From c24593c87569f3c8e19845d248cea31afb160e77 Mon Sep 17 00:00:00 2001 From: alanakbik Date: Mon, 15 Jul 2024 14:04:35 +0000 Subject: [PATCH] deploy: 86a5fc38bd2ad2ec6bdac774656854e6eba4a216 --- master/.buildinfo | 2 +- master/.doctrees/api/datasets/base.doctree | Bin 82828 -> 82828 bytes .../.doctrees/api/datasets/biomedical.doctree | Bin 1643749 -> 1643749 bytes .../datasets/document_classification.doctree | Bin 388286 -> 388286 bytes .../api/datasets/entity_linking.doctree | Bin 322799 -> 322799 bytes master/.doctrees/api/datasets/ocr.doctree | Bin 68580 -> 68580 bytes .../api/datasets/relation_extraction.doctree | Bin 48673 -> 48673 bytes .../api/datasets/sequence_labeling.doctree | Bin 789936 -> 789936 bytes .../.doctrees/api/datasets/text_image.doctree | Bin 11101 -> 11101 bytes .../.doctrees/api/datasets/text_text.doctree | Bin 261084 -> 261084 bytes .../.doctrees/api/datasets/treebanks.doctree | Bin 280395 -> 280395 bytes master/.doctrees/api/embeddings/base.doctree | Bin 75578 -> 75578 bytes .../.doctrees/api/embeddings/document.doctree | Bin 194881 -> 194881 bytes master/.doctrees/api/embeddings/image.doctree | Bin 59499 -> 59499 bytes .../.doctrees/api/embeddings/legacy.doctree | Bin 92006 -> 92006 bytes master/.doctrees/api/embeddings/token.doctree | Bin 338919 -> 338919 bytes .../api/embeddings/transformer.doctree | Bin 210205 -> 210205 bytes master/.doctrees/api/flair.data.doctree | Bin 388917 -> 388917 bytes master/.doctrees/api/flair.datasets.doctree | Bin 3128 -> 3128 bytes master/.doctrees/api/flair.doctree | Bin 17796 -> 17796 bytes master/.doctrees/api/flair.embeddings.doctree | Bin 2989 -> 2989 bytes master/.doctrees/api/flair.models.doctree | Bin 1061642 -> 1061642 bytes master/.doctrees/api/flair.nn.doctree | Bin 214040 -> 214040 bytes master/.doctrees/api/flair.splitter.doctree | Bin 56714 -> 56714 bytes .../.doctrees/api/flair.tokenization.doctree | Bin 61187 -> 61187 bytes master/.doctrees/api/flair.trainers.doctree | Bin 115189 -> 115189 bytes .../api/flair.trainers.plugins.doctree | Bin 205342 -> 205342 bytes master/.doctrees/api/index.doctree | Bin 3011 -> 3011 bytes master/.doctrees/contributing/index.doctree | Bin 2956 -> 2956 bytes .../contributing/local_development.doctree | Bin 8252 -> 8252 bytes .../making_a_pull_request.doctree | Bin 6194 -> 6194 bytes .../updating_documentation.doctree | Bin 13950 -> 13950 bytes .../contributing/writing_a_good_issue.doctree | Bin 14926 -> 14926 bytes master/.doctrees/environment.pickle | Bin 11497482 -> 11497482 bytes master/.doctrees/glossary/index.doctree | Bin 3582 -> 3582 bytes master/.doctrees/index.doctree | Bin 12910 -> 12910 bytes master/.doctrees/tutorial/index.doctree | Bin 3451 -> 3451 bytes master/.doctrees/tutorial/intro.doctree | Bin 11420 -> 11420 bytes .../tutorial-basics/basic-types.doctree | Bin 32167 -> 32167 bytes .../tutorial-basics/entity-linking.doctree | Bin 14351 -> 14351 bytes .../entity-mention-linking.doctree | Bin 20332 -> 20332 bytes .../how-predictions-work.doctree | Bin 10506 -> 10506 bytes .../tutorial-basics/how-to-tag-corpus.doctree | Bin 7246 -> 7246 bytes .../tutorial/tutorial-basics/index.doctree | Bin 3687 -> 3687 bytes .../tutorial-basics/other-models.doctree | Bin 32316 -> 32316 bytes .../part-of-speech-tagging.doctree | Bin 41268 -> 41268 bytes .../tutorial-basics/tagging-entities.doctree | Bin 52866 -> 52866 bytes .../tutorial-basics/tagging-sentiment.doctree | Bin 14446 -> 14446 bytes .../classic-word-embeddings.doctree | Bin 39621 -> 39621 bytes .../tutorial-embeddings/embeddings.doctree | Bin 19870 -> 19870 bytes .../flair-embeddings.doctree | Bin 66133 -> 66133 bytes .../tutorial-embeddings/index.doctree | Bin 3853 -> 3853 bytes .../other-embeddings.doctree | Bin 45977 -> 45977 bytes .../transformer-embeddings.doctree | Bin 32140 -> 32140 bytes .../customize-linking.doctree | Bin 19192 -> 19192 bytes .../tutorial/tutorial-hunflair2/index.doctree | Bin 4020 -> 4020 bytes .../tutorial-hunflair2/linking.doctree | Bin 21679 -> 21679 bytes .../tutorial-hunflair2/overview.doctree | Bin 29468 -> 29468 bytes .../tutorial-hunflair2/tagging.doctree | Bin 20791 -> 20791 bytes .../training-ner-models.doctree | Bin 21750 -> 21750 bytes .../how-model-training-works.doctree | Bin 46213 -> 46213 bytes .../how-to-load-custom-dataset.doctree | Bin 26185 -> 26185 bytes .../how-to-load-prepared-dataset.doctree | Bin 40293 -> 40293 bytes .../how-to-train-sequence-tagger.doctree | Bin 23419 -> 23419 bytes .../how-to-train-span-classifier.doctree | Bin 30468 -> 30468 bytes .../how-to-train-text-classifier.doctree | Bin 9139 -> 9139 bytes .../tutorial/tutorial-training/index.doctree | Bin 3596 -> 3596 bytes .../train-vs-fine-tune.doctree | Bin 3788 -> 3788 bytes .../transformer-embeddings.md.txt | 2 +- master/searchindex.js | 2 +- .../transformer-embeddings.html | 2 +- v0.13.0/.buildinfo | 2 +- v0.13.0/.doctrees/api/datasets/base.doctree | Bin 82841 -> 82841 bytes .../.doctrees/api/datasets/biomedical.doctree | Bin 1531708 -> 1531708 bytes .../datasets/document_classification.doctree | Bin 375870 -> 375870 bytes .../api/datasets/entity_linking.doctree | Bin 227331 -> 227331 bytes v0.13.0/.doctrees/api/datasets/ocr.doctree | Bin 68587 -> 68587 bytes .../api/datasets/relation_extraction.doctree | Bin 48688 -> 48688 bytes .../api/datasets/sequence_labeling.doctree | Bin 790065 -> 790065 bytes .../.doctrees/api/datasets/text_image.doctree | Bin 11104 -> 11104 bytes .../.doctrees/api/datasets/text_text.doctree | Bin 202334 -> 202334 bytes .../.doctrees/api/datasets/treebanks.doctree | Bin 250239 -> 250239 bytes v0.13.0/.doctrees/api/embeddings/base.doctree | Bin 75596 -> 75596 bytes .../.doctrees/api/embeddings/document.doctree | Bin 194914 -> 194914 bytes .../.doctrees/api/embeddings/image.doctree | Bin 59507 -> 59507 bytes .../.doctrees/api/embeddings/legacy.doctree | Bin 92020 -> 92020 bytes .../.doctrees/api/embeddings/token.doctree | Bin 338151 -> 338151 bytes .../api/embeddings/transformer.doctree | Bin 210245 -> 210245 bytes v0.13.0/.doctrees/api/flair.data.doctree | Bin 330720 -> 330720 bytes v0.13.0/.doctrees/api/flair.datasets.doctree | Bin 3128 -> 3128 bytes v0.13.0/.doctrees/api/flair.doctree | Bin 17724 -> 17724 bytes .../.doctrees/api/flair.embeddings.doctree | Bin 2989 -> 2989 bytes v0.13.0/.doctrees/api/flair.models.doctree | Bin 885061 -> 885061 bytes v0.13.0/.doctrees/api/flair.nn.doctree | Bin 213107 -> 213107 bytes v0.13.0/.doctrees/api/flair.splitter.doctree | Bin 67496 -> 67496 bytes .../.doctrees/api/flair.tokenization.doctree | Bin 61203 -> 61203 bytes v0.13.0/.doctrees/api/flair.trainers.doctree | Bin 115205 -> 115205 bytes .../api/flair.trainers.plugins.doctree | Bin 205405 -> 205405 bytes v0.13.0/.doctrees/api/index.doctree | Bin 3011 -> 3011 bytes v0.13.0/.doctrees/contributing/index.doctree | Bin 2956 -> 2956 bytes .../contributing/local_development.doctree | Bin 8252 -> 8252 bytes .../making_a_pull_request.doctree | Bin 6194 -> 6194 bytes .../updating_documentation.doctree | Bin 13950 -> 13950 bytes .../contributing/writing_a_good_issue.doctree | Bin 14926 -> 14926 bytes v0.13.0/.doctrees/environment.pickle | Bin 10520261 -> 10520261 bytes v0.13.0/.doctrees/glossary/index.doctree | Bin 3582 -> 3582 bytes v0.13.0/.doctrees/index.doctree | Bin 12910 -> 12910 bytes v0.13.0/.doctrees/tutorial/index.doctree | Bin 3410 -> 3410 bytes v0.13.0/.doctrees/tutorial/intro.doctree | Bin 11420 -> 11420 bytes .../tutorial-basics/basic-types.doctree | Bin 32167 -> 32167 bytes .../tutorial-basics/entity-linking.doctree | Bin 14351 -> 14351 bytes .../how-predictions-work.doctree | Bin 10506 -> 10506 bytes .../tutorial-basics/how-to-tag-corpus.doctree | Bin 7246 -> 7246 bytes .../tutorial/tutorial-basics/index.doctree | Bin 3632 -> 3632 bytes .../tutorial-basics/other-models.doctree | Bin 32316 -> 32316 bytes .../part-of-speech-tagging.doctree | Bin 41268 -> 41268 bytes .../tutorial-basics/tagging-entities.doctree | Bin 52866 -> 52866 bytes .../tutorial-basics/tagging-sentiment.doctree | Bin 14446 -> 14446 bytes .../classic-word-embeddings.doctree | Bin 39621 -> 39621 bytes .../tutorial-embeddings/embeddings.doctree | Bin 19870 -> 19870 bytes .../flair-embeddings.doctree | Bin 66133 -> 66133 bytes .../tutorial-embeddings/index.doctree | Bin 3853 -> 3853 bytes .../other-embeddings.doctree | Bin 45977 -> 45977 bytes .../transformer-embeddings.doctree | Bin 32140 -> 32140 bytes .../how-model-training-works.doctree | Bin 46213 -> 46213 bytes .../how-to-load-custom-dataset.doctree | Bin 26185 -> 26185 bytes .../how-to-load-prepared-dataset.doctree | Bin 40293 -> 40293 bytes .../how-to-train-sequence-tagger.doctree | Bin 23417 -> 23417 bytes .../how-to-train-text-classifier.doctree | Bin 9139 -> 9139 bytes .../tutorial/tutorial-training/index.doctree | Bin 3533 -> 3533 bytes .../train-vs-fine-tune.doctree | Bin 3788 -> 3788 bytes v0.13.1/.buildinfo | 2 +- v0.13.1/.doctrees/api/datasets/base.doctree | Bin 82841 -> 82841 bytes .../.doctrees/api/datasets/biomedical.doctree | Bin 1531708 -> 1531708 bytes .../datasets/document_classification.doctree | Bin 388346 -> 388346 bytes .../api/datasets/entity_linking.doctree | Bin 227331 -> 227331 bytes v0.13.1/.doctrees/api/datasets/ocr.doctree | Bin 68587 -> 68587 bytes .../api/datasets/relation_extraction.doctree | Bin 48688 -> 48688 bytes .../api/datasets/sequence_labeling.doctree | Bin 790065 -> 790065 bytes .../.doctrees/api/datasets/text_image.doctree | Bin 11104 -> 11104 bytes .../.doctrees/api/datasets/text_text.doctree | Bin 202334 -> 202334 bytes .../.doctrees/api/datasets/treebanks.doctree | Bin 250239 -> 250239 bytes v0.13.1/.doctrees/api/embeddings/base.doctree | Bin 75596 -> 75596 bytes .../.doctrees/api/embeddings/document.doctree | Bin 194914 -> 194914 bytes .../.doctrees/api/embeddings/image.doctree | Bin 59507 -> 59507 bytes .../.doctrees/api/embeddings/legacy.doctree | Bin 92020 -> 92020 bytes .../.doctrees/api/embeddings/token.doctree | Bin 338151 -> 338151 bytes .../api/embeddings/transformer.doctree | Bin 210245 -> 210245 bytes v0.13.1/.doctrees/api/flair.data.doctree | Bin 330720 -> 330720 bytes v0.13.1/.doctrees/api/flair.datasets.doctree | Bin 3128 -> 3128 bytes v0.13.1/.doctrees/api/flair.doctree | Bin 17724 -> 17724 bytes .../.doctrees/api/flair.embeddings.doctree | Bin 2989 -> 2989 bytes v0.13.1/.doctrees/api/flair.models.doctree | Bin 890889 -> 890889 bytes v0.13.1/.doctrees/api/flair.nn.doctree | Bin 214072 -> 214072 bytes v0.13.1/.doctrees/api/flair.splitter.doctree | Bin 67496 -> 67496 bytes .../.doctrees/api/flair.tokenization.doctree | Bin 61203 -> 61203 bytes v0.13.1/.doctrees/api/flair.trainers.doctree | Bin 115205 -> 115205 bytes .../api/flair.trainers.plugins.doctree | Bin 205405 -> 205405 bytes v0.13.1/.doctrees/api/index.doctree | Bin 3011 -> 3011 bytes v0.13.1/.doctrees/contributing/index.doctree | Bin 2956 -> 2956 bytes .../contributing/local_development.doctree | Bin 8252 -> 8252 bytes .../making_a_pull_request.doctree | Bin 6194 -> 6194 bytes .../updating_documentation.doctree | Bin 13950 -> 13950 bytes .../contributing/writing_a_good_issue.doctree | Bin 14926 -> 14926 bytes v0.13.1/.doctrees/environment.pickle | Bin 10547555 -> 10547555 bytes v0.13.1/.doctrees/glossary/index.doctree | Bin 3582 -> 3582 bytes v0.13.1/.doctrees/index.doctree | Bin 12910 -> 12910 bytes v0.13.1/.doctrees/tutorial/index.doctree | Bin 3410 -> 3410 bytes v0.13.1/.doctrees/tutorial/intro.doctree | Bin 11420 -> 11420 bytes .../tutorial-basics/basic-types.doctree | Bin 32167 -> 32167 bytes .../tutorial-basics/entity-linking.doctree | Bin 14351 -> 14351 bytes .../how-predictions-work.doctree | Bin 10506 -> 10506 bytes .../tutorial-basics/how-to-tag-corpus.doctree | Bin 7246 -> 7246 bytes .../tutorial/tutorial-basics/index.doctree | Bin 3632 -> 3632 bytes .../tutorial-basics/other-models.doctree | Bin 32316 -> 32316 bytes .../part-of-speech-tagging.doctree | Bin 41268 -> 41268 bytes .../tutorial-basics/tagging-entities.doctree | Bin 52866 -> 52866 bytes .../tutorial-basics/tagging-sentiment.doctree | Bin 14446 -> 14446 bytes .../classic-word-embeddings.doctree | Bin 39621 -> 39621 bytes .../tutorial-embeddings/embeddings.doctree | Bin 19870 -> 19870 bytes .../flair-embeddings.doctree | Bin 66133 -> 66133 bytes .../tutorial-embeddings/index.doctree | Bin 3853 -> 3853 bytes .../other-embeddings.doctree | Bin 45977 -> 45977 bytes .../transformer-embeddings.doctree | Bin 32140 -> 32140 bytes .../how-model-training-works.doctree | Bin 46213 -> 46213 bytes .../how-to-load-custom-dataset.doctree | Bin 26185 -> 26185 bytes .../how-to-load-prepared-dataset.doctree | Bin 40293 -> 40293 bytes .../how-to-train-sequence-tagger.doctree | Bin 23417 -> 23417 bytes .../how-to-train-text-classifier.doctree | Bin 9139 -> 9139 bytes .../tutorial/tutorial-training/index.doctree | Bin 3533 -> 3533 bytes .../train-vs-fine-tune.doctree | Bin 3788 -> 3788 bytes 191 files changed, 6 insertions(+), 6 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 5abcc0ee5..842190691 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: adfd6619745648e1e74d66828d4a826d +config: 063057422fc7c20a8816156b09df9744 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/api/datasets/base.doctree b/master/.doctrees/api/datasets/base.doctree index 3470d77fd004ab94a77f2f5144e40658a011984b..5100b1312f6a8e3f619080a6a15d914d1610ac13 100644 GIT binary patch delta 2351 zcmeBaXYFZc-H^&?SYc>xR$^9CqHkfAXquL6Y>|{=l$c_anrxPol9+66ZenI?W?^cQ zYL=RmXp(4TXtsG8V>mPE+9o%~icelJL22@RMXt?>tQA5O8sRIko(#t$xq^Fhp;R0P zMXnIv9H7k2PLUDZn=fc3vr=ZnWIuhL&07qDDKuttjad+-MmXC9P-4V-2a(N!P8^(+ zg~#ST?>HxQSNLMcm`yIOrkprWkyVvN#xl4Ds>Sh z`Ng14Y_dZ($K+cRgeK34j^EsxF^7^u0BYRkl{vD4;-EWV6#^V>0~@tPGSl zKUi{^0_{K-@NCvv9!`ERf;_=9S!+4pX129IMafQy5M%le@^5ZEY|cftF-ntv-xZu3 z9p$yT@tgoZ`NnJp8bf}tDoxi`W8|I8_l{$8_x%Y}F=y68brt<8 delta 2351 zcmeBaXYFZc-H^&?Xk3w;Wm;g6uWxQ)VQyw_k!WCSX_01ToMLX0l46>aVrXPyVU%QQ zZfIg*oMx0}ZoYXMV>mPE+9o%~icelJL22@RMXt?>tQA5O8sRIko(#t$xq^Fhp;R0P zMXnIv9H7k2PLUDZn=fc3vr=ZnWIuhL&07qDDKuttjad+-MmXC9P-4V-2a(N!P8^(+ zg~#ST?>HxQSNLMcm`yIOrkprWkyVvN#xl4Ds>Sh z`Ng14Y_dZ($K+cRgeK34j^EsxF^7^u0BYRkl{vD4;-EWV6#^V>0~@tPGSl zKUi{^0_{K-@NCvv9!`ERf;_=9S!+4pX129IMafQy5M%le@^5ZEY|cftF-ntv-xZu3 z9p$yT@tgoZ`NnJp8bf}tDoxi`W8|I8_l{$8_x%Y}F=y68br3nf4TA_zkXiUJmbWvn29jBM#R zfDJ@6z#60q>L}6_f2e>MaTpOHgb~|F`LDCjEr$8O;hQ&kk>^>Tv-Vnht-W@=r(Pd( z>h&=jrkXmm^P!vw7KW*cB99Py1RY*TiV^)uEVXj z+|%x!(W7n|)uwg3R%52zeSfP_#pBDqwT8=gna-G7UpJ%dLZnamP0BNNP_&un0TU=% z$LF#@qQk^ESJYd+Ghnh_zkK|{u_DzPT zd_s%gFneW}f0Ho<`*L@2=oeF@{AhD3PSeoFpIo(jZPQoig&KVSKR0fn~f?{_Ii+EA^0*04!6WT@rEqej$-adoV(eCWMj z0QM{&HFYfTX^x%ltBau4{fjl z3EF7$p$)O}yEm1>HaoPzRn}#jul&jFqXCyCba0g&-K~|+cz-6Mhsj~;SN3_Qg7O3V z#sCo`boug)Ut}ZsPRc%h^mYyCGc4P`tnUvVvEpN=t!)27r|47SXkI?=$0J}X`jP zThnEv?==`?$`OaUn-nU!&GZ?fdxCHbP(2~5Qk$NpWk?QSLID+In*@@4Sa>*<8!9+>;>K#VnWEDSq6dcBGpf=2<}8CbeloT*+(# ziWo^CwyOdRY{}2tMQI(gM-(-+jiX2End>8|Fku##$ZBd1iL4g(OuE0Zc@DyAJ=mE? zvs;_Imn=qVtu{c>=rF^?c>R})!Y?v&D2Kf0MYfR*+pM}VBUsUH%Sn4 z&vTZ`IACs%nD`pZm4oKah@B-=dTyW7m88U2=mFmEIFPm>h zIxvq4!vy!;0{U9D3`0yT39|3*)hw-%zMCSv5U{jDtjmM~kr%YYd+hUJ%Z-3Bh%tzq zUI!M4iYAs?LL2DnLZ_Qq&H|qo{(CLGDYuJuSq=e1l>T)Ipl!EX%*a5? zgg&Aw*Wxh-+V6T=<|7?S#}H$xfPt1+cpwr}EH}!S-d!rTyoahST1~gO#o&-bqd_w* zJ>7sC5$1eR}Z)%WlM+91(rQ)xUFZ%;i7ywXi%< zV~i?(SZO&0m^7&ju`;y~gCq!kv2=p9J+)Y4=>#{YaGfO}Y`2&mqzUUShk#WYW7?U! z*>a;ew$TFY-AMp3pea1*W!Kv1zuPP?Ak$N6O*Vs56n|g|8#%M+pO$A4mYnKN_|%ev z3_Mb}<6+C2NW4qoamOtGKsuDHv)(#wQEBZ7%Uy`>34&8>J7>wKFDonqkXFbdjTLzV zX@zuT-a>~ezB$8De)304Hqw-9Fm%qc9%;%on983m%fLqE3b)0oic>#Y(nM(+mz_HP zZb<`MCRuSOb@;T%Z;R;-PSfp!=>0xU` z?44-y({8`DF=91|$*FIxMRRIdH6&k4LUFn^Mwtz*&0!rfnpi!Xn_15xGk0D%=s{!J zSq~!mOW`-VTEmD7bz#B6PRi+iFsizyD?xRg8ncTck}Ko-fX zu~b?$!+IXcC=yfom{k+YKX%?rr6ty@z>qIDsebsI)kWHK)&qcP5&$oaF0=Xp*XjUb z4SE4VA!T1(WPJ#T2`MX9TGxQlP(=IRww42FjM#H?07K~ue|OWTTdmNN2@4m9s%=)M zSUkbnkv`jD-41wL*P%cx-)C)T#K82AtV_TcC?Lkv0~}}QkbcDKF?#;C!`2(1IewKj zn}(mTzKjYB?~j}gAOFGXL%iwNKhK2EfPPObY(|nG%MBH?s+`NH(@)kVK<5=YfeQby zj;IC99a*?9bqXu50B$FLU8OfN=)c`X=}#vbE7L(u$c#&#bQKwM6+3NuSXqVSYFYeB!jY#G6JmlCVbC+m z7$9NGRuJp(DdNq<=VMe_s&oX>fbsdPMan8*6*%buRZMzI2?);z?(VeZZRHOjiHrHC zLxV)+X2mYpn+3FVi&BVmt0ab=c~5DJxHLuRwMXfKctsMt?<+y#bAN9lUP%yC(d>ZY zGWJgQA5;{elgnzh*HPs#pof&5|D93+*ip)Ue@gKHL7~fvt7e-*Q_d)B02ibH^Uf*b zf$o?D2-d(uvo9*Y_^yATPf(&pX!KHSeQKf$dEK@QBq;O|Lu94fth6U+d!uHA|J1SF z0CWeD(qVBu+l_!vC4smVbAg_0eEv{lTY&iZSTPVsV$?)iUy<9@rif3b+4AZ2TWn2G z3^Aq_V#I_FDph9LzCjiTn2J9?*paf7wIb2H4I6_X>y!Um=}W z7JEBq@t4_i$i!SE2pR<*wKYXNC#zM~;daFCiO;K|vcwjjryqLEhTI5CHboU#&)U5D zO__1j?Rnd9xQORQ@y0}%EhaMNhq}`27i~WvaiNzoRI$>w1Qix6Y^UGX+I~X(BP%IM zn6Tc~78tXPVrbV!n@7~!;~z~=l-qI;UrR+K=8-Dr3c9%2_B7JxlNh?X!*&}oC6|PM z9Lu?kGpw+w2_qPH;E!f^#{h56rf^}eGM?GBmfc7aw(q#%z4?q9*HYCCz-v^ZWn{Tv=`7f>+FM& z2uoomZDt3(ztIjYrzJ7O7-(!t5LB^iD~D{$E%s6*`K2)R-m|;JvX7nPY3pt*1L`bd z6GIF19Q1vJtR3c6*xfYjOZ(f1f07ttOgm&;N)iMUd^F^w9X&rAZ%^S7?sT=jv%5vB zE%x>_=#+f|;;EEg61eLur&(Fi@2s@vgPHPA8q&(&?1O-usZTP7(QK=_8F7~`ELd2f z58Y}r#9b-EY_AG!iZY=>1(1BaQ zQIk*SGE}7Erl}oN=oJl?8%eKsQf~mpJHf*FqOz;%qLE$H9!O%BgsZ*P_(t%`UMf^m zOH6t{H9oc7)?fV@&_*Au7Eb0qP&A(Vbcd1ZD>Z-+Ly*zs&q}D|`ioi%nB&GFQ6ZG?)_&D0_B`q3ZICxrs3fV*qM4giXw~W(OfyoUx}+LL5tXF6#EAor z_H@I$Dl|R21~~gYj`XZ`j&U?&j|xrHl0ahH_l0t8KSvKydV|AB-mjnt7gLjjTmPjt zgvPxj;mcF%E|`!N;8xT+t@cDp64?r!Aei8x$}071V6E3MhEycm>6ifocal(-_@YQ# zBp|sdy+u(ohl9Lz9V=@@5MSTuP^nWR2XwwUrHGCJ61Q%Q-o#D$78;M^c4#144swj5 z%$ANc&>_;CPBF5xBPO~OItEfs2M2Z`w4bA&IF#*B1dpfrG~o_MH_$&4qtdN?9MFyo z8@3;@BE^7Lh=p$ert-Qs#}oTv8t8`pqV@OMzTBvGYw_zPPB>D38>LN`r!tVB{>f}n}ab?lJ$XFGZ$4oP4Xv1^VaMjM`UG(rX- zeF!6-EJN3$6XTzs7A<#lKpc`Hj9lq}mTo0Mdzn*%tPT3Fa^STAV?5%mHyj?~vS2OZ zm4r4P(Q=a`YOLSx-R$@RsNMBFkX(_q%VDF&yB)6}i7H7DE%z~I=w1i@#)VXbG3iLu zBowiV&ii?cZ#CV~k-`TZmp~IsvslHHFCA_ph@3|qEo#R4`jn%V@ve*iUk)=6NqR*u zHe7PJgneQlpU#|j{3j`MFo!-<6*NGjAnDjqFz z#xrVcwDW5O!xc~unmEb192FMZW;$JB&J5?4>+g$lYC#NG0feR$7QG(jP^g&YY!2A| zPlVE^on3+b7lSZ#g)?FV(#tP9y8yc|24?ar9FH=HUVY8E67q-sx=X7)PK6GYJKsWv zM_wQ`2!aV#a&L1sLSpI~%=Yb0sF0DEgFBpF<3`QfyPQxVlfWp#`;pT_ysi%wGAYd5 z&k|wR^m8Zr6gHK7<6HrFS!P|9b|U<;{#)1H zt~P*YQq~oD{av+*-?<4PPU0UexQmt-x}d{!Qn-AA%LN3f{!;^YQHP1HCcw~0EL?(k zfaM0$OEXYfQWRHjp!p}Db_DD|T&t7C5HWe&YF(%{-|cyyx6b=}CF9b*XD(b27nswVE( zpPnVyaFhE9pkn&}0988P%#FN!Z8)S$Yxim-#mWHZmen)fGTPSJ4XwuYdtB=+(g(T~ z(PN8}Pvd*KZwKlzk-(_bvcG#eGFIvYVnvYm%;TRQ>~JtEKLZi2HP5!NOkAX{r0f_1EJf37{3r++m>H zF$g95-A*z2b+?1E{_cj})RT&&FzIXELl8fvFjscF1H_j(s}PSSFtv!+1b#(4)4Hyw zxA-vAQ$WLyVWFuLsMf#THzH9fg|~d~z69mUx}HAbn{(_^`7;B{&bs>pYp#NIh-2hQ zn^2Yeb!1s2iJ?1wbN4|yg(TF`Jn_rDqXM24K&K$ad=GYo{yR_Hp2zJon}B#IrLDWXCWX=EIb^sAItTlw27Y2koaZcyXY^)9_Uveq;Q>?p3z98>B3_6 z5|4A?e2dm)McXwI|tM2?eZ){f=DNjd#?xj$sYN6&tXp;W9NDO=boQ{ATll` z9y;rBh>xE1=F{{F&q>6k`dvU`4D_CnyhzBxZW>+b8Hf~0l91QbtB8t=9w+h83SD2W zjuHG5KAOn+*0Ypa{px9igh_Sarmws&*8>X46vbZ88y{%gon?u8I^F9a0OOCjwyBGPr9QonHJ-l_mP|u-BcX^@b_vM!-_V>0yEUpWS zlHuOE#*FsCk>2@8KV-}xk?|L=jmqxzLXRn>2oolFq0Q_RVfB4p=r?Hiw+M#Nz6ZQL zkWrt7htaa>-c>-iB^JJjbR4<0mi4&TPF0V4dqZmL8<&#s!IR!~fbPb9eo44A$GZe+ z1t00j6WU^KMOvvBza`292UX7ZzKpa&*MXRD12Q~3_M)$sSox;cA?B^+MV4gcZQY6F8(g5VTa4tnETBaXw~)!v%0 zDC4BJ2a+fCMTHl4`J7_If7!uT&Uwp_V(8BlmFoWPMP4P9t2VkW#JXHY+?!B?GOl_@ z)Cizid@F!;`a~1>XK;eP#Wk>`Di~m={`GwUB>BY+5vQC@^97LTPf)0&kuSdn=2Qg( zYEy9&-z31M`mV*oY&OQQ4!*|#lP2WF**kqI72V-OO6>%M7!m_s2TI6`t$ls*Q-hVg zeR;s3k{}V2CIQ7@LSEOzOXc~#Md9mDJV{913BG`_CsluvZzi}krh8X7@AHMI$u!>p z;6$iCzzi0RpW>ep82XscAGrPo>4ahQbD6II2sdKkQ9!5AKiXexTjcZ8gG+oD0qYrr z11o(YF>Q^ik$;tM1yCf=w{Q4%0u2`|H%gpxM266FZ~B%4y-^bA-OavZi2eBUeMQ;< zpCXF4ae_$O?i&KO;!hayQKn}o4cqC1ZunoL(zK6!M{3eCk9elFIh}q!;OkhEmU#sK zbmUM9eCk^OI!PMHL#>Ybj)LtOvhXbXXi>Hvp`z3tDZuTT0GgAEz7`K<5X zNE1vKeIo^{pGJTCkMB0X8^nYhWD?49MO1OwhwKZ}1&g)`P*$+qaPi@jJaK&9rXdHJ zC4tuYw5^D>WgOLStf``?f##y$!rBO=71b~vIvv&i1NNJ~Lf3{^n=^2G);HCB^hINB zDB2Wa!XI!0SlCY;+G@3cAwu7b?klRgYl_&uLd&OSowZ&-F(xs@n7<$`BC zq#|WP4wd%N#vw-3g#`a$H?7VN$5L~-Ee%8b_B@f$mXcYi~m{91y z{tAh{Ez<@dGfe*Zf^0E+qh_antk7OS?4Ba*eNF3(bet67**CO?K-I1P07ACdu!A!| z#+%yXa4U3z*t${k7>~)U-K;@(vJ%=fFjhC;*`=)nx`MHn(|oVy5PiPX(nXiye!JL^ z&hHxqKGEtSc9u((I*@kk({>?gCPnc4pH_}|O8)Tbu#=jTvcJ@@UnbLko|Fl0Bh}43 zszDEC>xvL#-i2DBFJJCFuek)bB285FQ0?^bDGhr2PcEi1i(gy*UV|RS*9pXgEl5-3 zD(Jq8n$u{?q1zO@xm&jIeWJ}2tAEm7z5ZOJU;E4>M(#wqm=tzj*4iLzA}riTl-}z1 zigVrl!>FOz-vvnqDNIg%u8OOi{zA~SQX7xB&FzmLwy)#$kF1GG9?`0{-%Z}AzZ}Ua ziI#c9(lmc|z`q4yaWWVvvN}d=Vr5IeL-_9Wr;GDxoTS=!jQI5b*{OL8e+0}_ ze@0h!_Yb9(E&cctC&ib8{Papkzei|y`qPAV$!w<<9sJD^<)jUDATjV|#Bz^0BKhLV z?Q9^=o&J7^4k^Of?tX#j@NHfwU!3pvXN!p0pE*^rvp@fj9XCb1m*@mvG`~U_ES~{SIK}ssqTk$G;62pXA3`HYE5*R2EU? zhkoP^YJ%dYMhE@KrCiyBuTJ|X0rodu**;_sxM=@RerW$*W^>^+N0JKb$B#2GR`E9tq>4DiuWtqg#fF^;1h@*I7H;`U!9)R8;k-`t(96;Wq z)F-$DX~3<4afsSns12aZ4gu&#tfjElDbNowxh^bNSfMlB0wWRKWl!YSeeCqfoq@i< zkZFX3BrNF>$VFO_(qU3g0Q$*czQL1Az4`^9vocaRFd%RjqPrA6HVjjnCzkzb%LvTw zQux_I%;ZwIU|b*_nFaFBcu$e>PEZpI--r#P5fcN&$WNLkF*NAW0QAe_DMHhdz*=B< z*H0|;6h*rNnpnRe;1CbznEWDpQs5*Fc`ERb2NKnRPl47JvLZ@J9_is}WP~1J;$P!NtHmP|#frjG&MbgqDH%qeDcxJ6KPY zZgzB{h#Gth>X3}#9|H;Qg}R}xLq#lDS5#F6XObET{)p;eU^d(kQfX!F;A!Lpg1kCf z)HbM+zhTgdI3z__-X_=>8NwwYqg&7+HgsgONY|{n6?09JMa=pb@lS$q6Q$n~9F1g% zBtcXh4%?_zuOM_dL@uBCrmGD5Z{}-bF#^&3CED!TVW}ouh*B z_o<5R4$eio?KP~5g<+Kzj|*-_Je6SGC`!Y@8Fb&&AoBYkhJm4d#$$hzo(axEJoUdUE0xX(zJYiu!D=da z)SX6y7Y0wGDiNF5i&&Sh?&XUQ4h9S8t-lA?Ad#dK=-4~K28e4|c(CZYF%dsUHwB?u zD20)sb7@NusfCC!hmh39a?|OqkAfGF2$Aus?GM_B-Jl|4O^Pt2B6u_62A#0*e9$fm zzYWIMEyjHpd>ZME)lsrEUG#l$0}>x`R3pJd&U6}oA$Xw%3NO>i5MiwB4+JJ9Fru7Sq*e;^l_$cTBx!{ z+9X+4+H^yx5^_>rXeiy>JY<8MqziBF9BPIH5N`_&6Yg%IcpdOjCg_?ZM&_|!ZV$Z) z`6n;*5anctkUEXHDU*?rgxA^ziMf+Qb~-*J=}hz8jH8MM@a`wSqjs z!ggBi32TTi^v{b~p>Ue94D*5(o`UpA*$T$Ii+Dil@JF3+x={}2)enD#>L4UWF2fvZ z7`7nEpHI?^5P40)R-ru|E}&h_!drph5Y;dW1v-bjApS{W7ETSvtK$xt;iZUu{)|ee zr*02_fH*5j5xZ7}<7=AtWruCZ_;L+Prn8p)!al@p9EtLTm`5BM8dk*EX5nGfa%gxD z;=5~D-p(9g^TvmJAP!8ic9nz`nm93h1#w<=j9^S%sy8+KIpV@7`duxX&6CE1I7%A)HhPr`Q{O{Du`ob%37NdsZl`?5cYAA zVYIeGq(-$sfRwu;eUS)}Lu5u_Bp^!DBJoX{uGx{-kiq4DSyoz{7s1N_)~k(C0W2C8 zfhz!F4D`E$^3Zu+M${>?W=5KRL1%?~laaZ>)1LvI6l>3L_VLCLN9-ze}Lc$_qtaMTD>D>4$Mfd>wHh z@sq;HIcvR>xNF47|FU(r{tyYG{vjsxf?c!I6iqj3>C(%%Yltxyk*p>ydB7WuJLH%v ziaSJNq(hcyQ8!S;i9}xX(rvM5UBn?N!nr2VK8RNmgyx1<8nuYRqYm-NdI|ALLI>Z% z4$*o>HTPhrXpM#%10^$AX4mL9$VvepMi?M&IT#&5S9(NOAti!Npc@BApq4xtqy0Bnjg<8K8g^u7dVW?$pmMC;E zjWIKg>CTONqR2U1V!{MuXpvjy75|FbsQtmH9T{3uguUNHp-1s0A*+f5=1@h#Azz-1 zLZ_jwVM(tzzmG!4p>!6pUe6=7SVEDTX!_4l{M0~+5>rIGgV6%oeRzX9b-_eNWxoLvBpMOR_l%!G`OTN zvLxHoGX@Tth%pC{SV`!h ziYfQU>QH)dY!nhJ)iFZOWo~{ThF>Qr{##6?^^e5dh-+j4A_+a`#@ZrtnFN84+Uxgk zMwZ6lO9aGSjGwx$jFwC z1K2=B1FS)+ppGI<@rR0v5r+{GLKv})l>a*W++vvj8@_py7kQrbIcu-A*V=2>d*an` zCte-5VVbE+#~F8&+*q11wOyyo%uY9T${dr?v2*75n>vo`bi=rDH;x_GzQYZf9md|+ zsr?O^9mjVV->Fl(aZ~TOr`?#+i51^k!aE-vFj=o&zVcioSG{^Mwo^_;aWhZlhiUbJuj=BJ#m#18X3nYjCc{%% z(&jhJUOAQDWK6}r+*2I-#T2PLnmHBoa$NrZy3EIH9+&^mtzQ967xPP9y(&tJY?b}` z+ys0-C4VVj1!5~HUvX@JuX4elBHPvXyA&gBxK=r9#N;|M)XLH^qw2)CJlyD+TVkzbdSgjn7hyr#q=OB01-E;D-im+69&>wzo|bgJg>g#WDIL_0bS~7 zx`_0>CPPfQ;!sbMLS;9bK0$O(5WWOdPspm&p|@!nk^`7fNQF5jfg~Rm9!X`nrfERr z6AO<)qK4)2#L#gjP1G#1_om_FO=}#O>GEh+sVN8X`p3J2gGAM%CYvaqZBhigzJT7C zVH#Q|7BQ{cobU)CN1jQ>VUN`-WX+f-oABao&?W|2Ezqt7)&sh4c z($ouZX^QetuIWk2AyXAl+axJex!p7#30cnVeZ|zXCL1k2VEPAO4t;cp6Am9Xtp-ey zB-q8lPfZQQjJqtuY077&F+lgK&5DTb-*Wn&^quJ`ltpZtBZ%;~X_kIscEoHGFJzkw zsp$n1H0euWj#|xUufC^?B!K$a%ncFuBnWmf%Vl3WBG77({dZCVglGMj)R zMiPkassIC9^7D34-oWe;#Vu_U=%GgD#z-nmn8hWsTbe^6yNx}I?rCnGgRt5Ub>`FT z_U3$KjM0S!3p>P;Z1XUBtD|`UGT5as8Ap8zE$C`qf%KL)w^)aW;vQy|c4nFTBkf5M z7H69`B27sVzUpIMg|vd5n@5-Xne&ha=)!`9;|^(;YtBPjk;IU_!0bX&GtZodi0swo z0;(Qi&Ov4_Oc+Lc?lgA;>_9C10;qPrNWahQ6=gNfrF4Fhc`af;{(L?$W@{8kn^Jh> zT=NFdYWZT`LbI2aykPbrqleyuDPy(yBc$Q7`?Ih{^VgZP0MCgO;m-Bu+mHZC5I8$- zlzTR$ji?(_8iR9aA?vA)-S~GQ!=zi4fqOadGZ$qq`B#60Z zIm=}nFn2;sdcD$1ny*JX zFpml&1oz!S`dYP&KujzNvhVKIEbWoLn<6|Hu(U(0%Y;IaAGE}K?6YCZwSX~*F^HUA z2NsH|7M6NK8|>;vCtF!g1D_ZEyDWVv?>>_A;#1I11+)eU?iqkZj3R#yHIL*2UT0Nn{IK7p&^GxLuOif zy8$=I`R}MX78f;r!tyTSh7@7avzBrsoDzh_^!#&{-H16kBKnETf9Kwq$A9Q+VR@|1 z7*+hR(sBYYX;K+tW$GaYNf7*EX^FKHwOM270yn2UfeV=17|t1N?%R>&fa6?qM5 zg>+>8LWe58ImJYpvkz((Z>x5cW86F*wgM0p37ojU(+ zNdsFZS#c+2{$Uvmwk(fWC1mfHdf2VkB3XvzM$^x3YX_v^Qh2l1T8Mang@=puur(s~ zPO|xFx8K?vv6{r>Hn!HIIrXd>lCLG9G~F7btfto1unrk5te(xStY?s!J1-pcqH#A_ z4+Cm_R&{5%V5bR@_66tWi~=lN;ltty=! zWrb3_P9P?x$%RTIlUblyefW!B5UkS{l>e)yZ!McOmg1Au7~056TLu=)Yl>HuO5 z`T#*8WnW%oeE^6FDJxc5*MQMbO#9!oRsv~^*mH9LL+J~DchJXMtow3Ezs8zF zBac~MM1_U-M^1;2{$TYX-t_CAXTm2yzb6(pBT10uhKpG>&Sli)C+iZR^9r3nMSoaF z)dS{^EZm>Egq4>7x0Ao2(ia)@-|VIgq+`t$YV!|0Uik zG+Akav_fYQv$i0uNGRf_j?)!n#wAa>ij296oi;tFtU_|NEPf^7$POA_?Ail_2rCzt<73BnYZ#bwF_$ zd#C#kDhklaWi{L9sB#$4L(0zoPN@RyC}qDtp?H9x&}GGCvrVC?r<65-3sQi2XOxLR zcT55VYv7^T=apZ4S3l4vC{ZIc`Y5)3b zF{U13#DoqiRcG72K^6y?kV`qeZSNo+kiv8N+FBwW(1itm*+V@B+0Fv@3Wy0`Ae~nh zdpl?Gm)Ud3#9Sl@8U-GcyBO2}TkEO>dZMlfAr6LmZP>pj1o!