-
Notifications
You must be signed in to change notification settings - Fork 272
/
test_labelme2yolov8_detect.py
258 lines (200 loc) · 8.29 KB
/
test_labelme2yolov8_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import json
import argparse
import colorama
import random
import shutil
# Blog: https://blog.csdn.net/fengbingchun/article/details/139012796
def parse_args():
parser = argparse.ArgumentParser(description="json(LabelMe) to txt(YOLOv8)")
parser.add_argument("--dir", required=True, type=str, help="images, json files, and generated txt files, all in the same directory")
parser.add_argument("--labels", required=True, type=str, help="txt file that hold indexes and labels, one label per line, for example: face 0")
parser.add_argument("--val_size", default=0.2, type=float, help="the proportion of the validation set to the overall dataset:[0., 0.2]; the proportion of the test set is the same as the validataion set")
parser.add_argument("--name", required=True, type=str, help="the name of the dataset")
args = parser.parse_args()
return args
def get_labels_index(name):
labels = {} # key,value
with open(name, "r") as file:
for line in file:
# print("line:", line)
key_value = []
for v in line.split(" "):
# print("v:", v)
key_value.append(v.replace("\n", "")) # remove line breaks(\n) at the end of the line
if len(key_value) != 2:
print(colorama.Fore.RED + "Error: each line should have only two values(key value):", len(key_value))
continue
labels[key_value[0]] = key_value[1]
with open(name, "r") as file:
line_num = len(file.readlines())
if line_num != len(labels):
print(colorama.Fore.RED + "Error: there may be duplicate lables:", line_num, len(labels))
return labels
def get_json_files(dir):
jsons = []
for x in os.listdir(dir):
if x.endswith(".json"):
jsons.append(x)
return jsons
def parse_json(name):
with open(name, "r") as file:
data = json.load(file)
width = data["imageWidth"]
height = data["imageHeight"]
# print(f"width: {width}; height: {height}")
objects=[]
for shape in data["shapes"]:
if shape["shape_type"] != "rectangle":
print(colorama.Fore.YELLOW + "Warning: only the rectangle type is supported:", shape["shape_type"])
continue
object = []
object.append(shape["label"])
object.append(shape["points"])
objects.append(object)
return width, height, objects
def get_box_width_height(box):
dist = lambda val: max(val) - min(val)
x = [pt[0] for pt in box]
y = [pt[1] for pt in box]
return min(x), min(y), dist(x), dist(y)
def bounding_box_normalization(width, height, objects, labels):
boxes = []
for object in objects:
box = [] # class x_center y_center width height
box.append(labels[object[0]])
# print("point:", object[1])
x_min, y_min, box_w, box_h = get_box_width_height(object[1])
box.append(round((float(x_min + box_w / 2.0) / width), 6))
box.append(round((float(y_min + box_h / 2.0) / height), 6))
box.append(round(float(box_w / width), 6))
box.append(round(float(box_h / height), 6))
boxes.append(box)
return boxes
def write_to_txt(dir, json, width, height, objects, labels):
boxes = bounding_box_normalization(width, height, objects, labels)
# print("boxes:", boxes)
name = json[:-len(".json")] + ".txt"
# print("name:", name)
with open(dir + "/" + name, "w") as file:
for item in boxes:
# print("item:", item)
if len(item) != 5:
print(colorama.Fore.RED + "Error: the length must be 5:", len(item))
continue
string = item[0] + " " + str(item[1]) + " " + str(item[2]) + " " + str(item[3]) + " " + str(item[4]) + "\r"
file.write(string)
def json_to_txt(dir, jsons, labels):
for json in jsons:
name = dir + "/" + json
# print("name:", name)
width, height, objects = parse_json(name)
# print(f"width: {width}; height: {height}; objects: {objects}")
write_to_txt(dir, json, width, height, objects, labels)
def is_in_range(value, a, b):
return a <= value <= b
def get_random_sequence(length, val_size):
numbers = list(range(0, length))
val_sequence = random.sample(numbers, int(length*val_size))
# print("val_sequence:", val_sequence)
test_sequence = [x for x in numbers if x not in val_sequence]
test_sequence = random.sample(test_sequence, int(length*val_size))
