-
Notifications
You must be signed in to change notification settings - Fork 0
/
Solutions.nb
1480 lines (1441 loc) · 67.7 KB
/
Solutions.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 69122, 1472]
NotebookOptionsPosition[ 66246, 1417]
NotebookOutlinePosition[ 66579, 1432]
CellTagsIndexPosition[ 66536, 1429]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Gardner and eKdV solitons", "Section",
CellChangeTimes->{{3.772361591838374*^9,
3.772361624806275*^9}},ExpressionUUID->"c622958c-6c94-417a-8047-\
06ac285b31e2"],
Cell[BoxData[{
RowBox[{
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Get", "[", "\"\<nl3_state7.mx\>\"", "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.772362023388659*^9, 3.772362050543454*^9}, {
3.772362262570694*^9, 3.77236226298162*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"7f3c8857-afeb-409b-afad-387ce4612aa4"],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ", "PMMA", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"AL", "=",
RowBox[{
RowBox[{"-", "1.41"}], "*",
RowBox[{"10", "^", "9"}], "*", "4"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"BL", "=",
RowBox[{
RowBox[{"-", "7.02"}], "*",
RowBox[{"10", "^", "9"}], "*", "4"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"CL", "=",
RowBox[{
RowBox[{"-", "3.91"}], "*",
RowBox[{"10", "^", "9"}], "*", "4"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"DL", "=",
RowBox[{"10", "^", "12"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"FL", "=",
RowBox[{"10", "^", "12"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GL", "=",
RowBox[{"-", "2.2584896459158383`*^11"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"HL", "=",
RowBox[{"10", "^", "12"}]}], ";"}], "\[IndentingNewLine]",
StyleBox[
RowBox[{
RowBox[{"\[Lambda]", "=",
RowBox[{"\[CapitalEpsilon]", " ",
RowBox[{
RowBox[{"\[Nu]", "/",
RowBox[{"(",
RowBox[{"1", "+", "\[Nu]"}], ")"}]}], "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", "\[Nu]"}]}], ")"}]}]}]}], ";"}],
FontFamily->"Courier New"], "\[IndentingNewLine]",
StyleBox[
RowBox[{
RowBox[{"\[Mu]", "=",
RowBox[{
RowBox[{"\[CapitalEpsilon]", "/", "2"}], "/",
RowBox[{"(",
RowBox[{"1", "+", "\[Nu]"}], ")"}]}]}], ";"}],
FontFamily->"Courier New"],
StyleBox["\[IndentingNewLine]",
FontFamily->"Courier New"],
StyleBox[
RowBox[{
RowBox[{"\[CapitalEpsilon]", "=",
RowBox[{"4.92", "*",
RowBox[{"10", "^", "9"}]}]}], ";"}],
FontFamily->"Courier New"],
StyleBox["\[IndentingNewLine]",
FontFamily->"Courier New"],
StyleBox[
RowBox[{
RowBox[{"\[Nu]", "=", "0.34"}], ";"}],
FontFamily->"Courier New"],
StyleBox["\[IndentingNewLine]",
FontFamily->"Courier New"],
StyleBox[
RowBox[{
RowBox[{"\[Rho]", "=", "1160"}], ";"}],
FontFamily->"Courier New"],
StyleBox["\[IndentingNewLine]",
FontFamily->"Courier New"],
StyleBox[
RowBox[{
RowBox[{"R", "=", "0.005"}], ";"}],
FontFamily->"Courier New"]}]}]], "Input",
CellChangeTimes->{{3.772362298726631*^9, 3.7723623192275133`*^9}, {
3.772362474846697*^9, 3.77236250832933*^9}, {3.772362550157433*^9,
3.772362590570723*^9}, {3.772362666548856*^9, 3.772362666969449*^9}, {
3.772362699306435*^9, 3.772362710304483*^9}, {3.7723631714225693`*^9,
3.7723631749683313`*^9}, {3.772363867156901*^9, 3.772363870947585*^9}, {
3.772363999331168*^9, 3.772364010315136*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"89a5421b-e71b-4d6d-88b9-8a084c9fac6e"],
Cell[BoxData[{
RowBox[{
RowBox[{"a1", "=",
FractionBox[
RowBox[{
SuperscriptBox["q1", "2"], "+",
RowBox[{"4", " ", "q4"}], "-",
RowBox[{"4", " ", "q1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "alpha1"}], "+", "alpha2"}], ")"}]}]}],
RowBox[{"6", " ",
SuperscriptBox["q1", "2"]}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a2", "=",
FractionBox[
RowBox[{
SuperscriptBox["q1", "2"], "+",
RowBox[{"4", " ", "q4"}], "-",
RowBox[{"4", " ", "q1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "alpha1"}], "+", "alpha2"}], ")"}]}]}],
RowBox[{"6", " ",
SuperscriptBox["q1", "2"]}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a3", "=",
FractionBox[
RowBox[{
RowBox[{"3", " ", "q1", " ", "q3"}], "-",
RowBox[{"8", " ", "q4", " ", "beta1"}], "+",
RowBox[{"q1", " ",
RowBox[{"(",
RowBox[{"q1", "+",
RowBox[{"4", " ", "alpha1"}], "+",
RowBox[{"2", " ", "alpha2"}]}], ")"}], "beta1"}]}],
RowBox[{"9", " ",
SuperscriptBox["q1", "2"], " ", "\[CapitalEpsilon]"}]]}],
";"}]}], "Input",
CellChangeTimes->{{3.772362756960971*^9, 3.77236279367091*^9}, {
3.772369206279665*^9, 3.772369226013913*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"d9061d06-e64e-444b-b3f3-224bfd0fe333"],