@MG66y0v3|-z~yBV31OTs^o z*uuu(<^IBU6d1gWT~xVwwc;dql%t*O1@u9c4cbLZZaopR+8}OD5%Nyi+9Li*5`^}n z%}3f9+tWxktc9_P73aC%WaQZ=(DT38vXEG;4ct^{?~W{q=!GYxyX|iweNI-bENrKu zko`KuJt;yUVuu#Bmsf}Dt&Rc{a0XRJwZ{0HrpOQI`->y zJF?W9L=mF~0%J=GP_@Xu1{hTmfQV?jlurWYzGz>M#FdvxDBV}dpVN)QkX{X*j-}Tht7$#bvKp)br!LS zp#^#l`hG&z4)dz)ZW{5q{Y}I_NenUOCS+Vn5(E=`H0-z?JwF?7Ptg(XboIWoyG6S# z_D(e9guMjuR7x)i+;y7MtgPsFR@)1}O!+4bY2|PBAwbU5CmADXwpHDXxJwrnEUeJ` zZnYKSt`uRmSA{l3nNTQJ`c#Lwev7>`&GxI1e5w8$q7DH~xb>D4akHNbc$Shzq`cUN6Bx|`YyN$iqvxvv`E2wvGog=%Vv zNgtrbr?%S$sy_qT=!4b5DclE&Cvu<89Id`o2M93)8D0LYgi5ZzsP%w3ZX6O7a%!4i zsv`IN5)hg{Lq+zAXZIk>AeN&K_J^DNtYL^VQRBXMb?IrkZr3}O=vA# zyoDw${RSFK{t<6hndd0mA{lG-eqxk-gqt**edA{DAjYGD*nO{z;AJK*R< z*SxJl)3Ympv)|!J&tB)4Kr{BJ&_pc>B({BjDAx{f^b+OQIGp7D0*Y`kElIfXUusim z+)ENZKcVh|3E2T|MZJ@1Z=@uVt&ECy+>~#j@i=aWCZg>S#~8|L z>qr9~BF*U(qq{m{qFa$;Fy&@CunVCB90SCm9ET!!JT0J-TOB<>|458VH}-QtJ2Gt8 z0mO=w0$w2&z6O}e>)xD5?2CIrHw+Z@M>*;cmD1raYz3rOCkP5%H{G!kNp%T=CbHJCL*AY3=!-ZcflwbmBt;m#(g7{qN`m$xrv_OY3|!^FYXio3#2c?UJj7+eTEr^} zZ9JmwCP&m*zumjp@flFN>w6%1B72v^M$LCSUP2O8k|5gdW6bcq4*ZP^sR(1zk*G;1 zVijHY^BCW5x}!6N4>~S@CYENgim9JF+(r;Nk2>1ajrH{jM?K?R7yrK;W+0OEie7BE z;BX21q(A|kI_t;>ZkXy6VhVCqJE4J>?!4p}2#hQVfK4p1IsKySlroZ5TAXEo$CD^x z6!IEL5}@nirD=ZW=MBK4G;B_r*xT9}G`1ugwROG*^p%uCH{9gZ#Jq#GG1 z?dpZ3V;<7-4OUJcSA74idtX-v zz%wc9iu{4D`o!kd5L8|}M!0nVd$<+cF8i|F=5D&22 zP>nqX+yA{!E zi&8)nd%JG|>M@bPsML0#dpa^!>I7m%koU~vpC9UW8JqD1!`;v;a7HT_LzBn2`v8Tl zRD?1fbbo@lRGQ%7zq%brbn_1v^r6e;?v051bYa25UeRT#``Fdj<01*570cXVpxiMC zW&7PuG38aagR=kbhThbZili{TKc+C3cDn<_mpN+?k0vnnh}Q&uMLg5Kp{K8S zKg&}{BfrE#QzuZpf4i?mqEZTP`QCj2%9Ra0{lqtC*roDk29}+64+Pd+1?v#U$dfjq z8uzQnvPcp`xBlkthja=_XrOuGmwU$qJS%`sL5%qx>`U+KPgOoJm^o33=sQn_r#Z;*7ft`0ClX;brAiBdi=(@#h(Uy zRKx>4N<6vrK#^x5AWSSg60sl44WP71o==eYW#QZDFQp#nS0AKsgPESONTlh)V)hb` zbK!iCmwXkT^FW}91SKL@iHKK;4x<>VdD*iE2_4?g9wO2=d92iJqX#;$og&QG=0PS? z#%lsnhc-Jr8AuA2I+X2UU)1dKEJT7xCy;xu2l~k#`FYP_PXlA;dHtuJpMW4TE+rm1 z?Qw_?9`_c|^eWGB#HIROKw=E^o{_vr$ii+KTkRQ)6iSki-_omys`DNv@z4rgU#^W2 z{1ZN!$oi8vZSUVYKf)Z!cuj zXWa|nNqu#!d+WN+&B)s>ycO9U+ai3ojF3j;RL0Z8_ zdh&&~m|Kxn?!|A3GQmOB^Sv)3tmyda?sbTHYdLwnz1)l3un@H{ zDxG@O3vEs%F~r(*K#I@=Aw;=vc%ehsDMHhKc(wY#pp+mu#ifJZ_|}Nyuy?h$E-cD8 z?(K!-Nqte_`CUGz*zjL=@TD`}3ZxkNGexC_zk88aN#&}It_!g)7ZLX+)S!&Z-cfY| zXcpfJV4XhE1pXPEpl@*EE+Dr@E|sDn9G!GQWy z+QK&(u&KUlu`q{?F(T9V2w>8Lyf}TEPo?5peMqUDfDl7s!0SK>d9k&>FMevUy00%E z7*rA@V$x)w7);3Pns}+Qz_%!T^@%45X;|V57<*EUC;MiCTVuL+h4XG-h+5q18w8vP z)d!fNqWKg2GXldO@%aN+-yoeZf_|>>6$0T#EIbD26#7R8ifxO0e!72&?>t~VgK%J_ zFC^|=qiW<|QCmfMs^vvtNDs=Ya#em>yqT$h%41pjp8 za0-0vTL3yq8puQKj{1&*?HRW4H2Y{#l@D5bWV`ABhlsuDFQBiF`xb)@8MgVf@83uh zOy_;01*@M%fBTQ`X22W7gj{42%5ue2b- z*7>xph_z)LHEyn{qPU6XqTj;WD5Mp&FdjM?)&2waoBl%AhFF_ZaC_Fb)O_?=b8R@< z6k@_3a06J_PnjLHdcY8&Z$|eQH9a*&Y+s=jP^+$5AD|eM7-Gy{5ECSHQ0d#=S_V>) zG9j1B`)LypBkIC}g+27xVC_TX?yV&BpTutXYO;0&$pw<|)cxF#vS(;j0D+iLxy)o6yfRDw5CASt^WW*j@Yn+GeE}c z+M{qQbb{ErQS%s&$*kS1L3gqe+B7j%H{aT&tpvJ)v6s_&ujUZ_KG)Jkw~>Ck*pSZe z8wEbn8X@cf@viFiu>@al-;nv-%q*RWqE(|?|n32r0R%{;0> z4`%C%5M$nkTA?pr?mVlx1h*nh)bvvA^x+8&dizf&)R#DpzKQ{*b> zzVn*XXv(3R6}!1dj_`e?%@nJD(q6v$T%=$7%qK?fM7o$1c3;#wAZsEl+)tF>==X{< zJ^dr7soCERNd_rQZey;BYn=Wf(6mw;kGR?Gj~}*g;PsELi%K5RuD;(*-l)G4$tj7J zdBoB*e|;lAz1YOR1z~YA7%Z|oM{HtcTfam2Zu6&$vuT{9I(3ft^#9qZbsK*K%v66y zSNHS}r?zeV_!B3k7lZutN@u@EXt(*(gm%Gfr#6}X)`)V_hB}ZK_#$GtM;ws?ap@K| zkmol407Qor;dD>GKy>&vKU5&j4*0W0#OzO;s@OS@|HqD-D&EQWL*dV4Vlr}K%D6JF zEf3qouF>&MMLhCBKas|c$`dJ;>_vk{`$q$nvA(1xN*DR9BK=;!LKzeN_t%9&Oc@IJ zy_Om({eGX{4%FERib4<0^j{BTqa;8uz(X02`ga2Lc7hTymMC{D@lOXja)P4JhBf|E zpi@YD)4vpy6)elYSFz21^6H05sk|;v<=g!ZVCJd=$hXJ84H%!~$5}Qc_(xP0QT6+N zYSH(uF3WDmG#|4)8s|6XQuogmB?{1>m@g@01viHrW$ zfFF_sw^(tBbKd@#z4N9A1BF0fCQ+FYm&qO8mS^dr_%SnCoPfS6nt7A&mLsUCsRi0-l{^6Nf!`slVme_+To zLP8Rj^a|u5tw`xGIX3|POF~AEphIlv%x00US#u-ink0*u^&#S)1mQYLzcn}($q-3` zs5%_BQM*1t=x~T!KJ(qnX1QgHGJ;(B!8d{PSH`21I)?fd2cb9Lr6LFKVMTV13C7>2 zD!wB)7wNWFu&Ne@Ra!hDxEb+Of_1GZ4+m$^-P3}|?|&Eu;^s+=m7@0t%aBOoA}~+v zT+ETw_~GEYNGX;gl>9Z=42h%!!6CAq3C4`a{w6;aoP~Jme_2*4pA&oy@l=A|>k&8TgoS5=c2V?g zFurav;k)3INN=o-lBMaQ?}HnV_=uyL2_AB$)5LSZb9GRtnKA4*ehL1Fc!^`RAMx%* zBg8?vuwdaJHS~s{Cq5DcugD08;&ob6f9P?YeLnKlk!8u>H5|o8{{Niczf4SD=yk|H z`Jo3WHz$PDX~a#Lf{Y}*);2`Uof5LsSHnUM!~-e9-4jF5FD6OC*CnCG#x>Z-CxxCt z`eX_t-SBp4s1k8Q0%I4Y4~H5U6PxEA2%WEsN^zE)-E=4m-4BI{UXx9EF60t>5AxXk z^b?^w5r=aY$Roz!HQD;*A-kCJd?-G%Ff#flKHr=^ zSrz&Uafm!rld(2*0ja;_(I6JK)26MVAd7 zh2p;^_2Z8rXu^`h$Xw>H3B8O&h>oG`-?0dhIxux_+S{ibed!l zH*Y604srC$Ls@>}csqi)K1t9cR-uRHg}Wf0l9>GE;ec-40$RQxya@4BElfi?u@H;1 z1g4#l6c4QoTaXY-VPsN#YE2!IV)@5mD>ZsO96_c)GS(&Gz3t&!5dS0yib#8pGmqRh zsM%GAT*%re#H@cIL6p#@iLpq~>R=sGAS)sB|M#?(dI)YXOag0n^YcnEsDhL9?J|QxK z)@DZPR0{-1xjoV!i4ZwNW)wvNqC71U-=yiD6L|$0T>h73rN#LXybNHyIv5qeq7f0e z0wBgfzdI-oo#$snog#Z?#47SLBZV|(LgXE!YWrW7LffWCpsKAFtD&*xR{cO^4dS!f zEXpp696^#?3R5*V60h2_pN{yDbeCiiv+$}dV_n2g8P7-Xs!b>8URP-8vIt(am9C3N z7tLN7`3!QBUWFzx`f`z#lr>l$lr7`UqaSNsP>cuT)0x(jaSVqyacO6$utr z>D)(=Y$W^1k+pPxB>sM5gM*P3h<{QTx!5!La0K~X0)19qB=V~wd__+`j5F%%hy#hA z6h_Wj8y&}8BS!z1t-JMyND%c8F`*Canw_R-x=~A)U&LKQj5&{FHEGEM-e}w*U%H~W zLnKBzWQi7a14W!jAaTRN=qS3>E4m6P5p)7wJ2VRY;-~z4g(H2gmqmd<)^igy?Z3nXoR%*RC z3Z3uh@z3ZmTJd5OI_#+n3l>(W{aaD!2rd(bi*}XK_~Dz5o1)MW+!RJmQAcfwLI=|r zGt-#vT)QWVoWmt1lpsTk+%m8FSJXzG4o247&PkW1loB+>|cmi;eenNl3HQ`5Yd8OdrX!n&dubl^r3){l=hGwQN8#>SxI1UiNoa{!5zgbu2h zdQYqYrI*IWAhA*#BjjA>`uk$|b%N5r#Z+4VP|S_EMiwBF(0gvIBQlps5csIQe*b24 zc?`ZpK&;3y#5INvOSyZMzzX;VDd*2&ohF|B*AMpLWb3fxVp{Qt?x_r15Q*5)Xj(Yw?wLCUA*z;Ibd2G2Vl4guY zM4N4^s_twxh(AUtYt@0`jvzckE!Z**;YxN$FF}2Gs{tD?uCl1U+q%7oi^ytfRv)ci ztEds5mL(%CY(D*p_-vChNv&wxA0l)+QL_1aHSoZ$i5xACjt!!Wner@1`j& z1X;hFUu^&_u;dM;F%S=dmRX8zEHW>L7v%76L=3K&yjNKT^`9u;89jfv9u_jp;Zda$ zgXn>qAYR?2M8d`0%2dQegIvWtL<_aYZxn|bnF(H0D5VtI4k*Ki;Y1XPH(Qm_@bwQ$ za)9Rqd6s5~n9B--6=#%Nh(@{rH!mtFh*r1(4V}tOL=&8VAc(r6%<{!M2m;^R%Irua zpwB}5;GcelU?pk*ApsnA5t4{C>84~c!a061!$f@}3lwb;tP>vikrE#q3S>bUR?oBA z7ReNsQV56M(d2LBDKSXMO(M$>LWk6_&`!=FH@aSfS=2VNE~pt#_8>&M3Nb^+WRiwC zDatR9Oz|wASm5Yl@*JbnNeG4Md1NF;r$zu-!*;~ATsR*e08uMRz5y{&E`pE*6U3L2 zY|LOvOpZveAtrHeG+7OYcaVCdP90+r_p8Yj+;Vb2*6};irv7vzoUSDwBW(^6dK$>j zh-;kI(L#6&NF-8Up^#w?&rg#D$Y~rTJUL4;5HB8(3!q4K8z8QeG+1zLFMt(2#D=t1 z0I?6rLZq+)u=J69ge$Gt1z>(m_F|4dEi7c%40HNP6UJI^C|v{fMjC;!Cc~wW5klu7 ztbq()#R!wRmEt2S^@ogbx&vd)O{j{Y-(sxkO}m;%M`En$P5X2b4S+)vQR*BsBMC(q ze|qheQ|MugI=yxo4u-Co^aMtol)oItEu~2qby`@+un7Y4=}N@Z2{$38fUd{*a}tcA zsgN2WqMA-ppnMhGg1A$<${BHwWWZRVerPJQABsqVPfAc+J|_zJ8c?4QvUU(9}JG&rw2@4)WD#t zpZ1`3$Y4L1xIRG5ko}D2Vy>u884Q-Zq(<)wk%UMHRTx8j9?&MV7=ARe0mOj=GW-*= z_77lk82bfv!i2CwQ8$8_^xyCxf5T5l?ubH=n7S~}=Scf11D$EC4QY6TH308s3nqc!f z){g~@UC%6HxcsL?>@@ITQC~=+#jbEVQ`AjhbK%KGwhwVV)3s=17*o!QuwIvaBR_9l zI>IVdqJX5NAzV5EvEus(rXK~r!4xaMi`)CU zl32JJ#pgtzoMwphT<#;%XK)Uu(s&T^WOY-7q;OI6HXrb|9-Ra})A%Wz=Alc=oXKl( zhKEpuq?q97Tpk{RTN_B%Rxb<(30}mX;-0N_Cg>X!O@Tae~8=9_j)1LN9;VvO^(|^(@72x zSI5sFegL|brSo7<1Aomc&t~98Sa5<{yqH=ap;3g-IsOtqx()~&InRIfO0z7*Akr^M g*ZN<2y6ao*{F+y;H7H2v2*fo(cI^F@2fU5`4_qM9sQ>@~ delta 9695 zcmbuE`A<|=6vy-K!Z0ku3{XbELC`kF7-V-qt*zFj#wc1FH7*5_PH5Rmp1v$GB_rK2HYL}dnwy)Jlbe*Bnx34KW=~2@ zPjMtW>~^(Txxl=SRW#Z*sG|*g!cox@b;VFCrr1VX4fXzsYH3_3&1Io}LI1%~cjb>#OeEoxx z7UVrao~2nL_OilYe;onH7x$ z^jJs${L`xttV9hUB!I&%LXxp2J(OjPaE@Qh5K&vtf<;RdYljB`q{t740$EU&)%&cr zMY6>uJK@khiu{c{CHe`usbnca=%5-Fj3wug8(pu#EUN2S2ULwCdk`WA3Nb_5B$9zS zDM~MpZ1K!NEO2xYd5+QPCWOPZ_sIy1PK^MvhV6)Jxo|%|2x3+dhXFBB0|X%nCP*kI zIhetenB^j~ikQT`QKS$K?;y2EojS%M?pKm4xaBMdS;y~4oBGp@aJrg&jI`NL=&B<> zBd&2;N1gB{kZ7bnr;uR|&rg&2$Z6~+JUL6U5HB8(3!q4K8z8=&)LC$C&x4g+#D=t% z2XPO{0;I4!u=EfI!j;zSJTN~ddojnK78WvWhS|NO0b{K@oUVadBaOmXli^~>3Zruo z)^@BQVzVrhPh*2Em~TD0Qxxk%WAV zKfU(y$@DNronE^PheF2;dIF|e@h&$y#IsLF>Mf5yYs)+qk?um#pnt(Q|6CRe+#b~oG!fv`1ZB`N@ z!1kC-P+*~;WoW57=Zk6zD4$_0TXeNjf9O0;gAqSmME3w;+ewP~@HvQ(+Du2FJoMKP zA%<1bU=A!6Sx+JktvyKNdlQvUU&9}JG&rw2?v)WD#l zmv*6cNPj<=xZX$2kn@b@Vy>ue84MP`q(o`fqrUzu~7LcZ3rprY6GsInut$Kzj!3K}gfT=*Vmk%%8#> z2zwsD!fEV<4*&!7yv<4x?%Wj^ganu%bS|5R_|>jc@{3tulaqBKMS{#1VHL=%2{x}| zy;#7Q^~@rM%7044P6H1WwN5fj?24o_M9p|M2cB$X`w-VNU5iGB(WNXO>vicj^7GcE zBaFlN{iwaIm!VNWQr2J%xy$f}dq-Ia;v3UI8KV6-3xI?5Y#(-D^;&ew?MBv)5bJuI zoBm?MU{M>h1$uvOcnIRZ>&zb#t}z=ztp@`V(~CSrvxQtryz5%g(!ow4-yYc@F?liG z%aE+yeax|j<^pD0K|u(+#fERIY-DGpn#-gAY8fuapLJ=D|zLp24ee zh6hoEq?q9793B~lTN_B%Rv!$92%gWM;-0N_CCfDtt;Uou$ zuiRy&t~98n16y>e3)84p;3h2IsOtqx-JMDInRIfNwX})ATlpW g*ZN<2y6ao5{F+a$H7H2vaKtr1cI>^T2fT&;4}B*T1poj5 diff --git a/master/.doctrees/api/datasets/entity_linking.doctree b/master/.doctrees/api/datasets/entity_linking.doctree index 33922fa5a046d0824c5bead37ca320d2d8d3cbd6..c1e7c9c3df0ef658a0e0ad60be0ead4f852488be 100644 GIT binary patch delta 7817 zcmbuD{clrM7{_y7x)<7xb?v&f>lm0Q5g4;$?G^~Ih#>?S@)AK9Yu3F04d56IbP=4Q zh$Lc0uW}N9a6^qD%o*T-PmpC0B1Tj|29iJ+yNa10VRRvYM3Z^$?dFWX_30n*e9rgz zJ}>9od+)0A-c{$JX5xRKM1;c^WwbROK>Wag4#r3tpn!0dpX=zC?5G)In z)CcQp!X@Eie^4GI%NQceZwaI)9;W#%kt1X0B6J#&QqR0e5r;Nt0UmSK8jB>dJZs}Odn*@~a8x2#P=+c1Xn}m(8bRhS_2^c_ zA~SQ>qd8i|NtYbj_Z)7i8TsdEZEaRfKeJs{@4ti@JHy7Gj^}FnF^fFkxeaThLP-7C zW~7b73ew~tti;-BB%$oohW15dsOuMOOBtBnPi@+7?b~G4x7V?j>iu5rY-g=3x%33q zQiYHM*XCd?H53e7OOqF`f61}q)&Gnv{560KmwNwSh>I^i8~u4&Z?`Kd*2>sjD|$Q> zrSCzO$a9iRF+HEGlN0`Ygs-SYv{8}`hd61$*E9|h-5DeW&e_Nce0hiEDAHl<%;^0l z#JSH+vX$4c!%2p)gEPVs?~f-A^BM+ac?ff*shtGwNn|`W_GpkeFgLL}S48Fzr}=IZ zFHR;MkTIR~A{_yRs`B7QPmF&|Y_O<`bRq9`6Cf182A`}YtFdkvG7L(ph($=cxD{hr zqBBJ9K-+q<0XYQ!N{d6`^Cq&(hqsA~@(yB!ulEw{{bvXorg%Rlz9hUdDIT+Z;6^*q zk&DX|1S+kGNwv@5HzWl)LS~KN&5LAe5^mVU4?V;#+HVj`+>)0rlfy|^66b;9Q7^7v zKvnum5)+jTyE&~+!jeoeltI(sjZ_*zZWW_4Ba}=!4%;B70yGPzPNI2OH%!3Q5^Be~ zp#b^fj~L4oZM4wZU60^fTlW&hT`Ya%LypWyfoI8t!ZK9#RG<8NCkt;U2N4 zLm8oeK?jh}V8e(wMJS2|wjQA~koAS46ZAB4fkML>`f@(b2&lYCpG6KQ zNnr$6iSj5*2YZxNCq;^|=tK44!1mVbei&7_rcW8Qjs$vJqK;3hu+i zk<;u1x>09cV};0yFBU4;11Wde6ohQE)eVA6Y#d@^gu8-Ifcpas^E>c=EVvzG1Ly%N z_i-*-^SDL3(i4JHseC@B6O0ui3=}Ao1MQDVn3&JsNschBfbYPzh}iHvA7gsaR>~J( zy#PhY#U=r%75qJHuu#DcaVN&c!omXXCGf%`zQT>z3}#6iwsR{4*6>vH(3pg?&Ab4e zkRs%W+zMU*?XU3)ECv+jA*P&rFYtw;T=HD_doQjmqlAJF_;JKvF)>PLXy@M}-UkL@ zxv(GL8F1kM--t1Bl<@OGUWfRY`LBj!{42yW(lm0Q5g4P}x>g9Vh#>|U@)AK9YX+Nx3OL4_E`n1O zk;IYFtDM9i+)!f(a|Srz6J!~Lh!GW#fg}*du3{!g7+nY;(PW-`yE)@;efkGHpYwgb z&&xUY-o4_yd&POMk@!nqt9d!FeoB2&Fcb=w1w$*QlspxxD=VoDme$q=R@VB9OGCvg z13`ajsHCpAE*O*t$YO>F^IHPxiHB)^OXTqA*$ACRq|`HSP{g4P-VNeTjM?Qz*I7&A z@v^~NJ38?&t-7LP*6a8x$PHH$VQBuGc)CQPF^D%WZ)%dN67Ji~?(yjG^IS%}HiZ>iA6 zY#t*YY+j7%mErK4uP#T}rDiLBy56)p4UxAIu19^^xsI?b-{r$9(4z(NQA-4wztp2! z5R1&rU61By6(?MBaPKp?rDo)xqqVkLHU0E9S-tNfX6y_be>#?{=|?T{T*p?djS3<4 zqZ^Sn4k<{J1F#Hhr;&uRQybhHk>So?uq|a^dOo#jzqM_ZRo`C2TB`SXwKE+xvh?C( zSW6W`_FtWawbW41e>F{Bxb`K-j#u9lS@>%J87}p{zYrH+d^Y;>w4N?kRIHYn1=bfDJxbP3o|27%~h>s)$8My0{r* zS)wCMZbR!@vJN=}|4NHP;qy&orw?xv7v=553SaLb*!#~AG(_=!OngarWl}t5`@r=! zq9YfVDF{?r%mbfJ^ULuE*uq4g{#iL$a zzksUrF58+LJ8orEQsVlacI!<(rzg4`-bWriu4bPTpZP6lWeOrAjVux^-uE2Y$q zbwdI2#UC-2Dau#S9pDbpGVDSzQ1JUqTIa;Ig{b~WxzV!-?}iC@FN}9X0bJtbDw+mG zE2taW8zYq72u;bxyWtW=Z%`Y&-9$e_KH&^chbX6a(4BU?mM7t!M(-kJfRfSUz#r}r z&F#tv{R`TUd05@UHIf;vo2S4s%eTeN84{r9chgjJ{1v|l0!j{ZQTsx@5pU6r)&XBzlmbEY+ z;*-J%t`g-@mJaqPt4@j#e=0t13p2RAi)ACS02SPe zi6f`jade~3xXKEV6<;7!um@7^ut^BnW~&MSgCv>*f>L=}cs4b=bThuUD8nt&? z=7uH~#%V@r=H{EHFxD}Xu5I$hP^-!EUfi2ISW5&c&|W0YPKKl5w!fE1qCorP_Yypl z*W~eUek7G)K!GO?cpu;-UHj&Zp$kPx*9P>v>*f>L=}cs4b=bThuUD8nt&jk-LM)I@*{p~(kUV(cuPou(Q5yh7jn)1g(VDeqzS(^itdw3}@ z>bI%FWc@IK&8rL-bC7L}&E^MIN?hb?pZvgzd-DQURq{jD251D^ea~9?&CSbHMac{Y N10jRW`g=Yx0syrL7-awe delta 1664 zcmZ4ZhiTy-rVY)E=EfDtS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? z=7uH~#%V@r=H~h-`N_rlli%|wY`(?#kjao_113LoRGVxdWH|X2m)Pb=)}Jio8?pHo z*MBzhv~M;L^5h{?>jk-LM)I@*{p~(kUV(cuPou(Q5yh7jn)1g(VDeqzS(^itdw3}@ z>bI%FWc@IK&8rL-bC7L}&E^MIN?hb?pZvgzd-DQURq{jD251D^ea~9?&CSbHMac{Y N10jRW`g=Yx0sxUW_v!!u diff --git a/master/.doctrees/api/datasets/sequence_labeling.doctree b/master/.doctrees/api/datasets/sequence_labeling.doctree index 1a3eae26dc75ad33834e87c188dfc372febf31c6..77388d55ac7e48b9e24310c6c7dc9167ac7bcc75 100644 GIT binary patch delta 16568 zcmbuGd2p5G6~^bg-+sT`Y-A&ZBm__#Dj^{xppc-9KwvBpiiAjVvyreW!{SPb5ov8l zVunQaw@X3azne64z=&HrYo<_Zt6^r3l$jC;`<>_OPK=%-Q9XqT8b5lORe=`5rjI^ zcg12-$vq=9C#QN4Brk3nz1Rp%EBZrHKjdo`?Z)yBx4v)bLkW26P5YKchEA=!kk@xa z=*nyNM)h4LeO?{9`tDs=&cUXekJ_R3V-EzNmOXh>`!PLao_RJALxl3b{>H$hP5ED^ zgw9=k6zi}cy%Vbh=uok*fNzacqWw@1vnjaT7tfbcl`pWO?*gp2S&0EB94`VIRjk-e zML9YZY*!+9db(1tFi%nrVq+;Bl?UbY66MKpeK&{hh*N(?CmO}$wp69|*_}-aFst-Z zc+xhd0x0tyf-xRl83*lR1HTl<>|f%9@wfJ2TC`bk4Jc*L-`h1 zCwd40D!i&hbNsi;hgv^U32=R<@>c%{?`yt;dOu=FcI!UCg^q7y9Ef4@^e`}U|G>^K zN_+u+r`T6(_dN!#sPrudRsa%R1y`-`{S7IFtOj2x6|I!8PpoRMmkOA=DRrRLtkbDV4W)_5$k;XQ(r7nbzbw!F8I<>F^M>WCT>@vXwGS03tzbC zJCcH>Qpr;-bqKKfyW_r+zl&9e16i<$O8}kQ=-sru&>uya3)S^}HbEVej3qvwW=>H3 z{9Klr3}!!{g%AO*$zJn19luSr>GWZXcte4jZT2ITFpEp3s>gs?h+eK$tN8U2btqzn zCtkTg4FG1ahzo%EkB2N*M-0FWn@7j%Rf9iRr^X}cN)dJu);6dE!7`plwNI!~G`dl} zfF|JqCTv%t!-HYUMs*8#?54fXsy459PQ44r#yxn40VU6?El%IF@c_&JD5G)n9<>OJ zfCZ2T^rqK%-F|6&>|5%5uyOJLX@6EH0!K-T`B<%`1G-kt#V6Ir00UVFj{#%PZMl;6 zwaOf{q1B9~^my$VzHm;x9a++-cSpc;Qbh?}HM1-qjNL;kUI2V9P?`RD?i6&^hm@_6h7r{$;6=mezjMh(}m=sUJ1s z5~$&_)X2;)v_#mEUQD1vn}F=;JY(-k)cyPqzn%%#h(~xaULS)Ddp8Caf{ltv#0i`_ zP`?2=(s&l!eTyF8^J8>;n0SOe`T7WSgs>2S*|G@xa{6W1&@pcO&H3+ai~Mg;9*VLsL|Hb%k@NDLOGpOHay@gw6a)QcVp|NN|R z3N~b-VOo5-!?=ddCFBw6HSFPg-YQMUoeBkVZXfI#l+k-Svd9^cUs? zWO3?Y@#F^c9I{uh-(eN=&S%U)$fcPpCJ_fX_!3qL-2{tf?h;3Kv^eRM_p*5rsDvM* z_>E?BU@C?wrMgzB?nUpJXOMY90_h@raK=nRwyiFKC5AP~F1@??0lfL5sUtg9m#{n2 zdJ!y%(kC;m0N)#FU55-0FZ_>VtT@h(wg#XC7Qz(d0}W}uf{x#6S^Q?MwHECD3KjzN z7UDI3WU>`W-uvRjm#j@Zeu`BC7D5HNEG{Ur24|pSp>wU}P~s$cC7ZX>N&+1zWx=41 zl#+;zO%F>PGODA=b7kQp)^O03ULODCaVs$mbEcM0zhJEf3Y4XjFGT{4UO8ly@prFV z1Cce$6K_3e4Mrjs@hm_`qFYSq3)SE7ig&F8&|&6~RZhXrtyn&N&iV@ZY)N7$XCWMl z0W5cSY?~}wr=Vf${K|Kj_uUj03iRDV7oY>rAch-ldkL^f3O{VN-DunVc!mw_8oh0= zN4V)m8{as)1j-y`JM^z?Gd;X(Ov$v7U1Lu~9*@_Kwr67>lFz0S#kL$Xr`h)copu!%3rj5j?nmQZ9)2pXwKXnZU?VqP-FbvjET|dC zHsp?ayOQ%)+vk96Sj4N4ZJX#yX-9+f|EG~^ncn0ZOu{_@#s_b8lWD+cDfiI zf8K^3BD@X}LJXZbY(ERnHrST5B)`cKw*NEO5sy$G?@vT)goSVt zwm`)3+>qhNE2FH?Z;*V3yNF-C$&Xiti{ZDX_~FW6AsmH$5OEwInC%}Am%{HKlv3ER zq#vc=5q$UeqZEXImx74nIchy-LB)suQht9kmc1vQu^mg?6Su$Mho(qZOd^it;ywPK zB7HA}MLg-4za5wXSj3IUxEEbD`7ih*sc44NwMO20);|U*f0xC=I)P;GZ2^xYJNE7+ zjt@DR^Z@u;f`jjBC4_jAtBy22o#ZS6Hg4euM!{%9`hGlMxj!ug`kzF%gg>3?j6fn5 zaSgT2a%|dJ=zQPzsNL4X0G=_!*@PV6WA1Y*!{7d%TH;uM11yAv$OsT!DYdP0BEA2P z(JM=xMs9x4*?~MvyDS#gOG5z@-8U{C`J6KXx=wH(8Aa^p%gs&(QUu-;+wWQ&_=!-o zF|@bY?D|j2@jcE(@XxS3@uZUs95cMbifE(xQmc~$n9vPyc;h(-x$Nu(n;JCajVHaizqFw6-HL zLn_Cybg07=MFlZ8aO#E>Eg-U4T8knWDOChwgVx3>lAiCoS+xJ<$;|!t`Mu{n?|Jv{ z?)q)!F8S3fSvmJFTr##Ub45m8etzD#y!^_{obmZJ<8rF=a;vMyR#j(Z=jLZujm^u- z&CjXHuF1;_?ov9{{>z%Lyf&w~D=juyXiSeAfIKyME)aB2>&>ajRxmcD)`vw9>`L1e zgGnX#^x)jw>LHN4q&ahm5u9H9hr|KM*DT(R*#ry`Ecp5x1Curve4QLT zclA-M!vge9j1o?VN_>SpIaZ1CLqW`;K%Fm+FQq77U`5{zSb4J&4Nf>-1T>~Zv73u? zbt>Ghgz=0tr9okyq#VS?QYb19%4wy_lllEOhi;Eme?}*o#N+l9rS{pK%?dE9^ig=y zHl-3M^In2O$%RT1&)lv|h#EjT9wvfEzN#!7iDD|!d|^DeO*syfZYUp*@Ia^XEwE1X z62htIsuIO<-zpz!14t#D8@iOY21a;a^BvR&5JQq%_u*XR_%_CZ7#2?t12gvz?EIqC z7tZgL_-gI`$H0|UzB*t9AkkIw!j-v2CV+>xUb^xV$_j97A)dYK<74kH`NvSBPnB%x}ML*t2s$n;tOcj1l7;a zWvNME_6t}DVc?qVHLuh0TUDD*AGU}$6spcLLeC2k#J|^m(<_>3=pJpze<{8aMAzi@^w3 z0C_-fdX3lbm&V7wr7i#)Cl8SNXLTZQl%(j7)ml2BYt>wGQhf|CkcIFVF!tP*t7u=F z%t0I4%os|G)1KiA=hWMfHNBU`?_E|G00%EOngG9{Yn^}vo|r^z^KCKO2+)iG6%NuO zIVw&Y36xSO29NO9RBivz{*MHgFpugcY8GEtpp^sF_ya=hByAd4j`L_tnHJ6+w`pI4 zeGwv%5Ol6D)vgCSWFAW(+rV=4Vi>~r)oSB`d67R^qa8$gKy-I;LA_Rln14%(5uhDU zX<XALmKteo8$gYCgmsq&P$MpZ z8ZS$Y%=$u0fF0?>gm-EakUgDe?1}{4&;Ri28E}nwgcsxV9AwzLF|ZJ9R7@g{=aj+v z4akwkv*7Mq^l(0(qvONGBkU>AN1-Exg>Vg?E<`+p6K3cKk!vi^f{rD+$*TkU4R95B zgt1HXc+>)N3Dme$xB1dC{V;4sA7<`q{W0XS)N^FZQ@X*c9@iCQ8SNwZH|aX+2ulnn zkeeE}dG6Yxe-6%*71Xs?>fzy_J{qit5P^iC^Yp!XENDRm6~3v*aMwQlC|D2Ogca}T zUxKAjL0i7nEoy3)RJz*qZ;-8>bVvxpg2{)?kU-*jMTfoxtjP)%!dcLVWtbezye(ir%YrAaSz?4%68rQ?s6Sc><2Asvc z)U?EJ`~ggXrQ%##g8py%hfWS>qIJ z$V9`m_;ROl4V_EKBQ$8{ji@0kgj7`QHXqAfra1z6bMbC?QnF2(TSu7fhy{Iw>@0H_ zl7&ZDn`_2#N49C81QtRQVu3QjnNRfr)8s9;n?sRd(Mup9=sbIYnT%x7gBe8a9~r6C zW$8L)l$!^D0pg-qa%upE1!vuFK8V;Lx@w-Z&b*2wFX8}=dDL{M{879631QhU%n8Wi z)XU;2jpjLIuimi3D&d{am_v|DGgnL^4(Gs2SS9ojESj}T9NE$8q*30>=0%_qevINb zTFk*I7^aNs+oZY|zh|C7<_QU;oAALIGZERgx&)RO)*!p|p5_Pf=8L9|>{wmG?hNZi zuq4W!%&@}w-U#bDWO#Vte;jSaazT_e2qmx(rXn9`Nb{9+e6nTno8zptVE0$D5TLgZ zulXZWtO)Yn7bm`CZQ}7$ts1ZpD#>MWVX-wd9UTi@Yb}QoCdn(={8d&W=tvn026d#2 zL~Lw&SmKaT9YvliiypB?g0A%O_$QBB38|PfwS4*oYc)`yES-EQ0%-KgA*-Cfd)*q0 ztXZCT>p^QM60wM913D7j5=vX7{)Sh+YaM_NGl#4S3Vd$G@ac2bSIB2e5<>+G;ZQVS zxw~WAWZ60e3|r?{zQerlp|DV(?-sfNop=V(++^EJflX5AVYB^4+vdm9ZD`l%ZF@b! zO*h*3#@QuM#u(e7e`T9#pQ$?+M`0gC9Loph_{YPg@cRd)6gDg! zKq+_x-~9t91tH+2AmTWVT#s2$`Jumz-`|X7?}=w_#}fC%9WVHyDbf{_h$FaUkN>Ag z-wRIdaT7A`MORJ!3;qZyp6PV2k(1B*bCB|PSuCs*NcP?q@JNzl?_TQo zkdsL-fUm_n_^wt$h$Fe`NafRs&SGHW7J6V5j5e(Q#{-u8(;}e%Npws3(`n8qBw`WQ zQ2T7hrkzF3_x+FBZ9N3wnKPYD$N@h3KBp@5?eD3jjs-ZtLRf^10MV6E`#LAW`|lXN zvdn4XmIs|3$iuYDVqv{B95B&+<6H#)49gQwI!VAW!#k{qHi|E`If;M?JphL{o^z1P&OSiyd8awO|5YG> L**wDxt1qDsY$9? zYEq&}qLHE5=0%K?$j~;qK)`P@A2Y}1-OSyTXg|wZ#6^aq3k2%eN!JE+bkycbiAUr) YICSzpN#4!xq#F3hve{+xW6df?0BqiYV*mgE delta 424 zcmcZ`b~kK8A)}#jMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& ziG^{RQJT5==0%K?$j~;qK)`P@A2Y}1-OSyTXg|wZ#6^aq3k2%eN!JE+bkycbiAUr) YICSzpN#4!xq#F3hve{+xW6df?0L^iDPXGV_ diff --git a/master/.doctrees/api/datasets/text_text.doctree b/master/.doctrees/api/datasets/text_text.doctree index a3aee314f192b60f16fd1bc889b9a34756ad0083..c078492128bd3145e305f23fe6888643e0ccabf0 100644 GIT binary patch delta 4778 zcmbuD`AgJm6vlbq<2cSVn~qCnHz&fHy42)0Bb3E0DrF)wrG+RRmx!Ru+eldvLPiVs zrZMCp5Q!+Hk``X_kd$q-5-nT^D$RZ=D%v1ODuVkull?yD`v;uQJm-0z^S9jI-1Z zZ@$eCCJoOth+@@JSY=^y?8T|Le!Ezq`scPd`3!ZdERzwB=sDYqQzG698{T(9wrVd= zF~CvYifI#>U3gmE>S;KQf39xTwEH7h{K&7r+q2LbzjzgDADj?>nYMnpx_R~$Zzjqk zT@S3dxlbhEpj+D1LUmz0OT%xFSsi?|YBq}zM9(H+rVVznH^T@ZoFfkN?1(Bz!nKn{ z?1G>(4lzm4y{V!;m9HoUq|0+e)l5Dmo%9`1zzCL3$RfPrl8IEkT^!>@>=&Tri1@~H zHU_}zK9L$t8lB!Db_$AgiLxw~C!;O(32QMQV5d*R;wUd|Q3ZC?025`pWGe5<_(gfB zr;qxRj6?E2w-Lau6Vk%< zqPJUa^PW6{aI6tTYvEL2ttUzz@ukS5rfJ(plsGq}*zEwgFM zR`78#q%q4F*2P|y;J+|F7Q&`BxXTP-3HnZIC$DxGa8eVduq}9a3fK=5>f%3e=@9%) zFMD7gV`CZlY{iB&nqs4%C={$O ztTzmGTpWhP%c6Cii=)1FNAz4UIr=WsqAps_d(2_fyUc273So^t$+F`^uk@&=*%p_1 zmfGPDI!s|Q@Jxd!QEkOFHYUeel8)=QiaTL(Z8zkq z&dM|s9ObW?F`3zguidL2G-vS7)vH=|zu}4>{q>i7O6`e@S9P63KO|nJtzV)3J^Pe5 z6P3~KJ9cdB7fCqel@3*^E=*);_ztqF!}orj&tinpw@FxOgH!CyG6QJN6GwS=#1y39 z>Zu}rLC_hOm?G%bbg?d-uP6?rOAACzKA)0F`i>}K1WPC6C%o*D$yB>t{K1RZH$dC( z;v>)5H~?$=MS3i0bb5!_DJa@4Dsot!jJ4D+>?M4FlirSqER^k$>AWlB z8|AK^J{m}s2hC7OQ^E^PxPiVE(n-BlvWxK!VZm=uhO--G3cl%sYRXzIyHgVv6T^_k z*cn#DHQ1V@i!L|GW#$MoS|LTyv1Xai82-4D-n}x1YWK@ZE7ORs9+^b5kI4VLW&pcR zNE_FSz8<-aTdUQ3@R3)#$#YUh7-JT5QBy4V{Hn~vn*FkwcK$7|Co|okzi!Ac+)$z} zw$Z#tGKuR4c0AUG=mjZ{UJuIYTnuTT|5bw z55s19(hK_-8_VctD>mE!C%x!{SCQL9xp-;DQRJGSnw=0oP*iLrb@C9G`9vElX6r%OgpPMxn+k9s^Ioo@!WOKe5?i_bgAf6UzqGuFB+iEQIXPRj<9{O@|VF=vf>1jeaMp9ttlrd54FZfV@q$L*Z;p-KX+CeFanXsnzEh zrs}olFFMuW*ltYOz$NYH+tuu)lc>#=Yho{;AG;#135RlB`3u#yT@!KY!0-DOp&zIA zU7rK=qkf@j#yS9PgZ))7B=0Cz=C5QDC3YI~pTVXdgRCYV9Rr`}}_J(sg7=PZ21Nt65o20*nV3>grnOKEI^ z+>|T)L?5#gUh-S%-w(FS)^Mge&EHwHR)aFbw_x_-5uzno3fhL$o&!GRB9yaH$ zGIUoVO@Q_p*?v=Jt_y(d;^ycKLFO%nUVW*JWYO_tj^6(mfpl>=g62%_q`U6sXaS@l zSnB3*CuqN4N6@v7BU9Fl8cl$tFIQHJa++Dsk)9s||M>_<-hn!5pZvO#$J?SWhmKZp za94|w(9S3M6nOvWn;MRGLAns&v!Jf*4e|uq(9GehX9ym80giyq?d6?l&(+u@`fxvo zhtJw0@Rg@kHflOA9eWGcePe*5s|H!`bNEFxtDt;iEBx4JJdxVZ^F2VRZ)f;|!z1pu zZ*>SaFTqwPO~ApGR@VNgn``qGyt!%u^c^fmr}ZWO{yK*jOih3c_h@tW$%mH+2US@D zQ8x^v8R8dl@bS`}rb8G_6Ua}9SuphJ$5`xv@OH|(Qw#zPm-M&emx%v0uF~%8_S1=6 zApv2NLSKo9F8WzCRxGN4D9ni0B-3aB!A&AMXx&l=V3Efwwt`W}C=)r#1u|`;j;f+o zKV(OWt}37t>2i~RU(=VL5%6oe<|P5IwHoWRPlf$7+$Q?K!qdf0JOGW21(0`G3}6BH zXyY+)5c8Uk%6bIS^v(aN%sQiu`uQ1wtkkzLjJzYz1&{KFao6RK2n%pK1ukHHPU9-+ zbVMK@udzvy_MLbQsPuo}aS;ckYZ_zsF9O})rN$! z$LGW;KsYuUlP$g3BwC2a&C%5+Tkx@uXIOAg9nZAVfpW*Z@_fE^1T~t};8Z%a&U!Ho N`kgPM;09}4{0o){{m->a*KJPSy2X8(?DXMxSaA-A-M&vSh1;-=6Gns=2){1JVYsCOeX`0}I$zUykYz zHvrPAxO*$6>a%yAawySbI zk{auvr>fZ`C@w#Gk~wL#4oclbuL%U$zNq3^b{KRoRqSRCRQH26_A0157}YemI1!3-)s^)7ShxtvRR=in<&n&cla0BRUv$bc|iN@J7c z=6n$#`k0*nBart+HA`-+UC%^W04#!Gq0z6PHfNH#{|9Y@4db{CG{HQ22L0FdusMH? zp}Puc0<_P__FFo0T>xYkH%Dg(vTrl=>Pu}Ti;kyq^!~>Qq>IB5v}AK9-E%KT3m^@_ zQa6V?L3@#oplcmRrmPt?ngB^(uB;PPG_!#tJwFcq^I?v>19jAX`E?CXv_)SYy;;k_ zT`f*R%}?+t@cz*^^&IVjbg_}og1WLd#FJ=a3x}_sA$afwI08Dqk9VRyS7TG?!vh>1 zK5LJ{SDsecsOfxk>@8gPjRB6X8f3lC;TO@Yg7S^8@ME9xWNN>__X4H9li>>vkGS8y z)gj!v3|pNv0S8xF+3=%ot}R#b=Bf$Mcd#6t)|dSI8ysFRH32f*W6jwwA6gBL3I78oRSQKqvBr z1cXfreI5~8^mAyeT+{(km=Ui@rqKXGn?-EUx}^@lq6(kb21X%cOysB%$h3_)s+L*< zkR2(us(?f9SP8Io9F`zPnSCJ05mopK*13)fCb>E zO~=F`%xiwC>=8)QH~*(H=d3pB=Vt}7Qs2Qa@{T|kJSrTPN&1`tQRw& M-}y=kZM4S4zYp>P{cUsGxWf z0|Oi-9s`BIfE%CfPP(iM$DmlD37&w4?0|1~d?*hKG_xnLA-g=*MVoG8JXWR+NDAVy z0FK4`2zG7coS5QpdDOOrCLByWcl?~2hGSxCo}-~gXFD{e`|*743AOv(Ge@Xs`cj4` z3V(dvi+ir|P9na1OTZU5?osmAU>x7veo8=5g9K$jH8_FObK``LFjF6c`n(5+9^R+y z^d^4vQDCcer*Wn(5Z;R)p0D_=cQfCL`(B@-jD*zA;O}>gVv&hfS|Vlj4HPOZ4u_XS z%9)qiS@^u{B7*=`OeKmDYfY*WO=ug+S_&W_>sFKYxJP-@Rn#A`yV z_TI$=$aWl<`re_)|E~szuYULl@{QlnUmck3?4{(m$wO}4zY*r>uaTbo$gO)8y6Ij@ z)Gj!gOE)qd?8VgDE}rrFRX1BDR?%Btc7U?arls6A=GUwJ?4_4*OElr2zA(tDwm-R2 Bf;s>I delta 2910 zcmbuB&1(~35XO1qCfQ^$n-r@;q!=l<2-fZ<>2AT8M6r!FHL3QxP-}=-&?$!n z(1Yz*0~Qa9;6V?@4zf^?9Q-(Vh!F}xK~U5N3SI ztaH^fOpabUH5EVKKfO=YG<87LPWDF!wch2ycXlG&bATFx_>7(A1(caA4aT=W_p%0+zQ2DMm%4 z;~4JYDe+h+gnNAWbZ6S@TsTIg5>4ns zKotJyS^#%l6+A?I`KE}^uivHQZNLb=zV(EFq5&z&fEsWNC+0>79bu+A4Apr*?tO5N zveO&*;fLYP&Yi}Ysz`V*zJK;P% zBvH=1+|0wLr663E(kOj6NE2_D@XfY$9Q*i_aM%Y+K52VIi~J&0Yiux5Nc#wHndG_+G;IVr#dYNNE8S*Ail6BZ7GsynzS`GF=~yEd+!ocfAq{Ba6k7v zzTY!vX5zYi;<{aX8p?X|OT69Q?ru-1H&oo(Tv*x^E(nDSTAIC0;ZSo)Ns+hMTUuPy z;%#XP6@?1&y`Jz>&Chs3ooy^TkSacgXJhjJH-o?TIc#B#fehwLwTM~EqCT!27W(0XRcw6I$@Jg$Ai&hnR!;IxXBW19hUhHEdM?314R#DtynfdL81Yt|P>1 zn#qW)-gi?JV&Jb7VvRT+*+npkVbo|v`v;Q6=)Q+RArNLThThPWI@>=G$9_KWnOYce z++&3fF+A88rvh4c)WNyA2!11Q>-S49G^(4br-YYQquXM-QvxmJan#OUx= z;xvn@wSQ`tirSfb*3PuxHu1yUlVqU;my)=32I|GeZ~i2gSBHqHi*Bm@MR2KtT!`RO zhA6xIsEaDC;F6Q?Da2~g{l{};+Zzz=POx%q0oIC>f0vWZe>2I($ER_#oCi?puNj$z zf3XVAs?DvH*QH{tWwUB5!QRbGwNE)$KCPubB2*;^rlzJd(sS3Y$OW$MAo~J-? zn1+-uGU%c@(x`)jJH{|-Nq%h-t#XvZTB1ly)=9BGcF40-;Azr#wNqnj3#-C-xP{`ckZl2#cBU=KMJ0mYrv?h1ADo+{v$vV{}XYU;=vyCxFyL7$;at)=uLl$|Nxx=lKe6J>PsRKLUM68Y delta 5903 zcmbuD{ZE@!6vuN8l+hMSi-3*>)1TdN&Y|C=gsge8ZV+V@RS|vdy@}s58Di&r@RNkDmJnJfG*h ze81%voR&9cvG{6+rCbJuabbwX9HJ@Nv4#mx(*Yo zX(l7`dfv@Yh=IT4#X4~;wwquQ!>I9!_VuTWk^K*VLLkgw48Eo*b+)fRiT(WMXKG<2 zagP-`#n3=+k_u?e5eNJF@QeaNtU2N&4xo5jUKT05N`p#~uFb0moeg|s=UNSJ6eB}h zh|?^t*1pNzDr#r$89UR$Tg4BvkCTNGUQFZGX=oH1zWI|}UL7JPFSx1p7vaS!av{Qt zIiljyLoTYc!i!G6*Ne5{sXv|}+und^w}X{y^RQZ+_`8y9{u@a)J~oA$+E5O<;VrWDmP_p7R}%3-dG{*FqNc?4 zI9z;gEm#d7%0MyvMKvOi)kCW3L|N#A;VfdSOpI*54~|jIDD^3-O&((p9iIg2;T-wyz)#I=k$ za0t$mmE3z2R^o|;ADf`J`Bk!d8KjfQ%Gim z;cYVT2~-i2Ym)kw+(lS|q`nvy65SY-O<%$&(F8%h$BH(oA4wsiy5a=mP+J!K<+D&k zD1osX2YK%IV3Y4GKm$1+lkn;ibQ6^oRQ2uPKl>rh~$O*yl! zE>qmq76hWWgFNOyo2l!9RE$w{o$tjC<6*(P0m`E{;U&rrxJ*fwWjVN>qI4bbsQEyk z-|f@+SOzlrVIB@sly)P^BC}WFJfTNYr#wcvnj3#-$M=`YMn6_lOlO9Fd*3b1o_IdxR0W3{o_VHP!HL1Vh`?c(td9eQsqz#6AGyW0kEh&RpR zx75;`6n#DGlw0P|P8qRgFmv;m%8ReV9rCvC@C@M$l=(~eEAghhN$&dvPbT~WDn{^G diff --git a/master/.doctrees/api/embeddings/image.doctree b/master/.doctrees/api/embeddings/image.doctree index 79078d1c31b100cdb5e055da8062c40a6a7172fe..47dbb67ac38d79be37192173caf648d36969b821 100644 GIT binary patch delta 2595 zcmaETf%)|X<_+15h82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< zsb;B3i6)6ghGv`RF#cmAUE5?v9ly!@S~)f=vYuuoQ~SGq_RU4yr1<6$cF1Cm*=#x%rW67g*eg90O9vHG*#p4?c?pDVU`U+XF|$|qn(v!4vo{;vNxxq;cgRD804k^koINkQbs zD#(Zfo<^IeO*5vz6`KQQl#v?|AQuGaq;1|j{|=c(Z2rIOHn|a4w_O=r;2v7r!9iB} zU_TjT1gOA$y6ro;LHKX4!RDHsLgZCE_M89hZ6mL6v!DELuL?N+y^cAM?|7BT0W-ok tm!6nHrU$^T0Hp!ubIO!>1e6yzuQ^fT3RoR(d^?njtn^^F`TNrnCICAVIBNg^ delta 2595 zcmaETf%)|X<_+15hQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? z=7uH~#%V@r=H{E{F#cmAUE5?v9ly!@S~)f=vYuuoQ~SGq_RU4yr1<6$cF1Cm*=#x%rW67g*eg90O9vHG*#p4?c?pDVU`U+XF|$|qn(v!4vo{;vNxxq;cgRD804k^koINkQbs zD#(Zfo<^IeO*5vz6`KQQl#v?|AQuGaq;1|j{|=c(Z2rIOHn|a4w_O=r;2v7r!9iB} zU_TjT1gOA$y6ro;LHKX4!RDHsLgZCE_M89hZ6mL6v!DELuL?N+y^cAM?|7BT0W-ok tm!6nHrU$^T0Hp!ubIO!>1e6yzuQ^fT3RoR(d^?njtn^^F`TNrnCIEF>1d9Lw diff --git a/master/.doctrees/api/embeddings/legacy.doctree b/master/.doctrees/api/embeddings/legacy.doctree index 383d15ca094954e2f86b423583190bf0a46465aa..3bcbe9bf4ce04c30090eabd1382ffe5abe6ea33a 100644 GIT binary patch delta 3146 zcmbtWT}zW;80N8F+h#hMu0lo|QiMsEYkM8^fm`;m#ncT94_vglRaCPrc3?p|2qPkx zc~ftYw(KA}aZ2}S2bGluMyzf0Wk??JA^pmvxvR^b)(=}J=NBK-W?y=4mE&bk3YT->)E@(wL%*9+)2%v1g69qZsp zP6J~}BhH%|=}Kgpc3h~}mlLz#W-!ulN1($Y(oli7o2Haetj5pQ_bbUNsv)&Y1G~4+ zDPzEEJNB$1Q<$WJgLUCdn^8d)BTfwrr(Ag7)kqz*@uZfXx?_`rCWc1OI}clRo7T;=FAIGlartLZ2X- z^}(+btRTaSNrqJ?(_Tat)m8^y1lX zA8H5*a0)Cek5WE694bvYm=;bxRb}{rHR@>f|C8|RdTNsrlKqCw89u*9DLcUJWVoFf zN)P`x_&{tLQ?{& delta 3146 zcmbtW+e?#i80Kevw#{@hw~8^END($dck)|wz;D@Mi>VtJUbsjbD=c;E%7SzdMns_b zQeTj^>>|2xN$+SEm6ZlYtZj5Mq{EE}6wxkbCn>0l2$Ri`^1>n3gOA^RrL;Pp?F9Wt&B|rI_9;M9-;TYD+bHFwv=0i)RdBX7glE2e zs3Ii5DX_3SM)~Y;s66FmdN}!1li>%}YM|BsPr|Qj-xf6_2P|7Ne14Bnc7WT-a62=U z9{!6$p7t{>45toeT72v@VS_+ns&8R6%I6I%Z?*Dd8#88Z2G}~vVkw?D+cOoOjC{3h Qii#w?F~$sEvP+eJ0UFz?%K!iX diff --git a/master/.doctrees/api/embeddings/token.doctree b/master/.doctrees/api/embeddings/token.doctree index 9794395df9e01352edace12a97f0399adbf26179..448437e095727b9d1be1d00f493b0a82992da515 100644 GIT binary patch delta 10724 zcmb_i{ZmzC9-s3(&xH%fi(H~m%S-kmF?hk13$=@YV@dLMFA9#5CJIh%EjkXpjJfLW zL^jnRdW>gh*DY%*at2d8#@A{R&}Mp(jK<6nM^Qst))i>ipp4pm&N+DThyBIR=@0mR zp6|=&^ZkCG=bUd(Bz$`!VeeyF#?u*D{yKkMoiE#8mAPu=Z?acZ&#bDRS+ml=qPl8j zR@N+krawD#R*k=AMb)gTnHhd#hxQb|aWg%?K36}JlVt30Esu6!UhmnDo$fLIc=M0p z@X3?*c?%

