-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkadai3.py
76 lines (68 loc) · 2.19 KB
/
kadai3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import math
import time
import numpy as np
def print_matrix(mat):
# 行列を表示します。
for i in range(len(mat)):
print(mat[i])
def max_off_diag(A):
n = len(A)
max_val = 0.0
for i in range(n-1):
for j in range(i+1, n):
if abs(A[i][j]) >= max_val:
max_val = abs(A[i][j])
k = i
l = j
return k, l, max_val
def rotate(A, p, q):
tau = (A[q][q] - A[p][p]) / (2.0 * A[p][q])
if tau >= 0:
t = 1.0 / (tau + math.sqrt(1.0 + tau**2))
else:
t = -1.0 / (-tau + math.sqrt(1.0 + tau**2))
c = 1.0 / math.sqrt(1.0 + t**2)
s = t * c
return c, s, t
def jacobi(A, tol=1e-6):
n = len(A)
max_iter = 100
V = [[0.0]*n for _ in range(n)]
for i in range(n):
V[i][i] = 1.0
for _ in range(max_iter):
p, q, max_val = max_off_diag(A)
if max_val < tol:
return [A[i][i] for i in range(n)], V
c, s, t = rotate(A, p, q)
for i in range(n):
if i != p and i != q:
A[p][i], A[q][i] = c*A[p][i] - s*A[q][i], s*A[p][i] + c*A[q][i]
A[i][p], A[i][q] = A[p][i], A[q][i]
V[i][p], V[i][q] = c*V[i][p] - s*V[i][q], s*V[i][p] + c*V[i][q]
A[p][p], A[q][q] = A[p][p] - t*A[p][q], A[q][q] + t*A[p][q]
A[p][q] = A[q][p] = 0.0
return [A[i][i] for i in range(n)], V
# 10x10のランダムな行列を生成します。
A_random = np.random.randint(-10, 10, (100, 100))
# 行列を対称にします。
A = 0.5 * (A_random + A_random.T)
print_matrix(A)
# Measure time for Jacobi method
start_time = time.time()
eigvals_jacobi, eigvecs_jacobi = jacobi(A)
end_time = time.time()
print("Jacobi Method")
print('Execution Time:{:.10f}'.format(end_time - start_time))
print('Eigenvalues:', eigvals_jacobi)
np.set_printoptions(precision=8)
print('Eigenvectors:\n', np.array(eigvecs_jacobi))
# Measure time for numpy's method
A_np = np.array(A)
start_time = time.time()
eigvals_np, eigvecs_np = np.linalg.eig(A_np)
end_time = time.time()
print("\nNumpy's Method")
print('Execution Time:{:.10f}'.format(end_time - start_time))
print('Eigenvalues:', eigvals_np)
print('Eigenvectors:\n', eigvecs_np)