Cell[BoxData[{
RowBox[{
RowBox[{"q1", "=",
RowBox[{"alpha1", "+", "alpha2", "+", "alpha3"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q2", "=",
RowBox[{
RowBox[{"3", " ",
RowBox[{"cGGood", "[", "1", "]"}]}], "+",
RowBox[{"2", " ",
RowBox[{"cGGood", "[", "2", "]"}]}], "+",
RowBox[{"3", " ",
RowBox[{"cGGood", "[", "3", "]"}]}], "+",
RowBox[{"6", " ",
RowBox[{"cGGood", "[", "4", "]"}]}], "+",
RowBox[{"cGGood", "[", "5", "]"}], "+",
RowBox[{"6", " ",
RowBox[{"cGGood", "[", "6", "]"}]}], "+",
RowBox[{"2", " ",
RowBox[{"cGGood", "[", "7", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q3", "=",
RowBox[{
RowBox[{"cGGood", "[", "1", "]"}], "+",
RowBox[{"cGGood", "[", "3", "]"}], "+",
RowBox[{"2", " ",
RowBox[{"cGGood", "[", "4", "]"}]}], "+",
RowBox[{"cGGood", "[", "5", "]"}], "+",
RowBox[{"2", " ",
RowBox[{"cGGood", "[", "6", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"q4", "=",
RowBox[{"alpha4", "+", "alpha5", "+", "alpha6", "+", "alpha7"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.7718304526948137`*^9, 3.771830482987858*^9}, {
3.771830514010583*^9, 3.771830521445044*^9}, {3.771830561288941*^9,
3.771830582204829*^9}, 3.771830725929894*^9, {3.772362077679742*^9,
3.7723620850712967`*^9}, {3.772362272968281*^9, 3.7723622911594143`*^9}, {
3.7723623292395763`*^9, 3.772362384815217*^9}},
CellLabel->"In[47]:=",ExpressionUUID->"fab6296e-e33c-40b0-b308-f466d96197fc"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"beta4mod", "/", "beta1"}], "\[IndentingNewLine]",
RowBox[{"Sqrt", "[",
FractionBox[
SuperscriptBox["beta1", "2"],
RowBox[{
SuperscriptBox["R", "2"], "beta4mod"}]], "]"}]}], "Input",
CellChangeTimes->{{3.772363434092663*^9, 3.772363436608819*^9}, {
3.772365499478652*^9, 3.7723655003705482`*^9}, {3.772367747151629*^9,
3.772367748453445*^9}, {3.772367805665123*^9, 3.772367827296975*^9}, {
3.772367951318885*^9, 3.7723679529640083`*^9}},
CellLabel->"In[51]:=",ExpressionUUID->"f83d186d-67b1-4272-a9a2-5d23a2f4966f"],
Cell[BoxData["1.1132004215701626`*^10"], "Output",
CellChangeTimes->{
3.7723634370195503`*^9, {3.772363874852806*^9, 3.772363890750826*^9}, {
3.77236399225731*^9, 3.7723640129418983`*^9}, {3.7723643277978077`*^9,
3.772364343137032*^9}, 3.7723655007770433`*^9, 3.7723677489164248`*^9,
3.772367828422731*^9, 3.772367953583816*^9, {3.772369141856618*^9,
3.772369155964163*^9}},
CellLabel->"Out[51]=",ExpressionUUID->"9b1081dd-27b4-4c44-8320-f3a1bed2235c"],
Cell[BoxData["336.53100538467197`"], "Output",
CellChangeTimes->{
3.7723634370195503`*^9, {3.772363874852806*^9, 3.772363890750826*^9}, {
3.77236399225731*^9, 3.7723640129418983`*^9}, {3.7723643277978077`*^9,
3.772364343137032*^9}, 3.7723655007770433`*^9, 3.7723677489164248`*^9,
3.772367828422731*^9, 3.772367953583816*^9, {3.772369141856618*^9,
3.772369155965198*^9}},
CellLabel->"Out[52]=",ExpressionUUID->"e6d0142d-849a-4577-b14c-0a5fa9954269"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"beta4mod", "=",
RowBox[{"beta4", "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["beta1", "2"],
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", "a2"}]}], ")"}]}], "-",
RowBox[{"a3", " ", "\[CapitalEpsilon]", " ", "beta1"}]}], ")"}], "/",
"3"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", "=",
RowBox[{"Sqrt", "[",
RowBox[{"E", "/", "\[Rho]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"v", "=",
RowBox[{"-",
FractionBox[
RowBox[{"A", " ", "beta1", " ", "c"}],
RowBox[{"6", "\[CapitalEpsilon]"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"F", "=",
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{"A", " ", "beta1"}],
RowBox[{"3", " ", "\[CapitalEpsilon]", " ",
SuperscriptBox["R", "2"], "q1"}]], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"B", "=",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
FractionBox[
RowBox[{"3", " ", "A", " ", "beta4mod"}],
RowBox[{"2", "beta1", " ", "\[CapitalEpsilon]"}]]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"uG", "[",
RowBox[{"x_", ",", "t_"}], "]"}], "=",
FractionBox["A",
RowBox[{"1", "+",
RowBox[{"B", " ",
RowBox[{"Cosh", "[",
RowBox[{"F",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"v", " ", "t"}]}], ")"}]}], "]"}]}]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"uG", "[",
RowBox[{"A_", ",", "x_", ",", "t_"}], "]"}], "=",
FractionBox["A",
RowBox[{"1", "+",
RowBox[{"B", " ",
RowBox[{"Cosh", "[",
RowBox[{"F",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"v", " ", "t"}]}], ")"}]}], "]"}]}]}]]}], ";"}]}], "Input",