uug>4C1LWFTK=GMp>(>y-Ox8K zh|~w(n{QlNnB#(A0{RY@TQBV>Hhx+11{P7kn6`2OKz+sGfId>)3;7+?-+A1vFJE;5 zx0Znt9MW^OtI@Xg4tZ^bHH zEjxT{u5o0u2T|L(tq&Wu4Re4D8|SuqkOp&Z>tbWWjv+Uc-k>q`=3Pjf`Sn5BlFtf^ zvn>RaM=5DZ)2O!0*tG9Fc)Y&hK%_D7-YKk$?hi8lV$A3nVWI>`r4Tbn6T)6|7DOiMoB7#5iiZBTofH6n*E{4qzG`Lm8Z-xhXwQ8^#*{ z7|OCDEmH0&&^~ccYH5PB&DW+m@kA{GE;%^LT+|ZO4mjb>s zV*fz(YDMIo%OYfBhRCHW`D}U=Run5aw6mBkLOZhMOVMd&-OcEWa@GV0M!q(i=gBqA zEJj}HW94-3L+sIsHy+VA3?4&l^lmIy3ZA%s}jyN0=~ix<7PmK_Dg%m2Z0 z(ZxTrq&vXekVHw>A@Cu@K=CoXk{CnrKP)*#gmeCk&{}-N)tvZN#9S0 z4zmbA*ViQ|FO?UN{uxVgq66j9?L10usS!E!Y&RQph;^JzltbyfoED#8$DM_@^P1FI zFEkrv@ZW49DV6sF%Z6>dc!+%r)SJ}FZ3t_XUAZ)QFLwpC6*N4;YMsF--iOi1C~H8- zZ+T-8)*NSY`7pcLomN9d0>JML zqEKHFj{_M}ew}y@-NAoA#A7-_O3F#7vFui&BPF_pz+|=a5R%$$_wq8p4^mTg0k9aD z&8$K`GoN1t=w#Z`Xd(X;P^fvZdK@ZJoo|46oXpPSo2kEqX9L&YaV)*}o-o?Kh*u?I z;RI#wA9y&aC+xQnN?S3-t>vDv^>Z!v!KtxeESa(=cqSrK%bUh^JXWTZiFg^4rOl({ z_53hGQVXlSp2tZ4Vd0hApXIy243k0`KwThT1NWi1ptIY#8_%0YV;k&PRsl6{Be4AfJnx%!1x}O8zC8TLfFTBf7B5YR10lB+~N0JhHC2$Wi zkGByldG~bki}5#3K2j)G5K&vF`_Ax*@|8}OOn*7a)8I5%Fb93?0s8wX{yD-T(;K>U zo{xeY2*}@cvjW;XzDyWQb-o8D>28Sg6brN8y+X zPqQfVgEx)N7O6-`ok6kKo)2O7ivc7W6M;6&7hfZ#RmMxGw@9=CCzCSXjEn{IQ0ZGM z#y;b?9uiro?-mSoFBK_BL$VyP+Giu9*8F#(~Dc_zhuAgbVeDPxcIR|FM)C@Mkjl*yFC;_DmV?o8@f zw$ZfZBXJhUoQ;r^$)f4MT_PD!F$Ir_3c$|#agX6iPP zP3<6hjHf9x+u2=m22(u7*VAoTBUz_Wo72d z%8aSgv!<@h^k+=ZnpQQn%I`O}YftkVH`DWKbM!OWNyc{9@@NO`n|}<4 zPae0=TM&s`Z}mnS=kIwZ0Y*qO?#}HFgU!bo^>f!bh+a=G4wE~o`8?x7$z*}Mp>J3a zsrS7<-?+3e+XcY{^zAOUUeZ=%{IcY4SVRG1(t`^C>MITh^r6ab$nT*3?&EHKdDR8n zS_X=FyneajDPz&Y4Or+wV^z&oOhD!OOKVO;&X*hidGdn@$h5+ky73IaHzTjM8LM!m zZ1b@>#*s}PL~ZA`JYZDU%?2`ToZI3-8qB#Zi;eZ$2i#D4gT}z$??U3ts}0JgJeF^q zZ6csNN=Zu^hP7qJ#(n3(Mt7ZYY1*-(7gnVE;^H6^T%O3;AWCBP9;G)(Blsd?jV^q6t();&nU%AhbY(2 zzD4zFMdY2sB4mAr$e}BFY;qJ<6e~HjvxqH1JF?|V;b~^w&FJ$o)&K}bzCDZQ%9=(N zBQN!^GMafmdt~g5M>GmU$<^!+K$WjUIJJr;0t;3MAy#(RFt>H_qE}Y4qriCi4J;R3 ze4ZuU0p^BOic5isd7UHPK^9K)n%KeL0j92*ZE%*B&UO}0O4fx=Y8@+07^x(EA00Z( zA^=@qm!RBKo=^IxEX9cqluNhsD7pC|kxegjvVMnH$Jtmpkj~3!@dPg~pAVbQo6VIVL_z#G9Oh-sbISDnEol111M7I!_tactkQoC&?F9rM{HB}b?i-Fn9 z%H^~3`Bi{UrY#K@@J|4Rng^@Lp+eR9`iRHLtX#f{dW(4$aQz*{(!1{oqy3BcibO1& zpv-xKhm(53{s%&7E2g;B+%vL%uI4^CH5QB|Q}!g!L}Y4tQ@@tS%9K(OFJt`LTuNTY z4;c;&Vi_%1NRq)_@$7syw~eP}M|>^ANOv}Myv)gw|pMlPi~GkmPv(aw_TwUayzPJ;z=(8vBnZ=T|xAuKYzp-boa zFvx*`{9`A}r@ei=3*=$IdeWx_-*W?5jjp9Lg6gmG*+?TW5nk;V_ARuLiMdE186Ht8 z2YOh5+T9`tNG2(SIS3JyT^aq9Al87!MRYk)bRnr%Cl|@x3ulf>5u`K}e6@GCPj;Y`@ zi!wiW)9@^jiiFf26pQWo5O$yFL!vPeX#ITg6;fJdyo9<7MKf?RDdSDZSTGNjzSUyn zGmh(i;YWS9V5oDcNI@Es<%rc*J022=2nj5N{zpZW&B*s27yUpcr3phSBQL>GgkJX= z)`~`ih|Rl1kXkp2NMJ-u(^x8F7X@??j}%iOlvK}^RDfU(2b%bI+>2)-S{XjUR zoPoNm8AQt-5df-4e{K^ zXxjXtI16OXM##=&(e(cgkqoGqg2zNTU}t@~*z9q|H1r6Uy_2l%5^kU+hLBo%L@!Xt zkiC3%x4JP}&xl7aiVvIwC1thRSj+navV4y^6q=B?{!fGh1Rq7(JSd`R&yd*a1ch3M n#nS-GM%_>VF?2|{{(}CJVKRm~ZgO1(UKW)bvncZ}*FM*;460aV diff --git a/master/.doctrees/api/embeddings/transformer.doctree b/master/.doctrees/api/embeddings/transformer.doctree index ebfbda076abb3a45ed6b5877c3962d147b9faf54..1da7861691680cfcce99252ee0915a8c73370314 100644 GIT binary patch delta 5574 zcmbuC?{8CO6vuO(uB`3dy3R>p8IHsln9+oGZnq6k#>~jf7(yhQ)+o}gcY6b7#u*k8 zegr{`fHd6ULzF?W$)eG0lt(;-Fh+TUnCg&hF=hidrv%2Ei5XF`3(s!XZocfff57=X z-}8OG_nhZ;P2_b=IZhEVX{`pq1(uor}dTR~fZ@RdKOcSrW@5p8n&i1!8;I zOLk)U4tI&DFTX<+FM9j~HsZ-^*DVsRT6-?J+#ycC{O5w~%SF85If`f)Zq&CPa`N>) z2#Vjfd{C18(fTYyBzHzANu4d%lRIr<Bci9fNc5l42vaN5#|$D7eVXz?q;t{J zt?*4FtX2$t)osEL;W~HBjEw0EPw+ic@R~St@eLC)bXUK^FMkdj#Ke^YG)^e>wQAQQ zlnDpJA@S+We`uGg9UHXkeVtX}ouRh~;sp$c37UDe4O;Zc-}6P~oh5{0Wg0cTcfu*A z?$^@Bf~HUZ?G&SvONh1^<&g(TLi2|B%l|n=_4EK?A)@r|0&O#Bc(f2U<&%b>#_JR8 z8UFTpSckWl0%ZW8XF2>qye|CudC-Zqe4`r_9QDA@gsAbc4UbepG58KyJrCMK(y@>T%}B>N=<)1bLn;_hwj#D;fZ){-Bg} zs4)9v&S}7K8|)|SgE;~}+y$@TqYikM5VUz18P!+OwHv&qFgUUg1_?KeGO%?-AGYCl zVR%4zu+4Pe%6oK3tyH{p9K1vgt-S3d7_Yv1yxj$UqKU2i)R_G0m-vp!A;Q+zX3 zVh(gF>|j~;3rAkrEMQp$yGvN+5)i_u%1#n2GY;Q+mnr%DzD+V;Yf^u8A)jO_EeyZnUR?>ULx7F1d+|QOAKg@F)Snk zK@cM#4R?5nGAK4#G@6Za#X|^V)L#@+9g;1^Y~bdU!1!fiMpW$L-P5(3KlVI-!1>(o z`QGny&V4$^^E$`#&hG|yMf)qSR)t)zuh2Xmty=T6xGJ9U1gk6jTBYA#)#`VbS9;1@ zt2B3|ry^J$)HL}iJYw0G@p#jExy1aPjaJGpI~K{eon_SWRmH_}Wl1cLc=`{k=E+@U z&smA(yIm!+vHT8EyzKV&TZkvGUAIs=>#e!ua+^H6@sD}gm&v!CcYP4$EZhfIr6or{H~yym0uG znU0XZ9IGK*W7!zy6|HoBD%YZWZ$^}VQOXim_{U`Pf$LHbS}EP z>|*mUtCxeHcNy?QIxn0sB4g^(e6ep5UXL;*4j$b=OlwYv7v* zWx~ObUw(A+Z`!2>P7GLiZ%2)MWAJ5ycnL#cf@V=`fgqpwEnimMSxh)qr7^&J#vO9< zem!k01o+fn4mmQhm}r|`9(j-?G_Q-l`maOQPW2NOA}a4L(KbT>j~Bw`e9{mMh{gna zQoME%*5U0XKp6n&UIxDtuM59e4xCskHo3r#BX0PK5H&IS9{9xmda$8dsXl`7a|oVV zct{9biV)fkcHw;%?7XkTi}pJ3k=xNxkqwHsdW?CowgKu0L7pSawFMU7iY7p+Kd2-f zDa<~Zvl=iQf`f#8FiQ|eJK=eJ)DBM(f;I=EqWS_l_kv~!gTn`4fN;a80^30JVJChY zh6jWP+jRGBqMJi%rQ(&7pb<5+iO^}#Uww^uyA!-b6Whd@QT5fU#oS9UF?E}3rRv9Z z4_dJOGx(73@cKW-j6LUJis-ISIIlpFxb`O$>aP}*7hwz0VjqTk;VYuCKD_ZY{7mpv z?Y*tSISi?P6O3MmLj+4R6pY`1B*Dxypg{ESw3qQgSVQnKjaq@>kL{qP-knO&S&ty&nWVR=i5EzDBh2{J8U zgmU~Qvxc*9qT5Mv71*8>)ZR zO@=51qbwiSjIk0T1xN0&qed(}88KNgcY@s_ys$E6=#YKPRA(r-1x`~ww%SdTM*0yt V&h#ed@k_jocVt1_JVStheE{F2<;hvDTJtog>57ZQb2l032)H-J4}r9%u;v zKpSbDrrXGVy1O^cJo$%cE2TaaD3Lxn&Dwo*8Bie`YM%RZ#P&5OL9})2OcUU7M{~hv z*Ey8vG_&@iU$xk5#98KF_khaH(^nF$+G`S2Z}w|QGHb5|RMbvZWG(zE1K_c{G)|Mce@3+@E$3cd1oV#NhgG=&4$M+z4sD|SJmSUpB20x4_+Ib2qM)KZurdJ z_v5T%4{L$mcS0dujn|^WcjeZ6~Q3yBSgH{sR4B1#1oT z0-k1%6pvc7PN%uHO!TMerqLIjE(bOnucFvcJ5G7W@X+OI;{#yd{b(-S+F{he40b|@ z)ffkXJ)=KLyQ;=N8VQv8fl&rDk4-?DpbfC2nh#H+MF)-ZE(rWod&syBjOJzq+DnIw zSQ4jx7PsVCMl`$f8Z- z*ec}NV{{n{($(qg1d=oj&LQtC)*5I_(%@vIBQ>rEot(oCfr@+3R}0t{7<_p#+ku0Z zvCmMj8nK*3JMJ8|l6eq!+L=>xDp{nuKaRahsjFEXa6NF=L2*5cpnfK+a6_OpfuydR zSv25-W*L#RVGG*}q~i&}_GU69&4f1#3q7iA?=Taz>|==d!A)d%VX?c$kuVdFMrBL1LG)ka`HL069AJwc{H+V zHLi$iudue=!@rie2n4w<0uPzX#q1y3P)*SIWNSIVCQ29%xmT;H%c*yC9S@ktJG579Kd%7`PnskSZt^AdxZ^Z7LA9;pg_QIWl=;w{ z8GMXi1!Gql8%OFmUx1oMT|dp+s$^XU+Vm+OfYMOmCH^7;c0BapOFka1;G`SePx|R| z48-6Une>ZBegp=;{Vg{@aFG7@18)U2k6#4UcrF5}sZgw=mQsv>HT)?`{1@2Mr2jRI z0$vd8=f|Mx)=@uMZT*09V;%4e3xP zpA(^vx4#S$!cBF&>cG%uw^a-mm7q-=SrMvmtcX_c?Bac?evFvyhRdtYjuRgBUbTM7 zJUm`>Mq+%cT%=L)BryhgpmM-XGejHUGhbbg{nMLOo^-{=(1trC(NmWymZa0jp%NHgp}a<9P| zG;gyQi|lO&+--*#34=d>Ukrx9OGp$T7j0X%(qKPzIxe91LWkku8R1oZPm2H*of6lP z#%-oaQU?dh0Bt)f>S3C|Fez2$=c0wWa6$YBvr&e!SxB?QwGE$vbU2-m?WJ)8$@jh3 zk2=ATtrjsEPdP%q?4Cx&J}*7gI##|2#*?8k6J#9yBT?of-|&tx9EQ~?a#g$VYoQ#5 z75!xrt?4H}f?YNA8QFrgIj174#nGT0l}P$E$qQ?67<56BfnO;0gDEYWEEfR}hYogh ziR=WPt1`=FG+ml4O8^r&FTD=IZx+hlz;1TbYl2F!8@j8MN|~sx&6YiBN`;&O?zZlv zX^>w~wu2oFt!U3G*?=BzM-fo%-jY6guwFJG%f4AiK#kleqiD<~xdJHY<9GtpAf7# cE`JIPSSS2mXXR6^!XK>~+lAi0Ay<0;4h($ delta 12917 zcmbtZ`FB;-6<%k0FE7)3nSn$IgA5_V%ft(i5J0rdgRBLnAdnb?MFLa=Nm&cQSfB~8 zklW-yq#9;ZqK00=Zkq@~(t;EOmS9-{BwAZ2ELIX}tyl{^_dEjr`u6<;zVCc{?{DvY z?zxR$#5H~q*D#Z$XRdl-QT8(L(llRAj&GPRr_h@@Jf~z>X0b1;xH!A0I6WgPC!;9a zm!6fAS&~uW^OG5k@rVB%m*23ZQz5At(jqF zN7iZ{cm=vO#2A-{A49^;&Ji79NUSmXxn9Pl;r)zPC;Z+9h57Ep@irvf!ynz-Y$#}n zz~kNKm6vz8Y~YQhue#0KE6NZ(4I?G+gt@kbN}IT=`Whg2(F8WO?32 zxG8RIwnuRHb`)~qJyfvp&UQp5bqLip#9nz$WJ8I*Z?d$3E452gvfhSsRy1-B6E=o zM5k4NCzJHCqs9eQxuo2d203&*34;w!lh^Ihs8Bd8o=V1qVk@ki>VaN!$Z2~*ZWR%? zJb9BXgyv$>-wu~cy32@wiKS$|9oxD<(HyhGAi(=eGS*HgLXNH^v5$r-__h%21w7dr zDGs@Lt4ec2DIWtb8e|l9x*Vw?uVAtMc3kidaX?!w`2ex+el!qs+V z&!~^mL9*kIBpQ-FAf<@ru?RpB^g`^Y?!)6?RWrF@gTM_9N6B@>Xzo^^ymXX=13yg` z_6>Z1JZ8Ceiv&U2ZIX@1q#Pq?x-l>*2kO2f3lRjM2%bV@(K@X+_r;E-5ajRrr6r*kk1(2^}D51=t{_DMPc;X9o*nVUv~VU3r5gJ@h( z8afbx!|{>yDgq}JE>-4_roqPIyFSPpOH(leOBei;r|C(=I)UR;=>-JNZ_&=#v=Z~| zF{6}v;p&U@BqnJJoC(gwv?ro1L4o5j9jS0b;nY%k6sdS9e6@n^M1$K_)4h1`I{FzF zET^ugq1v63H&O@2omS@L(h3?Z@6D#KK+-1Kh`1i;buhY#20^|-%k2TRPChoh;%$A*i%ctv_asKp?j#l{(<_YK8L7pw-lFLQb#@hi{GY$bgdmKC_RK~ zkw;o!6VSQHw1D!*O2m_p?7BeHAhw163$t}Jc+sbH24WofPmVuN_aVTbPM(3;vfTHV#W5*Y;sfX-pB3@`pqg2AzrQ zFs9&z`&l|TlGzkQ24uu@ECY_Du@IzBy|N*jMaqqwZ-Em&7L1sLx`gt>Tow)^N3q?A zOR?Vsqb8xipi=MzChrQD4qJ=ZGl&6YF@1HXh zTG&-&>{4MPK(?|KSkuVsXIO%aS9O3LpR%!78pyrOp2vW-hwgvL3eXjtcZ0b>J$=qZ zF}Qge{Gx*$M}yz~mJuY_3;+9p^*}X`n|oye;~v?W%eO+T;8W2W{uILhi`dhk{xwZU zydYT5k6t-AN@>>*sdu9}=05GG3F*nh<-7Y?9`uRl#h4jpse!K(`8;GO>ced;cfj5! z`4(g$A2R$pg}-cv!6_57IERvKjvL2ru7xyW3O z;r@@ezl`VHPIa8}$fRz!l~3UnNSkO`K{9t150&riXQQBLCSPKQ%PG&z<_`H@t$N8k zR=@{fVtlKNC&TD@d?x0BN`pH~crV0fzEt28d2k^Q(dGW_&-ivsxh)o`E#)ULiPYea zm-AW#7!>#t0_TtWCu{uP)IaNC&{{qV(=k8)Mx}6BH5bsno@clbcL0k46vJLj?iDx{ zme=rEn7ysRgZJ`jXz=In^9gA18sI+6Mca}s71#~^TRG~zP%}I@%bjx68Sa6+)BHN7 zal2{aWb-)Tf!*hL6Pm^|SqPc-IggSTFY^E3Y?LZ37Emk^34t?!3a3A2dnw#FaDC4Y zW1XO7%T-iFLM9iB?9<5bXN3cLhKuKs@ubSMXb}Pbh!Mju-|*TPnqgC-sO%khEu?1H zFh<0|=6vxH+EtUD5>cSc`2uFOXbs9yF`!v75DeMNon4h9NSsLd3{xOGFMVC>JHj-8KXi z4dxe=w>mMu?tZcO)#-Z^n-sl3(TkQV}cE> b;-`oKtHU3DPCU^g@X@NU1L6G}Vx#l_KUj$- diff --git a/master/.doctrees/api/flair.datasets.doctree b/master/.doctrees/api/flair.datasets.doctree index f0968e97c4a5bca7832397d4077d30882850d253..26844e18b7e8d828ace8e1449e5893aab9ac1e45 100644 GIT binary patch delta 62 zcmdlXu|r}*G^1gKp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<{rj1TmWk<6E6S& delta 62 zcmdlXu|r}*G^3$$MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<{rj1TmVC*5#s;= diff --git a/master/.doctrees/api/flair.doctree b/master/.doctrees/api/flair.doctree index d126dc4480820d43074e03360654fd75d4011d54..b097136c306d8afab25046f9d5e40c93c1bc4e6b 100644 GIT binary patch delta 547 zcmZqaW^CzZ+~CP*SYc>xR$^9CqHkfAXquL6Y>|{=l$c_anrxPol9+66ZenI?W?^cQ zYL=RmXp(4TXtueE(V2;KZIdrLt4?0e#J5?IrGkSz?VI28#B!0Rb@D7RuElG_*~rw* tsm!-oKyEP$dD=H~DmSu|sr7+YIhnRjexN0@`K11JVbX2he9?I`BLMnMs6zk% delta 547 zcmZqaW^CzZ+~CP*Xk3w;Wm;g6uWxQ)VQyw_k!WCSX_01ToMLX0l46>aVrXPyVU%QQ zZfIg*oMx0}ZoavS(V2;KZIdrLt4?0e#J5?IrGkSz?VI28#B!0Rb@D7RuElG_*~rw* tsm!-oKyEP$dD=H~DmSu|sr7+YIhnRjexN0@`K11JVbX2he9?I`BLI6EoRqDsY$9? RYEq&}qLHE5<_V0lTmWTE5|97@ delta 62 zcmZ20zE*rgJfop;MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<_V0lTmU`A5kvq0 diff --git a/master/.doctrees/api/flair.models.doctree b/master/.doctrees/api/flair.models.doctree index 07cdde839eda91de0a1dd1e9dcfc831443207b37..8489788b1b154ce9b5b6228bb9b26af9e2d87ac4 100644 GIT binary patch delta 21789 zcmb`P`Fj;*mdBr4x9+XI>Lwus36MpQ2nhis2}pp%mWR+pk_epzG$CXmtO*cWg|LaJ zEeJS~oKc&IO@oa?67XtH3p7DT5QnEpoVKSyk#$C36a)pDMPW`=wvJE#!nyMYoX>lf z?>TSPTkpLueVy{s*C{)5Ttl87l9X7PSXmiAJh3pLwCJJX(~E}|77r~cN}OI?Sd^4B zEHNQ*c*3xf#FFWS!wQEEN%X(yN_OA7S@nlO^Zlis0s6h0`acW`<*iuhUlMwT5hI-L z@0wd(-d(P4j`F~p19ih6+M}Ct@2+=%{LNAB0Ze;;MfygOX99`4_lH7oqy?Wtmq zRM#E|ss3)R0dLNgBK=>^9l%It7fy47Hp2f|`4&bz9i04yhF@Bg>%I4oTFbFw@qPa8 zRdJp`>~F1HD{<{JUsU{YFEwd_*jLw7#dGcJ4t~Qo4fdxU8psa))c<&@*PrwF!&^S< z&h>#9{`KdgQtsUzsjbg5lxNFk89p870{Pw-bu@={iLNIYz2g`I8B16{+?CXWxje*| zxMW2Ul9mjcsTJU%?R-!;_WMbU{7an}*oD=}QmlG`p7PyXGN&Y6RDJh<`wz^XB`xfC(eHbFN37B+Q*v4rAGS0=)Yr@%H zyp?m|_eWelJQM6reUwK?#tk{{T+SRO-;;ridq7KrHXOI+xmR;j02j*Kp?E0Yy_NGi zV<)kdpv`u_#*w2#sI7O)n6S)U%V`OxkWW14ewiu4T%hG8d}gitEO+@{q# zrU3GB+wa`77|SCWf6lN2CuDqZV59Dfnrfs6auBCkRqz zihvtm6w^79>B90LY!H9PQ43+l!JXA&DCqBqx^qs7-@hXc?PHW{<#BNljA}NLG52F}A7|PU;c0C8TzrL5BqU?j>k`>jV9Oct zWzH#$Z46{=qJBkunDb;wgt0))F2m*^PZ(^TD@EWf%fp%;9V{eP6GsYmJdI(VYs~6Z zfO^9ShJqNEf$#VC{DSL(jS0p2SkHFOj_(wuSAs`{0>SiQaFXY5p*%fTz|sjG1?V(1 z7(b0Rhq>_BL{B{D;nVTShT*$~o~4g4+)2Idoex%{#{)EnlQDR!XDX*lZ446T5~ntf z@tb=*p`5efmEqDtSbx$(lW(A|V?~Q+31?TZF-VyDNsJ^qKC~oyExi1Y_Z`l@(m??C9y@Wyh^i5)`u39kh4C%oqwiR=L2;gjBajvk4y8scwxPv86MNVY9K z@7)flcpG6^lh=TZHQpQ?8774?G=PNJ!`Z6H?FD$UpH#xpy=@F+tU^YGZZ*b8>R3hw zh%y#e%$3TRE{p{-j%+<1YAlzYKLh*%`~pxg6w>U_1YcL)YQCGBDMLmMz} ziDY5PQt2QQvjC5*lKOI$A`(RS18ALNpJZ* zj_+jrE4Xl2b{-22DDOdzL`BM1IGJo`S@?Ee`2gqI2oXlWywT)M?PytnJ0oNbuaA`L znBGi=rbp#&n4BWt;S!JthdF096v||@a^ytDh6c7VkZ~{`pDJf_9%>vyda117{uy#S z+XsiRbdJoqet_gdFQz7+#4ju58=O7;%6R1ghWfC-0)2&Gr+xyOsWm42LZwZ|Ba z#HtA_OSRETH=Nd2$^L)96h5dVa88xl<4FPX#tZY3mHRL~Nnw3?>&il6zXRP$K%5MVp%ZF93DKXsK*yA(>C_Eods8yN* z>M3lgQXg>PCw0n2&XaLxhKNHS=k_UT-vDHs0-Mj#z|qet9?pwXr#B8}?**kIprAI! zsiAoErs57{45v7h7j7$q0~!%_y*;qWt*Y>(TRjy}k~>jNSFJG^?NQ$fNQ*c{Rr?2& zBOro_59sP6k%2^pcVkt~Pc!~upc6rYfsJ}BM#ig|jF$&|Yn8;i#Xeo<4yAn#e~Z<6%iWh-DS9ZuKE+_slN+L z!uuDfJvpDLt!Z?85Tk^|LDLZa!f~ zLH$wH!Z|n9Nz9Z_437_@T zZZHGLK=Ofgy6>ve9>;Iuv>47Konu_{kjA=6O~#Yp$S5ty{-#@jMI*FxjIx7`LBa@( zYvur4~EwWIPBbd!0#GfRzihCm2;h zO3N5+oqjl>KSYRe(|=pg_Zj>Ee$g3 zw6@Dj(e)bZo(gqzD+cM@d^=l`qy1V4TJLNB#m=TfsM@QoV*KXS8EST0Sl|ou)L_gp zZ8qys$L_Ao^VF%C@9EJv>by3LJu)23;6@`JWBylL$J#5av{V@No^IN|!5fM5-8$>O zAoWWdrhlmZ9Z##R0Icb*FJnn0O-qD~*}4T*Pdx-Th3j-VhK0h~R~)zPgIn z`suw`4cL}f3obpVw>?|tx9At~Ut{%wO!YZ=?gV-;YoreGoSIR_kuuJ@sM@X=>ZWRQZJM;`_V~k_tu~9Pp6C z&3Xjqb21Nt|J)?}p z{Q@Yninpg5li8AYLOEP)L~zu;>w6;vd^N_D)?a{sy3~l}{A{cPgVoO)UXEBh2}x^= zZ#i{sCzN6HdgCXK+-(9RU1e$rb30^@IvqN zS|mR4p27NAal1Edtcfly4htHMN11vnt~qLWkglx{Vk)h;@u-o;)L1G^j5JMn`6P{! zjO$VqUOjH~<+L6p^%5o4=Uf)Vr4E?gqqtqU&#nlf(_B;+z`ghwvB;|4Qxs@W0JXq z{R>QQ>nZw{h2~(U{z|~cVEH2RdFH?>fj+OAJ{X-XZp6Xs%#obUaODLv6ThuB=WyN$ z9phtL&5@iGIK~^_HeX>HXF*k+DdW!VChLuumTx5h5j=Rl-Yn!iAvu`1k4+h#+9Viw zYM*(S(~&j?3G)V{Bf;^Z&tFU(>UJmwEIvZ|t~g@GvK=AT6{a4t;Nl5Wfyiz2i9f>d zNib#|{T0a{zcBrr(dwjyfJK~hP%_@jOu-a9bjcjctp%>XVRHV>tF@419D);XnJ&)j zsUwAnCjA-53E5)(WW^@DZ4(&7ab>lYheyM$XwFwC$N0Ja)&$l(uvgA|(Avc+c(pYJ zP9|D1WDK`j|C0_I23ZEH{_QLz)~B3fGRngg*pz4KNPntQ#El1ukjxH%j3t;|WF6;; z!0}(gW5re!XKS-FfUB#l$(*+U$GG@e>s!Wdh-CZ~Q+}1`uCX%N1z)kxlJV*bCMq=fQb!U_?LBuO~n@aJPSxuVS zkgTT~$;Q#f9s%tXYf=ZSC(RyTBlJx3jFx$wNqkDvQpZc_v-SpL=rzBv&in!E{au&O zTHn3D`+LrdU!}eHRod=c*PtO!O`n}u7GD~doRX59l$nPIE}U1Q2(c;+ZgfO;}k41{L+#zqNY3#I?_QLGj1F*q{YsUr|{e$F;9M^fli!*gxj*0Cwo7|L&>Sc;4d=Z~C+= z*9T(wH=d75>%2WuTQ@V5XUk>1{=I6+A$*TIqG^jnu}R>+oj^Ef4DL@bI^_l>+iVMaE*bMSMW=Z zFpEtXuL&xi(}k7Hf{cU}+gv7|4i+BcbQYzcm9V>uu!*54B*Od5m1jYwON+tF-GyzO zo{lOMa;j{Xkie?cgHwntgwM&yl1U28Dqx@hdDEtR?fxcS;7{MT*!Dj z)K0Vv+?OLHGNw2ZA)8?bcFf?LBS`RkmJp0#B|;4|fLvIySO~!>^Mx-tj@bEw%wGyR zEZ!pcptM04jnPjD`P^E-$kjp+bYCtU=V>t40pR)-!d1oyLCR|==P|^Q(fF5yH`zJ7 z_^RN;=PQMY47b6l!rs?~AfzgUbA7>Z( zU$cvy4`i%k?sx7|&g7WdRU8NhW{TmMW{E1N=k5`J2#I*JyI83*^6(SPhzG=e936GQ z#G@4>UgPv(M+^|g#Qh0k)qMd)cIix|qg@8R*U$4at_wCM6l-EUJ2^YPQ)6ii2 zq_>&i!sFvTah!)w$0r+x?@aY9f0*G;`fcw5upgEk1!P`BPIbCXFkT91xwQ-E! z*yjo5oDHuImlnasQy!Xp19TnBnmo%myMm2D!qiM)B+>DqDamW$0J2+o&y|G`YAW52Ay>%(ocy)tV6 z+OmjT=Z(bDUwIAAUTDXGMEEL-83e@d^7g<()!yZtrf>@35Zr$62aE?KptdT9*FW?s zxU|6=!BJ&9A@iU&hI3Br5K2#aC5SueZDu6$9srM=^44(lNQAWzcguUG^Q$A-Hg)g3 z9Z>N$!-@v40h#N(xi~CL3T0>j3A2y0Rgv2Z@l;=F21oa{F_5tenPs|F7cHry7#SeS zC|os9Dq*@X3dlIJ<#?#BRC|I4j38#v`v18 zlf*Vm8f@Aj%W(OK?A%h+F>a^ayLSM7wE&TTUuOk?35SRXrAN!T#|u4`zMOKk#Tbsn zsthbkRlSuiIHix0^KZaReNai{oGP`&lLq9C7v`rb_hCk|!us;ok%h#{W1Ox*JElHE zk#WW&%7+1AkT4Zt0qABlep{qG5lE3n0})ibI!l=zNSkLsO%8pat}3?_^etB2=emS6 zG6r!Tk=jdB`y0gr4QrIH=zdNC&QsgJVr8sXeig7^J}iG#iRR|U9;azQ;rVb}mC_JU zPhnHJ`hW{Ru2wE`o{ZZwL>&4!SFfmj0+4YUY&}l{M?a@{I4@4^-Z+^37nHJqg4!Ib zhT^fCiaU@ooaRuTzpcavG$QPJdti%ORpAM@dODyax1$=aS|hQyM}0FOE#f3q?H5pv zfCwf&psNo@1`-+GjZry2&G@H*P6P=C)afx88K-73ULNqx(P|IQ2qn8>oS3bOoJ^AO zREU3!d_Uezh{T`?>d?S2{p<8t^!-Ae&e@h6ZyIMRCS0DSh)`SOF2R-a)E_xd{T)~m z-oH@o&iU+aW3Z8i9p~kt#fNg$z*jb?dmm&-)LH)YAJjt5@wn@*T7XACR&~yshiwco zb#wuI!JpN!oIYzg|Ojdhcnj3>a+;aZUWO}7lE57o{y$__RL2_rC) zkFGIV40lnuo1w|@{y6PJ#sqV`Ccr_?-sTvO$<^{%YO&K!#shIezP6t8VCWPs@~@f* z)dgC2cr0HVj`dTtA6e7T_NI+xLT!=e#oS^oovFqN&^TKQ$K<)%YfQpIT)a?woKY2| zwCv%0q;%4`^;Int$GxsqveoDimcF4)W|y@3ZOwv`9oi|Tp1}s-=Wl7-Sh*jgje)Fc zt@ZL!?;4GDPlYQMt@pJ5WoOeNl<(KpFn;su3^ltgEbxVSDlz)F zHiz}7V|Q0pGj(d#yLxXN-mE3CM}~umuQTE>`v0^Iti7^aONZg_>Zbi0ykWS&t+Vb6 zQopof`i1J>^0e9lz{;-r3YJ91Xi1PcN4LQ0u7}{3aJ@Pp3?7KoYXc$x5xh{|M_2J$ zU%dyb0bBEG!KDZF)@RFtCjBD*M~pszsXiyq?LZG^57QxzQ!~mqQpQ;qRofIp-85fU z;Br67hXrMNGUujIM;1n`)prf##6!tO>V;xvKRSu++VbG$;+%7}r9lNE znE00;^w&7AwzPjGfgK9m?PCN%=^XuMnAp!a$$TzIx3jC_#sS7f&W*nIpon0gXSlJn zZvbUh@%A)hB3trKC`XEn2#(tKd}oA!uhN**@(b`!mK!mgpN-waV8wHWmm}78Lh?G} z8%|x@2qoCK(fE-gcbkBej4hn=sJ7(?!_8Ww_48Umjluf7c8`U`stP0-lcCISc%f&r z7Kx9)Yp{M++~!RyYrIQ~#lkw{5vJaXDvuc+q-*N~nMy0FJ7$bwYAhYbN17(Qbc#kv z=5;9wubwdaa9WR&^3SZJwc11Y2t;$W>9l+b+d7o^L9p2e8gPzm)PTm z@jK3BkundbIgG?1A4t;`d~zkxEbR&n8P@m;pz)!7JgG@&gHxl zI>yJho5MIMaEv#dxkWJW zbiH|m(~&j?3G+ImBf;^Z*Pl%ts&^>{EIms4E<0+*upJ@R6{a4t;o?bCfyf>7i9f>d zNicE){T0a{J~#cG(dwjyfYUkWpk%zCnSx1p_>wt_TMOKH!{q#%S4$zuI0VPvGF_b4 zQ%4HpP5LvAld{G7$%;*Q%O)^}ssqz+O53L2D1I;1$*+ zIF)3{keOn&{3jjO4zvtb{o7bbtWP+{WR!Y0bE;dP2{`{JP^3HGloO2%Kq^|0m)s?jo+Opk!)e5d?I1~Y8-&^l7wSxqCf?IiLylM5U zs6P~mf4OBn%Fd-t!T7uC&p(f1c zf_9>t@wFbQsOUmeXt8JGGlG6t7ortZ{tzT1iY_p^EQp90NY6RnP5bq{{R7^w&--(I zo`I+}5Vg+NQ_1F%N`IHXtE)KR4_AEMTo!1Gl!havEzSO>NVvJOvfN+c4^))5_*As2zxt8>7KzL3`++k1jfV?fk0!)uZf10@rH=k~AuSrwqvW5*fff&N0 z#I!}pFk-qrHbyuwdTCGNd z(~}Z6YL5n&seLt5k;;w+7uY>Z((F${m!ZIp+CA%Yb$sbbtUrb7#21Z-G~D}{eWcMP z3uaTfI@Pcn$zL=D5zf4ZN^eWtYr8;q$HeIFq zE}0%oYWH1AQ`Yd|JWzh~tw-g)JC=^g<*O7*mYzG5%?)lULUvQ9&zf?@m$(B-E2x@t zXH)ewRD3r`L15CH$XgfDkPD04Aa8WjM$TJKXMop(b>iy*+q}1d)*z0xF2Y;ZQ3dc; zOD$d{_q5R@Ubum3fu;O_;O(FS&_kW<`+>ZCt(%HK5C0K*wvYmfuNOU^cSPwa(D2y2 z)yVUE$l_N!X(8f&j36~3iGSNm4^yz&t&!~qD49Kn=nZf-oK#{2sR=Ir=`3aCqDDGy zlga6KXf<$o93yeU$S~deC~*(Eqs8)8r*N_F8EwPfItL(&-jSPAU(-ckJI8HkN)_EgnK0K2?m0INZ~ji$^g z6&4SCEM|G3N;(wQl=}HN;1MqMalvS8FZK*)O6~vEZ>Yq%Yy1*bjW$<%3U+GTC`u_&DcR@jNSW z3vmK#LKAR)WX5f=Kz{Y7$l#SX#V+7^WKB2?^nEOGFVDLxGJ&}tCrC}O`09x8BG0Ps zK!{g97SF-pX1GyP7?+)Qq dp4XTH_}73hd2p^F0RODTe*t%%UsM}~#(PAi{ICE3 delta 4979 zcmbuB{Y#Z+7{|Hp$MbkhACGpdPDH7tE;aGxXy-{zrH1CIz^%q`Y?RtTT~x|`Srf7> zs1v;zPjyR;6}=D@y|8=Z8iRhAGome6`9qM5SgeB4%Yujz1L;2JDci5->mTs_T;J>U zzK3GgP|Uj8LY2WS>o?T&R`isIY&*0tWVcrY7ulT)gV9iRG+NUUt*olHt2$~zmDP5z zv#K)`Qrqcok-W^gZwH;{`IZ_>nVmifd3Tltn4XCKIC~{-KGWG#pP{bgj2dtPafDBa znT@G1VwN*MlIuLmJBtz2^L!5$yi~Om?=+#P%T!ZEmp6H-x^EX^?QT+iwQGP@tMTxx zl;n*%}4=i#{w0UI7 zJgQdbS`Q%kYlb?}b{H5B#|`gwn!5w)+7}U|aqR=kRsZJirY2u{)jlv%m%L1yu2qA> zrVo=kgTooh8vV8il;8T-rwU)6%EaXIMH;0_-yO>3RxgzyyQ$M>O&JL!??BRrRL6z$ zsBR`Iz8j`6Fllb&osD$agGFwYzxB~ZE?PwwfY*a{;_Cq0e5jQ^MI38gl((&=8sM## zTD(Rc?4~K)uz{8VOZh*7zlTad4^47#EBX0GAC-X~-V*w^kphaZ7rmJG#^^E7@c6vd z%c}>;;urg<0r5XUkeZOfKOCY5Y1r)6%gx6qm3`mPE8uLnsl*9V6Fj`*BIOjKMtW|O z$(eWPW8m_*MiPXvQMxxHc@MgycH7J%{rkKiRs(1yoAs*ZXbft-tz+}Hm-{ei1;-^Ug_WQ*UR)a(vO_^6E zEFPL8=K7&Zx)j!wmL)jgFI*bnk}t(&w1&A~ivs@qE3qCMgL2k@my=i{leY|rU6a@# zlcT%E@eHhfyza0-?oeWWwbtUiqarpP3m!j1`Vw9eM}cp<{Bwa3l)X1afb+f=PjiyD zkRY%obO7f^X5AJ`<6Al)`asw-zO6HbH!be4b1&}g46_yua5~o@~r9( zM0oW>@f2)dgnxV@6tH*k1S0(CnTX8>+OF$f$~V)EhhXVe$bSlqEVi=^9$mOKCe diff --git a/master/.doctrees/api/flair.splitter.doctree b/master/.doctrees/api/flair.splitter.doctree index e057bafb8b182b960cc220af21f60c96ad93d7c7..8f1a53adaafd533984a6b7340605fdf72b678afa 100644 GIT binary patch delta 2263 zcmeC$&D^z{c|$a#VTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI zs#$7MqDi8Wq1omh#`{d9Yn!ZSVmSGMIN#)e0FKR%Su9v7Fyev@`{qepoRqlYf(^%J zVcxIYXg`_Pn`PwHd6tPeK=cKziQoWLru$Y(4GdbX-`Q}#LY&OzevsuyPDH+;; zk?A$L(fTIo7J_tczG}0EJTJR~LT&Rur+wsVhlN(DXBv6lHkh2BE3!EtU?w|Reg|ux z3`~5J(;}`=X2Ry}k>SGR8L>G(SDbwBi%xdf%mz-n`XzT+$aFz&Wh5D84>0u@OwO&8 zn!I|q)8^*t`DEG-Hlp5|b@QTzJWkR*u-UO|GC9%j*yX<2XHqda{sw6^pYom@|2lR# zO@<}=J2SVDlXE~uz=|u&1=YFjmfK$^)?sWmSO?`&wt2* delta 2263 zcmeC$&D^z{c|$a#p>aiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J zxuJ=Lahg$@x%uWE#`{d9Yn!ZSVmSGMIN#)e0FKR%Su9v7Fyev@`{qepoRqlYf(^%J zVcxIYXg`_Pn`PwHd6tPeK=cKziQoWLru$Y(4GdbX-`Q}#LY&OzevsuyPDH+;; zk?A$L(fTIo7J_tczG}0EJTJR~LT&Rur+wsVhlN(DXBv6lHkh2BE3!EtU?w|Reg|ux z3`~5J(;}`=X2Ry}k>SGR8L>G(SDbwBi%xdf%mz-n`XzT+$aFz&Wh5D84>0u@OwO&8 zn!I|q)8^*t`DEG-Hlp5|b@QTzJWkR*u-UO|GC9%j*yX<2XHqda{sw6^pYom@|2lR# zO@<}=J2SVDlXE~uz=|u&1=YFjmfK$^)?sWmSO?`380%E diff --git a/master/.doctrees/api/flair.tokenization.doctree b/master/.doctrees/api/flair.tokenization.doctree index 1c9042dc03b73543a07c90ef784cad816404968b..bfc4e2ec7a9b0eae4f4488e52adcc4452854dba7 100644 GIT binary patch delta 2322 zcmZp^$J~66c|$UzRfVCsS&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI zs#$7MqDi8Wp_zV4esZyXVnOC)!AOzK8yOEW8Io+qZk(F%i?3)*I zy=5d%`{w^VhuF!}Iypv|d$X-*H8*+MH)|@YvyrZKbECQt8QLZ{s(Vf5(|by~g&>`q z^YnFC$kOV%S-_-%i%hNm>~zTS>Op_E$q`3=H@|buC&$r1?VGQ7#gUVsKw4M&JSQV3 zY(D7!l$>BX=jw$G)8jr+{ZMp$+Zk(F%i?3)*I zy=5d%`{w^VhuF!}Iypv|d$X-*H8*+MH)|@YvyrZKbECQt8QLZ{s(Vf5(|by~g&>`q z^YnFC$kOV%S-_-%i%hNm>~zTS>Op_E$q`3=H@|buC&$r1?VGQ7#gUVsKw4M&JSQV3 zY(D7!l$>BX=jw$G)8jr+{ZMp$+K2ReM2;(VTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI zs#$7MqDi8Wq1omh#s^HKYnv=sBsICg$#D9cWJZq7A6OQ#lW)dmKHei_xE$&P*~tP% zypwGuc{hjfujC=y6~>bVq&YXY$YillXhf-^Ao;E^np|cexmiYU9V^+cFq$lDq`kSw zM2Y+uF`CR_CAeA1MwpE}S8Q%@Vj@36?KX3}eC8z2W?+&un*Oenk!`wm38TQ~iGD9M z$v0^7-4f2t|0|@`DKNtKAkXH-3yv#NXvF73?NiA%!g#t}B%|nb-blv(6q>PpeiY+s z4$=*o?l^_9a67Q5NGBs}Ks0|XVC*HMoC0Ys0;h=Wz!b4if;_huZO`vzTu4T4*bcP* z8W~vuJ!cY delta 1732 zcmey`%>K2ReM2;(p>aiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J zxuJ=Lahg$@x%uWE#s^HKYnv=sBsICg$#D9cWJZq7A6OQ#lW)dmKHei_xE$&P*~tP% zypwGuc{hjfujC=y6~>bVq&YXY$YillXhf-^Ao;E^np|cexmiYU9V^+cFq$lDq`kSw zM2Y+uF`CR_CAeA1MwpE}S8Q%@Vj@36?KX3}eC8z2W?+&un*Oenk!`wm38TQ~iGD9M z$v0^7-4f2t|0|@`DKNtKAkXH-3yv#NXvF73?NiA%!g#t}B%|nb-blv(6q>PpeiY+s z4$=*o?l^_9a67Q5NGBs}Ks0|XVC*HMoC0Ys0;h=Wz!b4if;_huZO`vzTu4T4*bcP* z8W~vu~Xp%W%xHpaLYxOh#wahYvODw^g( zcL(}Ro-zZ}n7Pa^dzMF66G?KBnv~{jDcQs^T48R?uS*d7bxpKj)n1 z`P|#kW^QORpIi%x8xm(*)?3!EPe`@cQp!tbrIwT>*~*garIwO1Tj}iC$(9sLYD%)* zVlS~J+maG3@&K$hj696*$(+pZ$JymqzQUg#&ds3@bVVEGxv&d_vIq2+^Q}?gGAHsK zAF_&dJbm|6erjAhogmX!q)#;b>;AE31Ho{!lkyvLQc?EJ$ zW-BfIyV7?_JgxA}ymo1nXbFP}JUIJ@k&9NXvsuCDx*4(e|5^&eM{2?s|=9y&ukVA~WTpok^6fqm|#eYc*YgU52>xh{k&g zs1Omn_ti=Kb#a5}qGp4l2uB2j%J2`7($ro%i)3w6B;AW5UfUERs}30{TWH`wW!7hV zDFdzDp#A5aB087l%C0kGDJFOsF8*~(58)_OwCq3cpxEb4yoPst7s(r%Ci21yPiO*^ z1zyUALm@Ktn>b2i4vKMJG4oq_b7bk&B+7xfdZu${*Afx1A97{Qt$trZMP9~Io^bar zEm}Ie{Af#B6Tg6;`8`Zd?KV)F$*X;VxHJm9K8E&Ed=$ThgG(6qLxD_x_7P#QynvWd zU=&+@;MvH1^Z-x+>Ito_1y_n#KQN(s*))%)rQfAJFbGduRN2c2FAJ~g7h)htJc@?f zG|`p91Nb`wY}h>>$_NAC)iE;;g2nSGaF41(1Mt*op`t1RR^ZckXe9KJ_GA*p^TCSQ zGhseuu?zv`q(MKSmj)Hsur~u@33h4#R3$9ak-QR}3*j7XA$a_=iL7k!*ETE0FN2kY z)hZ5JVFv!P3Z7ENNedP#IOoXrG9Vb?$?gGQVmY+xA!Li06>2ej;s7V1A%}zvVA@>J zNBDRihB>hbLPdWD6yuLu;3(laIgItj4#l$UfG)z&4jxgq&?xxRdvJ=-aQ}+I1UD2= z8g1V9kSB5*!57sn-a;{Cknk(PhQU~)__7JwX@GoTIs_MW#QJ0LVQ40no-b-Xg=^I8 zD%OmD9)$qP;Vbj4_tK8T>~buCz^ zU?Z-32yO~Nvrqgrk(q?~5d`7R$B;?6&g0P_3S(Iy*2S>B)G9ds^pD?A;i`kwv%$wDy|T(6|lL4 zPhQXF5)~`e%p6~-`n6#ddraw9&jf22j4EQ!^bz*i*dhu+`LJ9#*Qt(o*jWN)4-FDR zaO!IIEv0WX0xAs;2?c0>r--_0Hcq&AFgvEYSOuYt{zuugksTrQ#eXQ}qOpp-jB%UU z6T&bKp-`3e0Syo(tUt4m`ok;@&+cX!gtJvDhCyoFtcCFHF&wf8yX%>Su-Jw}mWY;v ztb63w%n;-BVfIv~8(HG^F*aJ%9cMn?d-Fsyo1@blFB27WZj6rV#2u3%2@5Z?Sej40KW+&#bP~XH~f-ext9@JmPw}pquoUpgO z$ST(J^gYx0sReiM421wBshF^R(n$yI<#7?}hN3uuQpdR{~}0Xyte9UQJg}Dg#}4MC08B zRESXC_u3TxhPXj=QL{l&M0qF#$&e3`($pS1i)3AM7~P8^Ue_Ebs}C6|TWIh=W!7i= zCF91`QaV&S*)X3JGq6DS8#**lXvyB7=J{g5kbZw+`8D)KOv@YuU| zY0=Wz?L%AAn)vzr%hZ!pn=fZT5y$!@&Oa7mrcu9TKe7E1B39iMU~w_cv*NL;;2u?n2H@5iL83YomgCbHXd?8H_GA*p^T3AL zaWIdvScU z#ai&squ@(9d}Us~s5uGesM%Gl2``<34sv!gLNLB`7FOybM4X37L_!gET!cl02LLMj z<`V8Wq2d-aAehC(8(>D?oA5CqyGF^!*gKFx8QKSn*mCUq0}3gb-NBdpA(XP$wP2xw zjkx|HxF`h8KJnLNW)hZ1;E%f=Lnh^pQ$q5@B@^=%N6Wz%OAPED;kh6*3@XeNf7%cY zmf{-6#^PJ!SuNpr9=8Tj7{&asK9cRDRv~(0m_L3ol~F#!Gz|rq_9E-2tU)bUsNeu> zk7Z}5r+GS^St(0EJHm!^=8GM3*#V+_yLj{}Biuizk~a~C5ZiLtF3L%(xI(;Ez~&G> zdEJ{!RIE@lb9{yB*T$9XF{NMK6Rcq{yof#1M|j`P7E%bxhh@UKUUhtVDT}4-p&>#b zPG8NwrSy$PK&9a!p#bgg6j5KpCJ5I~R*Ke2RzYZ^|4}w?Vn+yl@gGW=XsTu}WAqmG zgfNW5C{$&AKm&ve+s`bp;V?_XvwK(u;cS(P5s+FJYbAVpjD#%2o(7geSZpI9i$&`} z)-(ERW|(pMFng-gjVy8d7#l0(PmPo@UuYUl=s+j@+ diff --git a/master/.doctrees/api/index.doctree b/master/.doctrees/api/index.doctree index b9b5f65dbd3d0dff11d16fd5307a84672ace776c..85d846cabc06a48668916ba87aa18b00083cb04f 100644 GIT binary patch delta 62 zcmX>sepq~iKciuVp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<_1P*E&yyq62brg delta 62 zcmX>sepq~iKck^>MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<_1P*E&xQm5q1Co diff --git a/master/.doctrees/contributing/index.doctree b/master/.doctrees/contributing/index.doctree index 6487edc3c6d0c0cd63c18f13c7d7ae79c44cdfe3..abc9bdf7d2c986604ad916d61e38786ceb136e89 100644 GIT binary patch delta 62 zcmeAX?-Ab+&S+R+Xl_aVw9R}mXwm1Y;JC1W@=_(YLaS} Rnv`ggXk=)%xr32~3jkAi5+wit delta 62 zcmeAX?