# print("test_sequence:", test_sequence)
train_sequence = [x for x in numbers if x not in val_sequence and x not in test_sequence]
# print("train_sequence:", train_sequence)
return train_sequence, val_sequence, test_sequence
def get_files_number(dir):
count = 0
for file in os.listdir(dir):
if os.path.isfile(os.path.join(dir, file)):
count += 1
return count
def split_train_val(dir, jsons, name, val_size):
if is_in_range(val_size, 0., 0.2) is False:
print(colorama.Fore.RED + "Error: the interval for val_size should be:[0., 0.2]:", val_size)
raise
dst_dir_images_train = "datasets/" + name + "/images/train"
dst_dir_images_val = "datasets/" + name + "/images/val"
dst_dir_images_test = "datasets/" + name + "/images/test"
dst_dir_labels_train = "datasets/" + name + "/labels/train"
dst_dir_labels_val = "datasets/" + name + "/labels/val"
dst_dir_labels_test = "datasets/" + name + "/labels/test"
try:
os.makedirs(dst_dir_images_train) #, exist_ok=True
os.makedirs(dst_dir_images_val)
os.makedirs(dst_dir_images_test)
os.makedirs(dst_dir_labels_train)
os.makedirs(dst_dir_labels_val)
os.makedirs(dst_dir_labels_test)
except OSError as e:
print(colorama.Fore.RED + "Error: cannot create directory:", e.strerror)
raise
# supported image formats
img_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")
# print("jsons:", jsons)
train_sequence, val_sequence, test_sequence = get_random_sequence(len(jsons), val_size)
for index in train_sequence:
for format in img_formats:
file = dir + "/" + jsons[index][:-len(".json")] + format
# print("file:", file)
if os.path.isfile(file):
shutil.copy(file, dst_dir_images_train)
break
file = dir + "/" + jsons[index][:-len(".json")] + ".txt"
if os.path.isfile(file):
shutil.copy(file, dst_dir_labels_train)
for index in val_sequence:
for format in img_formats:
file = dir + "/" + jsons[index][:-len(".json")] + format
if os.path.isfile(file):
shutil.copy(file, dst_dir_images_val)
break
file = dir + "/" + jsons[index][:-len(".json")] + ".txt"
if os.path.isfile(file):
shutil.copy(file, dst_dir_labels_val)
for index in test_sequence:
for format in img_formats:
file = dir + "/" + jsons[index][:-len(".json")] + format
if os.path.isfile(file):
shutil.copy(file, dst_dir_images_test)
break
file = dir + "/" + jsons[index][:-len(".json")] + ".txt"
if os.path.isfile(file):
shutil.copy(file, dst_dir_labels_test)
num_images_train = get_files_number(dst_dir_images_train)
num_images_val = get_files_number(dst_dir_images_val)
num_images_test = get_files_number(dst_dir_images_test)
num_labels_train = get_files_number(dst_dir_labels_train)
num_labels_val = get_files_number(dst_dir_labels_val)
num_labels_test = get_files_number(dst_dir_labels_test)
if num_images_train + num_images_val + num_images_test != len(jsons) or num_labels_train + num_labels_val + num_labels_test != len(jsons):
print(colorama.Fore.RED + "Error: the number of files is inconsistent:", num_images_train, num_images_val, num_images_test, num_labels_train, num_labels_val, num_labels_test, len(jsons))
raise
def generate_yaml_file(labels, name):
path = os.path.join("datasets", name, name+".yaml")
# print("path:", path)
with open(path, "w") as file:
file.write("path: ../datasets/%s # dataset root dir\n" % name)
file.write("train: images/train # train images (relative to 'path')\n")
file.write("val: images/val # val images (relative to 'path')\n")
file.write("test: # test images (optional)\n\n")
file.write("# Classes\n")
file.write("names:\n")
for key, value in labels.items():
# print(f"key: {key}; value: {value}")
file.write(" %d: %s\n" % (int(value), key))
if __name__ == "__main__":
# python test_labelme2yolov8.py --dir ../../data/database/melon_new_detect --labels ../../data/images/labels.txt --val_size 0.15 --name melon_new_detect
colorama.init()
args = parse_args()
# 1. parse JSON file and write it to a TXT file
labels = get_labels_index(args.labels)
# print("labels:", labels)
jsons = get_json_files(args.dir)
# print("jsons:", jsons)
json_to_txt(args.dir, jsons, labels)
# 2. split the dataset
split_train_val(args.dir, jsons, args.name, args.val_size)
# 3. generate a YAML file
generate_yaml_file(labels, args.name)
print(colorama.Fore.GREEN + "====== execution completed ======")