CellChangeTimes->{{3.772361627688902*^9, 3.772361801135393*^9}, {
3.772361850679144*^9, 3.772361941183839*^9}, {3.772362427136526*^9,
3.772362442318849*^9}, {3.772363180451133*^9, 3.772363183352819*^9},
3.7723632168536997`*^9, 3.772364038913772*^9, {3.772364415107843*^9,
3.77236441636301*^9}, {3.7723645914605*^9, 3.7723645927407217`*^9}, {
3.77236752459302*^9, 3.7723675421171494`*^9}, {3.7723692673772078`*^9,
3.772369271430744*^9}, {3.7723693716577377`*^9, 3.7723693749594307`*^9}},
CellLabel->"In[91]:=",ExpressionUUID->"d837fb80-c2dc-4f6d-81c4-6ec4b8c0a77a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"uG", "[",
RowBox[{
RowBox[{"-", "0.1"}], ",", "x", ",", "0"}], "]"}]], "Input",
CellChangeTimes->{{3.772364380453079*^9, 3.77236442953826*^9},
3.772367562584691*^9, 3.772369281760892*^9},
CellLabel->"In[75]:=",ExpressionUUID->"0d230e46-1a49-47b1-9db9-109bfaf3055c"],
Cell[BoxData[
RowBox[{"-",
FractionBox["0.1`",
RowBox[{"1", "+",
RowBox[{"1.1573203413186546`", " ",
RowBox[{"Cosh", "[",
RowBox[{"384.41884194743176`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}],
"]"}]}]}]]}]], "Output",
CellChangeTimes->{
3.772362658662836*^9, {3.77236269427717*^9, 3.7723627154562273`*^9},
3.772362797554427*^9, {3.77236402309795*^9, 3.772364041061236*^9}, {
3.772364330797565*^9, 3.772364344955963*^9}, {3.772364381212007*^9,
3.772364432653385*^9}, 3.772364595505945*^9, 3.772367563284624*^9,
3.772369159815987*^9, {3.772369276188365*^9, 3.772369282423233*^9}},
CellLabel->"Out[75]=",ExpressionUUID->"d4289904-8462-4019-8005-3bb114e980f4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"uG", "[",
RowBox[{"A", ",", "x", ",", "t"}], "]"}]], "Input",
CellLabel->"In[60]:=",ExpressionUUID->"8d8cf09e-9086-411f-81f8-90645a29d7c0"],
Cell[BoxData[
FractionBox["A",
RowBox[{"1", "+",
RowBox[{
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3.393903724299272`", " ", "A"}]}]], " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
SqrtBox["A"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "0.0516851082161288`"}], " ", "A", " ", "t"}], "+",
"x"}], ")"}]}], "]"}]}]}]]], "Output",
CellChangeTimes->{{3.772365560229536*^9, 3.7723655735948687`*^9},
3.772367566989608*^9, 3.7723691607147427`*^9},
CellLabel->"Out[60]=",ExpressionUUID->"ac7b2c91-9e9b-462c-b0dd-068caea9611e"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"uG", "[",
RowBox[{"A_", ",", "b_", ",", "x_", ",", "t_"}], "]"}], "=",
FractionBox["A",
RowBox[{"1", "+",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
RowBox[{"b", " ", "A"}]}]], " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
SqrtBox[
RowBox[{"-", "A"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"0.0516851082161288`", " ", "A", " ", "t"}], "+", "x"}],
")"}]}], "]"}]}]}]]}], ";"}]], "Input",
CellChangeTimes->{{3.7723654761062727`*^9, 3.772365487809392*^9}, {
3.772365529091098*^9, 3.772365637545083*^9}, {3.7723676370414658`*^9,
3.772367670623207*^9}, {3.772369298817936*^9, 3.772369305113377*^9}},
CellLabel->"In[77]:=",ExpressionUUID->"236ae8e3-6510-422f-a85b-ca7f8661e56e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"uG", "[",
RowBox[{
RowBox[{"-", "A"}], ",", "3.3", ",", "x", ",", "0"}], "]"}], ",",
RowBox[{"uG", "[",
RowBox[{
RowBox[{"-", "A"}], ",", "0", ",", "x", ",", "0"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{
RowBox[{"-", "0.01"}], "/",
RowBox[{"Sqrt", "[", "A", "]"}]}], ",",
RowBox[{"0.01", "/",
RowBox[{"Sqrt", "[", "A", "]"}]}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"b", ",", "0", ",", "10", ",", "0.1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A", ",", "1", ",",
SuperscriptBox["10", "10"]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7723626013948298`*^9, 3.772362630580924*^9}, {
3.7723629059064198`*^9, 3.772362907175119*^9}, {3.772362990117334*^9,
3.7723630652798023`*^9}, {3.77236324035995*^9, 3.772363268767973*^9}, {
3.772364176225314*^9, 3.772364189946515*^9}, {3.772364347805092*^9,
3.772364400960916*^9}, {3.7723644379088507`*^9, 3.7723644409856663`*^9}, {
3.772364601744176*^9, 3.772364631378388*^9}, {3.772365641646592*^9,
3.77236566013824*^9}, {3.772365701552018*^9, 3.7723658424111958`*^9}, {
3.772365877935164*^9, 3.772365881942623*^9}, {3.772366233779708*^9,
3.772366235522216*^9}, 3.7723667980900393`*^9, {3.772367421977961*^9,
3.772367422116737*^9}, 3.772367455681078*^9, {3.7723675812019978`*^9,
3.772367590442819*^9}, {3.772367646769734*^9, 3.772367653292849*^9}, {