-Ab+&S+>{k(^~(V34nGZed|=W^R#aU~FlTW@emXZjzE>nv`N_WMW~IWNL0` RVqu(SlxA+exr32~3jize5ZM3# diff --git a/master/.doctrees/contributing/local_development.doctree b/master/.doctrees/contributing/local_development.doctree index 00072c026dbb498045de93c782de1e5c0215d295..5373a46729acdd114aeab36cf83e35cc31990d5d 100644 GIT binary patch delta 62 zcmdnvu*YFTETdtCp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5=03)CasYs46QKYA delta 62 zcmdnvu*YFTETf@uMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==03)CasXK05>)^I diff --git a/master/.doctrees/contributing/making_a_pull_request.doctree b/master/.doctrees/contributing/making_a_pull_request.doctree index db34b73a4e8cf5b28b3c796164ab343727c87bda..05b168ec29df2fb2a2d88e76cffd944d32ef9307 100644 GIT binary patch delta 62 zcmdmFu*qOUDx+bAp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5=4p&`!~k{P6Jr1X delta 62 zcmdmFu*qOUDx;xsMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==4p&`!~jlL5*Gjf diff --git a/master/.doctrees/contributing/updating_documentation.doctree b/master/.doctrees/contributing/updating_documentation.doctree index 02f38cde7f90262d131970f619cb19347f047776..6209fbaeb376ae66436b5e02abb53f28f136cc1e 100644 GIT binary patch delta 62 zcmeyD^Dk#ZI-_BQp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<{6C7OaQlH6yE>< delta 62 zcmeyD^Dk#ZI-{X+MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<{6C7OaPDD6O#Y{ diff --git a/master/.doctrees/contributing/writing_a_good_issue.doctree b/master/.doctrees/contributing/writing_a_good_issue.doctree index 715e9557625daf31f520a485438fcf97a6dba14f..43a5e1081636137a93502988101141cfff1adbac 100644 GIT binary patch delta 62 zcmX?Ca;{`UGNWOIp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<|&N3EC8bV6kh-U delta 62 zcmX?Ca;{`UGNYk!MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<|&N3EC73R6B7Uc diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index b5fab19781f311d5e032892e752505ba2248cf7c..ba09bfbba37104adb03a307174a7d78e02975a50 100644 GIT binary patch delta 317696 zcmeFad3a4%`#=0W$(iSqlXH@joRgf)10sehYOYyH%rik!Q%FdtIib`PgiV$)35ud2 zD66d^I%sQ*DoPDe)lySBXbr`?_S$Rh;Q9Wp>wWJ0{&}zK{e$bQle0hjUh8vD>t1WG zy`bWNY61C|zpl=tIojPbnAo^(BX5nwx`~O)^E5+;WTmB! z9KSrTQSIz8nc_cw$^Yy72nv0`e=nWTLEjs2)oHy$Q6CLCCDa!#1o#O>5gOr-NW0L& zU=X^52P#5@mPVIQY0(IQE~C)gsSXN*O`$kAL>S@rx8|9%CuC=g zA2}plx$&AS5Pv zgzHX8+T?CVosM52%=GgLhkEK%^c$ffqLHvWB1p&$x1&AH@?(UbdPImH$dy)&;5C>C zO1$v7UtM8CPmgdsNhc&lxRAoVI7--H^1b*vQ7#=`o{@L{-zhdNEDX)H-GVq*Z#l7_W#1NO=g)`*?;i+zf=2vmCmjrb0D^+ zxnE$b*c0biK4MK?vsWF3Q0z$*`g&fVt=RMb(^hRO1k+|un=m0ym7S3~Wb*PnW5)^U z-a4=C=@GReR%l_2m3?8lS1+6ib_pAazuXn+sPdfu>1cWcCsHRutX){z^L6SzMYon1 z5Fi>nb+Mvrs}mT+-Iki!d}V;w_8(4_dd)q7@o2}?wPpo#vBM0Jvd8+qt4pZovRkZj;OC)j=V8TB8BxmL#QL{5o});Y(RH^%(n@{rk7ipwWXDee`=JuT8LBy_h5rCyD&BqBig*(15Vlq8Ryny=)|Dtbh5PkPPipaF=u zbTO>F;3OLhySvxr9_(3i6p09uqy57bMV+m$&2P`Az5IN07AgPde->y)_+Q)6!J{6v ziMCqSirp!;KA^34ch;k=WwdqdNK4uhXlvl=H)*Sswhnb^OIy2WtKFUfw6%n`BDM~q ztsL5#-ztr^a;0WoRwiw3pnu%mdID{2qphV)b7^ZkZIu?xp{I^ru^CtM<3Q z(AEsv$_cwkTPtbnpYLwb)=b(O-}@eI?V&By?l0QfNm~<#ORZ0p|C2**U$9APE~kII zT`slu)7FaHQfnP;eG&SA!sOAG&_`-*p{=GPq}Ec}8n;Pm&7&>#KB={ewkG^0wcaJI zoCTT>JN->TXVX7^I$dgQrmY>jrPg}dvYwS%@6%TLeW^8zwvIiOTGMFjpVWUS=33gi z`=`_@pshQl59#0X#a50+`K#2#^pD$yKcau!OU3P*7}!TxR*BjEtFdGX>0yhQfnV=jeab( z7SLAO=%@6$_h>8cW2rTlwieZVM*oIr%R5qPt)Q);rBZ7lZFTb=lbRpXrsty6T1{Ie zw@FJ#8`!}h8tIbdv3ah91feCy&|554WvaU`c5W$~>^WNLXkB3?*MebbabO7s#hi5fXH zP?;A&ezfaAjWFTCKnH{GM}90ik(YjKQMVPmBiusv&=8?fs*On1(w#p_^e*Dh{1XzS zJhygMX8OqN?6mPh=FmWj*L}zcAu6o~xuBI0@peywEjpq91GfK5y<}sjSRynZ5hvKx zt(gS=!qgGl36SWbUINM*>JZ)^8AgUk>_hIWf8H?CiCVPoXb{BTNu!i($R8#8HW4O8 zP-M3j?oU$*A7+@<*+WK-CEaK-G2#U-TM7~5`jJaS2Pj?=Djd%6N5x594Z`Q?F@n#S z5#$G*g$845iWe#Ry?|&ij2}Ce67D2J{=0FezwrLxH-({Ny*kl>ifBV${JAZA{E)F( zZ)c1jlQy1S_P>fZaBL9rw&|%AQZiEL2$heqnNr7RWM)jrrdJJl5mP^8SoX+?L$XI^ zjFmgKZmfKvCNm==edO5TLddwmq?4j27scvLAl?){oaz+XOblTf<`Oc;PZfpNh#sE& zN=V9z5{8To(}_M_ylNb|s<&_^d!jIGVwUh_dX%CE#i^WNrx=|_w-L&+jl${)eu}rr zUy_A`lLF}-&P~cyq|>X_PgSRtN#o0O8}RxQs< zAXn`CWL!<*@r*>_-yDxJFOqz7?f&F&^2bC`7b3?c2(dY>gq_nv2qd}immEK#&2&3j z^4Ii0;k}$FVf^%(g5Qh?qSRuv6XoDaLuQAgK?@exgseHWeTYvRGCK&R^j=^kTr2Q83_IjpTrBl%<&4J&j}FJ?+sTh+B5dOnTr3uz_7P5jzddcsa~RUu@4l=SlKF>RhE#a*Fcb-SdzJX_xqS6|26gzSi;RKoKUc6%YksK> z<${jjo)&lBW$Q2j$KrmS=BwJ4rxr~)F7Rxtyp zb`%N+>lA~fVZ#gbiX-e}ic!%BYIPJB5nL0FwkTc$!{qlaaiZEzg%+jsid3U~kKTcj zR;Q{^l8?fILifIFeW7U?oLkkbg(vwbu7i1d<;LC^y%zr-pomn_A;(c3#Zfj)&qEZO zBzEyfVTu#%+ochTJ?tZy9KXYU@MDakE|_&9QY0!e`;5Y>+KMbD$h`WBMNmYX^M>LU z)1gUkD)ON^L|_7t*P>A4C9M?`p3y9MU)( z9jurO2)HzIA`u3c4^i}ij--fS!bPcyC=HZS5djed8>;mBsd2Y-#hXe=^EYKGK4prX zF|?F#ikgh! zkvA1zGg@2xCab`ow-qhf4_g1OXeGHA-%$~v!upH#QR!)7Ci%ZBBCzU_VhqEa^;A*L zJ`VNqS;;=?H9l4_hll!>1Y@EaUoug${CzqDlns+~_7^{xAvMG;5`0pWicNTZT^|#G zf5AJ?UnsHb@W1tZX88hyxb~?}8&urV$Ba6(R;A(L4Sm{bQO)mHS4SnZRUStfuqzJm2X&Q!ao=JkXfea0=B%p z!3W?FMJpy)n|(|uyngRQbn?ouW_a*cAEktfv$p$0RtHvtP7WwB;keyC;~3($k9^bs zL`(#A`AP<^Kj?EwA$|P&kdFrvRH&lmZC_`>E5G(xsD;tk1{Dn~aiO*K9WH#V+$U8h z$<+L!PY4R``6Vk-(1s>T?0?TR+>i&W3B=@o5M4?;-+PRH@ga+)=((?0?T^ zs{uM#`+R)^(ezQic0A~@&ri@X#{@>leAFqe?>CT<-W6wPi%Nrh{jk^KTOy4#y6p6Y z#88eEh%W^Ara;VDM8HIvR?v%)wWhBDmEv_eJl*3v20S7%3_8(foC&py_ci1E2;bkB z*)53iH32La(Geop!Dzt+yB;<7Xsr0n1m9B-4d7S?w7&__$M;|Noudcn9KG_>lr`9n&SsMbQ_ObTN)>A1@x-!w>~@_zu-qRKT| zHBMRPdzMA4HYzSE(?V=`tZAXzp3XsfSFDUD@Wi9FT|cKVX(IUV6% zyL{KPkD5KcpR?ayz`o;|+w6Zp?ohWwzE@Z`TYTqPyJY5Sp$Z4@4qJIHAgB~+uJR!Tj-bK5r`EFpmoK&7b)I}W|)tI+|R1|4<+(}1bX zjVH2-?R+Y$*wp8~+n9>IrciPf)2NlfkYtRHiUvK`D{ZLu30)s-Fe?|c6lkkMd7(Ok ztwAX+r5Rh@%GV%@NX)MN?6rfPocZ5P{K3iddtraw&vn83q%5ehA4J z2tq$}=?$e0dA?P3!ch&C!5s>aRd#?d zDI#DZ6=>y*-abFI#D+rNRjN@+fj$j=pRKf`(nr?UP*JoY48Ju|xeKBnuRx351QBnt z4A-8b90AGMWI#-0jbeVK`&=bY6Fl>kJapY!pyZ)zb)M{3(w8caLi`HRqPD2~bK+F- zD&;*X_@TW;N=TY7W1)X)sLXg*u`(AjEvte_yuQwjPrk1#W3$G>9ZJx0QWauuT8SHv z*{l4NA-;Y{se+hG6{7VEr2&8QmGT{im~={c4v5$Zd9M=#+<8vfhXwS2pP+uU6DC+m z5St@iqk@o{<T3Vc->H0JFR1G@COvI8!?sqDm@mEpc}Ai&=t88y?aQliAW z>sW4^^*{;DZ6zsR!egoJoX5&fS)!NpRQVcI-hIBRX)HqL=~bCf7&@3l%s^DS-8vfk z*i>g&ntH>j;-3GrKow{=1{v36w8W#*;G_`MC7{Mg2#6r4(1BIT;W#u*^^s%|=z6>g zm<+stil5d{%>j9no4U79si4)NvU;SCmPFMxP#<4{K?H_%^j2NfLDo^+1lH021)B6$ zi?1|QO@(y%a7ADenx3RGqBVU35>V#*9s>?(rCJB+H^(xgL#vc&ct>m1Zr0n(E}-6u zfS3rk5Mm6p43yJT)q~X}t`Ac|Y7(?ULSX#%rKu2PRAd0`9j@vG?FmZSq%z>U>8fub zQ(h{Ah=2%!Rhsv9nXKaT-gl;}c=FIPN5zu|(@Ygl9uCe@@kvSkTval2D3y6CK9T=* zv5L=o&n{Ihh6J@L8AG41bKu7-RoSevGGo2!F?8JU{Vl3N3};}e>K;V0_1x$Rd<%`J z#TO)6RsKvC3_El_&`ER9Gg_e-G}k< zBA^*}uT(7r5yD~cm_Jk&5Dy#yr5_N!9fs)RG+j-hJk1fRkf zQNF!UFL4nOp&rS&SR1EK0CGWL1I0>m9==~&{e&StZlJydA%ld=WOOy1R0=b`QmG{} zPBv2?U_NS1dk`5fp&Iew4lpuafw|gA{Qxpw;4pgBqO)2rm0UhbQWvqI8`ewBBU!CJ zYS7%F>JGW?LX$+!jzQ|j><%BNsX^(842w^WR%bJ?ZsXNFC6CKiUxSc-da1f2TAZiW z;zd){4Oy;pcD@>t>u@YH{$qhU3}SL30w&V<0W1QOiyuR>8**KLDW@4&sOCA%dmCg; zNPb_lcY{)iPQ0%i zgHIh)FN73JIaV+tg@}>3-%<4tFid(}p#iOM+k#Mjc+I+a@mX~vDO%$5SJek0x<{si zZBg=)AQdv-Q~RMOZ%npJdrap2s$RtELs56t;QEjVjS2K@Um+jT&!{*7U5-FueeX$>OFDSh%u=g?>1p zj%EaN6Pp`qK>Gq->FJemC1h9hu%J=sRtt?C*J!Re#O79yTWfe^INesG1Co=B4s_8N z(CrKjo!V>gnzuCTfdiV1304HluPgg#@?aK~jGy+^tOXi0&GxnEt<>$Lb_6g@bq0xFzZk3Vo-l%EJUz0h;)idk0G1 zqY1>@KGe7%c^!udLEe2DGn#+F9*lE8*6f3~8Y_PHCrty0R@2)j-qhG3!%J^3UM%I| zXMWf4JpA7W8a^XC@{fk+;maP8I3%q?zxhOSSX#u~>#uzTNw{AqG1;{ST&UHCGG}qZ zPYX)cc)<@>*tPQ@bi5>z4L^5i?}L&xE(pr(Tc|{}JzBO#cHE^M%5t}6UhQ}Y-&G@ZXms~L@iD6JiZ)X|#JT3^L*+%ZP`7sPq|Cp4*;io3x6sG;RcWuGNzTUJl(vVMgY zbihZw2#3C={fmu8L=!D&DntEU?>Du3m<h>aC52m^2lHTpU168vQ+DJz)eabrB);ZOGEcK zqWspr+wi56+B@K!j|`e5Atn+=v#m*UuEF%_! zds<$J3#`=g)kXE6+FDEv-+Z8LQ5}8J?E6>S3+x$bS4$_CSW(eMOIKW9t-Hl)1GUUL zkRD65fpnb)nZk8iNtyq4=>B0Y@2OV@%4KK~i=bkH+6ki3FUe)bw<2_xA!=6zb1+iJ zTwY;}E}2>XvsyYk#4@U2x7X3Ja(%7(x}O+q=o`AM>cI|}To{O~eQfD?RZHCuOgU$^ z)A905pAOX!JhM`-!0_}F;e1_+O|Ho*Zkm_)GUdO8ijDdZJ(6<(8qiXq~Ph zB$cDmh*+3leFUj<$Oxh|WZhOgRbp$2j?bXK+oj`4_S!uJt$L^l=^G`WmgR4jHi@r3SmNR~hn)B&jTb)6OymEunT)cXk* z*$5UUSc@P!#04?q2{&|40PzeHgisdo%kS&zK-7>x48%(w=vFeE*PrSRL&%{SoppJk z5|3Bvx3U>*4XYkvqg7aqZ2B31fsqa}5T!u`!Hk>x>p{n2aY0mghD$#mVwo}mA_(?^ zF=Xc(-FW|ch&~0f67&)t+eH@}qvv+owT7PCX>ct)x6@w}^xRHYChEDJj(Sb+3n_JR z5y-($;!{0co9eGtt0#DSTYU`3kV$yQ-Mi}fg3x>Y^}y^j85IoD`{B(4^q|5g$^Viu zK>+P05idqXs|zipsG%=rDdVvbdgx*(1yiB2wPc?l-PPlhp})ysA5YMK4>s-=MTI)t zdAdG|ZSa`25N_Ne79v<0yf#k{uTfROELyB@4OZrguSo`+T%g|swr~*v5d_J?i5cgPkVP%2yat&jBeStPFYsh*syNGG*H zpXpDq>FYlS^*Z*^dRX5Nsv4Mx3))&jCr%Zc3T>#%6`~8zztcytth4@Qs4aIwA|NJ! z3qV0xoU3w?Olb2x5&%G zGU!wgf}ns547qrKl#2I`HpBtk0VW9dfC+eCDebP^z`(tf(#D{WUpeIUslP+U&~d!RS8kKqucct!0Z zKgVD|AC56-@tC0ozOueD-2e>XosbBK2_R^-`X!Of$UK(x(RxGK3w5q*N|2yaGYuUe z3dy03=(mYP!WLPEP0Z{bOg4ll2rLK-Psaxq8Ll%e zDivg>Fn5Ikv@w)SE_&j7YYlvs6}1IMFM&Y>h7_H*8PvG_2Znb*uAReR0`mumN)h4Y zE`t#@%QAGrAv+9%8I_AZGK7Pu6cG=6Y%ohp5#^s6erJfM4;yBI5f6T42$mkc8~lyo zS4L>BlQN;T$_?K^8~~~6B;(xk1`i9m%Xmf?}j!I5-9l9zYG>B1t0d0ffs{&J~K=MBTjv<#4YXB z+p0E_{aH%mSB%>-y^%+7WHf>ffuV_KS+voDM&B}~;Sv5uzJ`?)ZiK{g4(PyRBaD|I z9Ek{+h-8C|7`=V*+!8HHjyLMil7_|?*O=V3jPNxk85I*$zQ*)b6C)4SOPU#ZuWBP=Ay;w@QkbWsO_ zLyL?&E;u*IzT@s@<8MGVJ0Y@Fli1oJVrIi`8OieoJB<7ptaTqlIeiiJ+xZ{Hq$oQ;`Ua514a;U_o7OlZWq8UNd#VC6A5c82bqd6P$etdrxm7&#Q~) z>`d2~IPr7MCOGjFw(ve%HAWBYCOeuGO724U)NOT`IOk!(CZ0Dubepa~Y@g&hNhqhT zNrMMQns_ZXKfwg?;xZN@SXxw3$E3!)YnzH77XLC9CRm{Tk0K0Cdd*bH=uT>4;$hy^ z%+wWP_f#?hsYO#;nV88hXl=U3?l7;D2{fIPVeyi#rr``s-A5+)a$nQm5Q3#dYLLl< z^788h;mjeXdaTH^C&L6z42uaMKALHo0^znwB!XZ$o+5?|CY~Y| zt~Bu!am8vAPZ6iBGw~GhlOj`3FtfDlYnG97r;?{Qd*XjKn+jOIv2KUy2}Hm7P*_l+ zPmv$4z1MUATnQ)Ag`!X2@$Zd)C^OvvSDUPtOk{V;Il^z}VA^IW%G7of+Hxi81kH-7VuV>9T=!=U0Gv=@(w;<@CGqAGk!ICVR%-!ac;Twk7UehAhm+JS$UmIR^IADh$g53|i5 zvB)nNK>0Juz3a;8eW4M2%WlEoyw( z$HFr^y~zUNT3r061sRTN#I?+p`5>ZS!ooyC=*d5lNChDlB`&jDK4Of|4zj?LJ+Y4> zAZoFq#Eh&19WE*1``T;a3Ewv{7I?xZ<2S2mk#?@5m_&;mk4&(9&y=8ZeG6BD$Oe|P z5HqI}-g_%b)HtW9g)bp*YX_oU#zF*3jk=sMtMRw(EgK=!|8H2&I$A0q)-GbIAjhn8K;*fXD7phv^g zuBmaT$~u>Ewa;h;)huPn&<=-{yfL1fLxWq`tv|CMQQu|dLBbGh1(m1iR3o{b)rd!j zTN|)S!LCFr#G7y|KYXH&74p77IzPiingbBU=C@a(Q>(~H)dMw+NZ1x1nC#iudKp|{ zBhoNHcZ}YMzi4CSUgAy%D~~n%I$61wnAO?Jy+pkvEB6wr9#-xpX7;smFEOdVm3xW7 zgRI<3tWB}L4vF_w{Xdv$^}~aQTjLkF*lL{!8=1WUUw&kA4jlu-)utZLLR&r0gN4=lZqe!k8+gAuc6lNFwk62vG>jwA2Jyr180*|Xf* z1NSVr>3(Y~=2Vt^3wJ66#)vl^wGM>jn^d7G!tCSL%aAOCBILMjDs(Tkh&=2#!}cZK z`du}gN)=XcjNXI;uE_r!x0f*{SrsBRiF|zspYL_@A;<+4HyT zR4N}@lfX`eio4igBhTSIwVH7GbL$hPbU$ir=fS?3!}=p#sxb()aMUDQUPt=tai-b! z3A;ffr>z`%159o(St>bVZM5wur2jMmS7sF{aqn6-Ue|i>bsNxak$o@(3$1Q!Gvmz- zZQ$o=C=4brzXM$p6-0%0W)$gha5J0yWKC-u{K*>9H5D4$#m0`0_UUAkpRDO>n+#!* zkG@CRtvRia?FvhMMh&v@)Td>N4VwD2#RbD{Et!M*b%G6;^|Zx*Otg&v`lhz{^duYT zJSgIp+Ts~AY&(E!AZ-!3*k79c99UrEdCf12Z9K0j&A0KqX4*0v&ueNexADB@`AQql zYo-?3cwRHU*v9jkz8h@|Aa+Ol)^D5bCi4T`cH6#$Xb{C&^sz04`GKd0tKkRAj*t+L zf6k^spL)qL+Mj%D6%NO)`&Q^ch>}cOJn;CsrWF3wl{blRL zT*ctWva4wDuMPY@treAiq#$VZ(@3Yu-SqY2r^(f|_yHY98xfQgKmBrn&VvGoQkif& zKfe{=0E`^&nlfWLm$F51p4&{Ke{RcVggv39WfIc<;R`Mt!O{)RQAUDai{Wj zydQTe4QuV0t!V4ALjQ9*l}2v6`7?IvaY@D*PZ!{ z)?@sJL57>g{3R=kv^X)#?{|ns%Ls@dc%^gg$|w2pbM017^{WdO%)F6k7Tt_^Yo;GB z3}2b&2PzCxK?iRv@ko`O0ZaUTWIn6i3O}CSgdjiA(?v6X_v?simHKJX>OI;t{A;1# z8Fn_v(GNlXiUXSQuO)uRAP!4Jz(gcBWcbO&olxar?xJXAXW2f#pCFYT5epM6?wx8M zk-gKSuVwG_)wi;Dns`k1PVLM6c*^tTSwEig>_6|vQ=SbM{dg(o>LowW!wIyn&kLo^ z9=)*QXTO=ui7mVBcMvdom>}k}W#h2Ne!oM!)>84sviVzzba=VK-i0O2e^~60*jI(6 zwb`3ObV)`)1i_3(+3aEXZ$JCr5Qo9B$UEORk@@}3_nVS5Z-(slo`|>eh`6ezokzru33eV4-SzBT=T4eJwWFWN7UncJ?wp$_VpTQ2h|S=779c9q8W)+ufe++S#uVB%d)!v1&CSO@1Yw`z6Wlhc&WKE7*A#3tKt7J{iDv~vM z)OuNyyS^`L^5V_*#z05Kx*l9wfK<_z9I`EFNE%fFI}*!SpNF^ zPxcd#0Va7%SKQ(^J1^r;_{$E=U%Mg#W5oFn>`NeKC<;Om5J6C*-yYbd@;wfEXwQLI z4F^;r?{i|17hfk^h_j#A`AN>dDEvXWiws+EpopD-7^d~V%`#=T#lIXv1365gEjkqC zZ@^=n{(SB3qey>9Ko+qu!ODctzy+~k9OHi;;s_~1i$4BJWUb-PD(vTK`Gc12UcsW? zs&ylO9(Tty_2+T-_2&LO?)tX$=W+L=R{lKhzSqv5$6cS!{ygqJ>f(Q%#odao{ygq_ zdiaClE*Cclk-GX&Jh;CB%(v8>=?{BzviQh<;!#p?&zt8T%_hj7FY^aE7#Zt= z;6EFp*<=HtBn=`6Ce(PjKU*KXeAfIrD&6R>!l=OiEs(1bp}p(;EmF1Z@G5`qW$G3C zLw74uL=y5(klpcjH~I5f!;BJt=ypYhXx(1I9*wnr~%ID!flZ!gi~b(j1>$7a0@g9wa{ zZgaX;;s3w{*yi*y9v*PtpTCxV>7TMY?EgS^hcW-i?(m0)vOC=N)PDk_zP7J}yTfRe zgS$hM*1_FjN4=vJtNpDtJ4Qk3c~t0%?Ii(-9A?=Y-*!593YQb&I10&!L_|z9WE68! zjT0O{KygG(Q{lz+9Zw;7>F}L5O9_(0i@}^eQhVh#pCl2=VsC_%1au;YtmBYZlWFnDLI>=X&f*4k@@8WlCa9dL&$mIl zS0$kl6S|=9^Ge1Sb~>&?m?GPrlX0Wn4!$Na@-t9ZL>NS1jFQsLJK&fHv3pu^NFL)f zBJ){?29536Is%oR^KFHnf8n^s%Gi~s9gvyMOVB3lf5rjY^DM()B4HEAoQESAP_3UG z22?(|feTk&aBKt?9LcLR$2cV{?ES^T<9pBF9DKSHddI=1JGbvT_;hFOeFvZJjQz{O zr#rtrlH>ceCvtrM=9wJdRSM?-NKmipb#s-|CO*vA3wP8xy{ytP#pe8qoy3`Bmp?{2 zoIBXJKRKOF$Yfc*FP`FY&SZBpL_2Q-!P+BhYo{JhuI1z#+>X8Bgv4wj7{mIpi8Bjg zx-tSH2xfe>ne$_yKDNiCQxl*Uiz5<+GDiAak+mavMm6)Svo6l);H<|+dv{lv(7D~^ zj{|zj+y?b_KCTWOTJj!E!b#B}XJb|+zLj1rPAH%iYsNZL=Zf$va@N5%+AeOG9?FQ%O97$C$p10&shOr2M<}|%w%+2TjzwhY=Y1OKQ45R zgpfclzFF)H1IUiZ#c!dKtwgEvw>S|b`;ZaH(wS3Fk2t3XAdmXc>4tdvm+;6-+r%?8 zfeic|Ik~$x9dvScf8mgmyZZ%)o!s3IIO2T5rf9>DIrXfhHS>hCDa5ghg5fvL zIpB&1sL(x z_<(!Bv5{affw{omji74;rK?ILGp^q_ARDMbozba20i=r4I>3P1ZShIKsjUJ&0e4Tt z!UXFm>)w=Pc=xzmCc5Z>-|reQqB?yv;)1>bcdOGgBQ^~PIKp~%eR#EcW<&%_gPzw= zsj+!vKsvZ*L@%vaJ1*dNaL*{h+^m3;tY>LC@SaInxdA!g{yakg{>U^gAORnl7jOXF zDFWj}i?agK@U(>iDXeFA3cx+X1aMw;Iz`SzEFyN+YKu=jRP$5-d51!A!0zgFPXfdX zHUxabx;JzOxO<3nk4d=Z2a^de-WkvZ*xO+^6NBw6?S+F>`g|IY%6fMED@e~U@&A{B zz37SZzY9>K(p;+&KRX$43&>Oz%xHY&bie@CpN^Ly{Sh~sQ~|1S=9PeUkg!PhNOeS) z9}$P|y%v~;H{1;1Z_`@%H%KlHXv5q83BZt{5)m*FsVyY+r?)SUDpsO5_Lb<7)euOC zOI6sVry?_+2LwVA(3ep$LFJ`}HkLr1ds=LPJoo(3FOcV+dH#Vs_Z;L3O1r}v}Rymw(vQxUf|>E!1_zYi{Xs} z`BJK)Rp6QGAS%)Am|_d+{^7u2JiUEjCCh`ScME*Psvqz52z0Xn+TANq#Xf%BC(sQ^ zC#wc11Cv*-lf#Q!u&H|4@W4wDL{hqb3l&cdv`8kjC?oI@D`FQ+34~NfL_kacVKrJN zjRT*Y9tb*Lg7-&*YRw7M<0dl$3)zasZ*v2k5U#5bS1k-=dqF&l1Nl~BzZHS7t;DRW z8g!ygF?$n&1ZvQu zD}gid7h40J5HCl@ghDf|IkP?R8%g!i_Pv2i0Lz^sASSXFLuTyanguHSCeVyYM=yZ- z!w{^J6&ySeSjPIZ_-j~y#Pts%QW3B}Y;_^=RG7{^LquA%Hhbpk}d-b-xYj7(o~;b!XC@ zK==X0nGIcLbT7lHL8O+Mh9CVA=*u!B<1?5W6<4b`stG4P4}1$U*2FZ(aZ4tb3FUk$ zKPKku;u}|v>s+vnD>CfK7RBr_F}v0E7jv}%0WR3?6&W@^*u{L}R*#GCUfCGo;y!Uo zlq(G46T{Ah^h3q9$aviAV&GWsw_He zu#~X!1#gtGikYNGi2UGZ%-~}4_xmo zcJZ415AVD9ylKN`7oRtc{lLZNO`+RdeBSi?4p#!-g7uM$zqHW3&vk^&1^)Qh#Vh&7 z{jLU(B%Vr|cYy3jr$=5#eD30BjO_Z>wIAXqDPq49F7^mz>vGo(HVJF=gA23;{rA|Q z_Gs35!x(($s_PWn5pe7-NWVlZ{KGw0JBaDfi&s{lll(cAU>&oFFXkHa0ezr#R_P}4sz7&wHZO6jl;CO zP%3D(==l<&G!GZmNkA3di9WV{H)so}k78kg18VV;&<2 zq>tV4Ng)WfBavK;$i-?@V_O{uDn94i4Hp*#J(PS3`k)BfDTdnRlR8>_tT?C`xLR7pu|7 zS;pb`F%GI^Bt0&Jc1i-ow$I`GpwjPxOms;Yo%~Z}#+D;NkYa=QRWykPK^E`C^A6WJz=X1f@JP8ASQsDAW9%3 zh$0!$;@^Y9@cci6zJ$bmij_Ys*orJx@}IaAf*(E(TH+5dHW>>Ote<`9C}Cg!;6Rp~ z*Kh^%wCO=mFi)EfyMuY!G(IGlr%kORg2%JVj>HD@wCO;6@D-NRZ?6?xlYRWPc5qX+ zXQzJs-~((~K+zz$6+`I$hWxF!X>benZDuR^+or99L1*B|Jx0$u1hcoL-RK-_M`QX1 zvqN{*z7>2K;wD~!PWdp*jH9~-SFmAq_6+6$|8B3~60l|y>g%D>%#aoM;=tf$P#8>L z3K<*C-VW{z#X(dPYmW=25B};gSl_kM%7}Ag`Ofc;iBt+m3@G+^HZsUk1##g_>}kST~PZVKv=6W<9LsJ_NEg z`3{*4-66=E=3axJ)^{gYAFDtgV#LZf+}vy@H+64;Xb)NKN+P=&-A&lk_f8iOyCMwP zXz8|MbF%vkgk6rHMLAzHhm7xbcaMM&`wABE#YXJgS0?t)0Wz^i2f0fjWK`Xu;_H$S zOo+WyeHhB=j?prw5o6sZkO7lr6m&VyZNP^nxF0gJ{dysYSmIr}V}kV~gj4ZilpwgJ z!_m<4Wo|oi7rI%h*=ea8lxkL?Qew}pkcs_jl}zl~HEvLrN&99Bt86cgJeMP2^X$Bx*rdah-_R zV;c5Wx;HSR{7&To#Zm%@$+9r$b-!F1@>(v%iwx?K{UYE-}TthjAb4cOjphE+=0|>=wbs!rN;aE0-4>I#WK6kmUun`8JyT@0&Ye3 zS9^k`Y3uU>52)V41!Y)t+Um1TCim50?Lgs(ks zR0{@Yp73NbkNoE;j}m0F;!MBvWQht-Kkwmb@0`03D#gk^!&-OGa{}mxlTq=pVkN%+ zyXPt}xJn3!AcP`s*I+fC^pDKqh$k|O&7XRp$u7Nv7ZvvpU5n$CA+Ld06bFlR)r%_H zhM2HXAHv=5Ok;=@M5Va-H^4tc$KiakMmBx!YEzZD@y(l@Mo2 zX2r>PYH~z7Pwnf}z~4PnEe_Izr}d z#Hf(e39?SEUuayk^nM3an{~qMu-LXn;GI@7MO!T zR1!ZbVWGZSQeE4%GUPVM7R4%rcWp=@WT2@GKd;IJU%xIB z{OOI5ix5&Mc$p{k6MX$n$mr@IklCwPpf~?1Tj;wFLOzH1S(0dWL&+IleZd*>YUutm zLq_8_pN9Ozve(x%p`c*-A}H>s4TW!M7DYo9e}t%Tg&|Z888f+u6b2C(mH@4@h4T2h z$PvopXKFy`v1;FjOsvF(<;fwT1FDUcfb%0mc^0IK39XhRCJ)rN4b|fl387}@jc>Px zQOvwCdD_2i=o6?T7Gr}EJ#H5ogsgpR={Tfg=z9>e<*|WbQQIAmB-8s=cbVRZo}qB( zOr;GySK^hNbCUs~aOW&z(K#I7X+fwN=cR`_8N0h@!PynD5W&*oEANIv z-z-N$_IXnDsaO!oHi_(;A8JRVRuE|FsK?9;eFky=65}#7Wjtb$%(#82%=mB1s>Aqs zUQhB}T^+Is4COhbSms&SP(7ZFC^_1jfy=gqZe2Nj3COTt8xz6>> zoaY6vR5P!cY==U*INXp$wtP$q3|FAu)&g?L|wq|3xtvFE;uW4snL zIK!)v=sXnd-N|fsMiVb6)A|o+6W-I*3(L2vux#te!`Hg?fzodKvX?Wf=Jf)2QUVR&upAU+^s+3UVnySPlVnnbX)>v!W_YWW zPMZt*cv)pQXO6d8*|Y>jDJ@tiQ)*c3tphab?zn7)H-=?e|7?e`Ddy1xCICm4fX$X9 zS!G_bh1s*7tTq0F)KaWy#Rw;}r^#Vw}w6k(uXO!NFIENZ>|HDNp?m+Qi+7m^F&NvNxg z4P)Quc0_3OVIOMGxmLU0QeXX$Sg<(vv$UAjve!t3!TQ>;f z=~i&VuxiHLvL<0H?zU(iR?WCeu_(>M+sHIuY8R%5I%$;uc9L6W%<^W zG$^~>F#$Xet#}mFU(a4U&~ap#9UXaxJPl7L!jDFU!PaJp%ch_-v&zW`;|X;}mdtS5 z31P6MSuq^kn;Axyb;NR3?P+1KrC9=l3CvQqD!XKM7-*jinLPAH$&132=(kqkqw(6j zFup~m%?1#gG9VtdG3+XYQi_ncEsV`~ledI{Hb2QQn7HG6Y_tEMQklTlc87tsJW04s z*RzG8gipdiyPc|FXta$xBpYVo;V|eHe`#uf8-5$6X3@6GRS=7E{*Q-Ogu%}B;@%dY zydDO9$uOJh5Ck&+6c^aX-jZ!`(A_F3?}tI3+h8M>@gVFuFlS;i5(KtV8}_eEWx=zs zaFCA`cjn|?C;QCaREKLBmHpk}px`NEP4a~Q3^7Q$w}(g*E4@T{bXYiOb7>U}-CVjT zI-I-J>G9z_aQ3Jf4%%GG!7ZrS>)~uKQ`dUopdF^KV9~&t+$fyqM_;`WUI-R^&Nyya&b?Tn-ngUBG9ew;dWf3Tlia$*-aG|jg{fO zWm5h6%cR~K5WWRqU6_Ek0gm(}X*F-}NSU_y^l(swB(5+SHO~vzp??>IYhQSj`1R~? z9xE&6gIJWIF@c6|C#AxL2RWuKLW_^w4d**%Zu>?6qbbAEt0I1bcwZ7- zdZ66Y^KDO7>fiPV_|tLa-U#yKqBv7|5)=V` zFb)$K#AYh*L`1;$e2a>9s7-_cht`PDvz(|=OBjnB3lS_W9^5JdG*b~>5+)+~f|Z?I zTtmuivpdP$r6$STz0oxSwzZpe(1>>Sk6@0sNuLPV*6x?EsN-!uD1v80AEiWWgT!d+ z&Rb+fSn>Vg5eck(Uu!&=PE4?V0okM2J#w)Y@0=KMAM9U61Vj+Xx~Di%={!xQvuUnO zr~j-7=tPCdm^?26^dfXV+~lbJc@ff9r+rIg5+^K;m<92y*FN=Wjnh{}yzZy?0Ijd< z(+=I<9#Qe%pBRAu{V-x6#E6FMjT(%syW$-9+3twbK`3`gCmX6b5%JD{F9VXX5W&(Q z@979N)}4wN4LMZhWh_jv4nRtl6sE+3hCp8zasXtkDLCESWVW=$pDk%?;@V+rH_Nukw@9LjSP`L zvX4>L$Vip+gMN-kju0IXd76P~U6I?^555SAG^(ZFRzyY~VL!mpksH{@QL&Mw>|>4i z$QByux6|rG+99tX;6rLgnLQ&lD4|=V7TrVS$o|rIqSNvIHzHd&=nasuYb4~9v6t~N z!7l+jR&|OXI8pxD2nQa~H}dBYiHm`gBDuoEOp)pS zb86%UAL$31XGEqjW~c-ilzhxBY z6_->Is$gcn8PyW30|dr}D*HrfQA)2!HOlws9puepQ3DnDUi+x`Y}FXQ7h%0IdM&Qk zKT5;6=`=Wsdm+b=C?0gK4UKBTG$CPx{DX%hqr{l<@mqfQ)6r1}8N&R`r~>veaf1Bq z^T|;>uHBv?>&NHs%K9;TUetVcS;(R&4dh^0KKjwr>mcpQC_C=EDrzZ{{7GTdAxM5k zU?<>|El~=Cq+;WDN3DmA{#1NuPt-U-^ua`id62A{TsHM;vH6V61v#d!Vhe3T9{%b}e}x)c?MH(ZGl ztgx{kjNFQ7BkHS;&B4i)QE4WL%p*^sWKuvsta~2yE`U**C}SehGa#*lQPWDYe>u;i zcWwFj_b3JaP7@sgc|9T-U54e3(Hn8GUvxLdmv2Bc_XQ^cqq#3w6%<{}GRcnaXmZLo z&1UC^MPFf;O^S|Q3^_NA3R2cNT91nxL~kLxb;W5&pEsj{#x@vWvH84GT z15i;?aQ-{d zCb9BCL39r`yrwlWE9ckBtZXclS?N(6{Wi0jW1Hk3pe@mCUbkiP)@Vq2RA);}3i|gb zadOXEzoEq;IC?W<>g*RFrd|Rxtj;kzG=_ULAu^^AIQk>d^d>QSwBWpf6)(Cc#$1)kGU&}WpgfGg1QqlqMbh69 z_(Zc9(AkaR#VE0J4C#t^Xz-z*W7;Wjvo|H=?xrv1{M^fH{*5h%g*yoU%62W>`W`cwTmpgVYz#cHcNnx38 ztJv5#n44K#E0za`ezjwHaA;B|wiFVV$vx6hMKYn{vrgo{CtKrlaA4EeKN%J7_E0LS zP|0g#JH&$CG$IR!iEwivmLVc+A>D)IL;UWfhUfKD_IXc<-=q))~3m9 z%orZK3BtyZ`LQGLXX9h{v-EUc4rusA7<7DAtQnW*#tws+0~LfIqymysOfK#T?EPe% zvOKmWQ~KR2V|h_z+G=^2+pmq~MUhAAV#$l*X;CC>V{8t<#t@NpByPMtHWfHZBN4ec z7%jPASJCtO(bzieXW(B-VtYX5l|-6Ul=*S23V**pHqkCk{vD@c--i_9WUTJxvCANt zfhbMEMIubjnbL8(c4L{eO>u2*Oz0zkb{Sh{n*1af3JkqU+@1x6$0zaW)#bQF?6L4g6c_B(<2lIQz@#sFfcU&06pM*_{ zOT*!5aZ4F3UycLOLSdeakNX-zi+C|27n{+*EHb=hEn<4%6BFVh04!mGH4b9@CiAGwT-forG{zh{E&pKH8JW2@XX6S$%!v-y@-QwG zFT5U?V3q>((cfXr$ymXE#^r!UnpANDOCwXmP9fAt*%?Jsyv26aN<27>R6QC^$xM!dXf2!x#&{ zc9+TB)l=qfdT*KBgud|;7xtVASZ*KBDQpV`_}Tp`XMzuMUH1bm8H8GaCGL{EIZ+I~aeWIy6eC zn4oeWTYgL?Z}kb8ythxu|C@~a@E}$)b7C(Tw$0t5Dczopg&@Ht?(VL;8{N19#e-9vLZNuj0a`RzkzgeU zmlh~36jEB;LZP%crBK>pzcVxUCh-3J{||cdeZsv)76pI=~bebs3`6U#rZd> zwlAC=Z&207!=fP|bAuI?%@3$kSzb_`%DRQrsqAuSoyzQ@9Zg9Y)9%g%uv6`5&{%K2 z+>Y=r&GF2C*Al!R9LegOC1ON zcWKxMsCaR8nIogv%>TgH_jcSyuj35ImQd8su?JN4BwJxeGj*=D3r}9<-a`c#)Fm2^m85s=C7G z3mw~2R+tHdm3md3pkS@zR7yP4$zaD)wmP<8d9hBdn0kh>2HtFQ%rTT4_pWxN+=B&( zeMPbH&%bs2f@b5x;Mz$?APi%02k8%PryYAK)mVSd5w8XoR#X17BPbtzFF1x1hTjD` zEBeLJ3>>aIt}vFkXMT0;PPRrD`!#KNgfL*nf6R1&;}1|q8fVE&hh+p9Z4wkEjCx5` zf&>H@9uy7X^ALi7aUA1wV46h@cc2gT6aE)~uqL8&C z#VMLhKjPT2if(Jn*prSA9lSpu9RAxD+^9QFJirgi|UU>FKmwVSd0M67w8} zAxs~Hpeq5oenBsvzOPI#DtYJw?rX( zLfZ{aQxucfxt(efJsH9nOOtrE!)YtgB;JEzF*}_)K+mt7NP9N0X1$p8AzXu!8|yS1 zI_-1Xt9a6*BTl6R9RMQY^?jl#uR2r5{HhwKrW9x70TDbdIela;Alathot6_DUO0Zw z=_D~(NoEi4J6W+GzH?TFFPdL*IsyMaa=Kb%o|##}bD-s`Lnsq3B76hGTtO{Ge~x(Lps^O1x(pfr}C-tYV? zksu+1B|`*d7Us%#&Qqx_#@_zxY|grSV`5zT(0PF3Y_gpj$Z)vPgM`GGD*Eaz#g;&Fz~E*%t>`~qCaA&El+LVrVv*}{wv z!4S5GxO5`3#1R-GDC`QR>xAyAyk$M0Z}P8x&adO z1Cf?;8L8KO;)1#t4Sm)O7hU(g{VbOQO85QIY?sx_#}#v3Vw3@*=L=n|DI+o{aPi{h zF6Qi~`91AfyN;tw;KT}-9h9U(2L;VGxV&mCtKhKN1$TIe+PG|Yc}^K66R<~In!t&@ zE*%>LF#BtlN=2@)6E3)wUC4F)dzXjG$IEA3A{9QJ&by=#@-!x-Em&g%ZLYdxQ$|^I z01N?)q5Ur|dlZrH{pzBks6}*s%O4|L!;@YhpK@;^bBG2i(#MOp{zQR1m zYrg9pGwBiCR=Dco&a;)SIIAT5nr64oqutSP(F_Q%{7&55te<|Sb+Aa>y?($A|g!ODDAM&fxzl% z>Nb+nSLFy$VD5IFT9{#Bd#JH=TTNJy$?)}A@Q<_GTzkpGl6Wc)S@2bY8)cRjP=-)S z3WMc($&)yORBjh2nLQ_;J)Pm!8n&0awX%~GT$xU#Km&;N1zC|b)>ZAmdA8ey1|f(^ zYB)I8Z5GiUG;HE2H*=O?6rv_E9TMndpb9WN-+;^qCzBncH^uY9&};g?*iL? za3gJ2ufqbwYT2F|b!*41F<>E(ZZb^OgJ^e}Hd_{-M)6uGH7ta3MFb5oGCdei#G%l&gD0uM~4lg6O| zp+}HwiwMo&3$^>11|i69=hh)^4tfxn?tZ=%!N6pScFw&OY#ij?mJ%215ekO5cUHzL z7JP!TjB@w&8Rj!=n5&;pv3IXhPrs5fkK!_qo~1q|WyPhwzFt1wK7QU_J$-tX6nhnW zxckV7`f`+pA(jyv)XWk)jFa7Cm8RS1Q}--N8!SW&o4Ll6Im~vqV4tmR0A$8;l6@e=X&A3FSo$k(pI_$kyCboRkhyT8m4V zZTB>=jzX^Zz3wL(QoW`uVnZWO`1z`1Nqj{j~~u;!L~Gs-+|(HxHeb|l2ZjH%yZ z^b|)sPB<~uX#O-4ratFk0Qq;_pEO4ali#?{{_k?JI($I<0*VXj5X{-xW*(-yT|G#X z{~w^3K(9s~{o3g*fOG9VzSG0!7acuL@#jaKJ-$YLfMYk0N&LCBhsRR>jCJ7Zc>K(twg)`Qc)3wWr7l(9NL@BME_M0M36GyBV-YB>FRN)*WdM!OdHiXI}I_%*ooN1z$ zXB=g;6vg#nu3?_{^tQ_YTNLhj$@f3!DXwLMN{6~GINIC+=07{ z^p5egr;PX2BeY5O9NdT%{p@H1D^;FvDNzQ&O294CGs;@vuupq=F8J^M$T$o`7+W~h z+jA-O-=fMC9`*4gZPxuCn0Ng=57`py11L=)Wm;L1vE0*;Iep=24C>jQ zD=h@Oi$8AwxrhgdH-${D8<*(jm!4(}JO3Uqb%ke}{|8vD%Y*k;ulAfzIiazhsDkaD zZCOE$r#)Nw&T|UJ12!YtLT4WZ3_&(TE9_hoqxJWV0!q36N|A&4F< z3%lX@2*y6~R8iLTA|rj-%DrpavBDb9R)BW1o|1cW7^pSz8c8k8p0@O|tZwQxiwv;M zzN!PnxAmGT%@k@Ky?)k{Vg0zX*JVn!hqcOt&OToLdhDFtoH(}L*X!s19tL5vpVu5p zSHec+oyKZs_?obR$Gyy%MS+(QD?b-y%PJ1~6+u#nS9WW?9c+D$7bOAxzu*?|Q?A!) zia~ye1zb={qh1e_@{N}n+ujwcHep#GV=m2%;}b8;R(HUVKfEwo-2owgdW9L_bHd;9 z|KtCa|KIGj7iO_L;KUoRuKe$h8+nUzd-T0UxhaO;;_u$Z-Vyxoqb%g#Bdp}#Ep6oA z4>$3C#^1ZMh4)VW?AhA;Fn@M#?|qU#A9wb?$)9I>c%SC)``pQU9%a}I>s$y2yuF_^ zMFnn2@TTs&k!yqdYcdw2naKrl7L}3WqE^hskgrolF_@bB-OpYB=yYz z@9mtdsv+J}_|tQw_dNbQKE``BC9TFc7PCVWy_C zMya&(ynp1<^;qmZjz2dp^B%;XEmwLE=g&En-ph!pE@B~@z0FzJ^4R{&Xq&e!d;OKS zCEMcd(i`?}^?u0F*YEVMr8Fa0BN4}&gTsFBfNp3_xwpL=60@5#1X6B@nSRH6AHk$} zXc0m+W2$x-XP<70v8%r4ozR6ArQU}U5%ymzA9F+G%&57KaPl8p_+Zy_2h6wg8DfS{ zgU&u8NW}E;5l(9Bg?t)pDhG(I1nIE zXNr=f6zaxiY}@rUrf~LSpRXvx3?IU3#SS%IvocV|-d}OIlOHSnF z74rWpS4o1)*7!uVC)S^pKlU*P|6@J{4oKvZJ3f?9Dk{N&SW7ECOE~tcPbH-%p@Xqt zvmB~y!1SI^H6_mJU~F++g3tPfAXq@fOP{@zxFTdIYU|rZjs?Db=X1RcQA2<*iQLb& zbnq4aI---WFo%dPzOLLHhB(Uq4|4Vue*DJ8*Mk4QnU`+}e{~{<7^oIMEG()>Co8e0d5Lmnn*3I;t zPO)YzoX0Gm;PRN0b9}#~G<_Ta-ZEc38@(OXUrHr^zsYwNfe9w0nSRjMo!!rvU<+M$ z`ktqZ^9qp=<^k8r@UML*@aKyYzVo=@Ogrsc!vnwejPLjS*|Em=0Dsp0C=F%7PrhIB z@4@GNGkF8F@T&ZM&+GE{Za3xcZrA$S^1r{l>q|PRTL@Y4$ae_EDg{wkxC88X;k$rW zFZy3!9D?5gZC?AjQmKc_jr>kg3$x2ceofit7ry48G4-3#2xYlu?)R1ghjA$vdNuW% zXpLU+TPMFtT2RV`=3V>-Qu?DPKwr7^B)OYkBmn^sp?M3W;8K{M2#0GT{6sh$809DW zDD7hW{^ArhkN0~-rf9C(Z!PvhnO6asB8C`N?98ihLl{*^CM%c27%jS9X)2eZR2Tc% z6If$h@pVuzu+-1o7C9O-LUI^AN^)p3T5|aH7(Y{?17R^GVM2ok3HE#pM~ zx`0lk0J2}?caRc>Ma2=pkQEsqiT35e`@m(XUmhj;{SQ|Et9}-2$~r$A=HQ2_o}C`} zEwozaXT)P+hfR{%hnpp{d$vku`)ugP$pTGC86ZD_Z5b3O=gw>qTbv13+az&Bs^$9&3cz@b~s@UZR zgjvja8JX>GMw#l=*al{?iM#!c+01f(GiX!jAHbV=?I4m>*P#KT)l#^rLtr;rR$9Dw zvf9%x!wA(i#A?EORwYgWqJeO72@nm$->w0of%wurKzPSHp8(+<4*~;1$@&bA4zQ6? z@sEgrV`P0I3{Q68*VF)0qCN{**vbGyb|fRf2xe&mst}F^_M$5FeY7#X1FjM^TMuK% z92~360C#MY4%R`<{x232JDFlep#tht(`zFGL~43xtWscgPaQrZ7-Kme7>#a@->5OFeK8z=GEc`}It$Ngf!H8PPC zo$w5zBX`k*!~uXJ(I0R%U<;W|4hRT%oyVdTk0gg5J&_!G{UJI0^;y76KKye1Wq=ov z!#-@eRiLsJT1?D$(F^qFbQW0#5+iyaK*$-yU^WVBYy#DU!hlBjX%i&lV&^~+xL0=# z6oGp{_dpT2+d2kD^US`?CD4pA>LrZ4!nw+7ade;|!%G&Gl?>B-0)-PFilh=&$T)0u zbl`Qe{UHF}YnvKq!V1$-o%Kc-5+68*Y=m{FfT*u|A2TmUlG`OulKU)Ql3Q6AC|bpT z$^uCj{|Iu&4?xi;Uo>kamx$~y5A4A$@$NV}u^bZGPY66sX7+J-r47vaB(Mcx#TFCQ z;s^{8lMYQDj zaIEBbX1wG$C{c1eUmYa+65}(1v}9u~OszD5K?OmHoaX%l=`?d7hCoK}c2LkAGS>)W z%<|K5K>6mRAmyYkL3qxvpxb1^>reqvU-2gC>NH92y6KYK!80Yf9cD{%N6nYyma!mT za!2h8_bL-`S`qY&keTpSAd3lvZL5OjV+4VSsvv{Lgn1=_H1U^6BWAS&^>ckk&_85> z>S6kS6||B|W&U;0E6SK>y;Kt~1{uSOZ-dtHFd228YJ)gL$LlE2#$O2ffoOy8!LYDP zK_>9va!@y7==@(SCN2d%`fHGAg|)Sw%1)6^U;K>bR17VEWpn<_AY_x&D7jwE4WX`sH z9BjjStPU8#9uEwj)u6yu50BouAI_Ht|G|e>znvt>o;O*No&TvM+j3g)UOtt5a(eKl zhLOE|ZLl$z%nKH2ih6Ye$rflc)&!Hb>eP7|APng)raAa-;$?J|4N?vz6oBB_P5(6WEI)`tXqbd zFze`$m+2u1 zd|8z9YRTfuHIl_|)=CzKt(OM5@5_++6obTfmcY&JA)R^bGdLQuh0qXk42BpuasPG5 zw-kd!grRat?f1t+Mi6E=0TDd-u=3iAA;Wm~YIj}ob^C_oYg?`4tLT@I7X0s{ehVQ@ z5DUJto`&qlK+9|!hf?{1RQ=F7lz_zrSo~R~1xz#y9o`TCh5!cge6VfCp>J`)JydlF z6;W?gr%(~~qPm2NsQ034C|@^L?HIb6=PhfTL#z2S+by(;Vsn#nLd)O_-%!4&g?$zq zN^w<=!4Sh3cEp8}2Br{UIIG=0p(z9=g*LPN?{*J}aLnnymt&~HeCDt$)DSLD3%$ol z_=b^4s0X^eB=kJd@q{SW>~-IOR#5&$=y`(o)z!#aUTgStQ)q|o1Y(fTVp#igs3oN; zqHxs3&_}%e_V_LIGzY|}8&Pt$XC<#El{2U9ebO}37*{UO8CI*G! zy@knPMskvSLugoYuKYtuVPxfVNI=Lzlpw7W$^agy!crTAz!1SoX18-v!^U#$nw3cH zo-dW!UENb^H??<|$ZnVP4f~A}*oD-Cf^gW;dPvw(PT-~qbOJdLLm*?gJ29-B%mKnQ zWn&HeJ)qO%FuR7q%)J$CCs)MI|1@k1r!sVrq|$^*D$g&GR8CzcsXVDW9F$8)gp45cVfgmV7`2J{|-^zYVh> zhyf@@FG`z$;nuz0ULMIFtRH@uFWz`#8ZN^Bx8~s@{4cN!7vVq3 zI$ZSGmNg3(lRr~ig_9P-h}TYV2sZ;&$8cZX^_b=vPKmU2Kn#J5;D}fF2`YyS<-s-Y z-r=Uu)-RlNbA(PB3ByuOgL2s+1x%? zvN?L5WHV-gWb@@h$!790$)^9x1{f&58?Q1AtukgK5Bhx!V>gBiPY>ABAYLUT4A>h^ zTHvAMRiD-D!PNz4Litwm$r0!E7P4E_;r6Ver+Fk89tz)XP6+q^f4~i8bjUp=$!