))
sum_log_1_n = np.zeros((self.N_max, ))
for n in range(self.N_max):
sum_log_1_n[n] = np.sum(log_1_n[:n + 1])
sum_log_0_n = np.zeros((self.N_max + 1, ))
sum_log_0_n[1:] = sum_log_1_n
p_d = self.model.p_d
pdf_c = self.model.pdf_c
p_s = self.model.p_s
log_mu_c = np.log(self.model.mu_c)
log_p_d = np.log(self.model.p_d)
log_q_d = np.log(self.model.q_d)
log_p_s = np.log(self.model.p_s)
log_q_s = np.log(self.model.q_s)
# Run recursion
for k in range(self.K):
# Prediction
t_start = perf_counter()
# Intensity prediction
w_predict = p_s * w_update
m_predict, P_predict = kalman_predict_multiple(model, m_update, P_update)
if len(w_predict) > 0:
w_predict = np.hstack([model.w_birth, w_predict])
m_predict = np.hstack([model.m_birth, m_predict])
P_predict = np.dstack([model.P_birth, P_predict])
else:
w_predict = model.w_birth
m_predict = model.m_birth
P_predict = model.P_birth
# Cardinality prediction
# Surviving cardinality distribution
for j in range(self.N_max + 1):
terms = np.zeros((self.N_max + 1, ))
for l in range(j, self.N_max + 1):
terms[l] = cdn_update[l] * np.exp(
sum_log_0_n[max(l, 0)] -sum_log_0_n[max(j, 0)] \
- sum_log_0_n[max(l - j, 0)] + j*log_p_s + (l - j)*log_q_s
)
survive_cdn_predict[j] = np.sum(terms)
# Convolution of birth and surviving cardinality distribution
mu_birth = np.sum(model.w_birth)
for n in range(self.N_max + 1):
terms = np.zeros((self.N_max + 1, ))
for j in range(n + 1):
terms[j] = survive_cdn_predict[j] * np.exp(
- mu_birth + (n - j)*np.log(mu_birth) \
- sum_log_0_n[max(0, n - j)]
)
cdn_predict[n] = np.sum(terms)
# Normalize predicted cardinality distribution
cdn_predict /= np.sum(cdn_predict)
prd_time += perf_counter() - t_start
# Gating
t_start = perf_counter()
if self.gate_flag:
Z_k, _ = gate_measurements(measurement_set.Z[k], self.gamma, model, m_predict, P_predict)
else:
Z_k = measurement_set.Z[k]
gat_time += perf_counter() - t_start
# Update
t_start = perf_counter()
# Number of measurements
m = Z_k.shape[1]
# Pre-calculation for Kalman update parameters
if m > 0:
q_z, m_filtered, P_filtered = kalman_update_multiple(Z_k, m_predict, P_predict, model)
# Pre-calculation of elementary symmetric functions
xi_vals = np.zeros((m, ))
for j in range(m):
xi_vals[j] = model.p_d * np.dot(w_predict, q_z[:, j]) / model.pdf_c
esf_vals_e = esf(xi_vals) # calculate elementary symmetric functions for entire observation set
# calculate elementary symmetric functions with each observation index removed one-by-one
esf_vals_d = np.zeros((m, m))
for j in range(m):
esf_vals_d[:, j] = esf(np.hstack([xi_vals[:j], xi_vals[(j + 1):m]]))
# Pre-calculation for likelihood factors
upsilon_0_e = np.zeros((self.N_max + 1, ))
upsilon_1_e = np.zeros((self.N_max + 1, ))
upsilon_1_d = np.zeros((self.N_max + 1, m))
log_sum_w_predict = np.log(np.sum(w_predict))
for n in range(self.N_max + 1):
# Calcaulate upsilon_0_e[n]
terms_0_e = np.zeros((min(m, n) + 1, ))
for j in range(min(m, n) + 1):
terms_0_e[j] = esf_vals_e[j] * np.exp(
-model.mu_c + (-j)*log_mu_c + sum_log_0_n[max(n, 0)]
-sum_log_0_n[max(n - j, 0)] +(n - j)*log_q_d
-j*log_sum_w_predict
)
upsilon_0_e[n]= np.sum(terms_0_e)
# Calcaulate upsilon_1_e[n]
terms_1_e = np.zeros((min(m, n) + 1, ))
for j in range(min(m, n) + 1):
if n >= j + 1:
terms_1_e[j] = esf_vals_e[j] * np.exp(
-model.mu_c + (-j)*log_mu_c + sum_log_0_n[max(n, 0)]
-sum_log_0_n[max(n - (j + 1), 0)] +(n - (j + 1))*log_q_d
-(j + 1)*log_sum_w_predict
)
upsilon_1_e[n]= np.sum(terms_1_e)
# Calcaulate upsilon_1_d[n, :]
if m > 0:
terms_1_d = np.zeros((min(m - 1, n) + 1, m))
for l in range(m):
for j in range(min(m - 1, n) + 1):
if n >= j + 1:
terms_1_d[j, l] = esf_vals_d[j, l] * np.exp(
-model.mu_c + ((-1)-j)*log_mu_c + sum_log_0_n[max(n, 0)]
-sum_log_0_n[max(n - (j + 1), 0)] +(n - (j + 1))*log_q_d
-(j + 1)*log_sum_w_predict)
upsilon_1_d[n, :] = np.sum(terms_1_d, axis=0)
# Missed detection term
norm_const = np.dot(upsilon_0_e, cdn_predict)
w_update = (np.dot(upsilon_1_e, cdn_predict) / norm_const) * \
model.q_d * w_predict
m_update = m_predict
P_update = P_predict
if m > 0:
# Detection terms (m)
for j in range(m):
w_j = (np.dot(upsilon_1_d[:, j], cdn_predict) / norm_const) * \
p_d * q_z[:, j] * w_predict / pdf_c
w_update = np.hstack([w_update, w_j])
m_update = np.hstack([m_update, m_filtered[:, :, j]])
P_update = np.dstack([P_update, P_filtered])
# Cardinality update
cdn_update = upsilon_0_e * cdn_predict
cdn_update /= np.sum(cdn_update)
L_updated = len(w_update)
upd_time += perf_counter() - t_start
# Gaussian mixture management
t_start = perf_counter()
gm_prune(w_update, m_update, P_update, self.prune_threshold)
L_pruned = L_updated - len(w_update)
gm_merge(w_update, m_update, P_update, self.merge_threshold)
L_merged = L_updated - L_pruned - len(w_update)
gm_cap(w_update, m_update, P_update, self.max_num_of_components)
mgm_time += perf_counter() - t_start
# Estimates extraction
self.extract_estimates(w_update, m_update, cdn_update, k)
# Display diagnostics
if self.print_flag:
cprint(
('k = {:03d}, int = {:08.5f}, crd = {:08.5f}, var = {:08.5f}, ' +
'comp. updated = {:04d}, comp. pruned = {:04d}, comp. merged = {:04d}')
.format(
k, self.mu[k], self.N[k], self.var[k],
L_updated, L_pruned, L_merged),
'cyan')
def extract_estimates(self, w_update, m_update, cdn_update, k):
# Save point process moments
self.mu[k] = np.sum(w_update)
# Estimates extraction
cdn_map = np.argmax(cdn_update)
N_k = min(len(w_update), cdn_map)
cdn_mean = np.dot(np.arange(self.N_max + 1), cdn_update)
self.N[k] = N_k
self.var[k] = np.dot(np.arange(self.N_max + 1)**2, cdn_update) - cdn_mean ** 2
idx_comp = np.argsort(-w_update)
self.X[k] = m_update[:, idx_comp[:N_k]]