3.772367754252589*^9, 3.772367789028755*^9}, {3.772367853049823*^9,
3.77236789757134*^9}, {3.7723693159785767`*^9, 3.7723693171841927`*^9}},
CellLabel->"In[78]:=",ExpressionUUID->"a2deae94-96b4-44f2-9881-4faca19f35c0"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`A$$ = 1., $CellContext`b$$ = 0,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`b$$], 0, 10, 0.1}, {
Hold[$CellContext`A$$], 1, 10000000000}}, Typeset`size$$ = {
360., {106., 111.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`b$5505$$ =
0, $CellContext`A$5506$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`A$$ = 1, $CellContext`b$$ = 0},
"ControllerVariables" :> {
Hold[$CellContext`b$$, $CellContext`b$5505$$, 0],
Hold[$CellContext`A$$, $CellContext`A$5506$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot[{
$CellContext`uG[-$CellContext`A$$, 3.3, $CellContext`x, 0],
$CellContext`uG[-$CellContext`A$$, 0, $CellContext`x,
0]}, {$CellContext`x, (-0.01)/Sqrt[$CellContext`A$$], 0.01/
Sqrt[$CellContext`A$$]}, PlotRange -> Full],
"Specifications" :> {{$CellContext`b$$, 0, 10, 0.1}, {$CellContext`A$$,
1, 10000000000}}, "Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{407., {162., 169.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{
3.772362652746797*^9, 3.772362718360971*^9, 3.772362800411564*^9,
3.77236290770186*^9, {3.7723630010467157`*^9, 3.772363065796159*^9}, {
3.7723632329092817`*^9, 3.772363269044318*^9}, {3.772364028553653*^9,
3.772364042530711*^9}, {3.772364176825845*^9, 3.772364190424067*^9}, {
3.772364338535862*^9, 3.7723644015521383`*^9}, 3.772364441730547*^9, {
3.7723645974619837`*^9, 3.7723646320995207`*^9}, {3.772365660659834*^9,
3.772365662971449*^9}, {3.772365711707583*^9, 3.772365844546019*^9}, {
3.772365879216708*^9, 3.772365885034894*^9}, {3.772366236331094*^9,
3.772366239453335*^9}, {3.772366798775729*^9, 3.772366813684574*^9},
3.772366892694318*^9, {3.7723674227621927`*^9, 3.7723674581505127`*^9},
3.772367591047086*^9, {3.7723676322283792`*^9, 3.772367677400671*^9}, {
3.772367772515873*^9, 3.772367791706471*^9}, {3.772367873324988*^9,
3.772367901700675*^9}, 3.772369163264176*^9, 3.7723693178673067`*^9},
CellLabel->"Out[78]=",ExpressionUUID->"ea772716-f8b7-430d-90e9-8ac8d383b59c"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"uKdV", "[",
RowBox[{"A_", ",", "x_", ",", "t_"}], "]"}], "=",
RowBox[{
RowBox[{"uG", "[",
RowBox[{"x", ",", "t"}], "]"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["R", "2"], "a1", " ",
RowBox[{
SubscriptBox["\[PartialD]",
RowBox[{"x", ",", "x"}]],
RowBox[{"uG", "[",
RowBox[{"x", ",", "t"}], "]"}]}]}], "+",
RowBox[{
FractionBox["a2", "c"], " ", "x", " ",
RowBox[{
SubscriptBox["\[PartialD]", "t"],
RowBox[{"uG", "[",
RowBox[{"x", ",", "t"}], "]"}]}]}], "+",
RowBox[{"a3", " ",
RowBox[{
SuperscriptBox["uG",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}],
RowBox[{
SuperscriptBox["uG",
TagBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}]}], ")"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.772369165564292*^9, 3.7723691998558073`*^9}, {
3.77236923423929*^9, 3.7723692542074623`*^9}},
CellLabel->"In[98]:=",ExpressionUUID->"67f9bc70-c8d2-43ad-817c-6b6564720465"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"uKdV", "[",
RowBox[{
RowBox[{"-", "1"}], ",", "x", ",", "0"}], "]"}]], "Input",
CellLabel->"In[99]:=",ExpressionUUID->"7fdf2371-14ce-4ffa-ad94-1cba09e37245"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"1", "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}]}]]}],
"+",
FractionBox[
RowBox[{"4029.356706498583`", " ", "x", " ",
RowBox[{"Sinh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}]}],
")"}], "2"]], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"33.64672289655545`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"(",
RowBox[{"0.5428130007786117`", "\[VeryThinSpace]", "+",
RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
RowBox[{"Sech", "[",
RowBox[{"607.8195580190812`", " ", "x"}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "1.`"}], " ",
RowBox[{"Sinh", "[",
RowBox[{"607.8195580190812`", " ", "x"}], "]"}]}], "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Sinh", "[",
RowBox[{"62.83043926419158`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"9.67396639490774`", " ", "x"}]}], ")"}]}], "]"}]}]}],
")"}]}], "]"}], " ",
RowBox[{"Sinh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}],
")"}], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}]}],
")"}], "2"]}], "-",