~H_ zl7HA7;YJe$+9IP~jqWjX67ynDAoC7fgG6LMRMK|TPhbwIv zZm`1RH~BL6x9`Gj$wsZiQdZaOwulfRqJPr}5p{ikPHGooe{|LM(bWnt7$g~salyV@3Kt?ccVgo2e z7*lp+QiLhs4la5_RtLj3g6Z~c&6m8oEtS0fyG-(W;tR>^$Q6>;A1WoUdpAa?$gP?B zScDBM-w`2Zx9%Km0Ivwd5XcxheG@@i*ewDh%3}{JPDB_J28-nB9~^-pg2HC%`G~K0 zZeVmxviak6$>#E#lFgJ`lFhYuC7TrwB92qo#Caku+;|?5&<=gRd(%jY&vOih7}n6U zStO}9CZs565&4?ZjS#QL!g6dJtXf6Rb|f@#qK8@-8Hu-m#6%vovE$H4(Ym}C7Aabn zqaz|k>oR0iq!`lKFeY*Akq@5HO@l+uRuA?xAs&kQIk}#!~Zl4^8A&@c5z7{Ga@zT=P^&K1#W!!_*n03j5-twi>W=k69esriwa22)lD9Mzv%`d=THlM)i*xPvEcaC4etkK^fuT2!Q-`HH(TZXCn9c?9k|#GFbmDOaQ*uz1EQ`YS^q~-P2i(*Q9mj4CjK5pIRGAIl31*FGfPVtd@rhu=(+-? zy*zAY$%CjODhy!F4%=P+n7U#5`UNzu859-9%usy-v}@@F1Z9p=oEdDZ=5J_cxW6;^qbx;}&fT zBiy5VDQ5K0Cwddvj8=7yw*tG+=sP`RO)dIH6TFmrTO<=$#{HsK5&cylShB7CqfOZM zl~JwWZCLa|J-AgK-L>m~k6v{$)gv0q@v_xRqUYj8_ZXCL$7?iRG$=lru8zjb1I5P+ zYofCha)US4{lI8bbT4!HgK^c-Yfa=w_ao5`%5RI0M;}xWT)vH-W+Z=b{7m#Qefe?e zPtntqk8YQuKTN8n~h`~6|R`X zB#|{)VYt?g)h5KYf*&kmK50u;pMY^F^|pX}PB9M^Mt}8+(J5`4PmE4!WBg+JD~fm- zT=#>cp)pewrDY_=v{QaCMH8dblqN0aJ4F#av@z3_kKg3Q3{*ab7svEdJ|5^9lRykH zkqoP1&06=1QI6ib*DuDFofsBl$;>_Ddc%wXF~2HrnJ^?~7ulatbNb9`WQ+yC=$Pk< zQ}16FLw4$Vz&-0@z9id&4#u3_NWjhac*yF#Zd9ZA5R36sR$27L7#sE`EZ!Ox{T#Dh z@$QVPb#~D1dYz#>xDhi}v4fF!>V6P@H)f_{DA%6F=)Ak)bxa54w_oeU>TG6icT^VjVkE`M9=etj@bz+r^Uhyy?7KXw#6LO^7vm&(CjkiXE!>d2w`XL;U=G zd~uxUkeJvKYTL~NM?GM3nG7tBi{0OFKtKjwb&+xO%HUXC09ZRTRu=%uhsWyc{CjlW z4^qa)>Z10s&tk2WWZ}-tI%V#d9lJ%zCI(c*&QLxYEr=bae4M!`wnX{(hQ;n6Cd4AB z)^lUb`mc&L2Rvl?rXsUzWvm6o?f-C#i-X;pVn1yu<9@<7v2zHX#bH>Nh4D5}ax9jz zX`Ts$qLZ;rnDsAlUNHDXENN&%)CXbSwWijh=5}l=rrzAmfX%&ZYrsO=7+JG{?s4N` z#@*ON%GN0qDG5@a#`dt66wfk?BT}3M%sh^i8lw!!?4U)Q2|H^YXCOUmhh-e2cvc-2 zAl4s*n=t_qTq!vVmWzjFfpOCmV|7obG8xYh#tfn|;EgPSKS>K1PZ zd0BBI8-_KrjcF^k;uA#8|0V7-R-PW;72I;-z9L*n#@#6%3P!};C0cA8d%8DHpP||I z1E)!GtrW&Hmr@y*fKa@QY`_Xa$QN<@h&(HmLIf+hL>kGq)q^c7;~J5}1*Zud55)aK zB^suls59s`H_7xur`ot;DlhQ%R@?z!)OdS^;)Q+56bn>9RMN?uoM$Q5 zjG^%@c^&nc!o-`cZzH5S( zRs58In-?y{do^Vf3qQ4C=N`t7{O>ZbIxL1*IMeqip0s{gz?4@e7_zx(%H2|I_LcYx z(EnNdPzu@q11N4j`BXo_1XtBzZDFNx!d^Z3v5#rOe&wULc|u1s<$qfwTvvXZ)jDA* zA-4n+p%)%p#mQabl`xJ*Zf|)#(Jt?ViVSl| zlsH|FCkDaRMJ2RUSUM9|$LNxTI!4Qq63#0>NYEtAqzqPxS02huu;4cU4S<{4gaz2$ z;7XiakZ_dJ`?c{-iecB&ar?os(gX_%t#t^@ur#R;?CX^<#9GP}JTifFSgt^9lTl>~ zD@G@f_BGWbIFC!Xu83nlC*eN1f(02>Rxop3f^CBkSiDn8ADF!`VZ0(!>vajF!w5wM zk8HrOHDY4})W#8*XHrsM=(jncT#@PF{)E5CwS0Rt!H&glXygK`4k!FZY4mv20AY-6 zq!qRJsR35xnu%64>OupoNFW$puCt;S_ZlEhITt7MQ3J%`2n@yP11V1vhDnX>{wa}e zL{BrT@Hkk*L_?+>ndAaR`iZxxT4Njw5bLU9Nn2VZlFpS9){S81tkb|04^}fe!2lBM z6E8MIFmqVjCh@W&*c_L{D^wGQo9>BCsD&98He-HCNj>3`SK>fLoUG`?8)U?={6q`b z8<%L(5Ckjspf=2wIb2Rq!{)@qp;9pBnwPkY&{hih8sSjg%CSD+000#sFyrNLPZxoI4NvWz>upXP(jKVfA%&@RId^tYxq9Vz>xpZ4( zZrUm%xHmu1j3SO;nj^5LlU04->Y_S>%vn!k2N7do`n?^p$>A%eDw6cs$x;-o&zvNB>cp`CvFdWV)nu{~ z*s={tW^C+*1Q&={M6AvXBupF+yZU>Sskrl|X0I_Z; zf(<%LR$wd~KSy^yNIjo)TM;7WE?HSI%2=^699N#p+`Om&fGGf+^ zlMQyyNTviuCOnm+0HWx~(QleeX}7?pMRE=yGBYff3XkoQ&nuMt+#{J9o@1c9OESF$ z$HEpeJa=T7qM?pZChYC9jwRCn^#nQFLEaOpvCv?h7 zzDo9K4g=#0l65{kU{C{OQVmbGfU`rA$^A4y1YOvRnVL*VcR({eSxd29ET;j-S#`E+ zvpkv9v*$ga#g)lcFm_ckDHrDe)s@MQ6)SnSE14YrArq3xsW`*JmMkS8MCqt#_a%=| zWV-o%1FXclNs18!o=LW%Xi0=QfpD@WS(i!dxkUcE82iL+@QC~27s4i(OUuz0|@i0qOqPsjqf=Pe43eEvbWN0JFkKR+-n!NhW`w1X{9Kr_K(LKW(GA+XO{0qg zs;mYOgN4o5s1+$aAucCH*Khc)Zwe)WklDz90qE!*2d2t{CrXhDJBc5 zr%y|Z~GrIOAA=Sa%ej*7~W)K@eUBs>sbI zd=jG4+0FMj{6EU8w zvX&jVT@&fn0SKdu|HcbdPpK{mgP5u_wJ^iN%~^}DG4GtZOf_1uQ=84I<&@Jmamhsl zwBMoX*jR53TkX*(md*M~b?CoOiouxOs!5bBI;&5pRExW1+rr$vDo4D!{pZhY*r~&+ zDgRvrhEN%B{)j47Pr!iR*Q(>nN6TZX5(43Xke?FDaZzGf?IRU#tqw{37}|WV(r+Y% z@;I$JLF6eG%4<|zDanfv2Mf!U%gmu~`&2gOM^zJG=Ts4tl{)qHJ915B!^#h2xWMAe zsx1xT3J|L|Vfod2Y#-6n6hPzORgRRYSzV=!*tUVV33IDSYBN?-t#8PzcTXM#(N9%3 zDNB$(M1_qnRBC-`3MT)mzEkY;_AAv|#Xy$4RRvJr0||}Qq<$k8623Q3zoM)Z6E%F& zUTwl|{Hh(mHd?7|*|@f9OLnbCQf~;fQAbb>o^e!o+f?mrASnxKrN+g4JV=0HYxQ7C z#1mCT+@>@lAur^0M zgtG8fsAf*7dNVNy1hXS!)HW1vjYq3h#Mm1Q zD3=M*wSrm2N4O}ea5DOr*yJ;+NSjPA2skG!KmSe@s_kF}yXVs(|DTThD-olta@uJ$AZU0S`20#3y{+Mi?0;@bH zeLO^8Q|r>EoEz###8xqwA!19m-KMw%T<@sY69b%pv1RJ%8!)0&Yf9nk`)V&rC3o0p zlGv8yEMuPbO7pn%OpSYSMecj@Z<2ZFKrP|&KXsN7`AR*5Vi|Q{Ea5fAQ}Y^iCLDgN z9#6zdW~+=fNZKd36ib*#+eVt9MCJsR4LF!;1}kp5#$0oQU>SgwOr*FsmP=+1Ej0WD zS#=5AZK>Hpf#Ggb?V$Oc*iHtsy#CnSI?oy13MO^eY*iA4P4P?+9v??c?X| z)zhbENwHV4hr5q!*`U&)t_vn~Y5~IoH5LTrFpWieG}}I~stv2%Q7jw<+`=@!Her^@ z88)m-nuf9s?*mXv$Vk^r(G!4hKSL8q$x#P?UEE(t$Sxh#>jQx~nnn5&@m7ImRYNM? zmW2-07_*9jx%RAegyttO>!~?mMQAs4m97UgmPgTy8Ls)cu@tuGW6d81@?*&a4PH>f zS%#fcHSY}N$FFB=LX;oaEYOUlSXjLrZC7b*Skm3XT$sH~6HCd8>aj#Kad)i-n+YNF ztM!^Yl*pn(?8LTLXB5MgZJK+OWl^*RKG2+Fayx2|eFRy?O)t>$;dEz5q< zTvI-3?r45gK6>8O_$$UZ?t$ioQf%^5O$x;>b<*(rP^t{2`j5ZV0L6Lhv8=meN2_jV zgtaqHZNtj1XeYsgH=5>@ocRAjm%+<-nv#Z?mldli=S}j!tUz|JGlqMI?aYKNx7S9o z>Bgy)<1p)`)FJBw4x==oIC&iwB-y40G>o%{6$K+;db8B$4HAUac1pF7ee*JhR8wOa zawc?3jibbhy85wMwi(0OCg)UJxaN|2L^18HUa2_JA%faSpH%Fii;p3GspSoO8MjQp zLCJAS#5@z0`fbCE=u!8A{xBy#bpaWsW>zXL#nYtrR)SlXf>cWTE*Rxl46(44JAt!Q zs>0M`l(bccWzC$2Vh7Rf+boO?WqP*k%e2(3Ft{|8be_QfMKuS_fK*#0h7BK_dR9?% z#?aKy6iawKD)oi(zt2afb|srIGGonLr===E&id2T{p28rSY70(@A4U`yQ$6z2y>w! zR@01C4b1Xl0~V#eB&0?fzAzNUAQQ>i%`=nTDvy znyomQYQkzS=9Iy+?^8Qa`a42VwOMHvu=1x=!}c-*s(wxn5(4Y&i&WC_u0k5Ok$513 z^-Byhn8dV#8~>zkrkphRf3cK=$k8tCosyjgwn@_^L|*OEJ~ELl!PahRixpEycS*y8 z$VB_l-YpFe8WbNj-f1|LCqDk+pSD8zxGE&=jPh|pWZERaO7KWqdn>y>tq9CFlx>_KU`#@`~lKT9u9vt_lzPyu4v<=??+(;A}3 zRx*(F{y43%63E6(N-HME7F0u9HZdoCAl#jnri(4Frl%btYeZE4W<{DZ4zp{1T2C_8 z#4Ty&thO@ky}p*!=V=>dN0^;llSWQQI5HseBytjh2o}t`5c?Bi1T$?z+BT|B0b(_7 zh#(zV#jK1p7`ZKNG&zpT`T&~k&0n?s+0T$>3;KK0Zc@fyMEI-+eAg5w9Sx79*|2SP zsn+1qO#PQ0d~rC6!@W9RJn$fGFWG;P5S+Ap zmWH!Pd}O@;^R(R*EF3=RTQ}gx#E?h#H)+SsL@UPL8K+a+PzP!WKBnoEb(h0KaoDDG zU1IFNC0(V2#-+Q`b%}A<-gI4JY_UK6zT$SqN78lKFdR$QWy6cVORrRZkZ>lQngZvt zhwIbumfrK}cPNI7{O7XT%jvkNkEcrc*V1*V(vTbJ)Kn=C4&P1h+7NL}L>|sC4>y6s z57Rdh(_c|F#Nx?#!IN}qGM>xk{*`VA<6owej;s_Ma|Cwkyg@6Ohd2EJ3a%C z66f`Wti%jZKDJHHFrp*{_3xRe$uNWMX&L&)68ue^jjqLAOlu;yyNrGo&kVax90uRc!XJsrWq#%F@mlY#fwj|>OK_f74 zRR-w-TcjEMCDnQ0%ZzQ(?Ae%|RCU$^Dmq=YD`Nsdr`&@CR(rr%<#t4)7YO$3 z?3Ah|Y}GrBKHy^OyOb7KCrv$879##eMJP_VL~>_x^Bx&eGv(?z4 z=ipc4(#i4;nPyPbA#)_zJUAdA;A4I1hkcwg&4{gaC_^x3*{CFWWF94(nS|jji>Y^} zH!-Ub(s;=ZktQfp7iW5gWEzqUSFn%X*c*DqW|CIC3k#Dlb=gQ+N@fy4B)FBC`H!An zrQCj{x;q2y>z8~pR+FA(jD4=mjpXFqTHOrqfXG}zv4ho>nPK2xn7N;lF=JsB8#^jf zuH3`RAU9fL{rrYyeojcRbYPZHJUsJripOyTKyg|S3#(b}Ox>K;m@%32h?#WudpgQ817fSCuf!uOpYOpdhv~QR?vG^=0-}i<^WK!F!L0(Fmsq))fAq7 zkvWkN7XV-X36Z`c_AYl)FKD$s(~L6prc(gk*UN`!I&H^@q*n>ucV;%G#BRMrHkFguXmADQg9x8RcMr+fFu8{0|Fj*}L?t z_lEVWHCa0;1bqO7%iprHXp>-EA~D$hWkD9{W;_%m|HC!9Cg4_rdL)f zLDzr?q}Yn(O8Hjhneehas~IIM3E9Oqb=xu0_FIn2awMy^)^NSDLCSA()>{G<%)OB| z3l7c9YTg>H{rm=!wQ~%H7|IBa$(LE~ltdO`wC^=JceiAL9l`fLfKghTpl`F@HO43! zbSmp_9!RxQJdFUw+T82gt@{KAaet)7p44QQ|)*{IkviqcA%WN#>Mrx1j=69 zRIaekvC&di*aHGKrL-SNKt5lF8q8&QL^BQnU?|;qRvYa_3%xC}Hz;Ol+!kt$SU0_o z%~_43me7NOFPyZNq&~|kZ73^>(b_TBamDtm{L73cP~@&1XN}_B2&ag`R@XsJh|0DE z>qzYsJ-sckC`ubn@lV`S@|f8lg~=r)$qrLVF$1;*+`#b>w{QX;J{F zt6ve*%?BAQ)%GKZ1t`{GQ#9)0%~Ye-$}z#2TeK@F`2z}|AndKuni3Jz?8zRj3Ewkl zC@*Q9v|Ve{U@UufWsPNi>wYRv#)(umG1WWWn$_%SnaKWRxi(em zTf2cnzkH*8NQGq1%XDX~9M;eFp%TW%FT*Q*#J-G&7TE#B7_C^8$iKTZ%f`Ov7I18l zy_pckc;l*Od2z*fWCrhc9&49fO@WzIm7QGQ;xlaV1E8>5wxK;n$X=1zgbajnNWd2V zV~UXrd3d_O*5Ai}PPfdAFJON{_R|)G1P|q}2gHllOS7H12@m`z8x#C35ZE_+IRCz5ko-P= zaCUS4ebI>Q*F2+{KPLMGPYkj@$$rHDKlZci+5CBacJ>8ce#_kKo%~riFZ&38IxNU8 z<$s^DMB-_dWjEp9%T~(o?yIxoDaOjHQQvGAZOnd3a6mwmAB|9&wCZdeOha4WlO0Hj zIDeeZ$r9s7?9u&f>&4SBN<7_?HVzIS%%-IOOyco@q=SdENmHUi%}>9mY6%ZdW2Cj6Og$SgYKO@!YbW;dalAmdnoSpV`+Ir^_`9E;oniGOGRML8aUO9w}c zb6S!k1r|1jLem^S4-{ibP!4wHx4^uRoGx6vJz+VG_;Y_mj)?3>qH-p1>kmuH8Nz*g zmpaGU1fRFEa{|br<=wy>WdY*z!8s>5{Qi$~T*-!KnS%p3d`l7Bn2@uZM~;P`=7@H@ zU|P-zUc1iIbDStXE6A>yofA$a8!G1JIJ=+(hYsd6BB&eCoNKr~zCN3?nAkL?u=@T+ zfW-6j|ru>e$8w26C}YKbzbg zK# zj55zD>h$gsMiQ}Z^T?%K(p^0tz+}OctGQZA9wuOJl;tUH`;T{WZxUDng!zs9dL+X{ zMuihEWK=lyGIu%Ar@6Kb>StMZr{~S5AhlQJrHkkw8su}vd3`J~LC9eg=@;M-T&+q zUI!}gcn@7}4vfmrizQYqgVj6rzFv9hWI^hkv&q0b(PXzM&m)};#P#-}b3)Ciypa^| zJbFJ*!w$Sole159EXr+C-hS?*59gA6R0k=hhK-=*yu1X8aee?}$okF8vtdt?3q~(~ zkkgrpdytOqoQ9+i3j@aDSH#=K4Zd3H-) zYi`L8cjSrYd+)Bij{N)eJ@WgeeR&xagW|7Ud@N7dp?vRX-U>=8E`)!&QMd8I;oCgY z#U3BPWWoLK@}^LHO~Bl|kY~;Ep6A;^tDo{7@}U`{D|rUw%GF%YGh?;2*`Dl&8+m_I z^{YcMkV_j6)#jZebTa@ec#BL-=%y+&aC@FdIt*1%Td{e)vhVf!D;a-&d6T!37&KB@ zn0~$qI2h*tPC?kA&R4O+4*AAVVVR#}g~8@Qn|w+_paZgmrtR__DItL)0E#k%(p|v9 zYUa9ASu)86S?3>zWu5YSQ$ooHSjr-nCGPpZ@yY9n-ua>%5E77I%i~JB(ENS;c_lKx z88I{A|RrM;;(fGTqa8xy(Zs?VuJNB zVU_vHkXG+?`2`fc)nje{GT)jx;i1v2cGnaGwsJwfH*DCFAJQTXHzX7 z0qoht2fFxw=uv)SD&+#|-S#SLz_d-p$F{b-&Tmg>O~l$YM02Ve7g-HdJWR8Qu*yIAzv+CqJ~ zKyT3P=e& zmkFMZFR&#I1WQqDPMME))jn1;DOnkEx<)UTMIUtqYHN1M{+@q!4N}P z*RR@NFrU)KAWRAr9V!ruS#KXHAe}Y9L0I`)-3t1|?+Pdr7l1G&lz1y%U(slT8N4}P zkVHl}V3FPt9$YIZq^#}~G9ZGr+(CEqw*oUhCi37>!FJyL`{G%_eExKOSzt)Cm=sp= zx&V(qHpozc<+}p0cBs~{a4Q84^QI7ZZCUt_K5KHRB8~+&Ej&%$TB)+| zFEoa%(}hbYAw>vs?Qnh$-2Az4IHhqF2>c2ND7;Y^LzbcD0N$6Ea<{OUD8m@JnJVdI zu{q0g+~B~}Wm&_a$J0W}YD&OLITNjR5UX9n_lEF$zMB281 z2m@s>k`%x(-9{Ff!|cQ&QW_$;_eFtLg>JB7pC=aeVAV(PWXfYl~XJ zs_ddMl)ixwNgy1_Ei$GIEenK-K6qVg|9(Z&N$oWf3ll#s8ev8@KF;aNxDCzO7q^P+ z;ozr5KT=ly)$6A=VS_SAQB&dBb$ zxrnrZMbx!iy`kBHwCAnZtaim(DBW39Nvh%>g_+FlL6L==U>709Vt>(6Qw%8^j?+TQ z`;bZ>?Zt_rm87`BvBFBx;Vd)p&P_2kwc`6CXL?n&8p`b>JEDrlTODKHg+Vw zxC!oU84nu2Vv&Vp1{D8AtsYLOB3j+X+oZ_iM^w@Qp_&sj%}iEXSlq1soPQB_eoZZ& zz^U(bWnSEWn>?#S=(6 z;BZgBud)*MKYF%gf5P12H{@C(S~Ix~dEAoXXC&L#3H9D4kl`zfNlRFuZst~ zch7dl_r-3MF_iF^B}KZaAG{ffkAO`7x%h=2@;kwzgwkQ+h;YENgqF?-(@{Ebrtr$9 z0I-YKPZ-nvJ|uJ=_PpMdYN7m7}=&|gAXAM=P(-(#sEdxkzInD4d=khqLNVl z{btV+Er0s;E1Aci-r2D7VBR3rg@Li#c#11dwmmhs{rzDYR`^5}pFnw<@5V-VBug(Ld@eYWvxe}#wx~?J|MWn;+dsB?0&`sTX-?0lrr#KJ+pL!zTOJh zIJY#HVsnDFoJFOiYidOGv2a_^`=a!|0gCZ(b?I?EeD16)J;0xX)|Fo5;>B(%EvNV> zzM(U-*im|3Z>zMb9y?1n{&z(|<6WiwC@GBI(6X*9_bXKJx$4qErp$U6vu2v3rTzcA z46Gij{nw>~DdQLdq2CXs=4{+IrKZ)#O9wO(62Z7{OG&d^91su?FQDQzgEwbOS5d5} zPB75BP&!Hhn|`Tu6BP_*-YET4!Ev}%+MW`UP$+kHKeVqIRQ+DcjHT`}{wN(l)15nX zdRBUt(h_q)Ame$d9Z}~V%=!gd;Pt;syHk7!U+=-xhj8HQ-P=+F82P5OHL(^F1`wu& zi8Pol#$^-q<;UITW!otea6-I^KUFn>D>h|*WXS}=G~2S>Qqhpqx@@c>*(Hav(+!c# z8d`KI3vGyG*6>}|vSb}+?qzsekMOsr9%WAzA)orz{qH{ivNuG>@nGf0Hkd-Eu(C@A z@)hPWb+{K|%Yqt$Ys^%dGIN-oTsD>HkDhGq$qlwJHKS}b*^Oqp}|qFvEdm-xEv)(1=xp<{u`FDRWQ^cE{whN=iKt!Uy(GFI!lz>^TyFA%Z2dSYOs2MrCnNda^3y}<~tIIAC9iS_q93IrdTs?+x4gctRIDp!7t0);MH$sRnqa<-bW-u7ckQvmkpq_ z4!khK!j|mb<1z=B{Iu*Kp(=ndhY1!1#qY|F5Mma?_qntGkF@s=i1K*;$KNNtgEX;X zjTKN7yJGK(8hgWXlsh^{IqDtdXh%_$ML@+E6;J^+I%=$mC3e&#_J}dDYb=Qx>u;au z+2_IJ`}zHm;SYWG9(G?lJ2N{oyU!LMCpld)Vvy8Gf@)OKqUU8M9&cWg#hjo&-VLmv_U5+}FoyWP=TRxSM<~>+` z4dE|%9zw!!`M1V`(H=8S{v3-#%CA)$67ScW&0zCn`FD)@>Y4KUXhh09W`dD6r5EwFs<0&Prv5&Vc|*PvYZ+n9@AAQDb`E+ZAA%{& z^TFG`!iad5&^2A5nexui;kkSYhNt1yeqQ99g`X+8x_jvu=<-JXm#q*Dx|#W5qCpXm z9@1^@Hw)z{DM>&{!t7iIT74F3S(CNj7-2DbY-_(g27;mXZs)g?jo1vn@EgR24O6=N zi5{wxn;*UIgdg2qb@#i;@*eN)_bW^8=`ZEYA1LJ=KG^RK%P@Yp-vNf;JkoCzQiOep z)i^&>I5XbQh*_lDK7Qi3bIUY8dP^)%WW<+#7co`H68yT88^Kgd-a6#ilY{q{_J(Kk z{5~>O`55G<#muu%RG_Hg7%dS=vL-`9{My3RP``7i;X;C64=_^sVJ@TsN<$Bf>EOzN zKFtqxEE!jrJpF}!l5SDr=Ryws5^V%m^nUwUDDd@4KSPXB;bFsW(cr?p*v}T4m-sbf zh{MBMsaO|xgYP`iE0Hx*-W*(NWzSZq&2Qp|6 z?PHv_?K1aAbyuE_)~5ci5t>T)!XdW)pU{PmH}iMH=sI8Xq_+O3voLw~m2~j8BtINm z)*M1Q`G3L$YIbw|-Qlc7#<7PM*LSal{+5rET7{~|~l=Z~6<;%FeZCR7O4b94Pve}ql|MH!7KM`*d8r0x#g!o2pd z-#D;b>c0?UJb6Z*_V-_ina`st=}s1;__H|oN`!xjwGii~X#L|6!3zfn6cBaqmq?8@ zA;kgoR+q|UbKqv0|4B?BM6ok$f|1Aq3 z%h&je0q^v6{`=Y6HtYR&vgEH{`443wXwOP1!-p#Wi!8&ft^V#Tyl!3V-;yQA@ATio zDmL2dFGj={_xTTIK}ehL{9hoQk_TxsTO4}cJL$g?qkEJ^y`lb`e?0S?%FF(BtU(j5 z`gcThZJ?0sJ0*<0=l=skbA9079D&Apir%p9slOBB*Rj9+&oaobUi+UwLVCcd5B^^x z8Rh}!n*`j&7=B(Mt?$wU+g(k zK0YI$DN-N$!7F{hRc0z~tqeeYi=6sfKu;2{X47%PkZg2mz;R@(>H)zU0#L`|Qzht4 zLaGC-AaF~-E+z%H?ExpS8b$ut9biue913tFWLLmzTy)?86y*|@86^2&KvU>*D8LJ? z**wB8hXXEPX#m@k0fW%h)4~p9Kr0hR;*)JUl{`2TU=IUM2mH*U1J{cId(pjQ@J|6P z$dJ=1^y_9Pl|8-5DkTDLUk+Hzu&4bJa1PNkfNFFX*5$Gv2i!xF*PEPsSZxY)68<3C zVb$s@tbu-I_#J@&Z4CoW1+PTtfM15W2VX`XNT!G-$e@G3i z!*~%M%XdqKmGG%;wm$G1B#bA7tqk-)s3u$}37l*p4E5bNq12Kh^ah*Ff$uTKju!4t za<*4k2*N#36=;JIE)R2fTj1wrBDXdWGyhF^tUU~Y*y@Vm2m3=4s#%$bvE5UBJj&QB31lZdv}e>54zt$KkEB70bkMd6B{eO=;y)MN_Df zE0maki>H)F(1j}M*nFK|q(Yqh>lLNg!Me?#(TW(fgnesE9pP4jqB&OS35P%^f+<90 zE7miu>y)cdAWR(4X6rD!glM@@aA1StAmdcdX2tJJoSLl)aTq_oTJeCr9kElPW67(a z5La>^IiL_185AE&Dd!6;zAQDE!d~EnZgJldW}X z7qGpgc+Q63c2^bM8lwtEQ2vV|p>YVB-xQfl3eD~-_An;bKUSDy`T@U?wWVK~B}{&$ z_=M^65(1eQ*}S>1isI87#gA4($G>B&RAYvmJZ#xEnHAAEDNV>zB4aBwY%G;gY#g}K zQJH~ojuJFb==Ker{Y+)KV>aqq>wdU^qcFT+TfmK#I1_Effo(Vogq7%ig+{Yl+0r3u^| zq#TTii+F@vx9Kv0yirPER&d5xvNTvm{A$8ZMT$4OH%o}oWjVJTQMetg8>S2idm1np-MM2 z&d?~OJ-RKlaA&xftX#m1*U&WO&y33*b;<`U**a4>5>4N}T;*N1^0c;Cd6+?JN|co> z*}qJ=jwSD}QHs94YMru%y$xKi+>YtQl+B$Wyh3^2n5=Tm8%x^!R62lsSEGzZSgOEU z`2C&zL1&F{j$;;Gbuo^g2~6rN>ix6 zs=SFAs7VNfA_%wYkXOxutReZHa;l-w()veAe$$RniIB{Bqoh$N$5EK^R{1?k zc7Cs<;Uxd|)(0hx?fK-EPf8kk^2vp=ps!fc)<8;rXBgzna35F%b!N4-wF~-&(eS%t zP%6eY@a>!2BFG6^whBUd6A6J(1XDQFKIkV#-q&4%L=J>>3lcdntVfW@fj4eJA_tCo z1c@Ao=_NJ0OK&N8y-$#eabVG43AfA8puLP+FTAC^Uk?wm#zc6uDZ@#gWu+r|`hm_8 zK3*2#NvbCYIg%$I=)BU9h>$3-92-|6@ja>R34NyqwZ}v*Z8@D~ko4q}?JLos0y$>eA`-13=E8hkU#Dw3x!f*&=((p8M zm~tR!C?*EyV2X|g8Ih0osM_%dc1%1GWaIkZeIM7ocqpJy9}ENrT09Q=jtTMRv!M5k zYY$#YLfrXA5?Auup!JOJ9`A!rvApI@g1==5KN$xPVQ<@82B!$g&AaUAVG+Evj@bv- zu)n9d1pBb$Z>@txac*}Fj$m&+I|UoEVq-c>Z%_7+@)o%VUtoD-`UHcQNkn9~FFpajbAmuxRHOj0-kFTHfHIz+yvU8kEo*222h{ zUE9NJ0f*w~89fYs^a-A1E=Z^6Jc+`0^Mgg7b7EmI{lvbtbU%HU1ede7_m&1v zWpWrB7;KH0-r^OLxP}Cq!H2NmkXA_5<`D=*pu4RDlZ>HFe(*F#n095bXv=041&hwG zb#d@-tPxF1f^RS-{yElZkyEpg=HMu{V9HwTN|U`l1Ml2vi4I=DYe+J6)Lks-9* zD7LxNEudq9~>?soD9CqD0_P<*owV%t_xnmOkmdKU{9nqaU`0+ zkcs5*>tIt-9-m@Q3c5u0gY~zAUpeq%CYxUcW2R@QUJ1}Zp~d*N@87|6ttGELF7JX- zXP8L19Ld(C)%##qsQ3`v9qD*^8Yhv^CLyK}Y8bK;b5^rRk^n;}47*D5v~!3Zllv!vY@Avalf``9z&63ctrD@3$_)%`*ivAnH@gnVGU>*^iyj2XkOBSMz4 zVr#~POhei$o(ofn=3TWB^^_mS1cco47oA=cbaOBfmvl8uZ2{slb?)~P}iNZZe2O@cCY$iv1^Gl|Tf zn=%R(CWQ27nz&gPBD$vV%n;G=56%t|4gcGm5Yg~&%MB3?|APFGzD!lWUK!$zk(|sT zlpY?vk9MD+;^YZ%a81Zj7r_XvfRJ>A9}oepVe6idL=2la1fV2+ff-8E!t-G1fe_T) zbF}a*^0Y&xIrtw9DaYtChXDC!Ldr1vqWS7+VH^1FO32U5#8li2`5mLK93#l-57lNQ z@Mwq&47?M9x|LLJKG2WJA`l`4ZCzv-U^iN}jT1vVC)p7t^w5&u8j&WVI3xIT=-?CRLaTW{g^%3IX!%?@Ie$>Ee-FEF)g&pape56 z2vg#%2yej+z1_eeAiN3_V@p^-v1Xwrh&TqE_pP)gYwm~d1B;08cNT)~IwghEZLz#T zeVQCD4u{uk!(U_Sso5Leo!EMYw*cF$@NM)ADejx{S%Oh!B4H7V)sNJ9M;epFufm;) zw{M~;2`=Jl`b|r3^eGQ-PnNF^|5<27Oi4K1M#DE~QkkUqeb-7VZeAXKi)HwGy_EO- z1}Vc=8>M8_=5WjjN&hG9NfkoxKwZl84`z6fp~f};?jb;X$YV_B`2T^ngk}e%Zt~q> zshd+XkxrJz}Ue@VS&$ZM(BJbx433KI-Wb&iN7k4{BRfF`ntLPw$3Y;=l1ti%9{ zB~G#TbBPdLfMtsa(FMF}8DY#uSe9)fdLxW9gtv`Atv8^wg%S4w5f)J1Il{&MzdJZ0 zArOjSESx14J}4rOS#uljh||oPKO7mcg(WwRi)p9+;?!(l`pJ<^LO_zFc9>ZL|Yl|A@XA6U?*dSwy8BS$jWxFEj~_c*#t? zQGA4G>Tf1Qh^D?EDFU?}kNL2(qW`cJZt+z%TVaY$XN&V>Ong~m@ zBy8&<%s{_8qGJoJx^oDGBA5zsXW+$%BTPdFT#-7s^|c5wkiL9fYDC3NsS)|NB7SF0 zOS>H*eiRJ58zFuajC&;Uc;u4^akkv{j|lOj;E`t$;zz+juOh^cg6Z!f*hj%#g^{9= z7Bq#>RZ)7+r z7!xUc4g~r+@Dnqw>xM=mqH7`oS`+ILk(Q*}gTSU_$dJe$q&(8go`g16wIz$jsJf7( zVUgDbeF_{N`31AJbkVVgmYBENt_NKwVwuZR?F(a(jERV+in zsz|!+l<$?3NhDhpw|jNu2R3l@BHyxN{jWu$4xFMqjU?Xp zBb{JjeIz}^m%}9;?nTDpNFeGA8=HOPHC01>Jpq_DDu>L>PA-Ac8ICEeSo zTrlw_ZBPolYpUkr0@`&_)iSU8YflwDlayDD^IobmEV*T%N;Isyyj9{? z@RZ@I+sqh7j#W)U@N+Yz0b@pJu_98sLPhs+a_2YR+*846uOY}MpIjMoUjFuN|XM z>qP#6MK1|IKv$ifYmsUugZIs%*08zLO0Ot!keb*pO6&up2SlA=a%eXwO0-0dL!y3T zZ_T`;WK1T_hewG9*knvpJ=4P16QXiia-~mH083iVh!Pjg*UgC%&GMRgR0skK4Hiea zGix~9KS~^bxCBPkvWl-NqQoe7Lr|0}Mvp09Mv=VaD0{LtGK%imTNcrad>rj>M#fpy zI1{=mM+L1_QK*&X|AKzsF>C@jL`NASyQ9PvNIUmPr2FlQ5?3HO?T?zy^ih2z>NJM`N4iFjB$~a{ z?P?qigmB?lTrr?KRDlV}y={dB8n(ExO{i55k6&o)}r zwvwjN;xKofLv(9aEXyTY{4Tk#b+j9M`=)(#SBz#-*7ylCqW3ySS0a=WC_;NgEJXex zlwY4o2t~hXwQIM=LP_IW7Dp30)9vMiN^YG$*x- zqU|7gQFJ~=QVm#VM}=EKr965Yi_rW+qebsJAY5cFypE8#TcwgzSQ#BHI>dglQiezB z=n~euSH(x~!1y~#UVoBTO?Ou1ZKbOK>r$d|hv(--DIv)NlgwcmUz;&MB>ToQYk~#8j&ZPzg!oMWXViYU0Z3%-Ez~MtlJiCOUm4Rnv%Lh z^yZswMT!BS+!SqwXepsB6`;XnYxFxdf6=s7YV+OgQae`fjHWw{`3^a6SM+gYZC{eX z`=U+A`6JP${3b0@yFwKWL-t4GZZY8c1qTQe@H-abtv?zqj+wN_qfwhoxIO|_r=vS# zY#3LV(887^XSkdVp(mYH7Dj1OFmr~BTfii@Qrb2#ccgzcCidUDPk6|jP z+2?hMF}vAYc}h$yOFq%Xq_bp7PRtIL99a+($Z9*VDn<+fR+1Re^N(2_Bd(vcER9KH zdCSXV%vo~Z#u&O4iSJrVs$x(_GEp85BSY$AYx0Dz+<<+$d7F-p3x=w2##y#0Heb++t6$q`7D8KujRYi?D8P ztP$}Z5!(_z42a#_C>WqHnM|Zt#>UbswRq!GIw@9xXe<%QYes0qWiPn&!82mtV|@zH zrizOcYZk_e-aOwo_8FrzUoOdbj(_YKq>TNDt1i}tk3-;>;MgtBNaqCA3X9XnSI6qn z;{SA}(jGLsV|!vI3V1I=0vlVI0HEzZ}R>#7!`Hf?vcIF-=TO+AotAi-1pJErfsjaM(`19_lDS)B`>%W;=0) z2gzTgKF1d`P!MNwK@soC)#E_sjEw8X)nf&J_^QQ^s;A}ZsTgNQ8@i;ZZ7khCFNQ0^ zs{4t-YSih?{|}xO^o>-Dam)K?wHUWtij_FJCQkhurtffd{nMv)mchal^(rTvn(<(c zP`X;}%Jl#ATD9oj)|IP8_ZIM#T6AwdU#rE>l-)L|#r5M(73vSnM6|C`pJP5jR-+ap zqw71>qW@d6M=kol<_9EubMK&9^ndCf)Vat$xP*MFuWSnR#M+ijk1ta!WwTZHiD`iR7 zW^siq`F+bcQAuC6jq8MoJt+x;$-*UZwxs+nb?nc=Lpj-lO#)-bM{opv!H~ujsPV|jiz2ijR zxM+Bs=o@WD#)%u?XO4?|fb2iMP&YL$pLLy3-?&w{uHy@<7ROCM=rmAqJ!HMh!Y^(Z z#`s<+jUPs@YK^yp^U63cwouD4A`Uf8Ct?wbWeTp5af=vr`KmZ^ds|?1+*?Fji9{%= z`=ipDACVJ!?9X!0$HjGSRLdnmE10H<6MdX>TAb+Po~BDmwkIPF7ax|!dy$1zaZQQM zbGk*P-XdWpq~yh^FrN||IB{@!oC#=F#C5>*tbf7~3S&gp7G^mT*LL%RVb{vIPZ)#P zfV!qdjT<>WBfA%n^>K3>MyMQ!V8i!uO)-0K8yd>P zOurB(j-HY)$B8F2-M$eg23Na&i4&Ke>gwa@5##(Idg`xn;^I}S-{QpG3-|BGZD&rf z@=4rAmR$HEZfWBhJoI&(Bh2|bZZ*bVH8hxq$^IC(iG82(mc@&4qnSaxUE{z*&En|+ z{U-548`Ud-!feF2F4{^j;`Tbup4_sFx8PRic)}UG_zEO7pJVaMaYj1CKWm&t)|gb; z!>Q)+OHeZ%Qdj3;zUvS#PIGnZ5-+Oir>>Gbf9M`Bjst4l;>Df(KE0*99lYYj7~*o@ zcro5s-#=bF$#nX__)@0q9|y&YW4UX?;>#PS%hbFWk@`G(kdgJc__b_(_x>62;$6?RC$;e*&b)0RV^+r(Afh(fgBF0i zBp!3TB+$ZNA-jhc8KO+EA)nU8H-&fW(dxxuJa)z#lh#|~O`vsU{7R&%HelI8zuI`z zDT0(EQ;6@bc)D@|;-_G?;!6l5%rL|RYR|?$VMDNO7vja)zqm{Bo!E>(?Ui`8C1*3a z7SCR8z9nT<-HsPOk3P8@Z^oQ}@q>7A-S4}H@g8g@ao}^QnCZ)ScVU0~#xV&Db(T>A zY9~K!lE7Q2vq;#FRG2BGm3sn>H@TB#-J2$aw8Sa<6reC&nU9|3nJ|*IZA-rd(V!*| zNDv+5*g*-RLG>7tKrbla!+VEgQ-H!mGa~z%S_qm%?U_TCSVbYWeRgE5->)M8=id* z<5HEd0I9NGq|GiWs{O82O$oJei(y`ELM_rb@g$j$7VU%+iCka{B(z1^m(Q{IB_E5< zCfpT_jDaG1x-hfrb34I-lwV1pmsVd$7{OwKc9$fH&%BZ#ZUr2CEkRrbGVzwA<1V); zp8;THy$@-RVMzJ27GR4ngBLWNLl^XNCC<(c^*0k;%@vpl>I&UC0^ zgVmOXiS3XA)jH&vM%cA zl_=VgmV*;TJMv&iqKoiVa&yzMiHzIrCMEW5Oao0wKr{OJ$9j5VHPW~U3I_dWB+~mY zd6T(gQKD#J5*8eR$*ESZ{~coV@gppdBRRHhzE3?b{ECtbYJnLTpi@E%SNBC5iM_5?+=u>k|jF4X#IP6FXpHb=qKh`sc31mk4eV zt}vm6+wc>*J@zD`4l|`qjRopO>k%XXE&PIM_ViPdX16*cY4(G&l4fr@FKPCi3zBA= zT}m9m`s@5FiRUrG3b#&L28Zhtzhe3v@hA~-2nFF_2!%0)?8k}XH0R$>5{+1>X#Fhl z7J^4a`)A@JVKMxc7l|7Y2tW}!V%#NdQ4pz@C7JSTh>GqcFMk(tjlKw{MK2XRm$X2OIog+P-YrJEUIJax#k|fUU-ff;Fn%LTwNvOTflr%Xx z>ycyz``RTX3KPJ(WwX#E(K|m5OA@{Fu85@Hn63G zT7?be?ZMeUiJ8$=C*NaCit?368@fay&0<;d354$^yc~R$$xfs+zKI(Y2PTh3 z_ROh3VazbcYVkC9=#rVcvrbM%&CTI>UcTFP%t;o%V%^P8{u9%E7WdZ7Aq5r5 zra({9H)ogB={6^0zQA)>K(R1^BM}L)hO<@4sECCk%!RtzRM+x34Fo4*BQk zE9y#*4LG&l$7T1Of$zq6n{aNyH%(?&$n|ODvv4#PE zCHKMfFbRP_@Jv`iNM0u|V@tR#WEwHHyVXP^#k8c|LK#+sH)4ErrKqMQn?G@_kb zV54b)F>X9zhgxXNfVzee$X+&=a0rC@0!#R#m1Y=Xc_C0j!Z0xbEf)jozM8IV3Sj4G ziIo{+C06>3msr_vqDH)9ro~jvD8|*WnHmSI+7a)C8f$1ZUsH@#4WI~X*qJ&{R2uOp z**Y zJX&vROEoNd-MUtDn?W&^>VzjV1sR>LQ2oEl4`mnK^+b@#JzquuKkE6FW;@C}lN7BFEziY&?+i!O@;=u~- z9&1h_K6@8_N_HXDud*CS-K1b+nDUqAkO>+2&6KfZ<_FE!|6MDg+eeKC(tz-5Q*ASBQ#cx|NGnIJDH%GI{#P(T ztAO8~v_E2EW09l=Kx^=BsjV~QSp{v|YIiq|&gw3d*bf_K_97V_wJ#gNb}Pa|y_=_1 zkWO8+_9Ui<)|zb9#`?pJyK^iS7%U=&5RNjqMe`kf+!(RyvR%YSDL zP@LCBLc7eiYQJagy17kD&)wi#TVA96nh9{m4v7a7zR_N1D%y9i_HULPc2G-)6?`#^ z!&4O@3 za@axB9e#SNjm4})kN|-KzGsAQ$)_Yv`V4pOz@5R&^jfW$s?_8 zN)_YV&`v3$Ji2vDS;^kkxu-lc7K&Z)N}-`WkFd61N(v$lgsCG^j#~;4oqba1@Q_2> zJuQVUqvUaSPEUD)u~iplrMP0ETUu_Uu%l%C+!SZQLcqyoDWVD%`lW~}xF{fnu3_e> zY^jh4KCet!C%oO9%w3wy|Ggk0gE#|5q?Q)x12#6zB!7AKLSXq8zgSd({^DXy@0ONtI* zyZJ`Ix*aK17#qhELJQO0wkM^G>2%70l>3bVqYM5|r*tF(N~YR_48=XYF4p$pG>bqf43Mc+7beXgW5CkN}P_4)8uHaqB`>GhO0jYkEFn#HJ} z{kuecuX_^p4<4i>HLf1YAj6_pv<0Vkq~t>SvlP_HTB0WK!ZY0TDuq#P_g3od*Wac5 zi6pfP+4m%+=_v0W;?O@>c?Z=WjKzFf!DZH=pJvP-Jq^nk8DZ7GAxEmH?z zj%RP+hlpqe#XVDBG6|M>rHZaEtY50=`aB1uimvbepj6TIof(oUy1wbdQh#9x!$+qY zGTS|CLaONc-cL#WmASq@W~Pd+Z~yF6GfZUL(1`rS-0a8f6i*0Ul8Rbp|Nmkc0o@nr z&m35@P)UfthNX%QtU4l9bYMzVs_1cBN2f9e2Ipc@>D(=^2JaG5wU{|pj<6zUdTGh6 z{8SU}USNCjq`%e!x~He^G2@}hUwNsRp}&X>6qzoz;i;UmJe3}g&nG(;rqX>!eDd|m z)P9&)K&*kI-HPlgPPHoJRM(Wr> z$w-wQmh{{2yHs>g!4o_6Wa_t=TT7U>7(w{&sRvoF@qQ#3B8MlEA-eojGDQ04sp1GQ zQjU zFdJt@R>A&BX(t+CeT@hOu!6s4q`hDc{>>ao=HJar6CFa{g0wv50DCM+JB^K0_%<)_ zPy4koOd}M)0_eo~217$E1lqY^FL*^kHW4X`&C?n~?UHwQ09DP1YDQ z1T8buP{&gDyp`q&6PBkzE8fx*`JEfp4J|Y?@ap*BU%x` zft&++xKsCW(_9FhiJJi{_NLLh)p#FP`EAfiRYW z^o-J7`6*OEa4M5@QE)kC>AzysYH_dh@uW>ZdQae6tMoq+4I&K)@wVw;Ey!v_oAmQ6 z0BYYh-34PjDefHM=)lx{Z|D6=_4@fI8 zo0;C7YogcebY0`o2FywCZzxLw)q-?OiVE6A>5IANoyF-+2K4!MS$YhX4@LgzPH;aU zeU%vnN{UFoC8N)Us`Q5l<>0wM0qIt#zB(gPzfk85ALG(*V!SlRP#(%>bGijtdo6t& zl&7W-#EdC<+0^x?7iygEsWTSDU6GsaY)S=mcvU*)G@5@vTEf+$bWcn-{})U_arz~W z{mV+yPhr_lY}cl@5Lo}PJpCP(^&E^7Y2bZrWqJoB?8!MD63MD zES?5^4-1U7_%6LO?c~t=1hu5}X?QaIIQKk#D!mW)URIa>nEUuHQoh4Akjl@iH)8>vOz5{fl;mnelTEU$^)3Z3k7W{YmYmVRY_vxk>eurD@#tT~3w~4MJr)3K)beMikfqWp+ zQg;@?FS_+c7tFQdmaT3ACf=jvhx1w^n7bE_I#-P9@G!jUoNld?VLI)F5jqd@%cCkM zy3I*93rafc+HSe+9}vR;dq^^!03TC!~M(!PCrd-d_^*QdAKOTJ`r@5Q}(dbuwPT^i|L z=+oYbblTQlPFnri(}v7eQ%gN9NOu)8Ex0~a=S@P?I#UvKoOYIXp}G(wax1#XmZ+n2 zAqX2O0$PJ#w9dJSfR!7o3qxW7CGJN99tNf*>gX9A9Ce^f))^s`11NcBrUJyi935S- z%%i2{>JDNoH$@u;-xTUzViauoC*432wohjct=8z)n(&m6(_iaS5uB2+2*olbzR@~k zxVTY=I(h2Fi+BW?c=2OCq2JoyN;ZhpE-NRQmCNlj3jRNFu1-tvlNoa9gss zkOu6159oGdgwgY?ZZgm=AQLDfiDxi!019J*>4vo2mvG>`?jdR*bXGT-Ou48tC-t9n z3GnrgIyz3^`8(jc#9zaky5|`FQp!d{&>h`NK|vw(kp$WQi4JvQ2i1pBu;@>n8RK>A zTMVxW2SX?fQ}^U|)V$)l&gU>=Kj@kvBnXrmAI75R#u=hv`PMY!HHPaHZ8Ryj%&;PH zcW6wfv&mS=z`Ht2;D0vD_z^Yx)g!}4F!$xI89$i`h9|vi2FCF8?2$1O^1Ee(BUlf# za0!MxwA@%yZ?}b#{z+#7UwURZAVfy~0h0*+UKx3;-xv*+n0$Un#?M$9q4lT?draiO zJJEtU88*TsW%6;|NHCp}5y+f`b|y+zBB~=~&&pVZ5E$VQfYRlOVYgVl38|l(VMZSI z$w-7F^D}Z7&*v|dc-~2#aS6loh8lJjQmX~ZjKfG@&=2ZW8Eu$-vWZ8rn_A9(gu*lv z+_6hSMj?jh|AZmI2^p@$)^e~B%udQ!!lI#5nv8WUsZP!4!osB;x{MA;f5H=P3sbT) z9GKmSTrP=ca3QiwFoxI?&6*4ovae7#6fUmLs6qA+FSx%UBT7a#Y-vB1wE3yjglyfI zQHk&XK7VJqz`9Kt3o*=+eUmYr8@x9s3lp>YKwVYFGE?H3-ocKH+L@8_->Cr#cpTHc zXt}<`dt^-u7!Mf-n(#D0vwa!g$%N#iZ!_ou1dg&Mb8W~G$m~rf?aOc=hhAiM0M~;V zi!ox*hGk8HPbV^FV*C(Sn9#yD!shq;=Q3Uz2(&)Fm_Zl*aJ0g+%hW>rcQz6VK9MZy zzNI;dOrEQR#9JACG4oJ7OtIURt}yRj#u+4wCX%P_TWnzG^Nc)r>s=xv5O#(eNh zriHD^qhFI9A^&|wJZ9T2&xbZpVhp)vnT`XH0)aLoGi|((g-QO-5+kUM%dB>96heJf z=3u5=ZZ(-lS@$s5o=MkK@G5t9N9Jvo;SglfMPvNiANOY-W*Igf%)H4m6n>vcmqzj# zdi;<{w{r2xptG5DDH)&ae?IdIBjQotsVPMKm}$Z?WM9p^!7{{L&wRrWH1(NBSaRC$ znbb$}2oIl1lzsColdksQ-$uR26uXG}btXNRg@60vedaEf+|wjWq&LejYXy7T-8_q~ zWa0C^v&o{%LHOjac3FM+w@smobJiaA_C>QSZnwUQ9iO+CYZg7(g-^EWm_;uz z_LDucc zGNT8(X0^u{Nm_FR@i?004BL)mVNM+*90E{;yNE3dd|^^|Im?E;?;2`B4z~@R2yN=J zjv}!ZkRIb|EFtlFR#%KCr%e$M$e{F*E@WY6`jwXtE{cB1@@>j={dv|rM2K9NlhOj{ zX3;lgjh~6m_ zF15*ChLH=UK8t8{-O- zV-`J9P?f#Sgo;3!fDr+aAb~>aF_uO`;E3u-o~6+(F;7#n&7f49jk+cFAAnQHki}bU zNx_4hba<1It>@G@JuiC?hJC~KW$Q`uda7zX=N1=b1IIa+wJ6SsXx5OrE*mxd&mjP% zCmLfSY2jQF_Eok6p(avEu56(CHfm$`AdInWdpx_4)b7eQfr(qPQMYS0AjECUEc(QgSYS3&A$Wjm7E`$l%8N7uzOq2NHaFJkxyv=wF;S~NaqNa*IP|~Z49D$<*f-J)yvJ7+PbAr5Umcx7AT8kXs^Tt@^+`yPH-ZqwZ%b8r{n#0W4 z9LJnAPME*6%)tbCpCejB*VZ|GG0c=ucDv>*Ky@L`wb6!6A@!~~^z_vBIYSXWn0IGD zVbVE2(W#ff^k<#|)1gn!D=gFDrRih3g&26wa}juYIB-k zbY}U-95-_AO3rw)=0uJuxbMm7$PMym97hRFLIaAn2-7Eqe6-scSD+-3^{ zJs+$5Zm8#Dm9575Bbc^N?XI5=&#m-Nsq&M0dwl{z7Cc71gT6n8Yg}PM3tN*dPWtz_ z+P@^h&U!Oa@1i#%8l(Ph^imT2!^S`Xh3bK1=a=NVtDX+5UG=EIneu}nOmC;}iqRN~ z;0xB>^i2`s09sg!v93JX=ZETDAk0gD4N3NwKoK@Iq3RtyTz?HQNCxd#y&f~Pqvd>I z?R5Pdu5Z1Wqd$zOoKPN&B!8^mVnMoB(Lv()1id*KTr$;`gtXJ!L#VHQ8iq8Uvj^si zao@K}eKqH(6ybsa=p88-fOjfA>RML{KMuST^jFNN0dUb_4Zt`;G3>xKL+_7JJC1b% z0-*@TBrZeGLgwTw{az#>-L!F#is5FK-inNaj4BAx>m4}dO3l+>UlsgB(1p0+$2>5i*JeL>UJ`C`7O@fwR7Et`9;ZctU&! z=3<7KJO#9@A8{Q?rD;DpcLJufA32-56kbfuJ&%zlUwFpU+!Q+F2v=t3R%7&uf&_x= z!rXz}uyuY=E@oiBVGxR83UR@?sB>i-5Eg{yPQZ*GEhkX!q{=u z^I~)&=a$u&5XwFmNO*^HJtCGJ5LsS%W2mtuw;s}2hB}kHXoPN3a0(7f!2u~a6a@#N;L0m@8j=Njlw*pXZLx!T$GjH?vVB6s znm5neifGvD=6PANeV}cTNAD_~8do-!+;q*WMDKjGYt|aBx6SL^R`#tx)`Ssx+y6UR z&|_p?YiHRS0i$qU-cAHY%>2BoLsuPNGnN#W<<+2@bl#;ctXq?}b+~M^K+Ze+d^d8W zJ}(+UQ^4)Ko@T_b10^bZ!P3se>=6p4_EFv+^h`?gd`q(BO`ao}VV>^z(|?`IGz(|i-~HOarxgjCAtAC>0$_ryO!g>C+wCS={4 zJWDdxJl~2Oev{_}`|R^O(HuZw_ZyO-U#zi&%2xSnjb)hvJMuf^Z$fawuVelfGFc|% zb;<{0*=i1}C0WuVKNo@J>Xsj8LoqHmtm;m-M&$Q__k;7>x0R&|6#6g9FZ}PQWa`y| zHifPh7WAW0{%iwMxnLwcdBkB=E1?FPW%-vW52cr19F;pmSO5GMMxVXpX-NvsmwomU z=u36Ge`m^Am4B_}XD{pPsBGP?RGX9XYt`mZy(9nBXBgz4ev$lbyoq~QC4!BEz!ptp-` z6I}2rXpIRIIfiq{CZy&@fep;)S5Vl5)ICxPYzN1I1vd?3o5(NK#l6UrFN;l}`_Ka8 zai8T_lv%LGge>hgdn_4QP*8(xT;Ty*2bi_IKxRjLx6EcT=b3lxtAgbgpS|Q|UQ%5U zXGP5Q%g2)W`wR9WD`6Ua(IaFCwOMqbq|5DUOc8*hVPUXa7VW4NmEjH-_tgOwi@akiY!|4KLuC9 zi3b+-EP5dmUP?^_+Qg>x4rp5NGj=%-D(Yg+zXYGrMMsUKzqcak^NJ=z{=_2Zf4?OD zUlz545z~rlSRIrOInbBSjT?#sEuK$}EvrrrSqqEK8O!zyDzQ#pgjj{nnFB#34p|w& z9>1al1KED)qbMpeB7fO08cU*Pt!Y8r!iv@+8N6az3-Aapsxcz9bC$5)tNESwUbV#> zOH%vu5?2@+Q$#gE{Ii_+#!z1DR~P+YEWK<6+ciaFKmXk+qbRrIXMd;tWCb0qOLfrS z6X4;2BD$03UoV}H7Nwi;FR9+UlV_bbwt=^&izW!~B#}2Ihku>wNN!#!8V=Vl6-{mO zuOit$7kz4=npbL}2+$%GLT(OBPCi^IY7eb$6uC9f&wAG3UyHW)73dR{sy*?cvmbE3 zIXPhX8Rh%?lc~_&m3-IG9ELHs6ZuYPctdmI`Vz+m3R(dzUH$){-5)}>H=wm5d=<{4 zNZ#kI;$9N^vK@>XLtIQ{rGm0;nnDoKeuJ`2Zs!Ew`;b9KBxrF-52Eobn+8cU$p@M6 zJLIR8a|r$I2JUmnw>AwgAuNy>(qmS{LZnDV+L79`dA4M31ZhReFUpKyOa!5q1Mqn` zAfS1M4V6U@^*3ZG8TbtuEQHc}^4_nqdN!lUD!PlY;SH`Bd`iAv%>328oXPNstH+Wi zn^#}OR&sv2Jq)W@U1=oSEpVt+_3D5o><6JgzJOb`t9$?B4WVz^L&46~bnD){{M9{3 z{ryr~V*9v>1u0)>Wd*uDt2eda{{nMl*MP+L zE$dBOzbf&9c_t-UL%82PNbR!{Pof)B!upfn=o0T{pZ(?X;*xgIc~Qy8Cc?`nv+4N} z<%>(^H<4uvjdovFV&WkD(IlsI9Bhp(x$eaMR*=yJB`t|&Y&R2dC@8sY%D;p~t4pW{ zpno3-n$nUWV=mbnC|UG?e2yYGR8it&%_j*>jv!Y1C<*>h(uVq9t^&o33N~aL#+a>g3jQSEAvUY!|GZ|W6 zBG@0GDZNQUMi_IyWDt!FXhER->`(nRhrtgvC%i1#LeFjIe%G}v^(BujO54Fkv(nSl z`E&VcMaE7-lK$O|p>k4zgBbXy-h=K+asku@P0<=HjB@Gn=L7o8wT7pO7b8`AasQ&Z?`sY7wKFjWtQ`&BKR_QewCvx?2xq&LwEtZEb z%`4da($Yv)51;A%=F$=x+lqw^`gg@!Qhj@ah&PGoDT#S(zLP ze=BwU{CDRErES@7zFpBzN{4**o4i=ttrO#g*k_)!*ByBkYeaTWdfxt9#keBh$+0$sjbzLRpRy zLMbtYx|A|kXZ|m{OUiyT`9JfxepP0}{-Uuc4T3F|Wo=A_oc!<6JIY3z3BUP1_W0W} zAKCxM*>?t3RWyG;K-x{csif!9J48f45D0?w5_%_5K%~cpjS@jXrA3j9l-qMlfP{#W zwNPTg4&<>sU;(075g}G=!28=dd(O=T|6krO$=;ov+1c5d+1c4W=QN;%pf+3-9o#u3 zp+Tk2LOA8N+Z!hmYj@t=5Jv}h$16>D4*xd@yws|loeALPyaA&{#~}E8(^Gv!=Z|)_ ziVyT95V@z~#QVD8Ykd>?w$R$2cdCV><*z$k(T&y{3SvU&Wi=af!avvk|4xjhX)D6S zM2g;xts^mnTJI4%BR*|Ms#b z#{ASst7?o!+vv*8*6zs3N(c?cuHK6sRR`pT?Ce~_IH#8W~ zI<0C-gDTRh`ZgfHRjWGCplZD)%EEvsw{s2M(Z`xfjqhV-@O(cD{6ck0_6o#~Ul)*KWic7^h0UB&6P{5^MJd4IDTIIb4OdUyzUC4r2eRzH5qm2!%TT&21e1-{jDQt z;CR&i9irA4O1~AnL=HvW`e9|Qsp?jsMGwQz^Y53npzZ^#d8Gq2A_xHnpxYK>@pJQ5 zPfHp+5N*vP@w4;i6Of)6KPj9RPoEe@?+gT^?@hF}q>`&1%LS6d71xa*hGGsVr2RI-2fE)F0yZ9$;%6%MVQUZ*ez+@)h7Lu$ zv9cowGMt`ttpx`|!QbP3wZ_xwN!d9@8BXi}c%mu2Kg>D^Czm(m!Bus>usel@4+n`O zQk0d$ty3vvCQ6qro6>0D2y_}U1wSiBSZ5JQ@f2Ly-I6Aa1jYv0ZgJS2=JdJzxn2so z-ze)uN-97pAd2@!0s49#>N=0MPNJm2D9sRi(&*LE0F3XCpUVn1$I`{@Jz>-{A9aH# zpf2u)J?-g;{FyWaKiiJ6E~U8JP+EKox;#4ufCEy0QU~m5LyN}Z=V?i*cC2+S{Wu+^ zXNYW8%ZU**p-$>i|2 z_Vl1l)9`cI4E&5}yuBTrc?<%xOh?_YiKu(xECf~|e{PebG|#Xuq$i{?*k@qm71F{` z;!q{IbQM%*#7wkZHxOg4nh8d?$ccFr!765QuP680ZXjf824t-Z(9kX(yJaA4Q z82O+19$9K5OMY4ECQDDtQh!<6B1@xWsY;fn$h zS=uQ}yJV?cmUhch^}v-Vx@GZoS-D4+YGrAYES-`in=GA^B|bjCBunyCetyVpDDgph zye#o)dbTX_k$MMN;&b($vc!k$x5*Npu#c4`c}Bl-et|6Rl>`^c(#x{+kSskTOKWB6 z6Q{Xg@qvgDAZ4YE`rOFmh8S(cuXrMG11aasCEmbS^#7qYZkmM+NBW3u$OEO}X6 z5ra^4%F1L}DwCz=vb0K;y2#QpS-M4*cFNLFSt^yKiLz88OS5E2$WoCk?USYDvQ#Nc zPs-8(St40lBTHq2B3J%r{tj7uPFB7kONV61E=%vpl0%kG%F=#W`dXHrkfonxsalq< z%F>gv6g?QFwX&2ZOY3B*wJeb=-6%_2WhqaV*2_|hk+S%rEKZfB?Xol%rTaI8+=urp zKePOqwsd#)o||!P$XZ?6YEL{>ZFD7ybF-{>H^R>Z%Dw7~rn-Db*p`w*v0~#KtCQfJ8z=xtDFg9`y%Vh8n9@$h9lN3v3{skp|fUNVoyeht#@1B;VMyduk{}V{M#9i zh1D$V_gl|uRVBL}vRgBKzSJ5gjyzx;*O&(*SrvH?Ti;NaKRe^8rfH*=bb6IFUQAzR zeOCk2TkHuKZwQr4s(^#s4B)C2)?1i}s4cc0)tZ@)TCwo0#mRKh;6|weM22hq}_Py`kt`P`kDrnyh~_~*6)HRtT$^!3rc}j z9NX9|POi6lxv{{2u4pC4X6xfxJCssH{?k?@ia&pI&k`fb7)9^CwWp=1d&at`kt~9x zQb>Y}lz*zsL{-mQlSKZr)=yOBnF3oD6%A?}PD`dVHi^00t#4lkDV$be5{q_P$2Qhz z*4nH%h>_%}-io)EN+}3P0dI@t%Gzb_1TA@Hu{BN>r(81BzaD}egST;v_@T`DUj;5& z>c}GCFeIFgO|OU+p+3x*hMhA3yqafJB+=O$T=AlLIi`ytV##i3it3^XXxL{|q|%YS znA6uPtcMgNZ=y@F1u)LAPD9LSgG4p+ri&+89DL3YkE|4s*>|c@?i*g@FJ6Kmb1x>~ z@FX2atoz?UKWFz_x9A+m;WOCWu}PGu64p}+QZvk+MTISzL{mn`CT5BpW{Vf!y#%e$ zIN;$k_?26l#ED;Cu@2M5N5xebdELh`NmRGq8Y!MQWF>{;80N^PTq{T(n~Oi$^FZ>! zn&2@P9?L$L-RQs6HnF@ z_~e^bWMZ_5lu|B{J#M}olXU8B>tMyI<2`>2S@xHOlEc+3hF1KqNragGo)zCeW5k+? z5RQb1&PT0ZsY(nyhisRcM9|g9ka#LtfXFs0 zc5+S{<#h`Q7hxY+@u6t$tms#CCLyB!V=LaY#+CJNc}!Gea+?@JfP_=!tO_N&UMH;| zX$?z9K<4$cDms<+20IUbYQ0e@+o8{m8Dr}ynO$KPhfZ6EDt-bwQtJ$XFZ#lYk7sh% zqc))HqG#>MJiZnZDRR$R|5A{{v5>T^q~bXh8MLGgy4?JA@I)}!{CY@~DET&6Gt3vP z(bVQoYl3Kf&bn2RWOXlD6cu0EBs82B-B}S?ect+|-k(x|bOsj1hT{EqKVmNf4M-Ft zE*PSRdbL24M2cGtq0g#^cjuvqyq~QlYP?leM_byQ6&j8^m2jKdP`UT|C$ciA=0#L3jH$vdvK=fqf!Gd^0pzoNr>&S;f?7 zl~nsa`l*cu8{uKL;~JsTH424t!)?)&H4hflC&D&JQ8e$fXKl?7OCu0W5T8fdlpTo8 z(Y73|jX(#anoFsb{vL;K{&Wh9(s1^~+wj3a=GhpM-XvO-B-->5oxV%**(uCSIT5yO zaU$6^Txa4OAo-)i;xvj6q}ptX;^9oVvzqqKbO}z^#&%!2O?QcVPh!5#R}8XuWBaTt29AG#O<6w$R`{#V@FY=vn@wN)^|d950BKJP zK61v3PX^mQ)<_CyP_D*n^#~hoq_E=1Ind@GIPi`4Rm9LgYr)H!QF?1yvLDOJ;Yw6~ zm2apomPM>j--SnugJW&D9w4a+LntpJ3eDoeDRY4fO2K~RsXv1oqpE?YBEc8Bdb zMKhq~RS#5j)cDvx+xD3P+wOE?x49)Ejyi3N$fg6`!Df@W`UD9W_8LXq2)AU=X{P$u zA|k}L1vY$fm&Y5>bwI)??)`{J8omr#_rxL_UZTov;L)+H0bKe|M1sIldrSck)oB2# zdZ;2!TVmDzY$~4x)aUO%DNOe8BE)#B6-vB=S*+B5|cnUqG?cuqVSI+uf!J z0kA$S^N+q5%C*~YG`6h5MDzp@6IRUM)++a$1*q#jyPi0*>Il9 zob&3C|FtPqfRH|mtfuuMDuW8YHsMv4-{?awU$5ID!L1`7_lqf8i^NWBwB4Xc7A{4P z=4WgnqF0Hbz${c$hSG|(NaY<{J#EwDFHA``SxRjov|xqKWsheJTjN-Y52=~N?m>|% zI2urDQ;{*T4Oi{7#fbyY+IBUV7(%6);_i$ziHhyIeG*o{wq)OK3l%jxZ7SX;DO&;A z>NYNgNp)|5;rvqki7te!dpjG-fWa*_9h&F14Nx**<0x8CkwzCk0OC+P5F2|9UmP$K zZjp@ECa0uxupY zEH0_`?7n1JAiVo*vlMfzTO})Tk$K2|8@}AjlsO_mWi*{z8Wkz}3Zu_}Zvi+}6uxA; zF18{@w5*TPmdf3)*!royc;=u=S)%Jn1zXPBfU)#gD*=GPveQR2r|%Ti&?FdcTT_6{fdrK82#iKx^UU>ef_5 z5(bCJ=A9t(CCl21bYXtaFx{)~+a6bgxW*aPw2qFzw_gn35O7A0brskuw~sc7o&Plq zo&69)Y?Gpu1s?g(hWAbLaCnL=Q==1U(e2SO6x|;2VVT58 z4o8R6_>&O-_%94g4lEmbn*@R0KUMVEcVMkgli2vu%e&E0wB&P;c;sut_O$5gEbg7# zzp*u?l3II$IQXs3fB*xAhN-ZvIbBVNiJ;Lx*i53|dBae&&YrBW(1pmD7{V~)#UmGj z`aw(@E0J?lH}$r@4b1@2UKwyKZ zYYJ~)pq@s(ENE!Q(Aro%`ZpT zgUpX-5Y0muxDtYAyVd@{i&baWt*k~N+$Kr*A zwpbjJp7ckG({c8vm9lW2qc+(dMg7uaP1NO2#LTb9+h0>)P7_G5IFxAgkIBITmu$aV zb;fab;iIv!VtJ|^S6bPq*oC0;G^%_!7FQ4;PVr>AU5^0t?P(H8MEd8ciZoG?X%9+5 zRBee>vp68fzC)ucFilPMLH;b`{at8u;c0|iK#v#mTiEjy7(;7GwQog5koib#i1?wE zUEizgvxQh~3p~=rlaLP2!S8MC*KPv1O}e%WWVW||sIgJq(Y{S}!~T_L!|_Z-sQ9$A zU3cg_!O}!av*SXjCNVBb>*dSb>t~vqR~Te6Ck(KR5v}&Bt+Rm1|k(Miqm{k zWM8|UkrLaIVA4vSMFzzZYF7Mr9BJ1hI(R?{6cHV0brNyJ- z)jWQ8w>^;PXe$6M(0UMvXZ8K5wl#P#K7{st?9LDiAG}_vs8)h!?21=jXW7Gce5Qg$ zz|kawOJ0nR)mHko%j`h`Z1Ml%&DAS|2ZFjdigjRP&HK8>j|LB<=1p{%vkG21cD4Nr zt*`1e_O(ht`hL>9wLT$4ytvN3Q?bKqRsO9B*o#{dOk(pBc74;!ZkZv)PPG_`%Jp`9 zW`f5d;~i1FG1vp=bqR|S?Mn>zgSl)g;-0pv{CR0dgnYG|60mi-Hz7^i`7L}V*wafA z6zfKh?1dgL4e|^E>BJRkOhy8Rkbp7M;r$7r^y)}wqUg56zCm%x>jEHg;_^;|5U;|h z3=>yvc70dM7K9)|%Uzb(V237N7VyNh|$FAqZcs%tlCWZ-f zrCs0HYn$+plxUp3B!-BLDt(z0Fo6g)3O1{fcN5b@!3)82T=&1kBmuWEO0^6`vh@e- zX7T5Xx+^4h-KfOJF8)r86hFRfSBVZnAli=d&LxIaAGD8FbhIttqaQUyvj;EnvjIA-y8{^I)>DgS0rdb&c3&T*W1EvNznpbUcc1x zZo^_tiWQySH>4K`Wp!`}6&}U>aB_3@F@3#-@^+*uH<&7}PST4d-m@b|cfsjy>Xp{S_r2wn89=QJ3b)N?lSu3HJMpUDGld zUbS0tjCK&z{4@LYS-rfq$tiT_IZTGvj3B+w>?^6yVk zB)pgH-IRe`v!jgLm=dwy>~N@=56Et%FC|`FY~)a(jlc|rD-yiM0UjY@!W=VHB`;8x z%%(AfOl5))5e_}b&^FZ}VESTG(@Yxow=Z7oi*#HYa3&FBAB}S0d@R~ADbQIq72Vqu zcVRj;4Ht9b9C}ikohKiFS#E6_FP6kR8q71YBhMqK+&l$1I2h5xZ`QN=qNaEiL$X6p zZLlk2LN)7}CW~E79lGMNelf(nABmC|(;T{1u(trA2+BQ%KYK;f2yrySp|4{BMDP|S z+r$V&L3+3m$fU)!PmQ35dSJ|7pl+kUBW z)Ncj|{npB%M-4pOy|<;NioernpC7ZKgHy3?d%BJDAk?7b=hs}Q)7f9*KtOvlD^YP*RYS?;7|el*IgZYvWoe$ z_`%=en;Om@AF_mz{q0n|9;b&R=)eonU^?X<2V}#|!McD`loYY4w?pk!2yUze74=NR z<89JVUg+b{0}$O%(kU+{ErwRUToEO9_H*cKTfjRr_*kApojQHkUnkB{1w%_R($v7> z2Reo*dGZ#h_C$6ZIXb09P|Xn7{{BG@J!{L`{JOBLD7xAwElL2a^h#ht^~IALS>8wR zwPacvzBD9hG#TkIf^)go;FE)*^NujeDbo9CI@+PO5%`)UcC7XJj)w8Es2S_f;}2HT z;)BRyu&22=-VqcrqGc$}JPHYMZs^a64t20#92J2X?u?$Rv7 z90L0wrgN?^JyTfjbm$R#z`GT`nx3lV1PVEUMlG58}rfvybAPVrG61o3{9HyV)%^v> z)p@<)l9}qo-!oci1G;ykBk0(m>W0jw;-AfiKdm3&Y$58Oa-^uS;IyYBEeXktfca-) z3oC{4&@+ypv=qEWvZyb0=(~E(F3C!A3zmy|KjLgo3G(%v2@g#Y0>x_;Bo}zK?^_6j1zB{IrNx~ zaV$qOJ97~9i`Vgq(v?$whf|H4?U{2jRqs}WiJINIx8REwP}o=kAcrY@Ut#z=KBUvp z!f9jkESOD|LqD5fsx_ZhWYUo`N3wWxpKh`m)qM_p8T5JGyPtX?m@MNJPRhz*)o3LQ z->+>Tp2%t@_Pk^)SS;bZE}@ZB@=R8^sCvavT>B!NKQJV(Gz$k*a!Okra$J7|%`UP2 zxvX${rwncO)i{h?ygUr%83s5EJZCA#{pxFuh8I$F3Rt&~WN9kh=!hdI>4Xhqv{?F< z;V$*XE{7cNIYQ{-Pgz<5X6rk6R#%&Isb4bvEzqJ!%@>C-MIE!DM#pq#Nvw#d?9S74 ze{Hb(nY(2pkvlLugXQ_s2abmEBv}?`?WZ%f6Tm7{|&+hh(a^6gJKW8`7=JxEj#$w6~L+xiYGZFQSy@!De!2j3UWf}^5C4N*t}xze(V<= zlfYgN%K0De9cvo)yDl36LTdjgKtqpU(EcW>x92FXhhEm(%iU=Y%8PX-i3?Yag#(y9 zs5k|eK{%J0+}LSs<0YY*cXL8TUWoJIe-~)oNvuVuu0o*c;m#m|)+AUmgvI2H(GUfM zDHIJonCU`wgYeW{Q8GOA_*kdX5RqYa>a*Xvi?b&ckFi)-waz3s^=L+)fE2CsRmo0$ zVaF`!XMvD;H>&!iLP;Vl-Ki(F11opU>YOC;Y^GBW;g2r!n8YL5PW_JI+ZN|O#r8Ew zueAt5A|Q39nkyL459jefnv`aBYp2RV5$N=gP|fK~ZR;G-Ko|m-asF2JfYJA)k?osh zu?BVRPmx;ypd zP9NM~9-V9k5CFdVGj8RD3u{r$D^Ak=p~jB)A*E4<*;uWz11xZsf>o*(a20WAv**;TBl8=5y`QtwW5>S4Qf*F>V3 z9nICMpD@LcoOHH){@C}O=HYbf7ohB(=G2c3boWevT9|V645!*53M@;;5-Y=QTw92v zy08`zV)Y$PeN!ic5Gsmj(VnsQ&339NTObwNBgvZVVCy>zubK5;d^^=eKEf15I6l zyHBPkoeqU)D*zjS*Ubordt?n|l^EnY#FqjcbLff3!F9a7O_WFFiz1O zz^UFBjDt#K!Cwd-O8%ZUt;8)t`j`MmvXYinw=v=S0?@zPUbNL3?O>{W&MDFzf=j_&vFzF^=U^%()K9 zp~dM)=pH@l?0yYNJVNne+fXs2)=)hj6eE`WffQEH52U-ih9n^9_77x&neMWWf@j5Y z86*4af6g)uQD7!l>mu9jz`c_0?JQ#HXHL5!oOd@g7nM0;(kUkr{M;KWEh@9b*JliK zWqp;E)OTsSC{g=`6ZdH~85tIH{JD0qV)j?Ty2rKzNDLLchSyN>^{9p4II+=ZZ1x`* zbWf4=y%Q-7St-t(bNUrL;Dbv3smK+d{%H6y#zbWoDje88k}jNtq5pnSmj|w78{%Vq z&VQ_ZvZl%p{p!Re1nynhbm^n*v*}`a`%v-w?@pv&7$E0D0>meO=-Mpu{&r&Tp>eIN z03&Dp);>nNS$OZ|AUzhfSDi>uY7}9-rR_VkqO5KmOyYba7Xq8Bz45e4;DOgiLR_OL zyTATO(vKmo6^-O?JU=0Qp1EJg&Q#Reh4e$13p2Vo^#dXP?5wh^5(3`CYoZIjA2G^!;SxwN~SI z75D|DH5DgyOeTAGfH&p1u*zv*W1!roGNdwE;I8yU)fsDhO}~z91?V2oa71QnS33pI zU9>xb>cin>EQ8Ugq^)a~f^-Q5n}wY^nW^8Fj%lJ_2OXWTur`3;{qEpsawkK;yxE1EDpq%MAp^+}u#PQcL}eP8 z4|Pl=&`l6k-Cf8{Gnh?DM{Flf^>ks=#1K6CrKCQ#w+rhXSK=u!t&+~4>ljBzhhZdx z`?wG~GuW~oofWw|#fUfix%Md>c5djRIUVZMDUznWic_Xf`n#~GGY_m@v@g zS2%J!0+mZuBRnXEej_U_;*%jpBX(h^%pv<*ogxL8fgfX<+}!d{ryMb3qzl0#S8{Vy zw$rR+)@T>Pbq#{2>Zqt==jP(uF@_oid_5q|sH$&ge7tI$E59L5{%qjfH_?U2mk9-M z3U_vHK_#m?M~Fp}4I7gdD`2t6fN}G}`(d3W(_IR;aLr`pBsLZCgyU@I7l`#rdt77{NW*q3>kVfB)z^t@bW7s~2W&pPqxblZ{ zI_^SK#g}eqCy=yOj!8gJQ2*_Nu`u9aeG5(6=o&(|49AUKJf`}1BU!|9(C}%?(9+>u z!>Oik*C?@Qvqa`5c;qr(2Sn5HUu$;6y#zN8{RdB9GkjEYNxEn$%V@ajI#Mgf3(Qi?m{fazprBx7uA!YV7T{+ z>*zaO-#4Ofo4A(9mpVL%grQ6Aa>DGchZ@P>3B+>C8+2o9@wUT-lR>VO_9d!ZE+hc> zw=^Jv0Umx(^MKQ(@vAM?eS0g%6zk7-C&Wusy|7mwi@$~C1>?u*igTce> z$hv-gQwA+Q(k)Tj>fLq3g^eYHaUh|zh@XBc>d4Ve=v@MO>})k__im zE8ut_r1+*(vEl<4vb7A+Q<)i5l3j_Xw&b(RRUf&Kp=U5?w4}Nxdt_pY!cI3{tjluiYQw{=%W>oIi~HfZ0HKy5rnx~wQ@x~K zEogK~FSUPf+R}|k?i#Lt?B6R|P-{2VyKA`4pWCa0*x%NTqgaL@JDW>+_FiFBGXZ}r z9q{t{1MS_oSi<0dg;%+HrHR`+xe--rB-J4acKdUC;VN~9O1u%Ri=hYsIRTtq+RcsY zk6qmeG9+-QA4@0fPgkA?Z+6V(%nvv3R$qTUX{FCZnmO zQ)R3`0!MX5`Z1&G0pJ)a9@|^V@1Z_!M9C7Nu8u$52VyEhh2aNTW47P_)Kl6KV3*l6`K86u6j-!$>Bk_mCqB z#~P~3Zjo_NiI3Kd*P9C@eg9Bwu-=(_^~s{R=WYoXS0}r%l?_Oz_KjPTMB+3z;tZ~o zG9hkWd;)yrodlca8Sc*%81vkgioYCyM+*Sny0}jq{kj1G)wlvTR#v8f+bv9?x%l{Y zL(u~>iVpFp^X+cj1@6@cdyH9bEad@y%rp8ViMe;W5m8*jPvO))5wv7+9}~Sl3-0Is zyMm|LvI&S+<_9Adm-XqQrAeX}xslt`7+mH?(s_w{uj(S8ux#f`PW3T~qPyM5AsWre zoZ8nU!tZk<@y3sIIchEANJFIWEc=qi*Y-`&LcWldZX6$JZQ#oZ;AY~nN8N~7xiVm`3@KXe zo~oL&mZP#2z23VCBI~v8Z3>4~y`*PlXA$$b8^`-hNLxdCR%VjpqkbX6{-mL@?7Too zK{js)cA5;aZ0{E)x@`UzJ*dAK0R~5}J)bgkC#bUsabSxZ0XDM%jc!Z%|MUwNhqoHS zWUJswlMveUPd{7?BsUIO7)ST6c<5b%Z|PlW*0lA@ZHAi;tnRg=^D@N5oo;Ni7@OsU z%2p!J=0<{!D={@~X~`{>CUMm9e<=gNiQ=$JH%4vBOI&#=V!FpzucVcf_Ni029D+yAMW2ujIIvu!s6+l zB~H9(v}Edacl5{Jwb}EodzV6FEz%*W+It4X`?|5p2iDtC$xpXNif+dZ#k|Hn0E|wq*ET)SmJxEOdcNE*b>#X9s+(|pZuow~9}CB6H}Y-V2sYM|4rdLF76ZR91q+n_fQ#?aym?jbm))BFDP zf*V_3{Ki{hvdc0=alMQndfEQ6}PLzi`L42&iFN65b&{MC(psewrg ze;k+~dS8JNTQ;m-TqzTIrTuP;l*FQG<&eq$~W=20D#H$hAxtfI z;*by;ISNZPpD8`jCYW0N=t{Hrxm`nQ7OH<~NQgMrq3p|sgk&XkI50#JitYUGa-#Y# zhTyeKxn)?jH2$O=p_@dJ-?a?4Y`BuMW2kJWaka5qFjwZbLlecH-E|R3bFolP+o7>^ z49B|S$DYAs1SFKsA8z5qsriJ zHE;wRSMg25T5I;~8dHW`3`4Z+^SCl(oB6kqKcbSBXnttgFgzkHvk7M>ND*-xJ_M*8 zUzto;mE*-7lgqHHIsEA^T<)G-mO@z*5L%3wDh1BXG01G1IRPuunCWG>a>13X*CmHQ zy~Z~zTnw36hLe7VurL8>CZ-gYA%X}H?lQ5`L`T+RI_KP>cPY>%&hi5^&9bAsJIjz= z(R%0kLM5RRSG4Yuj)Wl%jTLtzZWtaWdd)9GdYqv=$lN)@V{zLIpI%w>Ama7g7D|l> z^aXH|XumiZhX++Z3BD6+e7xvZWZ)PbR^LUN|=`h2}Cr0&={sRC-uXVMaaX~3t9a7i1ao8GVD=e@?aG3lO(=f89Xk@ zBwZXb0!!Yb!ObOuqIR|7C0)J&E`=(lLJxVezFt#?jr}!3t)Gg}=IFXI#KwSVIHKl> zGQ^R_go^{~gU2UX5MpC+N4e)mM2c572eVZ5@vyk9#Us_x!0S(yVWY$x7V6_7~zlSYM#;d_InUASmelDPFb!?JjEj;YwHY*;rcLiB&$;Mou& zb>0C;ul?6ULKt5l!+_>DX96SAQl$9)=>&!rMTuc%yI~EI(B&J0<-zL+Y%)L{WUEEEKmc zsl;Iww{9XDulQmOje@~Y9w(SE$O>^o^-+(b%{p_^yroAF>dPEtFalWQCIy~7?MmY+Ae#NlNG75rR=uRg5K zS2rovT_}4=(UPIAm|8EbOY0uZ1)AThMy8{isn9e&ovJLJNMZS{48gQ)E^2=-OKczm zf(-E5sxR^rh2_t()2fmAZ(T4Hn9ZuQka+$RcvGc00uq>axeS>U&`ifiGo&UmH-(M8 ziK42J2PZxJ8wXUlrSL3f1eMvE0)>WnURL11gaMpPRpv3Fl=n9*DlW`}T?dmWwnP0G zY-u_MS+xicvU^hf1k~?5H%ce4V8+MQVg4~GknZ!*o>`5^vem3+@_wkja6quVE~(^`=ThfdQ2OF*qezX zX&x*LlA5q*crsPXK)+J#!kq0HuOMua@+)oh!wKNLZ1G@zwV}X3ZW?_IJ^cO_oecpcNl_z5=o=yG^E?R+ zB~iO!teHyoja43E)_{KzEB6cPm>B6w={65SB#kX89R}Op)(3fTum?wo4Az}YCe=+E z7o!b#{4fumnq{zbXVR20alenn6IOE8N00Cz@@25JN-7*P4(FoMxaN%t7Jcp%PgAPB z#gis>^o{hV>>0{#~F0U4}K%I{;5cwaKkM8_Y78ir2r zAV`s50o_Pv)>}!Aazx)Lh8_g*nnPzw#vyM!O&T>5W^=Ev9G9gHGG(TxRCQSpBlVzi zTsD~tpe8(&&_WNE1|XuJ%5hz^NxSI|L##$;!ZO=)RS_~OHEQ|qj#G2C{7&5rNiG-~ z*fAH2k!7J5kEGw_L5R;>@=mLuxwMqZac#8O{BXVpp(TT%E0FcW*a2969*0-!NQe2$ zLN&%#RNHZUXLdEhvBV=3jxO+C6mTO)?)Kp5ib>*5b%fY^ucxDu6HekIDB_*cB&uIt z*+rYaF-tuN^0|5TAn=cVx`-7IdVW=v(iIV05w3MTta}-8Y?%iMLq?J;2+Vn@`Yp9i zV6E0CJs`NE-^W|1&OILYGo-GCJ{GKNHJ^>op#y$TipW`OOb{wDL4QI4M?Y@(lmJP_ zIrPnVlPG-Bb4ue_z%{gQz?`O##f>MV(B|LAr)dGex0`geBX&tu-;9r?nM=n-S3hNN z&g#lNe^$A2bs8Cx9;gqMXBE5RDTmbq|tjI-rW2AR;(232H?frIi;SZjbssD z{Hd~;1R@hSOa6@vAFg}IrLAriHuX8ZCm`o2qnQ)iq`T!dI6uV^dSj>ww_(S3VTV)` z1|xflljB2Jk!n|C=_(#GL1~)FCf$x~BhJ`82wJ!~^3x`9#p(G?p__+E>y(|>t;RN$ zwQNY4bd0ij>0f}B+&=-YF(#;Ao!7HX$J+*PYx=-1{UG;sb(D{> z@o4-Zd})N8Vd!pS@Hj&=5$ivbD1LhaQbx;R_&q9g&gBaR6p14D1blf+8o`vk9;BJL z2jo`q86X)a)*PB(q2mPXOV4?BDh4oa1dnSg@wBn@Sr?!8{8vG6m}Ww%073;~SBa@)Zy3#7<@el@UJ zQTKi4!O5)FMg`5J$4k_PQv8ScdSbW+?&W z@OZ2wBYyHARmBh<8E{fX{x2RR^0+eK6(yv!C%)swjqM2=f5x#Yp~2!S4o zN^m>rVAJXNZm*2{2mB@DLI(3>0Gvfv#!tdwj`Z4n|B;T0!B|_HlcRW2EEP?kq`bl8 zE7II0xO6lY6Gkp90#wF@`=9hG=?X*_c+Vh{2`r0&)*Q~A4Dkl3g#?Q;VcwYyxi3tg zoF!J8yhz;yct&M5ZH&b84jfo-i1I3)g^UNT>le*iXc6T9;)1#qHSu0JQe!yWkR#mo zN%~N#Q@l9sZujV(qTtUcMbpt#FTO*&3M<0RY2M;SvWSBf<=t_odeCItYyN(j+B?K$ zcoB%oHUbCAsg1SfD0ZW~{K+aR@1Enu$paJ8JsLjx@z~@XF{+vOX9b!0i8ozRPcL0J zS?Pecg=ClU^d*QHNT=cjK4pbRT6wXb;5OW=*?POu>+@~AIF?`tt_s12|BRp!-|SAM z^C#e+A8hZ%DxonY{qvH8UL-oYdGRLG7bmMJxT~WV8*XkReI}J8O~Ety2Pdn(AL#6b zj!Lk$0wqn!qCfk>AfL?j!nZP>wlpM7X+|~MJWWMK*M{t-3v_r%wbYkLFe$sKIyV__ zX6)|$N`V8CD~y@aRDv-Dr}0o#`59!t+TScyfP2I{5-`{(d{>1VcHUkYUHTLTJhZnL zt1&kTbd{GgC5?)=V@>7F{_H+pSSz>5y%WJxem^ffIREBFEFh%I#XfM~-;0|_TJtwB zeMMhBgEtAL!{AyE^dgv*5Ee~M-IU}83Sl1PeMynUsd5rAI54MaL%g`2$7J=T2(Q!H zGo_R0JPu^PHKJkQ%yQR3MEr8LTQR>rWtbzS&xDmidkI$hiW-5Imki%5mpK%9_-i%>u= zG*5%amK(;0i@ey!GB}8#WIFnRH%)B4$BUc{gJra;<8N2)R~jlfB!x~%DHB}jTm7aifS8yS!n;1wixX>&BeOyfSxBf-Ya6!MnA zad7B3X!*ZPouojgXHQqtJ7eX)m?G2Za(yT%Z7#O0_F}CK9vip| zrQ&$5_XlLy+4;$T;i+iY^vuA>hi>p9 zk--#030!-1E~k@ATT!*WqP0kl5GH zc(MECuGzHpUR8P_fr3^Ffz1k{1&z~<@cqc2VgK4>MyjaTVJLdQ3syP3Sk#=;O~PUI zVqYK;*>ohJ^bN?CMf9587=ct-0ceQog-66>&irqB9KAjXmXc6rOkuz$=hjVcAuL|+ z2{jtSeoKFtp2K!C)^ChOYQDhsC0zA_6)qj^5aI3i>T%K@L*1?!PhQ9jwG!^F^diDz zY2bA`CPGdX(#W3Clwx))R{_+`&v~C!ECoDHeg2Gi>atIdNZLH_MLwMANZk@J4kQ{h zx^lI!2=8U}J7BZK^%PiYu+3oNyoQ3fMRN_u z59`ZrgSe#lAPlg0-3*n2`07=CWfJ(1hVGu(-#PYHCYO3rlIx?CTY)%7Fv3B z?%T#3vN{79yG)rtdi>oWezo|asC)*FLJ!V}5hd>jJ9vg1JnF>-8JR$;K4!?m&;a5# zE000u90Gq_tNS9>MaegH`b3}9Z$9v1f64MO%z10k%ycc8^w`HF2lZ3{?}nz(w(drozMg#h{YeU+Ia zw@$Cb>kW8!8ZAI9QuV-|p0PK7<;9g2W)L^CH480WJ~NfzrV>QYZ@svK%TPnB0ZkL; z?{&+OGLcoKMKje@_WmI#wj#^snMtLeOhe*EE+}{Wc)g(jzqz&vdgNk|X-mQloLbpW zh86^r#Bv|nSe}`wHes*-Vk`@R83hY?wBz>anveVHH)GNR_Q6f$(jYEg^5XVA4;ng) z@8TSv8LQ3ay1%@*=fsczZGhvb{=iJ-2$ug798(n@n3*h!uIQ0BtB|atlA~Z*?)>(X zPlc~+M*`WKzqMXuW84?={iHfI6io6IM>J)R z`BpZPMMMyYMFnEfE9$pC>}aZKS`Z~R#rVE$*m856?;rJB?^0_?_B#v0Xw#5_IPz5C zHu;zFKEy}dg=Us53!-W0_=0qCA<>7u21D3wRK@!e=;fCx@uYc*4^EdMhE9<~BId0q zh!i=gzEA$WZ-A3U-*g`qhJV2peKL(fNM1_26t*IB>>X-@RGjU@)G;2cB$*07DriM3 zbM)=YGK&vUkj5?&O#+D~gjD=n2K)laA6#bR-!N2#&dIg7HpW2lk_?l~7e-N@#n+l@ z4^-k&n`Q`A^4s|kwrQOYh4JDn1|RwUvjB^oJgeN;!5CA`OkW2H$<`8kZ+7w_Je7!e zwFsiCVZh6KAJVUFTxh1mxp-8xNv;n;dT_dpp5Pd_`oJxlH;%INL zLZy_$dK;tWVKI2a@WMFS`aDi6*Yvp_EFArO^@?r)r@p2#PMquS`{FuC(S3!n^nHIH zj=u)_up^NS31qU6US{6#ni7*(JjB;V`z?hiAVi$1Fqky~gK8zrBYme8I^>k4;QFB3 zknMF`by;{4U%gy4#&??n>plRVDu1i6g)oozJ+C;_WIf9lCt@f1zR@bBBNj*#wouq$ zvjgQ$_Tet$>B1E41lKjyhb)uE8x%!AQJQJZ1;nAV#ooI(k&*Om zT62*%%Mhf&43*5rSt^fW>l`1hO-USaajp+rUq;6(VocTZeK-variKqE-;Pz?*z6ZC z^dSo5Hi6kkn+(l~Kfl-q2g=~US_OWQR~UOcz9aV=qR?4)`zjO(yrjt_+TZI#rtun* zbp^L4;~?aAwOUr+-%!fw)zl_Nn(0{(46Xz$(#Q2K;d}`a)&bS z4)Z=%8AU7qxkFn->$VwM$2$QGqq(@S!-qp?W|5UNH*8jW%6k_MqqFVbDIx*YVOEqF z=J4SF|L~8<73&|!9z`22;8D%4ZeLL&SwsZ4dm=uU|S!E>74b zJpm(p_KM#mZrkHS`Yiletd02OI6eVZ=^H|p?RxV0#Y*2jIJn=Am|U4DaQh) zBhH`xZZ$hvYM>f;Zk zJx|QWTV+3nsyxsRPjUTL>l0cV0h~f6mqah^^+$<5ANxE3axqk1KHE(9&cl83<|lm5 zDG1NWnNNLTrPZ^;#FdjiWFxpo2@n9lU-EA}hmHGrp9hACN4W(a<%T|L!{%>6)%m_u zzb!>*U-P98u`|O*ufoKKb{_ii@P%E|L0#I$dHh>013 ziD@dbzxREre&b$MH1%ub$F6SmoDfX1({bY=n`3IMgbf(*!cx~4-@fY7K3P-X^ z%Wj<$Nt2pjcoTl}A$g$btil$Ihy4rMw-@mSL?Qj91`$#fT>O_n|gWg#0)^!d3n)6-iEa zq!^V-Mm%n(phUH1*^ z6E!XTx``TQ3B;{ro{@v#sUa7}|9s z#_&deKb~mdJ`e2O6+v^q#N~-^h9V~DI?(@w;)YFa=a-c+;@jK&x{b1iMBh0#QhYSn z7@~Bm6opFKG-z(J=0yG)>PG^YyI|XwU~y)+Utb|``BC8vnLIZ}K(yF|aC4S7x-j8g zgob9ax*r|mpWcw|lTUAk`i}P_P}eZkD=e@Xf6#BD%r$e>jlOOZ{Wy2f+DKkI7U7dq zIg<^+>FZA@bt(el#jkM1{N|~;4ia-@nF+6Z|&OyO%N4&V`1| z*pGv7l*qip7?7@_VIpp}F`+CJ$sCRT26FFkryu(p?(G^5bK2e&D{}ABm4Y=vu0df0 zYIq{{TX?h1^9^2kfyiFyKdY!2o>t^6_FvR01*{hbE!-O{Ern`k-<6+2q~6%zu64*iI1nGaS*bcrhx z@7xt9Ry<}*AYPB6X$JNA_^u3LU2Ev7i~uy9aXcRIr7%`j7g717A%x&*5>*@gxJ1bP zN;?zToBidA4_1olDf6N!#D#dS$y3*fIFxo;=B10vPX}AZ&huDXa@)>R>!)dJuxd|B znHNb{I?YpNm`=fFh(#xi%-!ZCir8&_J;-9Q?>LV`s<<77*0QB996T?!+UgIA;Fetg z1G7T#KBv`o{{}T2*09b_zaC<6h}PNd|4xImcYWjno`ElTV4g_~^Z50U43|=&0zSXK zH0lZ#Dn^y-*rZ1fIAFMd_@4D*#qNfFIF^=6w#-k@3#B)ELv8M@@ONd=CkaGcm5NPv z#>@Bn!^Otu{5Xk`QzLm3E1&nD(S8b8yS_fkh*cB`Lq+5YBo@5nFVH4ceEy0-nZ0Gq z&v@ve>YyKcQl4~L&f<5W%E9w{Dw-LD6l9K9|- z;{R1qH>{W(@4)Cg-!wl(RJ`TKu^e}9fCa$H$cdNex)1%~R6c8df_Uq_>zhkzF?4*{ z{P@yWvFZQ*sQ=n;EQb!j$j*$eb`buINNl`N{>&X$M}1B_995|FVKGhc9njkSOl^(SKhf`sEjF^tueQ z;x$1R{WGZGl6o?L&Rq0YHF`;u)ccn%G_n9&Mz-a6z^Q}Bl*CU zGU+W!{`BK$hkqkkX`;Cq&t}l5jD;yQsCrj|`1Nn;5E#q{mNlo#@eF%(d9t{0Sz1gm z1n<-KUY76ax<;?1Do*AT0^a7hm<44%FQA_to(QNoA3S= zMwI`he&ba^xJ|GP9WTy!Hc4!bEQiz?lRr@2Wyr2@0hTVPO3vkDSQ&Wb`XUo;d5ord~B~-@Ig|Ul)l3b3ZKL|yGj!r=o z)~;zeTpvUE%=1!0c?$KNxj0^oNGnIw_b+%C7cVx^L??o-J2T3W1?MJwl8mv3YqSsE ze?PuRm{kr>&0wBK$&;9#Q;s`svQivuR*ua$!{ynUu(v4xMgRQ|lt>m?6nPEZKfv93?_Jm&2toc0i{jSVZO;QoIK7^p(me(Yk9nb`^|> zC)#me5=Oktg@+i1H{})@ZLu{5a5<_P{(bxV}|U zl&Bw6j>7^b8JGhGrw@U7Mh-RRKxsH$9X`G&R3r^A$Ig!N@C_Q104vx(@NXVGlQ`6P zZ-g+94r(cx#$)R1i^4?om}`kMAcpYPws_HIoT1LL>*@*RNHhd@AW|lkWBKLEz_2%d zQ)Ci3Qw+rhKRED^jeM8_rR|ti-KFpp+%=;dF99nok1M^mJV6}0y&NyRVY>V|t-Mii z4!N_-v50Ubu<hq-TyBp%5Abs@mS5?-sr6R14d{6!jP23-&HWjd~Wu#$yAqpm2A)2Qj)fY>B;_SP~n?7>yN;8ly(v&pdMn`hI`^ z+_SUuw0WLqo|&E9o6#yQ%#UAQx_`VNvpU6hpX#ZFFUs#^yoSy-xpSs^Xv>!5r+zOT zdKomrzm<+mbxEeF_+Ec$el5ScgQKuDffc1Fxpc*v+#kzr!;S`hutv_R^78llq)az! zxxiRV?&Xf&5WFToVmYyJP3n|st};qStjol#Pnsk@Hwm2NdDA?#36!7mL}%47n&HcW zd;@AQpl!4hT}Dev$(&%V=T2HOEfWv0j9;Lee;UHTeOo5xN?cpP@<>BjZ%jK zr|FJNOyL-ZlM`2a)t`=CZ+2#OwaUq5kf=@AGpl=MJt3KZ}~fKV){Zxe&uVVVK9Z#3w+Q*J+j$sTr9rT8NgJY-Mg6 z`YGlF6#vq8hP81u_U9+Cg3(XlBxlWVl_qU;Fca$)tYSg84amvF$2fcwXF@w`t&U{k zT{4%sf3cXO#VmH(gk$-^#9a$DK9r@O<)Fp=m_IrTUumepqpRfcA=68$dU@bXtZ}rP zS%TW1!vx^?sr=aE1U6c51CF-_KiI~4_B?A4uxO?e<$Mnh{eCV#!^>PM2)~?147|MX zfAl4$E_W%j1f5F5)_j#NXX2#{t5%Su7)R)*`CrXvQ4q6vYd3n3`;(dOTGL(qbMIOsVpxP;n0sC2qwsOKbBVW*)VQENB{6 zZ}~IRI&7?blzGUCQxL?A6Iy#Vrs*kY>b^u}zla6<4u0`AJ&5EhI4a zqtw!tnp(einOIz86NJ6b46s@QcJjBXDQ5MAS-qon^iw822xqw>(-ShiBe5X=&zbm3 z^OsEP5Gk>O{1s5^mIhJo0BnKwH>pjPsQy179zj;Q8aWww_W2K*#=4`YH zLZIM}xy&=j+Wj4=)!4Zn6uuZ=i}Rq?-ouz;m7A}Oz(N1tGN&kA3_x;g;AQ+@_cBh< z?m5`c)I7&Q3o2@~O<*t_cvEX32GyQgyW+fziW3OD z`mfqKC5_)CZDvuf4%&f{2=C%c8S#EYv{gg*8E0)aN6~f5TyH`W$3J|^88>`wWK1@k z=&ogM84d0H>X`yNJ5?}Z(Lu` zXMsk|T8*CLO&2RzJgM1rsQIv}@#_aKk&*G>yJwz<7FNTUVWr8BQ&f0DG$y}6wepQv zkb+T-_vm6y)~$}M_2SXin}!O)qetf1$$r(nt`UDN;MU;b2zxX)HM&!)Ut*oKochKs zwsz)sY*c&DmjFP2b+FFD4wkF zt#A;;Vm5Zy%7P~@kmyTZEn+>X#W^so!u96L-hTfZD7f!MN2^(!D6BJRU-$pkeyH};atG#HiAM}^lY*;Ttn+7= zi2tRbBch&LK{GWkR z0}kFWvn#~Hi#BLXez_px1tV?6*nAP}H0ECCO1!u+jgu2Ku4VDlK2Cvm7@60wf$U9| zY6&=AJ{Bz~HXZ&KwOB00&a^X(!wWMmUPd_)bxH8hrp`9*ko3HY$@hZi8gJ%PNwnZt zw1r8rE@mZd9dGO@*$ptzkl&1(G}OOTvcBo?WywOBpz(KakKwvuwOEbK(u^ZCWea?kek zpKE={GZD79)-@#cPGo;`OY+TJk}(ptg+b^hm<&J zL)IBxB?Ue;V9q7h)n4F(T_J^^gY$Nj!ZAb`9a(2AeLLZcadcZz6y_I-mY|hU3+!dG zyPIOH$LzEUX-12r!ka)WhHf`HYj3t1uNK_XaPOWh@*A~Z(~Wmz5euzO+T~rwTv-%> zp`Fb%{w<4Q>j>?J$@o|n;U{m3ZU!5^SB&5DJq`CB@)d{3!EEDL*+vl#TJR6XQ&vvm zzl^@w3j?)IdyPNKd)Q^3@A=Y2ZJ~9=WaK{MkFu86a6#cqagEU7H#LS2CLb`iWA-fU z(jg3HY%O+`ul;wWDDUk;2l|wQmo9e>BQ0?)o7?>ab|XTq_uga1>+(JpuCc?wabuAJ zuV_F+_he^OJ7vUYVQE2FX61F;EnUC!q|~2{4s`j9u`}h?vwcs~;;eCoPLyRgxo}QQ zBScZ#azV^?#HD;`t6UO83YYQX-bvH07_m<^mw}3p>(jo&GQ|_D56%9?h{bHKVJFnQ zZv12|^WP~OzpjP9d|ok@(dOMW;tQ*M83Y;FcKx-Dk@GF%W}8S8V(Q3kkvsBLpeoHR zmFWB>7}x2Z5wGZFjW|SM=p)2Y%zY!4iTEam=XEPrF5BwD=cB<5x(8o7lNpG;U6w7+RTJup_X; z{){a#UCwR1$X@Eb@U<9}!WP0$I7-2hmTp^w2fsJQ-gIQK%|)Z%8YkjotHp2x=cy*X zCLhWxABfeie~g=~HDPfkXKLzeDnVhbut?O*4So3Cd*ct*YUo>n^1kJZiEq-g~8q3)cF9gKt}wE_RlD2YfN^x8ks!YU)gQ z@@E=hXUcFimB9(`CJf_}k?23TSys!kH(^d8Zfa?crdUa&K@ZHC3uIRHFqI)S7*i@V z12a~}5AZPIzbTBwz3X6ElRE_kEG|m=JOscKFB7JXTpj-xOtHn^gzr2XE-o!qzFyRX z$pBZ2;3cIzsFT_*_SG&IH{l72MFjbpZd#EABoBSZE19O? z|JMt#g+1rFus{>ShszL$Ka;k%l+wCXHDP&?Z?YA}9z$DE<4&JXEq2zztDEp(!PT7E zQ`=dqwV^dlSc2pl93|#Nr?+e@v5RV(toQiu+FnK*vln$tp4#;w6CMhf1kuF`xYOYe zi?O|JJ>f7Z#sxG1KVw@M*1})gh!4(NBluo7FyUF?TWT%0k?FSermaoxv~u@Gd|fqr ziIetkll*EPbzU|z#YqLV_?G#~aQ4x+HX#)-d-m16!_XtCvjxW}?J-#2pzLjvZ!BRA z4c2hCwio+qI?=~-lBTj;Vz=vP!jmntqgwZVCJeb;kK^K;uycwD{}bUd|J6NrDD(&) zVDh4XQA_d9leq}pErU$KRvhltt(QXgyoF1PX=R6qZkkW6f!fI?4Z0I_mzdNl3M{j} z1Gmn@Ovu_yW3xSS#MPxGw6h~jc;@07Y|H_Rk2008V)8%M%MrK%(}yOGGdWP!o}~_Z z$C!|$nMCaKh^@v=c!n2c4JTM(5aTKwN8&`arc3GoN*n~kWyJg+YIsdGmC&kB7Cn^- z!2^GPnQFq)Wj-SfjOJR)wqAq>z@F$u)8iob@0lh%a4|Y|_;k|DvrQORMOiyK*EG+1 zi9Uhu!C1&;$W;j@2P;z?=7ue}7Kmu$`hva~8E3+g&EJ`j^tq;>U6x*W{`8u@OeliJ zJzV^a$252hxru2+Oi8~aC7FuTgk>gA>6aPHO&G5jho^ai67wSihtxP}aY-WOay@z< zc5C~v3=6GmOn3{xH*MjAQ&v7KD@yA5W!A;T=IcaeV;tc|4Q|Bh2$u_#VVbZfOT%_RxQ%!iW#MK31ifUKw#TL_bTa6e^ zkgD)fHek84R%DyVMS^A*8f9f}>)zgixhqv~xg4)}cIG#Nhhy|oS*-eJ4uO_TB$!f7*Ai5qN`pqjmwC1-=SPuBV z2$K$jF#OK{P3WZcxo5(QStdka1k&x_R=8;6?whcpCb{Js3Tk*!?voXE+RO*}4gyW} z(VDs z?H8sY6g(EYeTs<(WxX(E=`32*OEHSw8H=f?8j^xVt5=wwxKFTszj6K*unuVRUJI<) z!b%MN7m(;jbKYPmOmbGNlbGjkOrF@B!&xb+dAu|AuwG93$27=#dH203Mn~_>kfL-; zsYv%eK+0tWpMHdVG?l|TkAl^~*`I`vFZMth`q?y&!rg3h;g_FHm9e*^o4M$oK(k(6 zY1?$>f!0fpBIeQ7%O!SZJlRxqho%!8%zFCbu2j-KIhad;v%7+?)}71^te4Tw=JE29 zun23X{pDhgwpK;CnP2MYb{A743jVaEK1FsdjK8;prj(#xJj~cFus33ktr+ZSK1nX# zkY@Wwgaa+{0?HF_r4qgIGH21@qKc=s+goU8IF2*LYKNux($-?Y3CH&6l8t+DbCzz2 zcDT417I^$3BZeY0vmYJu0oK8n8I`oEzUCmExWqRBCCv-1m!JL23D(P`(&jPNOP8`j zR*i?-V`%QsmDnk_oH>-7|J+_li}E*@)rm`QZDoMDzxDEcd9%TKxw@ixg7wn7viXVi z(yfZQpY?KTRr6ZwrC)XPZ0qHY8p3kSw@fYbWb5UY+Gbs0syjt)q}7x>>zXH%+f+C` zy{@^rPF#9xuj-liS}*rCFk=7?e2dms?UB-mJ~c9TPHuojTAnD6ZftI?L$Ro~zlk|R zUQKCcUaq5NC3nKvE#U0niujW>V}EL4_QMKAMf^RsN-N=JzTDZ`Jkxp^)JAB3C=AN6 zhjUNiIjmGW^LTpE!xsFec5v>m&tb=0@u$uBkJxrSvV-|Y-F&T5N8zcnPjP$D?@48- za%b2$=(R0isk6C)PLzvk=en3DSuaCFMDX(6v)#<&te2fb&6sPJdH`1UdZl1{#c(*i z^+Ox0L*eFnI#DjVx2G9hOI&Hgdzpt=FMsZBj3 z6(f2!->pB%{8>j0iz@{k(Vn(Uft!x_TC)!YO@*7*#291fdAsnU#Gj$fn+79BPBd21 z{+ecPtixgMSfQvl!@R?K`FN%|(R#ULw$S-w3cBWmxiCt=9@}w$@8_D!sF}Ji{E?H|HYrV8jHe*(sehDgl=?CpMu7~!@J)1)uHkeE4L>boFD2VtH zYK*jA2Bw&6SuaPXiXapS1Pv-{AGQdAOweU(KEcs#<|ymk`a8^+`GkAe5<=om^CBwa ziGk~F1@wr4ADfse3ogRXT6+lGRNxZ?wXVsidM{HDBfZl$KEKg_ZBT(754V= zz}Bv&0VxgWa2DEixwvgt*Xr5k`WR-4V>f}A@69RJ%W^-MSLmp8F&LxNUgVFzib0o* zy=EVsxb)U8Y36qF68{f0+i6wyizpCPvYdUuj9r`<^|wPJp!jmuVbSADXMyX0qvmN8 z@x9Huua62XP%f@DJ#JpgmqoQ}Kbq%SFNdEn&(hJ8BOnbqWsakZN1@P*Q^M1@^wv6_ zF>BUKk8@@$eem6V=Y>GNY<5vNZNa}_;8b{HHM+OZ>_F`@o*8qKfY}+vwf3*g%dB_r|82$__oKgIlf6%G%^$6Io!^V0V*DE}am6{O*U~3a z)(~`Q%^eJ1KEcO)ULHzMowzKjP4!fg@dfT{46d`hl}U8#bw(xfD5_+U22AnY1M}dF&@`^7si(6q=s8EQnJ{_R@k2-yZ zD7MnC7NDhmjQ~#iECIaq*#gYhuN1&eA16R{eY^l|^xFjR*Bb?BsW%BwR=-`|Gz&0M zpC~{FeX0NsdPRU#ecXNlb^3V{(>k5qfZc^sD8Hq-Sid#bov7l ztQEjce^7wJ`V;}|^~)vLC4f%9N`fU4Y>;&exD~GYg`!wQzf*#(0@&$y2%yu?mtd{{ z_WI2NIO&rGaMmXYV5ipv(CNRIB~^eT`a|;OcLKQSHwoaZ|3Lsd{T5l5X4j2T_lTl{ z-XJUY3Sh5aDuA1Qkt{71z)4TCv`zpA{W1Xx>-Pzu({H4brImJU(TKHG^}@64S9U79 zlpV_MWM{G~*^%tVk?aLQD!j?QWKXgm^}>tn!;x%zftEDOxez;2FTBXq`keCOQaF&^ z$IfHdvExPxhf%FEiKU9bA5^E@%2Gw(5eliY(qA{9`jk-`>JHJeGD>;f7E%P*N0-Vd zZ8=O=LZlFs#H}hQiI^=YiO?-5i3lzzi9jwWiFht3iLfpxiMS{z#eZ8A<`I=5Xp`7Z z1tk&s1trk~3QEF+1trlR3QEG3q9o!viH%xN+HV&pQDvnNTTm&wOhHK)zMv#JP(exb zqk@v?P6Z{=s|rfbt;&erm85?;%Q=oKW%1QFm4AOz@?RobAv#-{C|EARQn^JF4ii3E` zwC^{S{l6&{dn3h*o}Z*I@lDD1o08u*rPAM&>bbeFwMC9d(l_8zTvbjPN%}_LR5tmh z)a;wmleUtLNDfK*XWx`wd{fH%ru6!o(i>T7#W^NP|L*I`Y0KTC$HfdAIyGka)X5`9 zPFX9QB!ZK59$dFYh}C6s5J`~q$Zl$ zM%e&OJlf)}S^K`N(xk91QG426iPGs(se4ByP^V~9J1XUhc#0esvDTW5^*P$sF3R#E zx=gCwUAd==C67>LoNhhM3B`;gfnJBAp}Vy{Vah^XoX8KL6#W!H42l3^Py|SkKn#i~ zi9r#d<3i^`Q9LxFAo>@87#aZ;OMjEn$cWCXy- zSV}-KGy;gB5kN#gz(#u2L+Qq&h=E5B0}qM@9u*BdEE;%RH1NP^;E~b5L!*JmMgxzD z22S<{9u*BdEE;%RH1NP^;JJ-~led9KDg!&wpcgsXpwASeh=GSi1CNUa9vBTgG8(wQ z7}$3PcAbGeXJE$}crs&Pw;9-926mT$y=7o$8F&_BU{@K~QwDaFf&FBFo8TV1N+Co?lG`;4D1{O`^LboG3bS74D1*K`^CU+F|bz*>=XmfRt)SB zgK&ro2!uln@W)TRl!54Q{=JoE00Vm~Z2?kxD;?Z;-ZID;Y2;tL37e_-tqFSOx#rwq zHz$4g7S}?U*iiL8N(Z1%?1Nsrg7)-b;`b6X@2hmf%_V)6u9DR(cd+vHpuB-#m2}t+ zTllB=6!7xvr-TB3bU#eCSJ1(JN^5|R{gloC?fWY&C6j~2z{I^I>qD0p>F__45jvbn zK0t8*-kJV3VO4#B_XSJOBNS{l>rvRtd2PPdJqEDWG(hPBn)?