RowBox[{"0.0000370253017357029`", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"3.097666082567834`*^6", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}],
"]"}]}]}], ")"}], "2"]], "-",
FractionBox[
RowBox[{"1.2986432562051091`*^7", " ",
SuperscriptBox[
RowBox[{"Sinh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}], "]"}],
"2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2.0961640499491616`", " ",
RowBox[{"Cosh", "[",
RowBox[{"1215.6391160381625`", " ",
RowBox[{"(",
RowBox[{"0.`", "\[VeryThinSpace]", "+", "x"}], ")"}]}],
"]"}]}]}], ")"}], "3"]]}], ")"}]}]}]], "Output",
CellChangeTimes->{{3.7723693564748297`*^9, 3.772369419517543*^9}},
CellLabel->"Out[99]=",ExpressionUUID->"6290c5fd-8eba-420f-a384-b971e0fe286f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"uKdV", "[",
RowBox[{"A", ",", "x", ",", "0"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "0.01"}], ",", "0.01"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"A", ",",
RowBox[{"-", "1"}], ",",
RowBox[{"-", "0.01"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.772369248434176*^9, 3.772369262789719*^9}, {
3.772369332631373*^9, 3.772369348509062*^9}, {3.7723694279146767`*^9,
3.7723694994113607`*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"64b689b6-80fa-4c25-9579-c36edd1be811"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`A$$ = -0.09999999999999998, Typeset`show$$ =
True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`A$$], -1, -0.01}}, Typeset`size$$ = {
360., {104., 109.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`A$11806$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, "Variables" :> {$CellContext`A$$ = -1},
"ControllerVariables" :> {
Hold[$CellContext`A$$, $CellContext`A$11806$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot[
$CellContext`uKdV[$CellContext`A$$, $CellContext`x,
0], {$CellContext`x, -0.01, 0.01}, PlotRange -> Full],
"Specifications" :> {{$CellContext`A$$, -1, -0.01}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{407., {159., 166.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{
3.772369349061165*^9, 3.772369386973579*^9, {3.772369423292324*^9,
3.772369504025125*^9}},
CellLabel->
"Out[104]=",ExpressionUUID->"8c92fd41-e725-446d-8b77-8c4d1c6cd1ea"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fig", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"uKdV", "[",
RowBox[{
RowBox[{"-", "0.1"}], ",", "x", ",", "0"}], "]"}], ",",
RowBox[{"uKdV", "[",
RowBox[{
RowBox[{"-", "0.06"}], ",", "x", ",", "0"}], "]"}], ",",
RowBox[{"uKdV", "[",
RowBox[{
RowBox[{"-", "0.02"}], ",", "x", ",", "0"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "0.02"}], ",", "0.02"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Xi]", ",", "u"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.772369787500059*^9, 3.7723699739689093`*^9}, {
3.77237007802717*^9, 3.7723700847914553`*^9}, {3.772370139432851*^9,
3.7723701595435038`*^9}, {3.772370191848811*^9, 3.772370237664723*^9}},
CellLabel->
"In[120]:=",ExpressionUUID->"6c80930e-7581-4489-b446-8ecd59188b88"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVVnc8Fd4bphISycgsMhqEVF/ZL5FN9gohVPYe9147e9173XsrGaWoVEYh
VF7EvRQqFUWDojSMSsuo3/39dT7P53nfc95xzvOerb5h9v6rODg4Qjk5OP6/
nhy+pDVBoGH3W3v+60QNEHnVNn8ljob5OfOEB3QNuPhu4FJkNA0T/wpv4qnX
gO7576JrQmmYtn3HkZeTGsDFZ/Btmw8NBQ5eWf/j0H7IhOc1waY03B8ZM8K1
SxOyLvNI/xZm75cbnVu1rAXidVJPOgRpGGzpR34oqQ2Xm1Rzc/hp2JrX4Sut
pQ29XY6/JblpeOnDFT6ZWG3geXXuqd5iMbamBzzq/6oN2Ru1CtLHi3He7ej9
mTkdyCWc+CtwvRhDOBVkgnn0Qf1pYAz1SjE2MuyfqKnqw3OV4C+i1cW47kBT
nZyjPmyfCB2VrihG26LBPsY5feg2jW5WohTjn02X5tp1AP6JJIeaxBSj9In7
1ef1DCC6jvY6Ua8YL1DnhgLIhiDNy3Di1C5Gl+cS/8VWG8I931P9JzWK8dXJ
VuHzdwxBaFNJW55aMZpwHR0w/2gIdaQKxpmtxfhkfcSXT0YH4JN5jU0TVzF+
tBpXy/17AI5MYvuXASo+Jxlu0sw1hvVHnA5fvU9F7859YQcrjaHlxadfJ1hs
vkSqPrTNGAQfiqp/6KBidqLICdHPxtDVGnRh4iYVtUsLtG9ZHwSFIrHs4TNU
HGu6+f64uAlMa4XZdfhTMZjCqRrebQq0xjWzSb5UzK+AYe1xUzBQK8nVO0JF
hQ3i1YrLpnBGoedemysVj9wKt/HYZwYWG6Q0miypSNrixLKrNoNrk0zJGnUq
luZ84U0im0N40ZbJ4hUKqkbytn1MsoTtlNsvfBcpKB3RFOxTbgmvqa4P1X9R
sDr2w43lu5ZgzaC2PZyn4PvPfxjlK5agVLaWwjdJwb13y4RoSVYwWTOrl36f
glbLaWtPZFmDG7P9VOQptn9fMP+rpkMg2Hu4wJBGQZPHtv6bRg9Bb9/vNEEK
BZ8IMnLj/x4CjYE9obW5FOw2X/N7TN4WRJ5WG39KpCD/1BKvSKgtDE4UfvXx
o6Djr8EJwlo7OLDiZWmnTsGbg7qWvab2IGj/iWNMhYI7K6fW+XnZw5vqmGY/
JQquNpGzloqxB5Jt/tZ4eQp2yU2Nvqy0h+YLrb/KRSm4/+qu2rp/9qBkIXLx
yx8yfmir02todwChU33LWV1k3KX8nSXs4ATjnx1vbEQyflvUNPYJcYI6g/Fj
Z2+TMY/1ljaY5QRWn34O1TaSMUs13pT3rhNk6ilceVZNxvy3j9eu3ukMi++S
nOTzyDhUISmxk9sF3u3eV9vuQEbL4yNydq9cobnaISfdloyXt035PP/jCrnS
UX5m1mSUidpTmbzJDXbz3JAcMiFjLi26TtXWDZLeqGVNaZFRYlagS6jHDSQL
lb3Xy5Jxqavea2OTO1QOH1RofF6EEakey+9qPcC86+So3lARlh6uk6t/6AHz
1++RWQ+KUHXo7qNz8x6gn2G4MtpehFob0XN+jye82Ks3zFlVhCTrvlirVk8Q
pOzLPhRRhCGEtO+SA16QbCn/5RNvEXYOeQeI5niD4yt9uU+rirCIw58/ucwb
lMLcXT8uFaJYWYM85w1veEqldH+YKUTyXTe+Q2NsfvRf6eTjQjz1e7xXRM0H
nh5/af36TCFyb2g64j3mA0qZ9LrHOwsxgEfIusP0KHCIN0w9kivEzAmsDD1y
FJ5d6Zd6JFWIFUc/cGrFHYWUgdXZg/xs+4hzznKX2LxIpPeDrwV47bl5kwWP
H6RcsNnY01qAaeTMeP5HfvCsgzuqxbwAZS6GT2nFBkCH957Dzw8UoPiGdyLb
KAFwjcPT6LcO2/96jaL6tQBIM7ghrKlagF43OgMvvg2A3R0ejbeECtCsaGLN
artjkI8NP5rH8jFwIfHJnb3H4UD74fimkHw8sODisU4oEFS9Mr2fBeRjqLmO
qpB6IEj8rTf7cSQfF/i38+rZBsK83lqJ/+zzUfbEkN9yYSCU3a1vbdTIR5Ub
29IVBYLg9x2upZv/8pAx2SptIBwMdbfrEm9Q8jCU5fOCrBUKF8tWNZjl5eGs
gJvviHsolCQ7Tb4+mYfuPdmWBqRQOGm0ZMEXn4ceFo+bEzAU3B6YiPt55eHT
ayF6haZhsHrs1Q1R5Tz8vKRssUstHFwW+abju3ORNyc08qJDBFi99JLa0J6L
x079O5AXEMHOr8Gm6lYuJug8Vc1IiIBdaS5Nj2ty8dPyI8aNigjgXHchTYmS
iwHNaV4/vkTAVQntzS89czFM4G/2jrxI+Kd53B5+5WD6JkPyzeEokOs8xWU5
n4MnjroUfJ6JAhNzVovzxxxssn3ioMsVDYVu22RCx3JQ/09QwY590SBNmPxc
ijlY8fXmlEpxNGjf9s5YzMrBsZ/CTStOMRCr59bSJJ6DC32BsnpzsTBjaLFl
l3Y2fguKY8VFE0ByfaV07d5s/PD2VROJTACz4T+Su1WysRlSjp69RoCLgVfE
9slmI2292d5tUwRwL+bZqLs2G1dOjclEuRCBOclcbTWUhaSVx60/DEhQkWX0
MSgwCyX6w0R/bE8CuwHdxqslmVgwMk/ZpJAKtKoLfja0THw2U7N/23+p8Dxx
nejXgkyMDZ4MNjJJBW/V5zEaqZno/GZdYfXxVAgtitrfeSyTPT9qX2+oTYU8
u5q24X2ZyBrh+hOmkwY9z8Q6OR9mIFG/78EJ73TQev1twGV1BpYPNlR9GcqA
dsLQ66Pm6Vhz3kq+qj8P2s50ta66norNZt0Zqt/J4MfB17S2OhW/rtHMSOag
wIZjDvXrKlLRUyj38CA/Bfz2TVYLUVJRWixr1G8HBfgfctHkYlJxr/UX+XBP
CnivMQ89oJeK3frOCsNMCnCHPZRLG0hBl/pj3lF0Ktx4JrYlk5mCW6eGlbdU
UsFD11siF1OQZ4f81o5aKtTzft1AbUjBMuHCnGkWFdwvCq2cp6fgsYmRXd1/
qHD9hdNIp2cKhrlfNAs6XAyXslvEVr9MxsFf3C2xIjTYEXks0mowGSO+/Rs2
l6HB5cObBugdyVi6TvMYnxINalSj03ZUJWPN4cICV6BB7VO1GevQZDxEm7m4
8QQNmmUvdZ3mSMZNdPjd0EKD/eucN7/9loQSp8QCjLpo0PJ9TbzyVBLeUbxf
f/cBDdqYvirtfUlYQexyD3pNg7vBW06/oyahf+w+o3Or6NDdQg9RVUzCu+NT
ZWImdGD/AXrjxJJwuH7DE24bOjDzvst18iZhvsD6+FEnOvR62T13mE3EaOfv
zor+dHiwht8o4VYi+tdukzqYRger2dtlXVcSUZ40k6WbQ4f+kcDffKWJeGn2
6IgQmQ6DNb3Xy1MSkb9urYl7GR2GbE+Kd5snouDBiAOmzXRw0N4bxa+biJEa
p6/uuEOHp/JvB5xVE/G+0geVqU46DP+E9I9CiTio/z5zpp8OLuOzr/ZwJWK+
cMkRzSE6PO8r0yT9ImHLDaKTxwgdXpQuzQi8JGHMMAdVZYIO7pk1Zq6DJOxg
soZeTNFhNMztwvkOEj56wqno+YkOLw/cct1XRcIFD8UP77/RwXNXwM3EUyRc
vKpl/uUnHV6Ligqwckj42VX0PHORDuPTkffcQklYVXKc7zcnA6KdIxuLfEi4
imN5UpSLAbzdEVU9jiT8KaobvZ6HAeXqEYwlUxLG9hBMxtYxYE9FeJa6DgmV
yoynU/kZwFofHn9MlYTUIO+pfxsY4EEIO1G2lYROLwd7HYUYkOEUasnLQ8Kk
kJ7A1E0MkLwXogtLRBSYD9ZxFWdA7e4QlZhZIgrtqtq0RpIBRuXBW65OELH2
cW76SSkGPOcL3jDxlIhpxyN5XkgzIDghiEOsl4j9XNNKnFsYwPkh8KvVbSIm
cteFLbMxwzHwbVotES2GOt3vyzBAqevEk5bzRFxDswsLlGVAu9qJ7lkaEdPX
MdVesrFD2fEmhWwivrS+u1lmKwOm1x2vdicSMbiCr20PG5Pij50ihxLRRO/2
yU1sLPg+IJvpQ8RGrfUrfWz/KoeAhGVHIm5yiT5vxcbanf6Be8yI2DRdPlfG
Pn9Q1f/wcR0iDt8K9rvLjs+31M+qXJWIgrPfiTWbGfCL10/v6VYicq9OafBj
55cfd1R1nSgRFRooyZ/Z9ZCd8pUx4CGi7szrI/oSDGiy9xWMXSKg76T9Aw8x
Blh0+HBemyVg2l9+bRNRBrxW8fk2MUHA8Sl/+UV2/aPOer8Te0bA47SplThB
BvDwej+17iUgd4A1ILt/pbFHetJvE/Dg7mKPh+z+qk96NbfWEnDgyNu+S9wM
YNp5XZo7T0BvqdJF0zUMcEfP04p0Ak4HufjUcTBgbpdnzuFsAnYFTYS9WqaD
OI9HECuUgL9jqkzzFuhwLeawx4oPO96VnHneeToYvnO33utEwL5GKof1ZzoE
trupVegQ0HFf9/ot7Pv+V9lN9pkqATv22r+tGaND8RnXjXxyBFzIffj4zzM6
3Il2+R7LQ0Dp4EeXx/roYPvWefLaUgKeISUfDblHh6lDzs/ezibgsfGY1+3s
9yig7HTL5lkCdqttvFleS4cLpx0vn+xNQLNXzS+UL9FBc63jmbbbCbg2p9o9
toIOPhP2xG2VCVgc9W/ZoIgOP23sgz3oCbhZwW4KM+mQe8fOk5qdgAxxbPqT
SIfGU7bwNzQBPUPiaWeD6LDWxmb1sE4Clpb7MzON2KLHzb3wUyUBw0tOl73Z
T4ePnTgpJpuAZ7FEfUKZrTf/qTPd1iRgW94v0zEhOlA3i+S86o/Hal/Fv8Uv
aXBypD/hbzsbd32jSg3SIIaSESjTEI/vj09pH0QauHL9svShx6Mmc4sn8RwN
tsy8EJjyjEeZy7xT7l40ELxE/cdly/ZPeiE8ZkUDTh/L+W0H4rHEpybspzYN
Jp/eeXx8WzwyNDWUlkTZen6ngvZlNg5v7HV+Lc8qBo18f8mF5DhM9ZtS3ila
DDtMtvCJRsbhmU/uv+eXqSDBMbL0n18cnnu8Jf3gJBWWo8xexZnFIX9Qy2ZK
AxW6DiufWxKMw42JxeanTajQKDpJll4dh92V3XNXlahQ9bA0Ve9HLErqcjw3
FqBCtpHA0eQXsWh1ZUfVqqcUsFH+qri6MhZrvYapxW4UMJi6skmBFosPRThq
m7UooF7hy30wMxYtJnSDXCQoICL8dDozMBa7T9p/5x8hw+hi89V1e2PR4Nlt
zX1WZDh2n6Qu1B2DvUYvpSW0CiGYJ7NF5lYMZrp3Pjs9UwCRJkWgUhODHWEV
JMnzBUDqOm9tRo7BQkWWzmauAiC3MU8kecRgyeOPwgsd7HlfI1j5aSEaiQ/a
VU+uzQGcltj5+0M05hNfMfxqsqF7m3w911g0pvw+f1bFOhseVv7XLtsZjZrS
pL1RRVkwWeI+6lwQjdrfJPrPrc0EgbyLQvcUozFN903vzvY0EO67fuaReDQK
lSXueXEoDcS5b8m+5otGASlbkut4Ksin96n++RqFlZl+lztWUkCTOGuh1h6F
jY28vyQdk8A3SDP9rHMUpuR7ZZcXxkKTZf/3qKxIHJcplyI4OoL4cCEhOIGN
RxrT+YNtgOBtx+kfFIne/E5OFFFj0I8ZFnA+FIkc9e7zepTldmb5+E5NsUh8
VPJd5ie3Mz7/unBkuToCBUfzWj5+Ckdt0q33C6cjMFvY1J//WCSWriWEzORG
YGMDvzL5fRRbR/4RXoey7X/yJd6Zi8WPxryMDo0IPDd999KcUiIuntrcf5IZ
jmLbFY6YyGegh9y4fWJLOAper7r8aDkD269VvoipCceisQvqks8zMa1z+4eA