#e7>FrPIzO#L6R-7P84#I{|Sa&IK3< zX-Oj#U({xd;MP7Fp$tZ;(@15I#O>Q1xDlb0Jr1kEmyg@wf4@K4x!OV}onDSq+DgpT zVZaRQP1zHbYRN_H9clb1#T&fhMzLA$jbdBXjz-LV{7KbUmmplHAtr7B3ejA0|t81~0sW0XO-*+H*FNF(%%1WEO%LZmAXV^16l zt)GuooMdI^C{zZFC`4`EDqM*-=qK&5?eBQS5nQ^DWoDUUS*dqpmA>NUI1F^@v~!#i zBAJwo1{2q@h3Lv>Fo`UaTAm`q99*fDp2Mc|c%>ik)5hZ=Go9=vD9r(aCn)V@lQxY5 zHD1bdlP;feC`0kv?Chx3NcPd~2}&P{H*F&D{3pqb=-N%B7=u&T|V$S7E7qPwFD zwW#ChPO0PA5^0l^0TB3M5({iI8ND@~mPv4JGWW>RQ#cAoO=0hzoWjkmJ{2QzI<1(> z8a|wgaX+2>rzvfvYB}>E^w~o0pH(S$n&O_H8q&!;P3fgePo9odfpm(VuJi%Ona(NU z!*muIJcAvxVumf^r>+3MkVH89u~Ln));M`mtqo586giz;5jvAyw`(RRjfXS2F*Rp# z9L|}=W;-=YX$Lv3vpJ{+%vQos%A9SB{_G79uy&(}{%SNa&jrai)Y&P&U-p=T6p2hR zN9iOR_+m5gKcyfx_K1kx;_UcU1Iy3lm>)Bjh3ucpA|2;$LD zrb4vJ8*%LQtgtJ2txdJ3SU;D7ywD_836bs$G6Ma$Q6>;ZG<9^rXWFya5Eo*V4wCJB z6YvJAvU?=I^Yo!D8&f@tS@Sb@y47Z&j8Q0{3^wSuV%XEs&G>t^H9GdhDXkSK$ecqYs{FRZKB`EzR?@D`t z`p@1%6m%JJ9Q4@*M;Z$(9u2^YLa#rbxp47>PF+|D~_`M#D3Jj zIYd1M!yS?H(F>~earG|9UPtG%OPm&PG8wo)L?EdPIHWxmvUB?_#Gsf?#)X`1zbsTD zQHuOdX(uJr zi_Va3;GOHNE2M9SvHrADn=U@`EJ%5S*K=1<*DJlGHvQdzTEiWG4TUq3)+=sgDd8p6 zgu8g-my%>Ri)wJHs9_zH3o4tNB8{yGr+bG`AAGF;;dw;SR zCA)g#IHMGfpIIrKpUcWFrnATk={zHH-pLAw?&KkT(@wU+)1B<4X1i>C_DCqioeU$d zqnM=xx3$BTw@->Wbs#v; z!n==2%VFmDznxtuAfQu*aMx-+~!qgrHy3$ z-zcyyftOgYQB@j$Z;MyKfa9-lPaCiBxOhsj1xw|zps7DDzo9M^qAKo?JV3Q+95o&& zF?hv_h^W+KhB#;8G!T%bw38Y=nGRANUIC%8crN;9i#z_}%TvmI zz=4!cS?r?lY#whCvuzJYZ(~7tHi53}Lk!35!pGJvuKD0C@L|P4a{es=2(j~Za=IO# zgYF-{%g2#w-Sa6{?5hWy#QDHmx4_zK^6Y%@QAcrK7gE3HKBs-p8oTYbWx+d(fWHNA z?|2%|&rAVreH|#SL>jjJt>x?V_0v<%Vj%k&C}AVC%-yY&LW@4`w#Cr8rKo+iOtv9! zqOV_m_^kPX{h0d$&tz-t;YgXihf62+D6M3IE4v2tZ8yt)>{-2}Gd16fb+dHpwwDPu zN$_MZd$x(jo>-`Hq@2+hrQ|-2#WDLh_nzFRbeF6t#sulq}kNdB@1SDL-w<3 zru|B1iMnMwP?a456%(f>ejWue)#`xKOM2saxUT@1!vJNFK-l^-AA zVD5U5qa@`ZC%BgfS;ba|xRi8=TXFXgcO}0Zj*f^NHc3VfPnPm>I1N=l%#k<#Fn0p& zFxP!K%v^dL;c!Yn!b86OQBG0aj$&bhXP5_$K+Wud8Lo> z&^`DVm(q?g>&M5~hE0z%&ke_U4)Wh|eqtN&qcTvkcDfAK4=ziK9$itoz@ndjO~`PX5Gdd!10CB;h~TLHN%Ns(Vt{_rKEE9{VDXIyXTj-u8S@$NBr`=@f|H#s)Us?LEzjAu7^Bapz`AwMw>7KV(rKnr1(z#n)*Yq~W@`~Ha zSfKoSTZsV}bBAx{+~J$m?()qIcbVtQyG$2xk9l6Y#}4tyRfd3WS}uF=X09#ouWNud zENMdVxd^-5W?QS+Jiq8ZJNfy2j?>1!bMS8XorCbp?;KMh4>+bQ4>+cL|KRyV#2-9g zIrs+?lzqs7Gx{NmJ@-%tK*Uf4oozN}6^r@m3*&4!p$k4a;3P2c)m#DD4&2)mr8$B^b}?{#@Mt1Ap|0io!Hs za_k=Hl5fcj+M1{Il{`P?A^9=0N((_%Wr>JdoH{MkSUDrmffl^N$6(xs4XCdTqP$@-@7gLCyYF`bkY*B!Oq4HHF1vp)V!nY^~tZ)3)Xc8{6=x`|yrO+$uZ8s|StO|B4>4i-N*StkDxqN*~5>tey^bGk1v~$LjHut$vjI58m};kmGx-3$Rt1W&q`i zk&a!pp(MS>IG#bK_Xyn#^7t2{R0c)-Yi%;^{}=r#Bl&~UOKQ>o1HwOpQa>m?<&C!= zY`kCW1@8w3L~DZRQg$_LjCj17D{btBJ*v_^B5h?Pe^SOts!5-aEHdcyCuO+25%eG1 zdd`0~TQ@ubZeveLuO}x|FGnvktJ|ie8C3qW&E<1Hvl&i&wwi(bzp(YkeX;rR>=&$i zuU@P6a1$@=^+T?L^KUolM&Rbh1mK;I&2UjU_u+5_NA5p^WMNIP|~ z`aNl{UZ2_8kv*7Q%)pjVI@n+^eMY*Ao zMb(~?-FHpEZc(!$;z0l}2Da42eho2oOC=X$2Ras0!$I7?80%s##y0y zEWtb;l~7yZ4RW9lq-D_zA6PSsF8HWJ=&~C|h9F;cCT?Wn6JM|B zuSG%F@L_Z;2rD_^DfRs+=X`yfKI8{sSyaML9S$(d58ln9^M2|eNnf*+Iu18BNZ?Q! zZp)&PrPav*H%qH6blFs*47x)$MVCf)P0J$EyC*H)`j*2u>0H1F?5PV^!G?aijQ0csdPhw|`R zHf<=c_5*lT9)8NECKZ_DvI@u++4Q)A8UxV3B5Sw5qS{}!GSve9o3o10tAU7$;9E^f zQCKB(N1#?xLjiVGLO8Q3lYRiIs!@-sLX`te@PEMYCJyWFY^$_T`4O0JA7 zkWEi3BZ#u8X&^dYHYEkBod9kI!nN5{tqOuYnJhZm0slA-X==-W z+4OG}M0GZGtcr-qrp;BE^^>a1x=l4^ZK%cy->k+~2&&Em^Qx% zQ9J9g-uCs8VA!Flj&_Cgr(Nu1tG$}FtUwc*wREBG4cME;`b_t7d9vn9$ga zjrOUT+D}p}X$lHVFjs{k3ND8Qm;S0hZ)(n>pEhUh8ns~UmbOrPO49mmK{~x1dDTbr zlePuB(8c}1w$;&Ws?n0$7Tc18@nlOjo^LBI4Q<7xtXAAJ|7pc?I<@Aym94ohw>8&Q z3Ff*P!CZGFnCraSaH)SAE@if1o4jwsHVJRb+HPvg+P-YdD8cR6;~U$louuxsra<=+ zv!v^ePHJjL0o2ahx{$)bFm@U+9A}BvHKh3a?Hu!iDWN@w@6GmX(efSGqEkAk4e{+y zW(Tzcz{?I$ekC>P2qjk1(vC>^adf03w2mXkPEaY1`gcN7h$E#FR1zP8=-1(+7JYc4 zPzj#sgbizBpSQOT8*$XJGo;1Q%FYOiIC|I_Lt7kG>w-v$qv>6cJmTnJ7eqrGId_FZ zaWtqaG>N0FU16L!%IgY+;;3;5tQkj(L!eh2-3q}N6i0sDxGu6A`Y&s8`4}|mc-)Sz z41p@ad7X+|m#?^X#BtOvJ7p){bNNz0ozBH6$Gx+&ZGsU;&AW5UlDcDPi=#{3xz)a* zd~;kV-!z5t&A;W%&S9*_qA=FuLKrJoKAbTl!x=LpoXP)_H(T`J(yAV6TdDE7JJ9Lz zedsg?I(g0Rf=8luJ6sBM3h0Rp5=V1-vQdupghS%#T~Bx-o;vkHaKzKrUTP0_@%gg8 z_g~<)_&J`T#XF0nN?ijfuTfVQitLAlhy?Fhr5=yX&Fyn`Y^BHz6=uj!UFL)j1{e9(y$L8 zz5daTk|J=l{k^&&wwR2kHvL$cgnp8QOUeCV)_7{wpQ~c~V{Q~r$NHa_bLTt;3TzT6GmBU?V)eyC^XLwk*F1LbSa#VyAwAo43H|@o+Y;D`!_mrLKxS9qS`P?r>Lk`m(LN8-0$zye6LPhj2u69Ku#z zG(>GBeR#bF$RcVjj*72kS4pAHqoufE77DsUm zo{eI;PQ$nqGK}k%4&$4rhcUU+a9KATSudW}4p-~q6Uvjr)fVpCgs0wzK!?vTK zikIDw!f^QVUeyCQ;Umz)@wMd$wYwXm>Oz5<5lUGLaMBhq1FX&8MnNOhwh|{Y3^-~y zCB>+vlCOq&Q@0}Fwx#iHbY>*-(l+uMg|xqoqDLY3Y@p^%)ioX$VTZ7p~OUAIA zJ7X|W*hW?K$nD!`njYrdMjDg_a2ktDzl{ctWgWJT#lW|Xo{d#INCCdXAz7+Ana-^E}=!u=TNV#L7|Y6P`jg6fqMG4L4a?nI2rMrt$( z(-$MHoCF&h>CZ{(U{@BQOoNC)c<@r2lM;ec$CJLpN<_+JG}=gyCNp-cDVRtYY1I@w z6*22KQ`9hbCLcQo!a zFNVn(JN0x=>;o5rsV%q3G7Y1Rk^Y$m+Z(CdbeP#lDbvwp7W{cSo)(NaOM;ucX9jb3 zpNZ+Hk;cqadrKzAXTl#wa-M~;)<^?p;h{@VJC00*@DGWUy%N&Hb9z;?Mxv2iX0yDZ zv$?%{XJf1~VklF4Nrq$Qu%Kgeuv}rJz`3l%;<@TLsnz?rc*rx-;Cbx6A1t5Rvm)jC%)_5g!1Cq=I`TK+3*Cm(ar?59=>+|H38k(L}lh9 zNK73 zVJ1Q#gi4MVc7tP;AL!U@q<~}TwJCQYnq$HaaF`sJXyX#*^?Zri*PS&ex)=CG4%n0K zA`B3IKD|1Pt=iX?@EN6w1{8eX^JT8^_xbeZHlD6a)lpLFlzl)czn><~kto%Z7xZzU z06jP3;!->xnW*+MwZ5bH6!wR%(JKbIZt8b^OiO5*nX?!Br9ZXca zND2S_1PT34(AL#zc{=Lc&(}6(*-qgrncdEnh~Vw?aV1lBNrHp7Q*si^f06_zZl`9e z;6&V9g-*4d9<72eS^e(k!TiVb!k10()(2aLk=H&h~PfJm$IJp$JW7jcX-o~QFzKW z)2j{Wp^WYQC$P8wDLDoE4?wEhsCofq)kc`zOn+{~XvdiM9s#rIW0CXGmvaXcr}3MZ z+4N1UQQwD^6KREj`GU{10(sI&6g(&6K}n4ef&ycUF-- z-%K@kvdFldYH!Kvg+DOk17tfR!v_11I1ii3?c#P;*~Rvc-^G@@x(ibqGnLF>?V~f) zu9C;SK=5c01CpN(E=GA7YDpkEXL4{1$z)?$GMS0a$j0hnhAjP$=2XR;GN%KS=-04GgrbW1r|1Q;0#`b-I(7Hah*cgM< z$cNYS(L^p7t1U+zYzI$*DI6FrRn|IDWrN*Uxx>}5u&d@+ zxG5Jb97!d!xNcMyWA4x5ZtIiHop@R{vbPy8Ixr@gsmk}52e57aYN&n)kbG(Dw&E0L%ZkBjxx2=mC+X1tG`>!y=e_+h0A2>Ak{lKko z-opwH+QX(a?ZG4tVJmO8-plP>w3k_5*~=~{r*UbF#!b^SwTUi~@-#3@q&EA&C6QL` zLv|4V8PvOnLy3?c!XbhAr-j=ll8F?wA1mIB*sUiJ2llc$#&$e-88ExCA90XKfd`OB z81-3ipnlg!G%S#C%(sv2IfrZ4^+ByqUlFzF9KQ^$MD7RSyhQRj2ty~*goBvDB+{9K za6%$gJp`8|(sze2eMzJzhcH`7q|h8S3Lq;7Z(4p- zm&+bOPD!N7NAO;TmDn5!ln;?qJ{wAi6Q$)j*qkB~>HZNlO5!;W177qnT6IFLE6>Zu ziPxT#a#VGc2r~r2wXYFy`n3;aIUZvj#~f3mQMz&rZ*LN**>P4iyaG|a@Wz6 zaM;E__(#M*BK7!@+pYcx=O-rrgwZdN2LFUvNFp8hiCI=S!M0d*g5^9uftX38)+gC` z8&5L9yOZdsiPY_sI#N2Z*d&NMHpzirEfzDc3A?H#pT=mPNbaZE+T%_m|-h z&>6nD@{Br6YWv$%kT;k{S1v)@iF=~3n6NYo8{M8||8+TwS5ENCS(fc~4ik_>8h4Hr zI&}{39Js}KGr=Qu77e{9d0-W2A`Xn^X-gulKF^JMcOFwKMo*dz^b_l-{6S$LaiTE} zSazYTb(rNOQpyFJA)m$pZ^jDgP@J?}mvT?A&wF2FJ$|^TMo1f6Oax}{l~x9SfC;JE}oSMY3;N^P#FwE$wS zsQB|8C11fDL7_8O)W!h1t7;>FCRfoF6`FKaZ3=?p(#At3suJR+|Cz{Tbts zLK}WYPDS0%cotO1?-xuQ6dLjiQn*4penBr+=+!S6R~2f0O>N{R{*9==k%4w~&!krm zkq>RB`WBUS5t*p#W~7O^sEeC4!j*z%jj+pKtySpBHMC42-|MVs=yldU0YK9Gs-RC% zDfc$$51bfb`@Bz~zpi7knB|wY04Lf)UP6B6)e*(5PbdlvzJbSbg*M+n>QdrFhsD`b%1^i6KJ+plVU+zkGe3FiOGm^r_)p*~8`^fxZe_>Jqnm*Dwt%&g`u zz8QUst+)La`{33swqE($tV`5wCf{-!PqYeMyNxA1g)S{$^A2O~yTd&Hxx)sk zbeEOybC-R$_%17W<}MakKz@%w$UWwnaF35QYBB zWv!dsmqBu04U%@PbQ5+p;)V1>wFI3k8I7sgABa?i9^7X^e!sJ^y8o`$!OeNHl>Ixi z{_}T^oEi_f4f+RoIj7LB2dvWl2W%I=KbWq|A2vU>&xO2;f6%Mn;l~#zqs!5eKhTpD zI`s$J%>E&hx0YZQfIItt-DA+*f9ycV@^I|z^03jabmt)wgF=5kWW!YXlf{qt6H7%* zvGOS>jyw}BE6c}!(#1d3;o~g8yS~ zQoqM+!lcLC>PwGVtlM9V8TuDDV!13`{EJcCpJ2pPsQ(l0Qrn)eBknw5%+gQUJ|R!J zOT<29K}Vjl4gP(~=56(ixy*aUf(|@m)4zPiAyWQ1m-;@J{rWiv#kJ=cwiPP#f|*6U zVDil`I5vKMAp$M=B^MgMRGUld201w5<&1+Pc|U}8H}4x$obv8*7$`4U(7l)3zVdlU zLkflEsr4mcwhIW;@o8YxT@cosvdM{zd8!L=_T+Js9_O*O%D>{ajC#f9HA?W}6HDkVg&2%zf0{+`DM|xEO_?PBy_N4d^ z=r=jk;saWWW_*AZa_GzlCUpJCrEVYb;K1|;`-8sA04iS?dhrQ7nBdlb2bKeK5p zvh?aR90B#dAQ*FKfdps2AVPE2Iau1`H^c(P*O8?)es5Un1Itw>DkxlM5uRD0vj|z| zbrvDSr?5pduwP+IGufmWbI_!+bIH>VP4e0`(UovSnX=yvj|lK?JXhF=o?l*LWPx%c#RID=ctp4=Z|SQlx5GfE)Go8 z!@<&7aB{G82YBqj8dP+&^hRl>qeWQokfX)w%=)R|o0y7DQx1H~1y05xD>Ej0(me-@ z2(j)?mQJ#XjnjZQWh>qPsQO5}*qxJ|ts`F!-E?BcWt_P&{hcj+K&?7kY_X_S z?O~vDi*Qs%@Z%}A$#)L5c47Q=E|zW}``yJd5TK!d*Otpcv>0?Ixk7* z#Zk1$%Od*i122mR>T2FxH{RRQ5+##22gPG=OJkG*in0$U6lGm3MJ?7YyW?Mo{qnEX zYeR}bcAcCVwpSJ~T`@~fkS7&mZ=5g2G38xcgg5mlZs`HAy*Nk7GkLRS32yYv5-jgz z30Ba<$I?!kJjBzfkUj~g&sBu`TIJ5bF1$F~iSAagh%UR*hZ$e;v4o-I?`vr`Sm$Wp&%@rjrqQBlOX%U&Hlph;t zh#wnhvmbZQ%YJM;pHl3e9;LWMrI^{hQcPaGG+S+KY0D^Zxmw!N51@J(7BshvMI_6g z%W&LPE6X7^v#h0y)ckIJXg<6F_Ve|E=C%KsU5xJWxkv8YV5f2%r+vz?oV0S>{M>Tv zvXcH5k-rA{bEZi5XWjqu=O_#cV2vgPu$ub=nC{;I_IRW6+%A224w20A+@P1`xvpjf z<}$GYyVG2Ojr6br%PU)v8x&KKS!Y#b>3>&bx}ZuHkv*d;vARE0VspN$#1a}-W}dSu zb7@~?wt!dRAlIJ5^&ttgOZam#eXGuj(AFeX4V5U3E*C6uvMK!Yizz zD^(DKS=B5!EoMkO7F24mO9E>!s|gb9t-;;Zr6yaWdrj7BX-!Kd><410X{iVBdrd@6 zCY7zlpnokWn@P#F(C|#UTFVjyP^2~tok=Yum{yzXvTIwK;^x!ZmO22X>!5#UQja=} zxwHcaY&^sFxY zlu1qN!84gOuO2*;Nr&pO*!T4;)lsTgpEc`UpT#bf;Anjo`@TLRD3fY7;1)$Ufb%j* zZNPfomB6DRGwa%r)m_jKcF&}r8p3p$S`TQ<3hrzS z55WYo)T9Zc%xwY%W3eYB=wj(X6EKUV%1yy6mPR#2G{=&;Dc^k26q?0S!)8c1v6Rq^ zQI0o5Uy3F7=8V~^Ie5krHHQge>3Vads#x-GfpjGHX42PugHZVX4aK#z_|e^`MjuLS zjzEm1oh{ImSbEU{-i)Q1Ex9zcC88jfw3e3I*Z}6wmT3EW@^1xQ)>Bj~V6LYv65MG8 z&DK+;)*x6<(XAnUJ?(4_F6-$=4VLgSkftA+Nx;ALT zdb-sHQLvs$w}tZSX+&GtY&~VRWy~jSEnVEi#!~v{$t z6xkY4y`E;bgHaPGy&W8!KzG`KV*-_Jk5N_ZL#03O0pgQ5lPki44^XT}Bj9iO&lFeM z)gGxlf!?;aL;>{cfJP+HmJVoj0^RR`MkJ7bM=nKmglY-2vm=5K1RX7{CHL{Qz}=w% zZS4;3@mU`}D>nwfcM!;$3REW0rxA@aUuce-(bb%*#)7~zYp#VNzk*9al_^!}x zHy!GVZoQklLJ)?#DIx?xvYWPsV7%W=pF%AC0s3^qG=X`~YysYJEh%P*1?%lN0DxL| zXVy=;St5YhxjPKBo07Y;gy-GSnBCMU)G`8KQ>bMy!23{4ns!t7Fv}1Ca~RXPgkx-l z^l&EF8O{W*J-BX653W1Z176-u|Mh@nc2ihS)_QwS#L8}*Rt=-?rl4MYb73z;)o!}n z3xm^cs@j_gX7^?;7kVScc2n^_mI&FRE}>}Aq#jhhD_T^rA^y=m+^jQwkWzM&e_u;D zz{I|A>TcT8m#yN_kJ~!9AGasFA2->lKO41Qe+0vBTGt;zzngCMXQBQB5HGtadH{1V z4}foB;sK1(dLY*=mf+GrfvjB6vh#{y2To zLAl{v(huiS_HfqV<8W51-3TtN7{SK8ElYtTS@e{V=(j7#G}2NQ|KvF%Kn6VmXvyE8 zhvV!0(alCTGfZ8ZuvQ|CMu@4jOwsTNIQZJxE5i1ENo-P8#?LN;tDtFEyE456PMo6z&Fee zE`@k6CVinIE&}5n-=M>KOJ&_I`a^GN6?fKNZsI36CoOlII&EsqYEPLSy%rRw zzNvPMnmEQ*bLN{Gui-HhrcNF+Y}(W@6QXS>r@ujQ!^Uq@rbJDiWv!kjwtn-9fzS0b R#m{8%Gfm4LYZ+ko{{RcFOaA}> delta 315125 zcmeFacX(9A`#1dCWP9IiNp`c@Yj@m!a(nPkuB+%uoM%{_DG z%rDQt?)~R26NUb6D>McImPwBmAS8d5;W%t_dTD2O$e{a-xCnVKMN?MYq7&LHvX2$Sw zOY+{VF=13T``>%X|MGnVi8}B?t!@Kd$rZ29hg15#*nOm!^b6#9=#+_U)jtU zIAI{!(WJmCXT`fd*tQX``TQ%WF6-au&4#U@lZtcI5*WReeX zL`Ym*K9YUDKqiE_>I;KS4k0_tEHq7v6wJDAT!icZm5^+<2s0f)LOr`hSZt0K26hb+ z2Z4{GVCrK1po>}<-K_y2RF}wveEplk!;~b!s1JdThX|JqD&dGNi0l}bA10I5+6ExMO~kt8g!G=2FOZ~Xtm z>Fa#{uhJ)&9j^Z~m>X!S@fux6Y#~D3uGaq#cHVWq#7=QYoOQ{tRe4QbH-DixBuVHM z@)AwOA^(>qq=6x5GG|Vlm?xVsCS%}~C3)KR6SLekYwzkBwKP_EEBGaMwmenq5B^Fh zcU!qj;>NhhWaDPuD8<2@3v+_Zlwa~lhS$6%b0=O?XKt(kw|B2WkX=m*%s!vG#2Ut+ zye^}2WCS#mBpzp}imby2>L<&JuAnuXaa zc^I z=WLh$*MH4d+-&&vvFH%_h$7y4RKAzDX7JWQ#aFyl%3Gw{54^RMw`K(V$XnZZtM#6< zyfv4%wpecQ)-2wdU2&VYX7W~O`hDK|Fo!qa`sq1uZsD!6eE;K2m}1_t^w;y&N4%A? z%*gc>z@YZ-6(e{x;Z6|Np){o|`T;4MOJ%+akZ|z<=mbcdN*5fA=d22Io_1!y_w+ead z(j~FAL;7DiaQoqocljUp@;~M`7hAh{YhNF+wVtQ`-m-px1JvoTN`-mcs{W`8Q$Z6o6lSCwGvxPcx%o)v6aVL zf$p_pb1`pr-6pmuZ@qf}T0&;Ob_!;siHjmghhkn7=)@|1alGIZs&M43Z^6!SE0exS8a=;>g8{KkQF6N9A_80Pi`qZ&59JVv%)34g__x2KNzhP-XGgZ$Qo5m=sw=9 zV6Kf_xFdUlWDxs;aAmYn7(1rFuq4|B->?#Qt8PkR$gqxrVXQ`xF>Xxun28ev_t+sq zQg#MF_4dn4=hvl-)PW$(IWoL~nD2He8aKp6>?>WJ;7|r0?pNM)R>ISEFpWG%iqTCdt|mn=$so2gTMk18w6&3 z%o{A4F;D0>L&xj`w4Ml~W`qmTGdl=DGes>uF{1 zR<@)*G^0rF+4*Ln`RowlE?!_~KM03rDM|nN^G(86Gp(fJ>xFi94;G%-J@&sBBvia- z)8!ckjGr)Y!tlX0VD2cKde1G$-ybU3zH9XRGbI1{?0T1bZX4-;ei^yv@Ox7z_(Z+y z=e#I~WV;~QTv`>Bs1JwuVXr@QK(lkJ!5@aexb2n%KAvrN$*Tait6)!wAHX!(dyJu} z_BmvDw7^{(4vk}Ifk&=m$C;FNFVPCgw^X~Pe)BfN`s>&gES3PHwX1bm4ud)R!|5u) z=zq#(FpDmfVPS~7dx>S&r7J%&oSnb?!Nz;_uXou;-fvB?!_LQRSMse{4E4)9>Z;&4 zcXhqLmf<{n$hG0{qmx+OBFXQpvF$cUo+~8ViC!sLh}0^MLxWY40WeNuS;m)|h5@;i z&FXY=faDrljb6L4J4UUf_W~u6G8h#Z} zDml*DnbRa!*=L&^Nq2~qv~Z@R8PYAhyCmUu7@P;+NhUDX zMtm>n#Xi40Bgtf+@fReM*yp;-lBw*|bxqQcvDf>CcF_SwbHZ!`ORD)$RTlW?$CNiYRszhrmHu=w>w=m~`c@wWh+uGgo@ ziGJx)NfBLJ%TI?OP;k$+2-`zd^xxWkGyM@lz!bj~DQ@PcC+%9wGU?Fzeyx>~BC;*n z?_DGs1++7WuCQtY7sWzfwD9`@-I?sxekR(pt)GBNhPVtIVO)yeyD}i=ZWllQsvs%o zm|lLHtAs!R!ARE+@SDg4vS(INAd=pvL`^mnCfdn?wthC^umzgP!M1)@vaPLOYuaR_ zUpXc{@eZAW5WfrX>FQ~iQ4o{7r>7YCDD1j1tRS^u|a!E`^l22`8O zL#sC7kS>EnNk5+N*BVJ`M>?j!uND(!-73GSI4kQ&07FUFt@fkH@##d$)~(UeUyJ-; z(pE%!tn)J(+Eu|+kdu8&bTn?K-&h8> z>JvXJ0*-=+c7M43>3+YP68QZ6pkFmi#NbMmw{?wyF8|tZff7etD^k?2#77{cfNg=jS`tm}s?Ier?dsn<0>e6>2rf9pP`J zmOFl1G}vL<3f|0xXdUMvmS*9g>bLp}fZ)Ce_P+gaM0 z7B}}Fr3cpao&DD%F$iFo`P7W)yZXy%o45R%F+Vh~i~k;ssWG`KG3lvp{y`S3Xi01Q zwdCYb_~(G1Tus4jlOg@1hsXIp#IVRkV;%^`z}-{yY9B zf&Up6h3YQ#f5^nHPWUMva0TAwlv7sBZV3bdqdh+-veblm?K z#@ZGi4Qxwu&iYf97}fg)Wo-+W8H~kCH5(0D}Db0|WY3Ln)g$m&U_?QDsU8W>wpNdLU z{7h7$tQY=!nG!`yq+E#}$)xd^w8=XR3i3iNHIW)8R6VIiFU@E9%1W#BMpcFu<{EaX zo*JFfH!wN}=G2Rxik8NxLFfKSlCDOKA;Tbmp%is4p_X(phEX331=W3oiSU5Xn_O%t zRgsWyWgTc#ed%E4cIP#b*24@jhub!|L`M$#$rsRTEu{|_-1!btf`Fp{_YJ##L{BM{ zd5UPW-qN2j5r!w>N!dVp@j&T%jhSt2$Wx8W9Fj3+)WG4RmyGzXt+4h&9WsBEv>$>^ zFT9109W8B#A(A0b5b!W21o7J!WR#eQYnD__(wC_-$&VAHW>Wgt_y#G8)`ZcHZ%cPz z)Z;a1<~IoVjSpyzccjBGS(Xowf~--@gS4C@3NI? z0o`d$%Dw=9NmoekKp-QVilmqv+y_MdNs#I3j$&ypX0}ublXPv3lb+llJ;bJQi?&Ho z%PN&{xtS$SI%>D{GX@uXP-?+gNF|){h*U$r`ARy8!6l!PUPr=pAnt2maNEyHd$QoH z`~~YMJ5T^h#aI<|ic0~t!C$2pF#69BmifyRWYmxn4Y^oP+K!gqkal1`>EAojEQC)Z zKFDmnOiGe&ukj?H;~z+|38*OID|nv#^Svk1&seUO{7l*sE9@SB*}E+4PE*Truo!#{ zLBJqVy45(6`k7>>S!#LKCgXm+BuIwZL;z!%Mizz06g1T(yNFZ~5rF`LjOF(l}t;OY00Wyfr%u0Lx_gDn#3$ufODUlXYeFfFB3TF!calngEP|J()6s84n)-bq|$wz;=VA zZj@>0?JU{1m{};7fgun;Fp5*rlqoVk6&*HB#&dvLIWnFDJkOQ!9ANuQ8J|VWm?Im& z{KeHg8J|Y~lrQ5`(W8rHYcS!dQkKvcYpnFia@hn{z!=_1R zt=FKI`4?(Q@(~C+6~DsbTDwnW-!SD3_yVQ8ufS4(U5!zoS5TO6Iy&_$nF3?yJ}6Qy zE3{G9x3Vu-IK6sG))AwaufSgv3fTe_4_+8L>MxlAHT+%#l64ep5r)4#O@AmG$2d6suPhbCffsXW zsa!{)CRo4*K2s&2pZF6nrdS#T;9;PvkrciP$6Gf~icvoguP}fxV!) z>!eb0VuN%PJ#|3708@1HDsyNDFjPx2lZMOMn!X{`}Cw z9jad#Koe^!hB2o=>MP!@@@PrP<*_BOA$PE21oqY_H(zY1(SVEX-U=BhH!C%?P^k=M z9^pWM5|w#*(I}wJ#SH#Sr6;q}L|<5ycTt&_R}hljt58a6geW~LP2bs-gIFR~!>ycw zp|(;!01hKXv5JvIh*Fw~tEN&Owm7wGcP9=%Tw5rK` zsCS`(?Dvx|q@iyp@3V2RG*Y4_BHW$zXrbK2tW=Y##8@eJA%LN$wbGO$G1}roAn&Is zV~Am`Er_PSrIceviTCJY4`npQXt^M8aUeHZ@^Bm|L*u%d$ut;_D`2}Zw`VH3`A!+C z1f1Nr7XVC3K|q{Tm56@4NNfQ+F0?0(m?*5pvt5#b}7&4Kr_xAMw=-Gw8!f&tJ+$Ov~y#P^MNzBNTi7Rdz=^INqPqDJ4cybivS>){(2=iQyvZ(yLHv zDpn)1R0^UCS1CnZeP~tv!@SrXw+fYj@EQ_8Qh@A$QP@|6($ha8RF^PXRS9z-Qswbt zg)yo$X4ZGBtHLo_Ux~T3rpi+TuU<#>3&S)vRL!g!X5T4=LB!b8ltouGQ~ku0a9kS| zFOalrR|R>qE7U4lk)rw?O$I|CfS@Idtg4~(RA<#;R!LagM};`8RIH@=AnC!rD%?&I zwo9gChDt?GrmOI~WEcWjU{#HzMT1rQShxC&!gfoPhwSUC($f6VD*T3#vaw)|$+;>S z`8P$CNDf|AE9miYs&yC!d5ypesGty!T+F!E0|d5|sQ6^|$PN|Hh8ONq@oc!)ZWYgl)l|j9;KhBabmoB? zA6D@&Sm%g}hr#fps%e<;=aofCieY$Y(g{^POi+jXuP^CzO{JuuH+-vl6bLRsKGd{>o>Q8c)|A6@i7wVZ*(K2w!pIN^DhaY><+j+3gl zuxX^zsK(e|CD5BD^>oB|h|jw-Q3xRDX;X{(OU(4ZD~OCvx2xx2tj>o(0KvR$6zu8Z zJHzX_)ajV&&MSDH{b8{&YHowg6V%)Wwbj+!27gLaa~qtOq~8$2!DwF!Ck@;jAS=L`2KsWVOqpFFJw53r%K<%ht z7n7oug$Af2sEb*i_xUh2b^(zi$;hGAuoaGPXz?4PzQHhWPE=n*TX1qwp^A2zrjBB} z9mX%fTQCD60HmO+^VIliP$kU5e058-0+)XcX=~at^+vQAGXw$%q8S%0v9F_Vu2P@J zXfih`FP_JYH*XTn`0z)f887%)G~*uIL^D>Fie`M_6Lkv~N?o6+;h?%As`*@fkjfEzXav2DJ@q;>wWrb0futwT}Ff7j9b{LiOLTkyNZ-a!% z<24(ZJ^eOClZa7521lW~n4`(Zg0Nm`iF<)2Xjxcz7Tv#4bB#ItwSs8plb32x zdl@0g??&&e*6?|bZ8MHfz#xDDCEAZPa@zJo%_Nk2_QFtr`3uDzLpZqu#;M78O$X}Q zrWwGvn+`Ku)UY$S{hw;|V!giXGtE5)_r+n&Vl>==uQb8plUxJ7(frOBY;#g%&{d|n ziZOAhmZZ_#bD9tqTMMtE7-Sd(Fx2#`Uo=ZG1#Hqr9%+A&$n!|StVS{`0c zwbt_R+M%PChu7vQS{`2GI%|1&9nwXMUvS~#6!y@1V(jYPu-t>#&Eg#}8_6C3PtEnp z(B5G&qivS<7mQngz>~IYhF6zDCul!qb?2X^X^|0|fmx|KM>`SY9+)(HW@sgdER5Ci z(?~^u7OK^AwVn+gmuG9aYj3hZi*xOONda>)8{(PEwK#|F6Kv61t(`jr8d{{~UR|+K z^aYnUX&)o$>p)-&A(+oWu$;kvXkn-OHZ6aYC;w9{i7!KbyHBg9NA_x`BKdp?ivpHE zl3EdlLNC8$?%sM-+W_NkSf1q@FE}Oo7-&j`T(^*p|4z#v9~pgGi+X(IHQ=J(3IqB2 z8M*PZ)=WnKs`cy#D!QN@#)5#dTqOR=)hZBw=r^sAX8fUzXEA-z-*~zi5IO!(tD|4u zuL9Ft9)R&flMDz3l5!Is+Dd;z*MXKi(T-(whe~vKx;f?@wGN(DW=Ez>Q|LI;ll3}0 z(;Tz#u4j>yJTU9bWO69nf^YiTV%2ey1A=ut(*NPq-NslqWD%((rr4q`an1PIuPO6=7`pRV)fvs7-kchNixut6=;lH`4LItZt%9$Cx#j3BZ(O zYIB{(qUX2N-C@{MI_OZdDIX?X)LA!_A^p=sr1NAioeW(|Ebgzaty9uzlXb^1B@r%? z4~75?JfF%I3(IHgc!lK2Tv1cLoUh|4TtS|Wr*O^kbv%VL3p$>{En2SQDct)jbv%U| zwMNHNxQ~i-85mQn6l~Q8a1Kz~JGO50pG~@DEHTL6rc+l1(?F8^iUMej-Mangf-sC( zDEVxXr3d}#knTFVcw@Y%gPj#;fx%A4b$qHg@(jx3@Oa43D4^ksH(q)4^uwQYw=lC4 zCI|(XL(GD||3!z*1L292i(n)!b&-bX`&r>|_0j5aG~y2(pX^&JblBWb1g13}>P9dT zSN8bujdiy?P_}NSDGj4xnKFahMxPCuj=Tz zUuo7r&;3gMMtbg7LYwNjU+LRSzZDa?xL@Hi9WWQc>qy?QsY(AU6O5#6kJL(xD`mrJ zQd|8rrWxB(^r%z$ytiP`hgmIW{@8|=Vi&v3@oAiUo(XslMk9zAgUVj$j zi7E%M5}#AeJxR++`gx4ylhgDHbTHx4|GT)vK~{dM&!j)i)_=kR)WSS{2^N!<3VQw& zNZA@Ry|lbgKL>5|aIu4=6zRig&{{p}T}q+_e58+|z~?H=K{_Mv|A7=!vnP)h;Gz zU%L%FLE9T+z$a)v@Fvv^;9=hS>oHvaPgu{}8_F>T&9G?y6c`;Ctrp!3Jk`?mF!aC} zAs6g%Z-a?|Ip@(C{S4O`?9dFudssM{HNwD;3Q&e15eNW4jFiQ-t-H@ zI84$DlE4{}1hxq$e`mPNLPzM2hWjWr10-5-!LT2B8cG^H`MZH1koM>v$~VA7IE?^? zUR0~NzYVBl`!$%R4-9``Jc1WSPPacY>|pjg@Pz?;A~x@roQBGba~MUNwMJCM&nFYv zW;Hs*g_>lu@mJ>JqwGfR;{SCRQKej-f~M6rYU#*uV_h~cUzcRWcn2>~06kIDhLXK)-0B~8F>B(~Ye$@wl>+2QrKSbihz! z9L9N6!VFmHeN1lfSYtWU(Uwz;*!9{DBzp_!(Y9P8-zWLwd?Pw7WIzOflzZ}w_ys;6 z%CbD8ob=8!LVfgsp*u00hh0`&)}8sr4oEM-d#hWv%6mHWg~dj`q}yP*5uYuBP&$&f z&Zwa;))=QVKBjLp;`2j*i=uGu@>|T0`R^1x#f4pXPeB{+Gd5>VBKKRolK>1Y-FVE{ z50m|I-Q@_gzcXIKWC0u@$7zz0I~hgrT-$WhmvqYyRd5oOSiv!B9SyuJI*FRUh)&|^ zHPK0YeO+`ClYbYTMEhH!lQ?=$bQ1gj7M;X~hoY0X`pDQH?IgHN`5F^EVD-$Xqh&9Q zPnkA-r!f77_O4z`3sGfg9VFRW4fazGx2S2h-n5sY$J)fr$DuiK8`Y-$8?(q z$%^qsQre@si5G?@)iWU-5bW0gAhNQ7Nl!P`H=!S?;4l({{~K3vh+G#A61chEz`J%R7`G+ky%NuT~Eo|M!|H(`^K z)^yoWQ#0mjewt`P<|D1?UvHa+A-zm%`u$`R>R=skFs85SSwSd+HF1CpCjQ#UX zJmWZ*Z{iup+5!{LI7WS7;u(i)iHT<%70XRL@=OmXa@&b_^BzK+4Y^nRj}(rN5NeeoHZ%PXKpwYc<;9+eyn@eX}pDdA$4@s zk5#a6217xz3bcg-f|TfsOSIx!CVF2mb!XvvM|l;@oMVR0Eb<)H@y~CfnU~+Lf|+y7 z(qgFL^HU0&KQx)ip64b#`MAh9ls>+1>ds6*?TKjmG5?y-FYH-b5difvV}L?DX6uH3 z06%6c!VrLT1g#h%R0RWakblQ>D9C}vn4ls&`ckst1H9-M=&>Jop zAO*l0?A#7xQ~-Ap7or2Wlh_m+z@0>o_yF!C;%Wp~F~uXEF>%pz*LwFDxatK=Wxio$ zlYpO*zM&NXOcNP105*VkY!wj8yu`$mfU_8X#R3uiu3Lbc?KrzVAOIcs0YgKr0|W3i z2#ydwIN&$5M=*R)q!*7Ax;iAF3v&ih(e(8960lB0@sS}=kjIG`a=5qy zsW|L)JiIdU!JdF$FqIL8MFETZ9QRSt=luD#=yUdbEBc(F$3>s>W?2AFOm?3M;EBn{ z=fE(49pOR%FNKs{3_xvN=N)=cC~i&YP9?tv%wXiP%v_y@Ha2s0+R)UDnlyU_3l`4S}-lZxzlkw`59neH>P);0?eTW-Te~94M!z3Ffg#&3YL|^R}5Hm5ReiN%}N+ zb@RT|B#O0cwV7%OGSiH2edx5B>rxuA?x?-`Y zrI~`LrM9J_mflz)YH3E1sHJ_@idx!ygQ%rBo6PMnSx%))!KFn3qNAy5tNbj7%Ln6Tr~Yf(PbB7~^76 za0CJfa`NW`vskRAjz{Jkj4gNprNsRL%8riBN{{*5g>K*lz;@Bn!~*}?6zYgG>~K0D_J*SYq+4Ze2Q~uSZJPTV#|hvvfqc4hHRB zV=;&oslzKQ+-pP@Td;fGI2=Uf6R=DA_C^a&)yI@ruzTG+aK^1Ap2rrApIH86bH1m0 zEqu=R!#)e@ReW4$4nGBgI=w z)O5{73+kMpS78XisQ4zDtL2slI>bEoRXp1Fu7$r1dgkAvW9#@pbZkNYh>q>sN1|g} z^~^GxQSA1&a>o`ZvvSAwTw&#ot)bf5nH9kn>a9~SMJ_H@`PPy^0tfH)pf_z+o>pbM ztmm>)*_EjcRX2 zx-JfBq{};4aqlbwp(qITJJLC&knAgve~d~ow5Phx*7hv_=-I;>hZ$lvKzsUGuks9X zh!yuHA2!HkBjDK^_KssxXN=WMR!_3(NymK4FnVj0wH;I3y5p_fH|Zu?-AGA$kkDyX zCEfpy74=RP=xYxO2(gU)wsWkg_xAt>lR{0dY_-bi)VbD4{s<=knPeIrpJ%;_agF@q zGx=8jFSO!bwaPXz!+S?n z6i_)wyFSA9tx`NK1){Jo@kyiSw_C4ZID*ZvY4pvVR$h?r{W+>141)lMR@Ak*`>m)& zYCdaD8)efH{TZu*jPBMlf|Q>1Z%$tvv0h~*-K*bQF*A-=aCOvj+KSo_>w}>nUL(xh z!;7FH)qk~WNZFLSc3N@Xx*l1fgE!=jvWZyK{hO6X=hlB(`Lx4$%gU!67jIknv}562 zE1z}@xNqgtj-MZk(fNm`Vszg7oJZ%~4{akcLAkPLO=UI{dkU>PZLhMqSq)*N$@U{V zD=^tCep;=z{j7c3W{bkiM1A+7?}XT9usi%4WqX1|YD4mH+k-*W6R598%xGGF2;ni-o zU#c>WN}4j!HmXVp1Q0@Ar(@$gA|2;viZpDSEq=~=U!#+1U!*xD&RH z80%s((1vGh6EO1;-hteUHZyH{#kPVa-RE!E-ol8%-F4Azn~rX;upPI9eoa*eV)V-g zL;y%Zw`c-)V>InGm_KxZ3o$z9g@Mx!)Wrc*V+~w^8Rtrv6B>YdGc@pLa;j$_R7P3`YDk;Seu*@r zdEj1j-xwAJtYfTiBh&DG^9rTo%K&sk=fGiA>7bS_>lJvrD&5jjUEjc?tXn@0tx~tN z1b`IeMS@ID^}_?R(A@%cG*ac*zA9QsxSw$*&IUu{zDR3MzZUL3fy zDt!|H>HKwp->|-Q*@o^LfxdafTlJGpNAtG_rXagIm}XP7ZDqc6PDRhp0y9{*_J4)x z76n&-3E72iq~M1@IVsIGO6l{Hfqx)5s)QLyFMl7{mvyG$B}`}7#)(QaInBNt*aj2+ zU^`EHa_KSncK6kwOuFtyAb)qxyAM%9dC^RC>py`MGe``9f;_D;Sv$XdSyZuc@Y?dNhM!JrGUyO`gILKEQ{P@3gSuRcL6~>iJWE$;z?wxJ&4cq zkGq0+75)o%5U;{-i3s9V_}`*}iZR8_N@+fiC^nK+b*yR{S}mv-TL7F=J4l5|rM#FH zv2HN5K@eY0{Hs~eFI5xqW=yexbosbnFrC&msDdT2qu&ZrvYdKS*PsOUxxRalg?)b7 zGbo`dqD#pb3hyn36IGMhM0v;1pqm&tDExLL#Z!X}qB$%a6ZDvsfakmugsDm}Gzw_A zBBw_bD;y{jgnDM*+ZhF^{$7xpHkuJs$QA&8o)d&xC98y6u^`B^sUajki0?@CUmAql zk?QHBf}E&X?0H{Z!K$F2+4L)GZ4h4uXt6#h8l#3FZ#Qyi4~TmAv!F!s;y0aw96X~^ zlcW!W6y)*cpc(YYmLMC(OL?I^YI1sO&^MsmWcBW#LQIJt1f?KoF=pb-O8lhon;<=f zUYboH9yZAio0|3*28Su#S z*v?eSV<6k72FdCA3qf-*eS;c(Kdy<(2Eyy=(jI7J^smc7g$TwdK+R;mYIzgYE4X}s z*q6z-f>4K}gVMoMz4h&Sa%YT9L7;A!Ngw|eec`~`!^PrH~Xy-57RtDN}doz5P1;KWY5GZS<19U%W&aQ*qYtZ6yisH9XIbjla*F*6%&Y(^ zsjca>>Gm*IS})48uSbMvhCu*BL+&oJ%jvO&cGQVXJ{Srx0qD+5USi*bnaS|m!^NIQ zX15pHc|H8w4R&4+7dF}XRA#`3c0QFceq`rUnP0Zq8}kiCpV;|3$8>w_XIRdD?Nd9i zk3aj&-U^d!b8+(a!{%px7;nTEc7BkXmGtX&8(OXySr`YQE=eJS1!+_{dckFF22Ei|0USSW#3@}{Wj-)-d!;9;l+STGK zvNru=kHI)Z9~K3y6BzBQL?~7`_}e_b);PH0E!H`>;`K8)xZ>$e4z76RRtKL$_YHRN zIdqp02cJVXa69-MdQ!Lp^K<|ON#fZo(OJ{+Ic8kNB!j)Pq3jKZl&05rgtK&PR&xhx zmdH~9FB$M%dk&025S0&?E1hC{p+0wyxz0T(EPM|efJ8&Cby|U65Z5{l~zfV#f z==Wub?{T=>#bFR%yyVy2!4G`D*VlnP{>k%hh(FUEPVuCL`GXz&_@^<$9XzROJ<<_` z@h&j3u-#*k!$>|HQ?oV=8teERNstIb`;2#FGOam0&5?(QNR{#ov%>eDH0SYp<>z+>m|#R3o?}+q@rDC-^(I zhwra9f;+SCw`?f3O^t(7S$kk}v7Oj57O2UQQ1G)75oK8!75?X-z#>K^g7Np^wZCR zTmEmrDjw<7)9r_XGnsB#j|7Kf*3G$mFTRA8*pFH|N7CxYgNYS*{i+<#D@RkNIkoiJ z)!;JJQ!$L(yAOj^S)baCl5ve)to#S{ZZX{5@l09?CknZ z7jb7gSJ7v6oM~0ZTBdesskEV!o9Bqe&OI1)fn}gn*oxgzG*W$< z^E8H0FM<*l96ipK-tOWYh9UDcEby~h>fcKw^Vhy2nfv-X4`K+Y#4i83#6^M3i&cl= zJZ>8)@@N_DbfOFu78=NAU=q zGZsT1EUfjQ`8%B&mh-Iq2E`o1APj?^{MLzj1vE!k^R4%2u)QaoV=)$33B&pN`3I4& z&(Df{2|qc%!3;Tv)m?LjiB7cWinD!{V7T2CUKfdz-f%`?hyy*~i;Xq{c9%)r70z|c z_>RazP_YrvC@fu~Ud8DZ1zwO^QY?l=dPyBJ8bjf0SUe&=HH7epc+nifBjPS=$X6Hw zDzWpzLn6gF+CFDUn<`;Zz*@xeRA*EOo=8|2)str}LX;w#^{a=hU~K--9L*+MYt>VL zyo&Uve6`j<4(%!yC*br}n<`KW(s;1=j9cAFr1WN*Na+`ERe@5#t|pr1v0hbRlfiJ) z{Axf5Pi+zgg(RR%la-C#GeZo7PIQicUOi4i_^*% z%R)N+Z@}WyO20KCxxsPb+vl~{s15DVYuR=Wa0paVAhE;;0*(XBA zGjIFrsSq>DHrWKc^kj*QPCFOE)77_cW9VbWaSza%J0T~KJ~oXMA1{{DyZ1t_AcLid zKmZ|>xH|{S>EwSz=6XF9nM-;Wf=yC6wwo0930+O&q^>tm%&}pDPP$2XYnP5{)h_N@ z$7x-mDEioD)j*3&%FTZ>e6Y3JIEag;D+O`}uOT-DeF z|HIxWsu%_V3^o0+j|+9wBu5B2SM1@dXn?C1#?mTbIA3csM80MY6Zz^j!c~eHat_;X zv@29JvQ}eVwW0I8k(u6>CN2zTYS^_u*#OCCrfXt^urpq*u70>cFaNW!qc> zs*c4{P`?8*GNX3b`*i$n*Cn>l)|tB6VW@nL*hUsonwbI`SeWud8OFjP_i8iC0x z;JQpwu+rtpR^GnoGLr^3Tzb;CU+7R;{b!dNV~&-mJX`tuib(2@*F;jcUU&V0A%epm z3JKjyuibKutO^3mE?E&=|F>v~6CSv}$M{gl5#J(dW8CUxr{Qg`eP*~u(iYELzp$(` zS`ms0elH`^-pbJXD2w!>kn+D=GFq+)m19QB*F6qH0LGKVtTBc1csSh}%Hv_Tz|ad- zz5z^s*sAOlS7_fVV50TpJ@d2|TjFT-cv^T2ymjbP z6s2AS@}y0ugBW|7vZ$+l==&J+^!k0Rh{bKRZ>mUX<1QklmTsYV#|yzpOG3|lk=FegRiL$WS*V`oWrf-pqw8nl8D&5OfRyy|tWfOBsUQTOgW^m1 z{7}zMiaql}&1A$hzIq9np__DoJU52lk`?$($z7hI9&;iBRgw}A{8<5q|i9*lNx zXEr*fksFmQ{Wn}4-PPEQ%b6;%Ol#rMUDetkagX?+X6{AEDC_OC50KAJ)onzoZ?+ey z{-UEBb@=y7qiR|kFP35-c5x5GXya>Gyc8SKTV#D!Uw4(VV;co?ZNkb7)kfoJhIE!f znk~f`sW*w$lQN~-EpF)<>yn1f{I|JEv%G#1JRB+{)c_kLN(mskX9%2ux!m1Wxm&HT$s)!Bqy!BBP5XK|y z-k7i|MOX$)0ak+Y!M@n)t`(Lj`e1eSu&RYs3Ro7lt@4e!VLWBh)(@*<96i)1%o9hG zn}$^}j&dwc?a)>twI|wy*|83o6buPdlRh7XX43PiVT)PLG%^#*Xcr1-=de|XWp&ni zPH1mGJj_gvP73o(R3DEB!>w(CJLaG~JIWao#uMT6@gl4BCWhgbHkp&ZGb0R^OITT{ z#=Bv-rA>gL0JE5_YUa)kL+v4fT)ziNTNoxKe>M*vNmu8E@$DmZ*P$5nq0zzX!>(Xx zxE_fI7ZkDhS{ zMFU)PI1Ia0UCiWZ{cpqMEP6J*f@02>Wz(VMVYpM9yq=VvycULi6RBrf0thfmWQ)?H z{}631^|pt;yJ6U84m<-j=0VsCWZvVE4iG#monilq^v!u5Ruknv*_M^uYp~s_g*;rz z=QLTMiEj?@Ah{gez%9^Kky!sK8Dr zA{h_`pdT4}5sr#|URZdf<~O#}nk`v>TO5uGfUjcl8s3+i zL`LJcgyXjMFh-kv8?GSFz6M4=8?S{Yes+W}WvS?oNAYAbND7eH=L)z`ZgK16?h{~( z{~QnRhNcyyaf`G*DHCb^`A3n~ooB;wdwx9QrX(ppd!6deOX2u8euIb}Ebde{UK4rM z{1%>wjE-I5RICUkJ$gHw?F}PSsx4#{67wtP40s#bAJ!F%LPVb5oCgzG1%4SAjClwy)(&k1yL+cio z4iLnxKYJF5#0^;-u^8huuYTs&l4h-ls23oaLDtstYeQ~sjVS-mA4sSFejL#c)2D&E zqXrP;jyNlQzBA%`2TA{Nu8EYNh?w-B%Rqcs1h5pu{e6U-s!m0WlvEju0@i*^#gL1X zyfFq2oqm65`rK>Q&aJpHmgG0GSjDHFfY+ZyRbhz^YW-UFtz zM}Fk_!Vy=bRxW4ci*iUX~rDp?j2G+$?g`Z zAc=29D#;xJ=bx8Oiq4|@8b&5t`3;D+bL6xt46uk#0lx^XK)_R_n0lJqHL_NfuxMKM z$W)ALtQ<5zu#ti@5mq{^SLClQk&AwlBfSa}^Nx@1zo$m7^Ao?YX?kS3N4WxLMymWt z!H9VQwAOo(pLvLV_P$RwuFQ=*?zwE=g2+pr%eE}?sYdQ%pK8<=e5!GON#vWJ?>1Q; zi3+}zy)0W5X(fevzmar6VdN^0qG~ooDwJ4_s5lWDNS^JCm_w6GBKLV5mG+xRw4?F@ zDn&q&ca=(O5_&#z(V3mf>izs@l&8z>2^thUm z+dkc!bl0bQE$&6u_t2L2(D#Mzk9_J9_$2b62jTbUk>9}vY3A6z)JGll{C1T&YKP~? zenC+SJwHBmMh(HdrkD?N@v^9(*BwqlLew0K=x}0_qtFh=3$3Spnnj`B?e~g=dOEvB zR5P>=fHZbe(KAX((z{2>NkNF(3h!!)>L;Oh+D5%^!YaaRu0^y=z6f6F={O>4v2os!*x`fsX6Nz1!?Z1 zb8WadSe#;H_Vn@dO;ag z*laeInsjn#PPCc6|6cSKBrE9@5U}}GI)Pru=-&&XmDq9M2m}yJA}b#*i|*492>AFce_47`kba6c?d0~nSS9VNkGYQVewA1}Iz0%AneM4` z%npt5dNd(2rVu&$!^pHoF={gZoW@hU=#mt3MJ&sZ77ejH45NUGdMzFFcNjg4iyqxg-GA%QN09yTo`?fFa#tyfvt{Jz~@zXEwNR zOn=POo=dG8_X-QwGJPzZ&c?F zF46-3511oHt*2u?^^N_31HQ4J zf5b6I|QLphVCI@q)?;~Qz5vMs;NiJnp^8|yR!QdxT zEG8&3R0^oaF>c5!lAcUA$A*#TO=7xGtu6Kirltf~vwTcISg<=|=OFBX0#3Ro(`_Cb z+tA}?@~g*sgG28cvEJa&sAg;_CN9H0vPgLvQ1N*O_~+@C_#7J4IQDN370$L;Dk@Ro z4W8{{HzP?AVJHYU2V)tmdz+zqn0&}PG*B9J2gvE_-m&LA1^e0keQcBs_OY=#)5pg2 zp|Kk=Yz&+iJB)rlE_RtzMC1Vr)9aZgE1q|1p$N%L{duO;%>;^Poe2c zVw-uCe&_O7Z&BpkmA+wayE@ie6nVTR7T&bYE8$`5V^QxR2U&;H23un@kfSu5z{SC2 z(Rs6s9|TWE*K9kT{#Fv(6*I2{X);Lmr?E2n`C zBK!Y|)zO&`VsUGx^I|&K3_kMjm^(lO5K$J(aEWqAD9{w}^R%3F)=Oz!4d_mu^8ir>)sZlc+**N z-kSTmIX+sl=J`gw{sJE@f8_aS>HmT63-L>Qv}l*by@{cPm)}pZT|j@Xk6Z8Irmz&n z4KH{D)=wC2yn+OiCOd(f+^aG331I2ylTYHFR0U8+27KYQrMXk0Z_qWL#zkRl$t$6b z0^kUbL0vfNV{XGYK4P+u`Irm)E-uq!P~>~x7Y3j9G1ux$+%gn%%;6dy#f8!Z*WwcO zVt_t&567GjEBNoY9Moug5eOjY$+W-Y!swI-acj__1bP-n%bvs?L#+vWq=_Sdpb*V% zpd#Koh511f@AZPKb@5&=ILr|5^@4U&{CE#(YizzR3=fL;dch8kc$Mc1nW6C&9%UF3 z89y826S!uTH;WG>YZ}M%XB}YXlN4XgV~*V##jiy~Fdr%f)S)O+*&?A=F8$`cP2*8? zdQig1tsY7Ti)R5Ozj^#XlCFpzM~AnH?