wnA8nX98bKY4G/k+q68ydw5HiukexhXZfNQk5YdL9ofhf919kZEsCpJ6X5kp
84XiRbMRsT9vzuBp0YotFXMh6GNuTs8KKMEmX+8FoachGJ7bkzw3U4Kzy28r
FktD8P0RWrjFv7PorT79s081BOWYrUbyu8rRuOTbxeP2wVjSmHaQw+U8rg/m
5qw+E4iahfcv8m6vxtIN6q2yO47hHtmCDv+Iehz3K74dInAMrc8J68+erUeF
th932xYCMONithKDWY/X/Nq6HDsDcP5ZO+2AdAPebjXqz3YPQIKklAZnXwOO
HnV+M5/vj14/hpjXtt9EiRYiV+fXo2js/+Ggws8mZHgz7Xxue6ObCTNqsuk2
0mzOOpys8EZ30VsX7n+4jVTdcKdL6d6Y/osYd0niDhaIS7rNWHpjz42rAoaJ
d5Dn/FjHt5YjWPs+YmDE6C5Opii9llvyRHeN3lW1A+1YZtArnp7sjneCD22x
ft+Bp6UjpftM3XGltKX58koH0n5LyW4QdEeeXLObsyKdmF8ftv3sOTcc9dCp
2m/UiQRZMY2bna4ostv/7/XyTnTmCHB4t9oF31Qx+Bpsu1CgY3WhUbYDivQ1
FuiU3UPXa3OfdBwd8FuWv3l23T2sPD1muk/WAWf3pmy82XkP90fc5FRsscck
w/ubzk/dQ2+5ozFrp+1QbuOEwRPlbrx5ssujz9QWgxVTjfY1dOPf8NrWTmFb
/GyzxWh3ZzeS2/apROMhXGPc82j1425sDZo85zRng4HFLP7d8924ftAoW/yQ
NXJvPZhM3dWDDdRVLuUCFmisuzNJpawHTYJGBYuqzdFXmFs4tqYHR41u3E/W
N8eapaoY8q0eXPPDR98n1AwHTgU7aj3uQWeXTkWFQRPsXSlLt1/FxM9qZ96I
BJhgxwnZPFkBJqbwRJzh+nsQH7ZIv7wrwcQrrbL8H1QO4s4LP3f572bislTK
wpUCI1QoNczzOsxE8oJLbYmiEapLzY2wRw4qDqgdz7t7ADkaBNSvhTHRJunN
WPCMIYpndHKopDPx/Lj+PTVrA1Trd1bouMTEoEiVRYP7gG3qaaM+9Uykyb8K
kVvUR9MOjtrBFiZ+yNB1mnLTQ6W9IwM8fUzMt1iSD5LQRru5rK1/3jMxrj3/
ha+1FlIenY57MMNE3z1bitxTNXHAbSX0xAITNSUNF80/aiCVW/80NycL5QuH
6gw3a6A4d3E8NzcLBVb5+WvZ/YcEZXWXofUsnPyY+WhH614cTDxF6BVj4UNP
8UzZmT34guoQ/12ahW2Pr+iIb92DA9NG76e3spDc2l/NnbMbn/rbFu9RZuFP
9zstfxPU0N9dkJGpxsKBA2/kZydUUHDZhnxxLwsJQoqL/Q1K+PdxLKe+Dgtt
F03970jsRJm+cZNWfRZuexv46GrqdjQ2HpD9a8jC5b4CnbMfFVFB93PC+oMs
HGqor861U0Denxb6k6YsvHzmyUZCqxzu+u51OMOChUmpP0kntm5F4sNlnLNi
80N7HjUIyeAGQS8P+UMsdKqMrya/lcJb47JysnYs5IxsJ4XdEEeBTrM17+1Z
eN1wjYNNmig2y8KvaEcWum202KliL4SDn57M9zuxkK9L5p+YsQCe49CfnnFm
oZ/P1avP3nFjyAWp4REXFt7h2O9anM6JngORjbmuLNxhkMFbafKzPTqhIWmt
Gwur1HTHR/BT+7Sem6EuG/8PI6t/fQ==
"]], LineBox[CompressedData["
1:eJwVV3c81d8bR0NJUspKCKmMzITkTfYIGRGVTclel3sRGVlxr3uvNAhNZGam
+pRx77elgZZRpJRRkpBUv/v767zer+ec9/N+zjnPc86z2SvE3peHi4sriJuL
6//jNRW996+IMf3Pew4a6h1kExpGyRcW7izFWhof7y4XNvH20tw3PclVuNqb
Y3bUmU0Y8jSWgBBEjJUfxesAm2Cqhz7y+CYEhoxh2RYnNvHFS+FnkpQIhkR3
val1YBN69BHJS7bi+CTKXs9rzyao7UXmHSc2QZ/90m+LHZuYjlVqmXaWRt6/
2j5+GzYhkbfSZsnUZpw04Eu6Y8UmTMs/DQuly+Ln8lnfXRZsIrStnSQnvQWl
olPnyKZsomM6vsTEbhtCxsf2HDZgE1/53LQOfN4OTden3Yt6bEJUVvuRX6Ii
6NRTK/102ESgw/TMqZodyFF2v8lUYxOPGkaNreVUQeP1cD2kzCbeGx7IdZxS
RdyOn8snt7EJPlcNOd90dXSp0D4GSrEJqU8lwUGOGtipst/pkDib0AwXbImS
1sSBkfWmwhvYxJHMyX1pzTshsLRLc2wlm6i9dY107bM2etqWuAh/ZxHziUms
f5060Nk9EPbgC4vQN3Pb4HJJF26KD3gxzCIedgvcXHFED4wTB3LCX7CI4Ymo
r8e6Adv7dg3cNSyC8eaapKeLAU4M2Ng/vcoimm6vN13NNsDTfya+noUs4s/J
rwzfy4Zo8tbg68lgERlrStWF3Y2gLPMp+rc7i7gxLeDa9sQItPEHgzOOLOJZ
LyUpWM8YgvG3pBssWITwBadnLDETOHeeO5mlziJKt60MJvWYQsFbyfAsN4u4
ZRha9trCEryL9bEZzE5iQG7gWUqzJV5cUXovfqqT4FphOa+61QqhNqXLYmM6
CdMuWbOMpdbwuCG2s9C1k+h2fTWiQ+xDzmjuH6pEJzGrI0Xdd84OtaqJBeln
OggBh7RHVWsc0e+p5vc3sJ3YX7+Qam/kCPvfybzuru0EY0OIwWy0I0aNIuWL
zdoJsdfODXsGHdGsPnu6c3M7IXd4+8XHN5wgk+s/cb2njdD1fxw+ZuEMWpvL
FvWdbYQvZZ24fIorniWzi11H7hGD+23rbeI8MGw1Z/hI/jbB+iKcZ1ngAQuT
rictM61EZdJgiGm9B+pVta8WtbUScbVBivoTHhCTeatve6SVEF+bXap8yBMz
63Qf+TNvEQee/Ufl1/PCTJnZGtslLUSXzd6gh7+9MdT/geQ10kA0flppxRLx
QSNtum6iroEoTHi+rU3DB/febRXMTGogAqs8RlqO++DoyB8rbqkGgk/ghFtZ
nw+GTUTWzrnWE6ZPWi3SW31xr99c/NKrOoKw2ilvSvGHn9zCe6vn1YRNxb3d
RL4/RHm3v00hVRODfNb7tev80eMvX8EnWU0sPvCKU/jiD/HqkGtcgVWErjn1
hYDzURx9KjJWvaqSqDceT3ilfgzasTSvAddy4vqekldHxwJAlr4YVrfnCrGr
UGlyaNlxiNqZS234dplgLTbxuG0+jk2F5Nq+4svEx9Yu5X0ux1Eu/8Mvf9ll
QkZ3MVmNdRzkZTanurpLiQtazqoLJYHYe5nVUpJcTNBUVmdkHQxGXc1tw8e+
BcR82lyYYkQwNvYpD10dP0N4DA65PsoORkioS7Z++BlC9XSj0qp7wSiuWEy+
kpRPPBtzf5YpH4K1TT2pjmUMQvBqnUjmjxDYP3+krS9BI24n2HAxl4dC6/KQ
0FQllQgtb5/xEQoFdWhsu7sBlXjNXTWwVDkUtVd6pL905RDXa05WG3uEwnjQ
gD4Vl0WYCSg5dLBC8fR04v4wqVRiQafEjNEdiiWGQd32rilEla+wns/7UHwt
45G6np9MCN/h2rJ0IRQ6vz7QKoROEp+O984aKYdBifTLarl+ApH2IOFcOz0M
muxPSudnwonOlOdDbR7hSNxXra10WBsSPqdfXgsOR/F2wf7lJ0wRaWTxKDsu
HIJbSvzk3ewgw3O//kBBOLjcd3v0B7oi4UTNqbGnHDulZrTmjx+0yLnK6xAB
n/wls9z1kTh90EpmzjoC87m7j+x8EoURbV6RftcIFLyvtiB9iEbeXALX1egI
aCc6MjV5Y/E1MrhbpyoC6V/Cb8wpxuNqyL5Yz02RqDPOEf4QfRJ/bFYGmypG
wgBKcuyJk3Dc0emlqBMJMZXHwbaeyeCZ1LP+6RiJyi4+I0fTFBwJUJLKyI5E
2wHSrDdXGoR9V3XW/I6E+didg+ZaGQgyZrcwV0ahyPclj9OZDHTIJleRRaJw
7zG7UG4uA+HDC2eMNaJw48aZ6PU3M9HlPhbwOiAKHYXZgUES2Tjl+kCQ620U
zCWyt7Q25uBhg2bI/KcojH5Tfdf0LwcCa4ufTP2IgtnXg4mtZrlgsKMzh1ZH
I9fS5dVATy5KNeWWthtGI8WBXjkQRsXH3FyvVptoaMiVjZ3Oo2Lb+MK9m27R
cPQl/2TXUVFd8jz+clQ0Lq8LLez/TsVtgRNzqWXRqHFkmBUF0MAVMOaU0BgN
npM8y26eosGo06k+uj0ajU58fc6XaXhIUQrzH4iGhIjWlGM/Da8+vxkzX0tC
osWPFHWzPEy3aQ6uiiVhxx++bdtW0rFTslhvaRoJ0hN1huel6IiJXXV+MY8E
jTVvifKddPxTGXaevEGCwET+eIkHHfyFuc+73pNQy9j8bVkdHXbzCyrsSRKm
zz2VDOukg+7gl0MskCDmvOF6wms6xPn2WNWsj8Fav5rG5D90bCWNddDMY1BT
O6NoacRAwAsn2UynGJg3HWf0OzBQpXw/6aRXDFYOUeREfBjQHDmjHxEXgwm/
CeapZAb27jdpdqyJwUsvI9qxuwyk3qgR3ncnBpQBb4H9jxn4j1ciyuRhDBJL
pA58esOA7d1pNa2RGFzMCFq5aYaBQ4rFFSKisZgaDVPvkmMiImDySpdcLGyS
PkX8VWEis0y3OFUtFvt9e76N6DLRsrWX8cMyFpf1bm58ZcvEMz+Z3HJnzvrx
7fwjB5n4fCUkw9MnFrfIss1l3kwIy/ElPI2PxYPqB62e0UwoezvHpGXGYqZF
z8bpBBPGpZfD95yJRcl/d9YuTef4l4Z/RU0stoyEnmUWcPglIu1OfYhFgBxv
0tlGJkbd7lvqT8WC53NoNOkOE3/PCZj8XIzF/IcWnw0dHH6xMh1vYTIKblxK
oj/j8LvMaojLkkEd138T+ZKJQ2eMdjxX4dgdKimi/Zz4NgzKwIIMte+lY9c/
MVHiqLhp1omMRfa6t/njTDTTY0QqvciApbyrxRQTn9YK8W+MI6Ott9Ti7zwT
f+w8lr9IJ+Ns3cte7j9MrKdWcmUwOXyORkqPufJhJGD+c7aKDNb456NNvPlw
3cf8VtlKhgMPy/cNXz7Cs4e/+PxHRh0h69qxOh8Zj1RGNvaS0Zji9zRGMB/F
fPGDL4bIuD+rZDO3Lh9NFg9fZ3wlg+eD7RGDDfnoShfpNvjN0Ss/nOYoko+P
bJ8nc7wU+FxUtdEUy8fi8jp21XoKrou36bwXz4eQ6b/7vpsp6N/v3OUikQ+F
VOvbEjsoYH0cyy3alI+9HWcbu3UpkPes5a6TzMfBJaM1mWYUiBqIXaVL5SN0
r2aFoSOH7/fDv0bS+UhPSroy70FBh3hZdjsHX7zXdbE6iIJZ02dP123OR+O/
jef8yBRk+Z0xU+fgJ/rHGJtOUdB4KzdchoNH4htzeugUfOZO7frAWb94e0lG
VjEFo0Xxr6M5WGjRLnlvJQUz7bf4+zn+FXYXxf9qoWCxpPmTEAfvJY+TalgU
7LiwY0jy/3pbtMP9uylQOLEm+g8nvtD51EDJ9xQU386QrNmYj1O7uv16Jyhw
Led12MXZj6Joac/sXxTkd6pk0UU5ehuC3IyWx6Hm18ieTmGO3plbTgvr4hA3
Zjr0eD1Hr8YKu1qpODTsrRsr55zHYriT5VGlOBQsu9/lzjkvhe/f9F+axEGa
4fvTdhVn/odknVKHOCxZ3bDaZgXH30sRzWDPOLw9KN+3aRknvtvYvjw+Dn5d
sT2af5noquqWfZEZh9chZpviF5hIL/GXLCqIwxnxNU5nZ5lYTMsV0qqPQ+rc
H8L2KxONsbICPG1xkNB6yDv+hYnQwKYVXU/jkP23z//QRyY+7n/3x3c8DiTp
7pz2Pg6/hMpnpkw8hkq2ra1jcfjXtA97qsbDZ2NAK/99JvbyOA8o68fD/vPZ
i4atTDSNJrzoPBgPCcsEIb1qJorrum7/pMYjuP2TZxKTk6/mwTSnf/HQ/a4t
3+zGxI7dPNmbVyeg776WzJQDpx4o56dNiicg4G7RwEprTv4J3aWkaiWg+N8p
+5HdTJgOrvZrCEqAjF4RDMWZEI2s1N3Qn4A2+SOU+ecM3L448aGn+QQEdx08
IqrKgJeAqnl95wkYD6icXynPwMr4iBv0Fyeg+LJCbXwjAwdcFyLtJ07AoIIR
n8jLQAzf0iWf1ySig6t5cmGAjnWdaxm+RolIF0mXP5pOh5mucqNHeSJOGT+Z
edKThxo5n4UDMUmo93/Pd9iZho9B17M+aCWjv3o2f0IwG5c0++0HXqWgKqog
OM09Ddd/fjllMJgC+4cCrGbLNNxonLt9aSQFE+qJq+d3pqFRW2hrwPcUfFu8
llvIn4aHepa/Z/lSUWCYaZV6KxXTxs2XBPVTIZfOr9clmgoDJ8aM0eVUHGqv
+BXyLhmDUdb55aFpcGbxTpczObqo8VYFpDSwrG6JsU4mIauiiistIQ2hhsWH
v4ckQXtI8Lhndhp6FfjVYiyTkGfdC9HraRhuUiNMuZJgInvkS+q7NJQu+rNH
ghNx41mInqfNKZTvt7cQrEkARZE+LKKUjt8281fdaskwX3rBOlc9HaMm1Vuc
OHVt/cDlxuU66fBdfKJ2NJaMqpzGzJ8m6bCWrmx9a0jG++9v1Lvd09Hblys0
1R0L42bp5Bx6Om4peKc8XYyBgEmV7LLf6fDU2HLhtwcJbzc1nY7jzsDM6FfB
VeYkXJsl5n7wZuBypw3UVUgwuP780fD6DGgq/M1k/4lGxKqfEfd2ZHDy5KAi
/4VovH6+u4PilYEW8uDgt/4olB554DP9IANXRCO21YVw/k20nzYzzzJQ+kFg
Y5tzJAbbN+vMvspAzr5QxjgiIb6dvHrhYwbW8Dk+yBSMBP2HQiM3Tyas+f77
PVcXgZT0bN61upm4FkY7QVkMh1+dbblKeSYy9ApH8kvCsPQjhaFWmwml/Y4v
qrPDUCpyPUGjORM8fRIN70hhGIzjctjFyoTUGbMVKTZhcDar/a0/nIno4u7y
/sVQmPev22cjnoUVkTelbx8OheLyl98CM7MgV/FczcY9GPUKP7ba0LKQtKQ7
smB3MPRsBT1UCrLw+qGvPJ9oMKwLLJ99v5KFAJ6jht7PgxCoQNRE38/C/NM6
288mQbhhcz0scT4Lx7bef7JJKxA7zpB/0P2yMWu7T05XPQCNrWcUo4KysY9Q
+6EoFAD99/XeByKz8ZS0p8Fg5hhstn/rFj2ZjS1BhekvGo8hpNW7vrAwGy7h
s2X0PcdQ88466lpPNtJW2PEF7z8KtW1Sc7f2nsagX2vwWZofavjWj2yxOI1m
VXJhdIwfdkyueE61PY2icw3ngt39oFA3Xe536DQerCk6W6Xsx6kDrCProk9j
eOBv3/FHvlhvF8Q6VnYaYgeFjDtX+WKe1MoUFcwBpT+m3+SiN6Jda04mC+fg
043N5tYZ3pjRuxLyVSIHKr9IgQER3vjOnWvRsT0HgU1qSZNm3hjL8voTYpQD
s7oZa/5pL/RfXOnLjs7B3lwl3QJLL9xjO2tGD+Sg8Dg5zYrfE4JLQ0uOj+RA
TIer58ScBzwM0gU8x3PwQvJ+0+NhD/xrbv5s9SsHpU9u9la3eEC/XKxw84Zc
8Or9Jhcc9cDt7L5lT6xzkV3CDm1muqNlv/sr2du5MN/bx/pucBgrckjGYu25
SM/eXCG+6TBcHubWCjzMxYKFu2Pwr0OY33sv69erXLTdtd7JrDsEbc3NBk9/
5IKa/GOuT/4Q3LLCHO9soCL2WYKdnIgb3gRp3Dm6j4pfPfeVPDYcxGKAos11
Oyo6V9eups+7QPKo7LtRByrE+FVMP/W5wMdLiNvflYpvF1M0JktdMHXgh7Gv
PxXb3yXpx6q7YIXBzceeSVTwSS6NCXR2hvY6jX7XBip+n1eUfNPkBLc1ikHn
mqngZoo7vCxyQgK/7N83rVQUP5R/+C3VCR3LhaQPtlHh7rl2KcnRCXa/p72d
n1Lx4YOUY/e0I6fvrht3+EKFy2ThjjJNR5xpVP9tvYmGdyZiEn8f2aNKSVYj
TpqG4qgZ36ZGe7BKhY5XyNJAb0z3SC+xx2zOzNuVCjQUHOTiCSPZ44B/4y2W
Fg296VXqrnL2EBbVJRvY0VA9r5wUfXI/mLGGvzSSaTj/vS1L2dYON76pqXmn
0TArPHGsUs8OHb4yx/IyOLitZd5QwQ4z+5e8mcrlvANuUV3Xl9nBUaGzufIC
Db8OFfT2km2xvs88ZmsjDXWjLH83TxvQ9ezmxL/QUFQ9PK5qZQ2Gu31I7gQN
W2dXJNtu4+CTjqNLpmgoVzhFL1hmjfz/XF5NzNIwGLFwoOyeFQocPZvuLs0D
lSTzndC2QlFgOMlLOg/hFU8i81UtUX6BMVfmnId/y1x+nd9jjgoiP0TSLQ8B
5m0KN6TMcWO4YDTvSB7GzixOvec2R+W2wlcU3zxMqPKcbmKZoab+StO+iDzk
rJI0XW9vhobHjaTvORx+SlikX4gp7i2+ntNm5UF3Ta/zvnZj3P5rahn+IA/W
vFGVThXGaOZquFDxOA/z9RuDYunGqF5KM5TszsP6R4HV63yMUcRvkbXkPaev
okx+SV9ujDiJFsmuX3koFwmfOmZnBB29sybeynRUXa64pD5nCE193oILqnTs
fdHCHTJsCFWDqLFeDTp8HrjtaH9iiG3G+3PNdek4v2LuVN1lQ4har3yjbEaH
5KGdDuUOhph1iw2c5/Rh167OHh5tMEAd5SD9NIPzzrfR3B5tADY1TA/JF3D6
riW5ndcm9ZH+NUv13nmO/efo1aZOfc69vPtkupSOCof0R6HR+uA3k13hUkuH