})ZWkS&Y^$EbC5d}{n)4-3C{@v*z3n~%I{ zJ$&pY_KKhAA@7s^zAxma``8^cDBfF1n>sXp0-Dma+3^}We_VWTPdV+uG(3?Ut7cAo z4>XY+A!0`S&u9_>!AdTjZld7n9l5hL{s+2fPW%suih{Uh)C;I1tvAH$iSBO1WV)gt z{)A_8J86lJ$!5!ZMCq3Mm^`o|zJ`a%=Y{coszQ{U-rW-4*F#j_-Blt=P5?_wi}u8K zstQ{o3;`H9dAtWSy+=&K2pYOKzG+n$l#}z1*6PWCuj5~)@y>zx6IG#6M5Tc0b+Tp0 zedMh?;UjOzDIa-(-}}hxaW=jun!NJc@vyJa$>BTpdd+62}-&kD51NDp}!&$)?x#i50wIHA2e4!7$%&a){RNP z&3ajE^J2mCoUi~V(zd#K!euON9FW4ujrCCWK?5IUeH-~Gi*4eg?0i!nW%gDHYE;U! zJE}k3nU)~)mz0XnBfRL6aPmKAi9YX|a2r#q-myR7|6%Pd!>c;Jx8W-gcfmrC;1YLt z_Y*&HhvLC0F2x-RLvaWYC=je_WdQ!$Kq#zu@c9>nHw%`UvjVVA8d>HehJt`))K0kN+uHoo$d-3pqG4}+Vh z?SRma!5ySOIG?lYr4*y`B9ArPWRs!Daw9`Le}m?d(xS%f_}uYW(&Hn zH)78^*{=ofbo&>IRs(YDb>Nh5Z%Wa@q?7h3aJ0;RmBReMK_uom3`3Z<>{*b#F6=0` zpHI=je_>eWF#8UmGt{26QHm&;>Qj5tl4KzWzU;`}`Qp*3T|cuoh1v=BIZdST$4|EJ zO9`(U*cOm9!@fW??cHq75urFJ^uiC!yp-+0TW}2kiGNp7ivnJ!K0> zKtw!mPE@%&&et=)uEw5puo8E7aJ_2(iMfDeTYtA-NlR7|;KT#_)5K&Yfjxd`Z^pj= z&OzzEXmQ>CB>elt{-!ZentDJJD1U9=uLA+bWrSlEl(luZYa+SHv~yTYgkcC{22<=E zT2o@X5Tu*4!(d7R!e3_iax2+k9_;V1y)&&8$;{cX%7|SU;vn{Uv0`;)_Sx{P$YF<> zBxuKADnSw&5SnxzFqTmuv|w-h`dYIAB@X+*Xrx0ZWdx=Hi}$gx>9ZUx*qS$X=3qJ1 zVYe-fxh!VB-$5HvHaVm!epX#grAooN0uH2oj)Xa&G^U_B=%f%zAiWVqEgrVSwUncmE+11PEwL^)u%8#=%rh^sRa4kVy780V4)6zBP0V zBy&@nyk3vx`8n#b?7Aq$<8&PyJ1Q*s_&Sn95{Cwa{+1H6g&84&F6<0+>`Z2fBQQiz z7H^D+b?jwLbFl*EKh#m5E#ITBuynt)o+axcRF(<=Q7I>w0TT2*k(P29sW(n`MBR&u zUOmfE(|qqZ#}RvX#nY#A9kF*;+^(7L7@>3!z5LwKjM5{60v9b^D=S?9?cLx!*WeC~}3I zbeyBeb^DCtBjxt`1;sWAAPRPZbD{IyhNDkIqiEKwhC1}LiA=I?Y;xt$W~bb?|s$??v~Y;_sNxtchqt{sFeGra*$V+m!i$6|=32bKe! z7Eo#_0rSqZ%AC!)+{qdehB$R^PnAZ%h&-puGA9cb^cwRV_eD3S<6FAFnprqshil>)2G(0L@Kt;!J~-`M#w z^<{=H+dz$}^E$$eOopG&gnt~I=i5jgzKEgnkO^PKI#Whz0c8lHq%iniFS!+mf0FZ0 zl+2!!&+2A5w}GAI&aJH_1vh3=DM$vyT1i%9jd@jjaG2}-Q=<^XAT=DC?>vWS56Nue zS!ZJws~4ywV&OZSTPWty?+l$AM5UMqH&G#yHoJYn*^Eup@o|J5-#e35tJh-zVzuf( zjk>kt*6Xl9Qy2XYlKSU=ICoH3>TKdd4kjEL5V|kf2oS-HjnVOOgZ}0&Up5YA<;`Y> zO9$wf1A3T;7W`%9a+X|G9Z7OAV)GM`vtp|u-yo#*lch5i3x!JGvySCq!} zu+=WBs2XSx?o7D}o<6q5#h;wA3#_V5F6J=3(nXJ~(gv8WU%K2<%GhjQBg-h{irMdS zvN6SL#zHHbxWSLdTu5sxH7abz&JOL^T6RlrJnoXLlu_?uqsrI}JTJL?OKDQ0T=6jC zmdooVEP3?GX!d>IX?pBvt;?>Dw<=hF*QGgSl(ul5t1mkm=xW4N?=W_XogF8foTj&E zx&c#Nbk%{p`!3H~u(~f+nzP)uF5^F5G*!?XF9d z+tS^x*OXfvBs-zpcKq5kT~WsLWA*ya|F&NL7ANZUfAOU2aY`o#7S4;+G_TTurWalR z#0A3KJ#`!MJ4&)7}l zpH-%A8vh(^?zT=*tDU7=wes6PTDWOcHP*&WqpA+JZW>h?c5&0F>P`J)*Xn&@WCY+6tv;pp0irGFG|iGW(To`k)W$}8n@PfcC(3+^>Y}gHE&G43uT%0zEL8?{@pSjm(wZUbxlLZ~KYn~9gstB0 z^C%4&izJU!Ry)hffDJt1Zp=*b-St@c#c(UO;E;DA#0R=(wL!@?WxG%Rc%j(;1vi09 zIqvHyCi!11;DS=>^#+*4Z{3a9&Nevprsh*mYp5x5KSk*o`u_v8z2DpzBFDM^ZK5>; zf@ZsarH$7Y^WBf}YxU>u6DZXcen`#QpK{k_#`*60A1Enkz5AAqsH6wS-M7+|)PQRW zE+^gdiNs16Xm`f_M@qkcLje&%nYys-k-HfuZSynt@6bhH$RF-!`8DuQ_h22oPWW3s zkNHLW+NFcXX?}g$#p4dYp6}^#j(=~3y~jdImm8M30KWF{c-9OR zxGmOWE=_?23^8zvelsmyxDw}KKu{o{D8nf^7`~@Wt#Byu@X%#K69*3Hu zRO*EuKXB=KF7+74ubY>94C2>TYdnVY>%0n&VMRDY(o!^4Wb`O3qT zZS!#K4g0ryJm%<|c6-!PDiSP_h~q85_MnGvceJLQUpyKUvs*9(QjVvYdC%hj!KCWr ze{+`99^-7?myy=h4?JSK(u`b`Pk|B<_FpqkV_oD-uZ5>@@*i4y9_7xs$l7y=5ngq= zc#0qq+0#=vsg=EFKM^!sX*3isU2uT3K* z?(rzka{hOZ1o?O4B>DFvD$g${NyV`q-f7Hygr^nMWqUrgMxEUm=DCeP4hI4R>OxVH zltR_ii0!zw-ViQ)>iHF=8{)q(to{AwCeU+{=X>r_J(o%ayrJ@iVh_y1)GKJ&6dR9={5*ip2HpjNg z0t_E`R#W1f2F42KM0jp$41x(Pc;&gD5?6!_h3&lB%Fe}i?>%p|C29x|CXV~rwvJxH zUq^KI66O%v)ys*S!w@_9+~2`V`0-muFBAUU$lWWDUt@i|gdex`^D^iE?;h-x&adMm zFFX7Ko@m?PM`M6{+;m2vIUc!&{(k1Tc3@_owKDqMm=K1pP-xhc+A#;RQW5NdZ z@>0UPcV90n=3MTjg!hM^cs=7qzdpe0FM=XLYq(c&bF}NySzeR?fv=as#@SvoDb|cH z=Q7i0I5p?=Jg+U3s*fYUJLaWjp*5p=i&XNNFTLgvm|#MhnTNbw*u(S*R?uy?*JVmq zun-Ah9&xP<|Hf+qzrH-_wU8Um^mAS{Jn*Z}d!6CePBmU%^K0!7(ohy(^4h}xA8^?# zgI7SG-;lpAyCr|`d`JH7ms&3?{`Xh+y-3@H3n3Rg@ft$0Nfu@w@3YjG*)=`yW^C(AFJnkH^q$oOWw~kW{f+{MaVZCSHS?Zmj$ZLw zXYUGHP|AT8UA+fV+M_5yUpeh1p}Th&0Ra%9MN6dMYOuEmhwDSVMK~N7?k(CV?IXSa z;uN)r@qR+4XuisO1GYk$dp?;Wh8Sk-{Ob^17*#+fD~H4AExA=;D5t?x7kS$dSYurA z^-wUd#M{^kIT|xUau_j6a%eGHa`?>{Z$qAed_Ug%A(cZ`-n2pwVyAg8=S2Rxm`SlKUn>5c$=`#HhNnyTW?hL+%&&a(0Ze{ z9*>0`zm&{A-YS{hw_P&ZXNR|_e2;wP-H}o!a1mg@A@52~YV)&nQW3)(($0B*O(qo) z^x6FHy$#v3DWP~~-deY{@JWq#FEX?L0aVuVe0szCDd+Q(yOK}WUnHOJ?nyp(+?Ran zJoYvx@|gu|UU)Okr&kjnVnEDdh@k_0n);Bso>8k=EK$$L3UEeXIMKhe01+OUAz8jH zeMD%~w)PRBv8J_;2#u54__%You5Rx$joRx8M?3qxqDUy3+W4{wM0fLf3s)tZE3Qj6<8Mkf*WZ_ACfecQ=hzl3HVwelq` zLl@j2mL+dl72ErY3c}veS5y#xJNb$VVvCEf@Q(MMzQQ{m`S}Ks^%)T1YayfJAECa- z$@)YXp6tM{DZYk8eHO6bHNLv+Xu7W+%u)MRAsqATMOEsDXk&W&-XLnW0Y;bE+Ep0= zt`;Y4>Vum7Uo0k8QALhI1vI3lH%I!4)b!q1sr;((Qu(7NO6A*4mdc+r-8X<35``Si z*|h-oq43iJUr$c7$!apufNFc(7p!O=xN^_oW$ps$s`IKmn*(E$wW@HuWHGT z-bW7-n-7Xaf4~jjZDck%ARyo^9*b5#ksN;VOmgV{hve|r=f1Ca_sgwUzV1X0`><7J ze#$azF)-g%%g=|?S!n7 zhX5vQVv3&uD@a3iHW*=GjNcft5!RyuqQ2p6%-n2AZr5B%?(;lJZbgBgs1^Sy^&_1+ zB*+~<07aj2#i+HMB66_YuP3*}`{U@ua!BYf!S5WI*{2~D7BFwJUrWNAEhdV^5f~yU z&GpoIes6jDoxD_1X|qgH`P&zg%4I7gl~33D(Sz}V@CrQ^wBJt;?6&z`!`2(q*+*xQ zqXD8FB(sPJy0GADzp<3jOzC-uzz{*1zOnzLpQv6opOY*OIWJiZtdT4}`$4i8amCM( z7#a&$;&U{}r%&;p*wem4VOp)9JvYcbPv}%~NI=LMDwTi;j$~WJmzC42?B4kW>7yC; z)AbkO(nH^0gi9?$e-SQs8~F>5*0=D#NDd(Lt^Ezzdk23#7}Lf-k~b8-vG*rdD+P?B z0ir#na>o&H?RtQ}kvtt$v=(}~`qxorO$n=P02JwDW{CfX>Ex4Of00hUjF223iIN=8 zj*%Su$4QPCsr*G-Vtl&4nry5EDHR4VDBnMh(|m9son{Wi5J(T+4f4N7<{Dx2Sza1; zDBqdnuj~>g2+tno{|lM$dQ?Ev*St!)Fw!CjK0z$IN!2es1mZ|A#D415E#~ z{MT@)jKA@JP3iM&kZR%;e|=be%6}sdli`=CHi%txyo>^E{7?Sh6K(JV7#4ih-vAz6 z^Y2a!o&Sr)#EGQGe)Si%(9TEF21h@UHW>L#+Tg1?|8d+#hyUeYOsx4n`0(C=0T+m& z_yd$B0|Q#XL!*G7D6=gZR9#bqHF|o_fYn^pFT4VXQC$&CpxOHbjBA`ZBa99k=o=tM z0$JT$Up%YMFQDcBE7Zr={13p>fPg-H2tl0?AZpHzNdcnfe5wi%HRqa?05OE{V|u_o za=;M|P?#NH0G;y!#5n7BeH+QKK-2CYFr{&9AdEg6G%&z`jn?sTXZBb9joG$O11wn2 zb-p9m(}4kV8Wq?Y;L%$T!sYUSKX~`*sY#OTg;ONic~d3XrqcuV^P%k1GXuVC9NDWj z1n7go!T^z`sMa--Y=JgweE?~(PQ8}_!jKMvsz+dm&{FK0!VDK<7tf-~fMlEz4EGL7 zKC2E%K1UyseA*og5Uu3F#{-&DTFD*m1QdeKxqv{Pg@oTEu_!P`-3k~*FjT;oFB0Bk z_}(DNlSooZe-0SMdlPQGkUUlXC3zb9x8$kwzmliEZv!@={q3~~TuU}T^HzZd%)CXQ zKHyFn3wb=f*({J8PdOSO8ihTPssJJsP$(2ehcCBcw&ekP;dtx7$vjR*^$Zko(!xGa z#K~I@fg(=Ma|#ru_M>ayJt}t)>>J2)7gifZXACjS!6qhfCpphR1bvnm8)(Sdt2O5` zi9W#g34x@+enDkDDj=%Jb#3w`mA@89Dt8r0DvL`3MPqH>CxPCS2E^b?fofJa4GZz? zGyLcJGoPXGW^mwToK?pzP6?z$^m<4@NRlmb1VEukIf3T$O6(gkH1H_=JTowsPm6L` zCs};8Ub6V@2Fc>EP0}C_YzbUMF-ZJoG2Gc1*oDVFonwL92o)j6V2FVO_umAbq8KD1 z43$%A&zuMxK^Wl#L~!NZ${Vf(4&&LY^)1QQFSjLMJ8C6gg+B+j5K{!n5Y{xyfFX_0d(ZvWIObO-rb5Iq<<|btamBLD|AU>&u&4>!3xGKkB zh@lU=qJu~sQ;0B})$W|o4E*AQnwx&S-2);VxBvL}7^*Oj*)9*#g=^D;9&i%AWh4?B zfPPsPbeZUQLKJiMrmt^nC|?y( z=l4O)n9aeE4y>-oJDu6SBUz8AuN$zdE_fe+_wR#daQtJpO)F7HoQYsWr517u=ST05r(YvEX{w;1iUkIs#^*e=wezm=LTd z2e~VQf?IIqAC3 zbei4|d=ZWZejUL#Y_V)Y3ICgAG~2^I$w0r6xfcO3%L=dGimPxaTQlK<~E${|B}aL&6&h#|D| z4k4Xdp^-+yu*9<=Ca^g&q?%J&kRU1Tkt8X7sgjg#N|BVl$&{4-o*UvtsSU-qYl~6( z?PVbzoYG&0(<$XZ41x5(W@HHI@CJ=M2GDPG$V0Miq96tg5tJeHe`ZKFcg~k=j$SC) zj9e_)eD%3xGhw-8(`QX13>3eu%_as_>9diCyg!Apn?r=B`|fKLuM!dl><=ML@X+vz zyPWUC*#+l=_)_vIp_ifZP>5M$X#O8S+_cWtQWtX0O2REKO2Thml7w%*ED6uLA_?Dd zQxd-7ZX?V$@KA*z6h4&ZyYyc=%^Zj!kRISdExP%(J5piAa8VU*_sOTWzk45IMP^uo zrOc?=YZ5BLLjPu=BGP)c2o;gGNvlv1Y4=!%ib!kFK2${7mz_fCk#@ni$m=2dP;VX< z{_+ncM_LZV5J(@K0z>JM7GavPd3OVTf|Afsy3uN26iQpFB&FvwB&EyLlG4&_Non(3 zNol_#Noi)UMo_BiABrcF4hj{OmwE!7QVzrrNDmfHYy_nUW5|w93N-{=wMDPI>S6fe zFU?x5MUq$NFC?%3E|xGbp`=4aaBN5ow_k+Dwnv}u(JYMO^BjXAhB=fq4}aG>ux5?7XafVX!%wtWIBB`qu@&LXIf4%>Ob<6^ z+Xvx-+>q4pwGi4R^x1?V^UYy@UU&tiPe=n6%*GA~SGK)h`%_bM&X*xuksj_1 zNhRUd2I4DhRR3_w#`pCf0sP2nO6LYg0OYTSt}N~sBf_Up>_Q`n6I(bw{1~&mx*(d( zFUinj2YW{~V|yorZ~1uh05p#-MDFw0;n9($uxV;IZU!`&8LSAOP7nY~RY>TPWcXe> zOIU@9#y!GX!`U_A-%<7pY=Gf=gt3;#!c8IQt8g32#>5;8YLACM(b1X==g)*UBWgK} z^?wp>37=dHzr>04|2=%&#}ms5l0d9?b5m0o{2;uP=&=H(gWO(b*`x46Dhyz;j#wi% z_IeRxn&5S_LBu?M^)ilF#jlr5BZfA`Ym8;YHcG97MNVQ9qH);bs6&LVJO|^baf}Ln zvyS-25~=*sK4LD7N{I`IOWT7@kqqawzpXG82R^V!=Ljnp;S$k{o69ZF2-=QlT+3^_ z#F&9~P{h5SSjKmKA_#sc%|!s|_lsCd^hhC!DcjyZ!hr2u6W$u$1xI|Y1$WCMx^<)R z{y&KNvR7=~vWWS*$ePQV2&{r9!|SyXSOrgpQ|l$0j+^E4zqdpTH^%1!t0VRp;I-q? z2;AFkGNhb{z`ffhL;F(^OZD(teLmunHeP34idf389j-=<dm1r}wk&z|Ica(-RXEJ}EyiFMT7#(1L8kuJLs z8>RPwPu}hvHI(~gN<>s+eDXtZu~p}g$f#m!EyCPq%jZF3qeR@?J0q$+uaGa#mRedrH|ij-sPh*@eZjAPFN&JN zuVa@)4d&OUEb1sRn-syVq1^hc|Jo>Hz|D#8aKUUVqS{bg^bhCgXxRH@)YMj}WxsEu zC}+KK4A%AY7z-#q9z|JZ&ICf?=_pHP{&TcD3_ck}>KG7(L74Y#2)-<2sQD$THB)Wv zuEXYEv(jNfZS~CAK$qz8FzbF)9A&W)qQ*l?T~tpSn|zz?IPlh$Jf|LIg88ml&D0 z(t>SkqMMMT1m_6szK;Hx$}&tlDNWh*4w+l%TpL|PB?aEyjsBYYGQ*cG<+7gtnk_@K z&4dBJMyHXfeVW~J<}kiz%sMic2&2R9sBjY)wzhwaHe1sVdnCV`7+nH=Qetd4 zzf=2?`4y0Wkffa}ImuF}Swmx5@d9cy+w0vu;I{!W&B(-yQgT4xfRs@i(W*L}TxG@% zd>PdTCXS1l#k;7C7L$0YM+3XhV|r1Fr9m)ZwP70!0mn*KG#-WxIF0S&++{J0as*F< zNOK?tx256E-sP*9!IYsXf%W(Rrk*y3Vmez8(mq58h27_49yDbYTRSNo#$zlJnz45m zW43s?jVkHuQSLm*$;;c@%hSud$l1-uyO*b1sh4|csYh|Ci>tf0Yq5uyi@Ud5FV|jP zUQVThN`^Wu{-I?HcyTGlfRgNY=oYJH3ogat9RI5^?#-C()Xo;{;^UZ+gyPj>F~q{b zu_rO4X|@8UydqYY%}-U1U}AHx$NU8SpT`WP(EdMw;((B;+OY=c#aLQcqaV9pi`o9x z)e^_YV)0l^@zldOwiC`p;XmlpGWM48+srnxUl4LiKoNSGNOG6C$Bv_s+gqOEv&SR$ z3T5a6Whh{Ep0S3a%ZaVo;A+6;^oZSG?Hl`!5~~~VMBmfK@Yq%gOXs5nqnx{Cv9SlW zn0ZBaODKzv{ZaWrY;x>uN}sa$UKnfDCH<4+z7RC1m+eW-xvCA zjV)JXdVDbUFLEj09gDSQQI$;`VeOIF-ze1|FB%|>K5j(BJ*efSMp%(k23pampBiCB z0zvOuy%oKD&NUVz;X3osd^|0LgV;pTx8~6RXj4IqURX0wT zsYk{;LZNotFI24wEI_OqiY0Ap8AsZFNmw@uX3RPdOmt;6qhoa-)+X*sV+1pX4Q=DD zDT2*&jJr-Xak%3WXGwjT;mbzMJ3hV)uDZt!RK&@Qh`UWj49<%)f&I~O28}^5V~=Ws zt(fh#SQTuIiyJBhV@|no%L#S0aAA~d8l{(1D1TmQoF2Q-J5Glcyh?OrXqDP9rY!C! zvITHJK)~w?HiE{7TsOxk}N zXAUcm#u-z20z`PCXsqpzapb%PhFytkMHZsz^|;>@AznWut0)pwPvcrpg<$xy2|TQ; zH{gp}@#Gu^y6D8WrAh+(_2Ta;bZl)EPmbs;(I#G(g_p&7flr%wdW_*PFsEJoO+}_p zoyf$bz*X0HeF8CnUery=oMIy5sntppo^laSigCh=@nvIXSc0|Os`z+~1KZ}2>4;=C zQ#Ri5^bGmh8vSQit%6KC-_NQ1! z2;E2~D;5yuzQWVOeevX2%)Xwz!GKLX9IwN&xdOX?9eF6N zQ#lGCiiRBRW(kyf3oKeDWD_DY!}n6)sdd6-g_0k8CQ!q3B=m4hpx5B|vWX1O-CYu} z5h>c)+d~rQQIJI?m~kg^gs_MNaufuFd8~-@xth)nTkypOeU|3ul z`3V}I9x$j8G9?X9Fo6q063Fc|Km<+Li=37~Np~Q5W`dexyZBx**v+Z8U5ix-q?SEz z0WGaaFoUsc6G*u@2dJ({c&b>*`#lNd@DCY~Ku*OOzHG`8eFK$-iuypp2t}qlXBuH8 z=9YGH zVxv|kmO*rOqNd&OUEf4X0wJ@J0Rzy{I}J>vH)sSxRe7SOxw&FeA}J;ds%K75G?)GM z?o$(QQ)^5>m}iPp&0Lm9N^b`5PK<`y6*Pb1FEf1E2vAv?-rnLJBuN0law)+N-%Di= zYJ-)kp?YtkCdcwSnMlvEx|~ZilPdb*yF_}9g)o?7txfM~37u{wk_Qf!{*q|S^xDL` z!k*eha-T`{FNvCT{KcPi^M#~WiESvV61I;oo6A1=%zqQ7DCYafFo_(5**udZT?jQz zqK7_#aMnCY6Z)zilX@hqXIS9flza(pf0Cw6 z(0W`WOhkW5lDTZa?U_io4nP=9{MY|Hsg9r%nZ*oZNnNNfGkm!PYxxc4ozs>ljaKZ` zVr$YW$|jXK`Lm?RBH=g03F5Ve3f+g;|IlH%-*C)lr=Q#P9`NS?Ve=?^YA6xyCi(rzM!ay^%HlE_mOl-DG6qa-gv9DG^MTV}R>JEX8NKO|WKyO5j1UTGF;gaRrFgn=t+A1GbN9CFeua-;?YpL$jJf>9HLHGj-T@gOuj1 zrdk_~a_^K;5K)(OhcX4}zo@YJWs*u;nu5W60z5vVPp>1b6FG4=)k%4I-wtpK**6Py%PFa`ZftnZm#uKFDQo~r6WjBy_V+H^BC zfgN*Ic&LOhw0BEX^Ofkddbx_Un=dL+e8CEOu2r?CGR6yS1!vZ&%8jICaobfV6)Wwy zLv>OS@}E5_Lt_1<&~TfRYaf$h%@&kRN{2rWsC1P;YydVYsCPDh^^R8i=tw1x~JMi3~&O*im7H+ z8nD9Z43lW!9& z1F(>B6!*sW5}0kvWWMRDsu=FKN+#`}!ri9YHu-mAJsH4q`(t(MFmH5gnA9VAyOJmb zxg@Wq6bhyBhgk3A3tC!hc{4DP%`x4GTgm$-6ZXLZwO?{if=XDjNm>NkIk2iNtKC&3 z+yk70lYg~DnOdYKuO>vz{~($|dRp>lSVFj-o}5a_Ne6#Z)L+QPt{&6s1Af`bOSBR0 zhy3K7jVW(C7BnEJ;QoeW z?ItMNqfN;#C_zI5*O~3CPA`J%JCYwzY5)yPJ5d7w)&TD*(zsZqCot9dWK-7m`(#-I zpoyn|`baYF*|C=Wd6s17^{{}jr1Mxc2(4gZP4Zz%0$z{65JA}i_U?`3Pq~NW)F%JU z9WU+YhTtK zscnj(K3d(N?kQ?YOsFp$n`4zeoPFt#Vg)xHQ;u>=Uge&G+rF%Y-kvEZ`PI=oWn$yL z!L1RnJ8>M3hKGYwt~AbSp7hA?5A$MD7L#FW=A_^Zy5yAJJaDzhPoY%Mf)o3&zP;}w#(v(w;BX`Z}6k~SOUzG^k)}>hR2yl2yN-o(u zg~Ar>PBCJtUb%gt?aq{+xG}ugDmt1Udb+n=VwwnQW_#cGqstiCa~sGif#uC1DjsZ!+-#~@G^z8N2w6Sc_i+Z zVEzgN38o;e;r2f%TPfS_{a-94ow2h{eb3WqySAw!o$1^@b(8`Ae^vL?OW9@*Ac0$ zWmM|@X=+m*mHJIeB@J;%`_0|^_Lc`Jd&!%JQbqDR@OWw_xylP3UDZm|sBH6hDEHMfsRwvWU0frv^Dd@} z#Jcm3sdi+av%Q*XEq%`YM(P{h6XNnq>HxCHNKXq{OIJRSKDX^r>UU&6K?ZOv@Oi4f z>~QY?B6TkX3%f4**7v9}(cRGFZR!albhl^vX%u(UAew@wVH#y_F(ATJN+$!pH%4}8 z&1jWY!EMdHP1+`2hhDNx8%41LMC^yX21QD`o!C9?Pm0eAn2FA5EkwG_<{qAJ06iVk zNPEq3EI=$>B18Sy_)!~`40o(w+E8AX)P<#ePO)nti*0P$aNcdWRFx+Dx-cb8_+GcP zwC!Y2?A@Ep8%uxYrUg?XoM60RIL5D6S|A(?tII_CVUd+^7CNk|y%j%HwGwZ=LpC+8+Mg_k0>PU(I2UH>Kinub0#A zQ7i{Z&SACJ(#&OQlXo*sq&CI3)2OLUE*!a^)~zwJ7>JCSVa99#M;@nrNla8lxe$w| z&H2yLsA+Q!oBvmuHH?3iM%vO*5X=$S*~>buWyaj>-?WXCP$aPOM_{ri8ry4h(v5j2 z+GdiTM&KI|ZY_^O7p>Dp6k2JME}~FL+jLSLivc7Y)^$mL-9+n4IrkAKjaafe4?O4N zZTIxbkM}pY+#`Jn#q+g3OAlt|e(9#{$&K{hpmI#Vsl#gWaVRCgJ$>583&Q>bsPwC; zJknFO1S)*xnf{0>C!n09J=`@inThUFI2D#&Eena=km)$BinNjMYxTj!rQSU09x;N=Xh;qzq|v>qezd*AwMqJ`>X^0|y!`#on?frH>%AfB<32 zDYWcbl3pk~F9K$zlR7&k0uR8y%t>EG$R+?0t|>;cVp;kLf<|EB+H}(Kr$}26GoMz~ zTB`HwE$KUi*;}%4yVGaWVn_p^qSLi|(kBpf$~{P6bpRZNZBNmz2Em41_^is3t$m-Y z4LI-kKBcz(zgU?NdnA1uLF4r$vtbj8(#OO5)9E;8Nkp4wXVb3}3_v266JY&ezgg!qXe+r;Md%pZuNb*+GnBF~q{XKOdxjO1FX;RV|_Rae8yQ70jsWAq+qc zZ5(}`{uSK{6s$}reVM+DZU8f?Y-P(|>wUcew9v{pMb?}-()2-muQABjL&mZ-%jnEC z*9*p3X80IMQ#jQ&gBaw4aHmoUi2dSx#O_7AjICsQSbKhBXV$NK1`cGe!&!vo9W#ue zuw%wZvUzYoK)|PX%r~#~`#NM85^L)qhF}h|Qi*rXI7T)z3Bzj^Lyrs(Vpb!hahENh zWd96Joaq&qp+h!Y!9IFpZ|D`3L7Mz6f~kb5&qhiUGvWy%!QG6Ef3&n_%WOR9{w%bw zpYzaO(=zq3eU-7?QF$M>>rRFho4m816@+JJd`2;dbrl)G;8T!skdiv%%SmkP zs0=x;4G$CCY|iSeSK+ecVI)7);F&_v@Qf7{@8bx761610tYWpZHKR^r#$+rcQku*r z-ruM%ee8#c8QUm6hDFi9a3AYEC8L~Rehgt$OK)#9gWhv8HdCT42Y>~iXPl+J%xvdY zHG{g9850RH0`T*biS!k+_c@b#LF-K!MwG!ZjRNrGS3cy_c_)uf+`Peicg72%WvG~{ zIzwsSSntaiNF+6c9W}@_XX7tQ-{S{)Cc==T8COiD17=;II$#5`DGaa4m`>zg!T<`` zkLZd5!Gg^-+$5)w!u-n_=9EJRP>=tEg^9ndr7n2?k}+6YYIOf^883C@?cpaGQ@hhXm4*g8w~Kskzy zGv0Bcla0EWoc5k=p{7iG2Lxv8^E zt;f1+eTuzfcIp)${{>iSuQsJb(RFLpL98%RZOxp<71^-zE$Nm}=%OBH&eZD{n6oD# zYD(Ws1L}nEEK@KKQ-7u<0AWM8+LhwNxZ)|BEtpkg3WK86&$K1jzy$TI#uOTd6<7Rc zg0{Vz`XY=>RgWd5tO}J4sK(4|l-iWFNy&|5=6^SJ1?ysUVpA#m$TD?vJPZO!hL!!) zwMvQRl&dpz=?;EVTk<&mh9cB(BJjb+2GuU9XG)4SD6DI@P#G8GG6#@7Y$MQ>4u z)wB*T4r6{oZOnp}q&UK~Z`B6Wk^#b`65U(KfXBG-&0V4|sbh)mse!5Au||Dey@OgF zP78{3GYMzU-&7YEh;K=SgzUPYQ`zEIFTOV>sQ z%;8~Kl~^f`dVVW*v?|Mt z1*_C;S^GiRQLsBIYY6dkiT|4=+~|?@5)Q^@)wTTiM2(^R4S;yqc}W)TDI|0~?vpHR zABfx7zFEDLr$-0XKb<=`OHX;aVMNvwC1qGQCJU5A;*-f)x0N4c%*YzA+}@j;bxOfK zI6n(}h{PubF3j4c+&V4JN>hHjcv=0|3YTX!Rh|xAQ~xx09nHjfu^TG>!p&KA1h)l5 z`9V+0UtFDqeS6YL_GQ^q!qy+>vNJ_b7JKqA%Y5l{3^H}wQpdrOLs^vO1(SHZOY6{) zEYc9JFpj#FRjuIh>8uxuR_iWg{Y@#J2230JUCw%6kkaetVo{Nr|}iSb$jnD#3Q2e zDoiT-@2uY_8y|37II5rBiX3b3Wql|x%=UJbl2rOzCm6gzUXau&J1ut;rb%OwR_TXznw!+ftnXYUXB#P!$3T=4U%NO8UM(l>Mja z$J;)j?bj%Z`{6?NbYe}M$QoKZVOO(fQDC%QWM|`cKLr4_*?9UKH!J4*M>eGvN2o%` ze4b6I#Q|R)NYMzsm%;*daz1S5IQ^9!+Gs2r7VvZS4fyl#>`s;+uVE(SsxiQ(mlz?^ zGR|2~u~q?7Xr6JX-gF&+#UrHB%5XpI+CR6UvF6V*b`mMX> zxKmtTAntI?QIh5;`<&y7>)W{IXk7nSw;YY@Z}Z40CVvMBFqHG5%>8pTS#{^YoG*#q zlfuqU&Kv-TBXbT?5bi$8No2XLa`mf|a(Y@T{`W}^#s4%=rjXhvhcx!kfY7^N&N|At z5+WqAXCrtN$92x^mMZ5S%pa7~p0Y&bKUm5-=kRGcCi*h=7R}2UrkKgEi*v%2Tc0m- zS}M1Nt8-c@w=*hoE+~~>@69D#J)z%Untr;dp=%iL|L6zMKx|52Sev{N?J7xnB`9%lNy( z3!-}DYP=xMK3C%fZ5(s;DH9wxEc?I<0(0+Ds^0&=WWs`w+z}KrM3`PI$y`;+9>nBY zvA616QxDIxM;TCS$5otlwrMb!bGUYC;%qw;d2hy_e%4Q_s* zS8f_vkOp_P9GI)A=)0EZ?jt%GH?I%e6>3K1j-)^xdzhQdzJ8M`$JS&Qn)9UGgNoO_ zo=@^x4XPL!*Mn9Ib7Lun`X3lw)^B011$&l|KYHn-TuYe0IQMHJXbLl5m;1qF6Sll2 z*#zD#$z5zrNUl-J20&xzS&{pXQl-0X&RwD0-rkmLqS*H9UAdZy{`8*QX3EpY`|6+W zKad+qF*Gj7(&M?x3hf8Sa#vH5d{Lab&6>3%wx@DQ$AtU`CKDchm-`vT2L;TXpK{Gv z?u$HYXniU7vC>u4;(G31geb!VV$H2wBUW3R<;K3ho%=Uc=^7LrIVtpTZSF-v8wOCK zyJT*HzN|6==NGx8-Bkq_3$|`jmI>c_T_2kMc$-^6j3+59SUb-EY<2T~ry%T7&>B0WIyfc&*hz3U46ES~aUJr`TN;MA8 zGn7XSj2oHfNeT4`lO?nN-Q)8#>BPy2c}vJDo-iF{5=&&GXXf>%z~G=>5YEuaGi9sR z=JDkl1@OhfyoV;zgBPzMd2l@_AZRkhgXV)&COR+uK<~@0|g(CI3lvsS!$iF(T z1H}OwspidG}-*EH$|@^O!6 zo%AFyeV?zH5cN#AU^T@gv2G89H>L&uXlqSncdsmuW`WHL&Uz6SxG%OaZ4KGY3%n>j zM}z+;hyxSrf}i!+oe@jT;k|7^A|?EB96TJj61Vs0T5wHYf_>*yFpCNX7d#5~8A}`% zS}>f7!`AdF(1m%?1^p;9kVUa#(h6F`{EULPxR)yDXk}r+bgDRj;>@S?l?X|K#}^o~ z_N^+7;por;ZHm(feIv|EN**X=2xwE;0#3~+C?kHpl*LaA_{<;8zy(g_5}=LK&OT9_LGoi79tZ6kI1- zOBpLXQ=ku-=L(il!i*5)=8?Q?xbtJda7q;{5cmNXP;k2-k}N~b*La{`;{Admq6}l? zlC=2KMaC@GuF{sNN;8K;&$^^~MbtYoY6Dr_cqZvV%v&Sg@Wp>b zN)R4UXs1+p6Cw&pyB7%&oktcL!`!$+-Np&FHmK5!t%xh^$3~=JNvl%}BS-;=lfP44 z*c#Sm6^|`ow(@SF z4IG+U_yc9WqQ(euj4rlP8Jt@GMZN!4uPD6OIJKK6XsVp48wzieHI9B_%#so-m7T}S zwiZ4nW0k8an=ej%(VER^U!;bT-G!ufIfkeV=KQG8L=NhU*kW?9@C!p3TdGgcV#|l9 zN~`YW$-*_H0K>6@OVI61Gw_U1(X+MsOrZlwp+YWorE(y|fs2K=mE3&u^}-lR14iek0=(((iSQD2bN_QitXKD8$Yq_}A-L+_zqQ>)XMg58G%M2W9 zEwaS5KI0+TyGWC-l=&9@MlGiVtY6a{A6E2)%08fMEr@Ap2CFS7YTj_Xf(T5%rW8$3 zbTBNZXg;OV;r6aUHihlE^-74!FB(Nwf@RdJzaxCu|A;{7Qze=K_GEiorR-7t+q!eiBh2p0K zA7Da33+@(+x%(X;_*(H{O3>gifH1EpO-+pqE#$PzJ*fI(oi&TAWCr z1yH2cWEtMQLm7BGf_XMAv0_)XOHA3yA9Fu}M_MI)C;3B zh6wr)-l;_6**&|L_>n#Pj$Mf{G<7T?O{EoT7YJRvN`@=G^rc@3PP7;1KP;d`vUGNdCwrJa!3th}hAR5_ z&|W>eq*9x89k)^xd>SU#8d}Cs$?m}4mchl z-ed{$_Cm>8Dh%Udf!0qYqa@bMt0iAjv0(P?lBp8L_HIcBN@&88xv+;peT|^%_Y$Tr z)Rz87$pD(#T%hywk_(iIn#%#{FG{S5>UL%3FOk<sFee@a0l^Kuhpd=UQ4PC9Lz(JUif1`j+S}uB`lc zr6F_EwmO4^Kzfr+LB;D%j(yK(RFINc~+-#8hZ?v|1^EFJu+)EQp?R$3*Tp6!1^ zvU7nl{b}g{N{zr@X85uxd+@Z>7N*pd9wMj}5atNMprGh|=~0UI@Ov&y)uIe1_n4F! zvQ>8raZ;G2xjDO_UuFe|^~>JNF!a5787U@nd_eqlGAL@bFFPgc$g8$xdK6<3fFWJW z+RI9}+^Nij40Ff5ELqAG98h+hP)#r)&DhYggSsMEN5z!=L4{#!ujA^#;8&FfP?=cv zjimk4jI!U!fJnPGoXRQtP71fSxa=7j%c)lxuD>W{zyYU~)L z-O)LEyQ3WKD2nnRMKMMN3!p|HHP*yv>{wzqqQ+igNz_<>v%52kdEf8v4~IYWhTWOZ zJoEIKot@Qr-sM;)5Jd>@ay>1Z)-98 zb20Ja$^IA~IfLEQYbIA{BorZ`i0A!mB;BWT?Xv%ct_-CKEWljddh z+j|X=CJ2+dc+rT|&c$nuWKx&Ad0m(49q#FMODgT`%j)IyXZ3~-^m-%R9Xr%(uhiCl zxYr0yvGoRvFnsnxBG#)5T=OSt@wQQ>E$q9$ zs3$&~WT(xFP`l)NNDKF z<0^!9s89CdI>Ak73{QV254f8adO5=W-@^^?lHO~N6!O1c=GB15hlr>_H%JcAt-#9~ zn-qFENPt6Ed(lwQY>k&eU7$@dz0B)0r}lM)37fsFL`M(A(f32gDlgiCOS7SDDwQ9hfymzmw47hXzHZ{W&5Tt0z8kx!Jr_2QaJ2?$7t+0V12Dt7O5 zv!W3U*h!2_(6sHQ-duJn($U=5`!$D_g4j5~+WQlCqozbtNo0qwj$@nmE+v%S0FNmp;ZsH))G*PAE22q-{MjB#o|@0UE8_i}dk!v^oO(%l=Iyt_%+bMq?i zW>RVFHt&s6Zw9-(Y2JHwxA#CP-)QlZ_Y2M#vo)PpmoR9V10a z)kW`WX(Zz=dvkqzi~vf{7jg7G?_VV>=LgQNli)-MNp?u6LCGkCr~AC%RR?(YjgK{yPx4XW;5j}+B*0t`pVK^3 zGl5@tV6o3=ZudwU+oQ(IN6W3D6Vzok7#ifWMH))aaG#6ZyqOeUW-R4J*)cxjC8&YnW!uJ zukqpfQ~;5GPY9^+u|VIAKHDV$xNPw`!mCU0=MEoR=(pd;1z@|+Yrf#`iUj2xFE1cr zpHD;lYQIk}Zk-kpem~%IhL;AkKI$`oyL-~O5%hC1vV+MP##7+I2_IYRciiWKlma-P z_1VR39|M2$X$pgmCz5B9?bNp9vto%Mc=MvqLJ4~6?>?tEtOAKTca&@`eVHYahXi*x5U^zfUt=*2L0=1Bp1hR+^u}hEzTZd*L$a0cVW~9R z#&@$+vbXhp!ZS-E(A{uxW8WGcFDo>LM@!4d2Pb-ZZbRRezQ;KD10sw|2VXN>*~vGW zLr)|G=f@TH(v0h=t1s8LB}76#7L-|kwp4YumoJz16d7wi*w>hsBd8wb+m|PqzWJ?h z_w`m2eWm@3ExzGWIROL+h%xM#>)Q;SXZa406wPloQ@){dneu&_=UXA&-Mhe-XR?l@ zJ13qQB5BtHG*AAOiM9>!y}-kC5zBpTnJH{~y?88cjqvTqql+R;b+j*iK6WV1m+QHZ z2$Nn$Xa7$o(M z0Q5ww^}g?U+#G4#1v0mknMtzUyTR9rN46r&fz7_3JBX|*U!JvW5U~dA@U_IsoxYEF zjSMZg&*%4(ja9cciw z3r#VnvGOC&hbUwOAPC0zvAr@^+Ht+IlhTPt??phDuarjM?xM7Yjnz?2#1s;XU6su_ zya6!4#@Ma5GKw3a`gw&tHXo$?h9@N!X%G-#-l#5)XyC3auoa&bZ=R<7Q+l?$=^N!@ znj9}sI&za)zDU^+H+U*lJV};Frih>mR8~u?a9*KGx|Y`?Ou1FEm%qZ5T*tMD_#Rb7 zc6cLJ*@RcyK|lb4V2oiI%GHv(waZc}IUE}jl5{-p?~ryQaPJ!BK8Z`2>y>vTIchd3 z=}diWh4O)PZP+%YPAXkSCEZm^>FJfytJtqqsY zlo6#pq4efPX!^3k7B*E!IimGB<#TCrZF5=KncK99@C>l@cV%qd5Hx=%(`*R z&@@&V!BbGs9TisQsxWDmx6DqJ$`J%*WF*L~c|spUFo!2jDhqHg8D)kony3;b7q-P& zmByoTHr-W2#Bt)j_Nq*AI$mFy-4eD;Rgu>M$Etet*N1dd`v(dCzWCfnBjP8+d6FLy;l@q!Tt9n+3MHR6eYEO|&)5~Ha^Z#<9Hz469tvsP0na9==1DGVaI)%x#NxI()dQ*2 zJWVy6o4DOss=Lx=(5eE}0SQo3s4ACAeT!AAq|*Ho6%FPaR;enbYrd;hTX?LNFt;5B zm#I!0!icUpP7s(dyfd`;t*9UTRH+K*a8JHfs_zn3H2BYd^hTZm>JVSg&}H+Mb(pBE zB$sr{CMs9aUoHKuqQA@OZw38LqrXY?HnJ(bTo8vTdxMQkTFQVK1ULUpB3SDAuycdF(zP^^<)dHu9Uwdu<# z#A|z1=XgTI^H@JW9RHK5gB9HGM?T-1d`88yA}PWYpH+D)L>RO^uj2Y_hkyeF#}bQD5#SZUP>uK@E2NijHU#zh4lZqTJCKl%_{Jx__ z>-uu>rv`rZ6!(FdUkBP-OB=r*C=GY){E~Qlf;hg3P5l~UGbcZ;*dZeTK`_Sst^IzZ z^;S=HBZhWO3+~0zew;7s^O^!#p92eJ zeQs4OE9UtUxu{#^w}tjLYPH`2+Qp7CKXSH>NLkVbzb4d>Hdo45qqq3E)2qjJ`2E4@ z@BP7lw;%bC%a4Bjc@k|=VFU!2Ff`c|C++nc%#&>kF!_hb5kMdB5w#P~$QXab&&v7B zW1nDNA`}v+5A`JmnmzXWi3;)hGr#wgYY$$@LfrO77FWVsztxoQuJ8Sh(YmJf{C}hf zzZv=uqE}m+`;()S1R1U0ZsSi?{1;pQN_s!p(SI^6{?Xi@iF1pye+a$m*3O@t6DSIK zR0sL$(XMjc{BHhdXx)gf{6}%xi$CO;mRrC;yLclE>hFKL&M+4EdWipa%H2I9{EtwM z<&E-ZetzB!0si&;X46VtZo0iT+%l0ur@AK(TWRAA;v6`%f^H*xY@NOyRq^ z{w(GkneR_dE)nIB?BUPCPw#L2OX<~ni~OfhIgIx8x8zv25)~7i1N=?!Ly&)f6Q^p6 z2tW|XYtFv$hS(y{^*4E7$uoGniEFPtMa4>mIA{?@NoeKlp#72rYNX2#%PN@EgjA-7{_A6$LY z|5YQg8(9C!pJy3{=#>PG1e)cyz5nq)O9$fk&Y$bF5E)k>*%F-I`#WRV2mdadfmft) z0tD6zFvh?J0o!=aab_e*FhF4Fmn)Ck2iQ=_KW-XeN#$nRGT=2W+O!Y2PR;FO_keS> z?#*5S%mY^R30OeuIt>c=KzY~6J>VI2hMk55ETYXyMg>ge^j9Jmrhw*Mg#l(x2-wS+ z5lJw3V@AN;Iw1&zSfbJ+pqdv3iBjL?^gZGzI>E<=w9*j@l1HyrrZ?04+WI+=(2!-IVS>& zdEQSJyC;pU@TW@w~Omvl3XRRn&` z5yg>^w1%S{h(mGyMBbuo+c3+Kd@w5T5Vxif7y}6UL|(K1*eTEi53~$i%jp4T!laIY zR`|YC;0|7DuwU;$o-;rsjsy-Ux5S*mfqktdrN1;Okom*!rUY)MG1z-r;0&HX| zbY)|lGb`{fL#c-a9)Y(x&8iiqbRQTr6BZxVHI*{JLqUNn zI!VsgzbH_{;d})^3@Z*~$=~CWK(2S62+lVUtEe=Ec&GXf*gGWftOAdGAGov~A5j$S z)QDhna_mB2m9Zp*o#zAZQa4v|Iq(oICjK6{j}|B24*Z7}XWb8cO!Z*;!$3Aiz4&Kf zCzja#9T-mQ!asqfv^eTx;B#7Gbb}zKR1FP-j#IEFMnUt_5p?%DB;U%Y(Yv@j58d*b2JoA`Nlg{-8nB zdu;qUh^<;A{1U`gEk+*+Vk@w&M}zF>g243Zpxrc`Z*eu~EJaY%1aW=JT4Yz&-5_(G zkS;1aX-p1l7nWiA{265KBpLG8=D}}x5TCaR)_%5DF{W{FjfE7c`nCy9{c@fo0j#0c zakE`8WAgS6!B^6r%KK=1OF|->+ov7;6XfoicnXJYK~V%1Q$|+Ngfk?kt&sH zVsIboPqs}9o-I8PMW;o2eI5UL0Z!?#ke%!qnRZ8~Frp;K{LNEF@SnxfX~7 z2AuXNw}z7Y!Mo8cB>0_~q`QsdgMXzO@iZZrO@~)&gSkE^Te&N^3s}1aH%068;LVnj zGM@w|Ob0Zf zSXTVrD`gcoEe*awEBv!su6ufoT;aR5axrXuFwap%|0nJ7Ws-GpeU<57%y5OlhL!(q zAxJFbF^_Tlf1u6LVXtf^KOK2Dw2cx;9WL|&ERx{|eY&Fl{1UvC015@lnBH_`o zuyI&V5t3&oSRz=5z>>xNn>!!5U%|O zgtj2))-S{iOFM)(+J1R}0~rAbf}wP%SMY$4Z0gOe+(V92Z~kz2$VOURJ0@fB znL~@QQ$y^jyI(Uit^J)f>cwFjs#)HiWtQ-1rc#_nO3h5{xUYV2~Y2hcw9{TRFKE z1PsO;pJs%xhm6~@L)Zi$BR7OiGQVCL63X3A+`14`xMCmXh?xZ;YiuN29<(8Zd@@5^ z7HqyL)@a4lzOfj*zxZdDUG&ARE_6CL!jXzGp)YQVs2QNj7lH zDzD5IHwO?$Dtn-wa_71%vK}u!n-tk7OPXe-gr0%dP(mVGjilJ_}(F z1qZweVGjjU-i6SIg4^>#nULny3uVs)n>PrxqvQ@Vkt$>x7@#Fs4huDh&JTPW!k|H+ zU7<9zmo0hWK|L1YhlF00RLOT}XnX2rONWO}#4Q1NZ zdTA(gLl^QwH_!^X%R?(@aUz7$4RJeGgp!Zci&ko}CiEA2|JL`Rn`m+6IvHz9nXG;d zH-wtfnB8SZC^PO47^Piub9|ophAl&V|0E&H7#m z#Nxg##^T9<8(s5*G|pi(Q~eWz`@V;ga#frLYn16(NeXYbPB`ZDe7^JB||FoRx7DKHwutt z@iwu=*`6J_uD0=gDnJ@2QX*r8a@wM6!qTT0?7k8boxgdO8OeKn6qtxSBeh zAsOnAl+a0f^%4$Tv{|Yi$1_0EP7guJ-ehA=q52}#T*DIeG+OjsrJhIyf8={L%QV)n zQ?s@5#4$>;h+Czn|%vwry&br>gQv0%MhZG`)Fsksi`A!CyefFO_$6#S_E zh5F#-zo_3(hL;>sf1s+r;e?tc8LLjI3+YhCoL4(gW&~eQ_u)yU&it-UgNH#)Trl^# z+M2_Fks!>cerNClnf6hS)GUO#K2u+yBWnCYJx-#1eei2FC0+ZEdMA$*M2{b280G{6 zkCV@Y)*gqFS}%<2!J7<-D~-c0P#z~+hA~UcwhrsV;~xob2v}QG5=(unZ2YJ z><@a?#63(wWzuA57<0fzqr%8{Dn-+IJuWPZ7MD#9^Pxra>0xZYeD$m_=9Ww55Ftp- z>MsoIM!n%s?=Uv?aP$qUq8(pWhOq>9jbE5Ej~)}gjDYNfFk4s|8b)5rTO85@K92M@ zfiV`9_CPk|sIj>^jBAtme?h-*8#E3Zg@-lZOr1v{Av1y_-4xPRI>yoh@&LLxE$lI; z-GqRvWu*;}b(fv^*OIW;H0-`B31fM~xm95-fz+)IGvrqL17%^R;J!D`1-;jW?cne) z!l*-#z~oXV>p0H_DAEOS29p~Zy!A{}B zL9>fQ+&_DSx5V4W!Y0!lki%|-rE=t%{{`q<6Xs1VqUL7U6xV&SS%;asu!W@CqJ>qR0-P1~2#h4w1RLK`pDWDmPs&aGTBQs54)#h+(DDF17 zAyn@tAD-Equk44ab>Su)BLy;22^x(yg}^d5CD+?{zOx})rZ2_oJo5)oa_A(!A8*H zcz6dMA0{*g(%2j_hkDW}^n{b)5j>kV&vcCRgp$!w#_+Cx)HvLHCET%xCKFS zjR9KXTZ@QURGy2hB0_k=4FU6lPeUW<_O$Fq5o%Ws*H{Z9ZcM8j5fMtQugACu16mw4 zIfCuw=r}!M9Sy)YW<`9W#i#Ql*n-d*kBDxxnYCBMc3R;#WyCyM92yv*rp3dd5#Q5d zbYuiucwQA3v4dXqOpJ)6#V5Lm6k1HojMz$x!*e5iX>WU%N3bMd8APziKWaq;+d64p z6p>8pmX=1C(&Fy55#%i-(X_tZ5W#i665-(x7*rEswWBKH4<4^Uu6Co9El*GEf+a? z>v#m$WSNoQ6d#_6cv=^tn_|YLhy+TneZ8Nu|?}hEr-~UFnto`q^nEhF9Yto*iib?!zLR;fH>a>+1xA1SXA&^wQ|aZIryC36V;U!2%=C0Z7JWD~0rd(<9&W z#uOw&W&0B==SQ+=p5qbuj8dB8Da&}4cjO698GC`VF49WOL-2S1$c^@#!3zn@EJ|5= zMkGt3=jkKa5>>nGNVZkcGB=W~DxF;>YsRJ(k<9YkRz{Xlut(oTvMhV&_mPP-Paj(m zspl5|rxWG2sM!(OooAsy6tsW<1i=^=?TlMdzNsmS)+ zVrqW6+zw06M=s)wY+fKB06{Q>4Ntx8Af}JT94}mm+{v@n#njyZTAVF61M*tD8~WUg ztj|rHXxSo`@PfRs_PG$_Zb!c50M5Cl_bF(Ilyx-^X%NLLbK z+D5U^Frs}FTS>6#7{%6WPIZc6S(~;?6kAH@?h@6Xav;_%>JEqP<$1(8!^E*sL&Rhr zNiy#vElon`sHlQ3cRMm3lF5Mw2a^NM-+R=dfYQ=3P*5bgB_aR zGLpPb&r%p^6aIMrD4wI4|8GnS>>V1#@|pMHQ7oT17b$bLBs%I34x5tu`**zSpuqWw zQOg_itKU!o&<=}ML^)IYIKDE9g}+s$Q7ruVd>6&S-{kM3*kjDj>!R4!^2TLRAE*my zy&>upjTwr{D3&>0-4?~-My81-vZRvm0~D153ZZ;0fG+GbR@ zFJ6gyL8-fZEvgj@Iy1-aLY)I(m8;^6RMgN3>AEUnJnaVKYYEjM6*EISq zO+rE~qhCM7AV)N}$pqL=fTjt4GZ z7(I?dr;&*3A+;_uujnBhju_4q#S9^zSdFp4)2irRbTgM-NHo_{9>W5HWsJ_D(F-Vb zIqGQk_M2~b^jnUx))ETUf0kQ{vvwe-0xdy(baaP0ja&w_z^R&O7VqqnqglLrnj$ON z&eUkW9I_~;7tG%f-4LvvlQ&pu%wlI?Vs^Be=W(MfGT65y+6XmEqucOU*1utZz!<>F zymUKoZZ+2*w=awS#N!ZaQA?Uuy1?P-89fkIN6)Ssg(6ncv}Q^)|32D;YoaLYX3(4R z=1@b<1;^@5(Z@Lwu+LPHVA+E6R>C=QAf73@{}6qvZh)Fy(N3Tn>PgR{@46@YQr!TX ze=Ki`YkrPy$n$D$tuRHHX=kF@3@hPcG&{iQ=Cx>+U~T_Bnr%M=m(OYN`EPoQcmKNu~h+b5;0S|s1ZHKe|iC)1IuWAP@!eo4mUPqtdxGQ2< z?r2g!#-?uIfhIB5xY;OXaGk6I3Cvoa&_zbs3tV1D+rkZ-7&Bo9j~kw_i7Dfx=5s7@ z%g*pdG0*Deku^peZ1Gr=m~XjOLu6AIVSZ{8!r|?T_*0u0BW+yIY*Xb zVph^U;CrUWu&qPOX3B((nibQaZc15Wy1@WSqXK%O(fpY0oVp<85+GuE%uXDFDIPKG zETdCOnRf+#F)UYG91z2DwU$BhaLxzEuv{%UG=^;`Jro(!gVXuX{Ol#=quQ7NdvTf$ zqgKS^a%649g65%TVGPgdlSmqW$7vqDV2~=-3O=ohX^8JubE_AHaorYU2+cRe7-94B zm}Q)*T8m|keX3%(4jCjInFJo&W616bjG4sqroM~-K@9?ou>xnA@qLy~xl)n>7KI2C3RICYC9`KEC2Y`2E70nPZ7eG(FwPBcc( zbc-EM$F{LgEOV#{{bE^w96cbGIaJp{u@7joj>BTx&}Q>S$FlX=E@S1Z9+P65&}m)9 ztk~C-yGuM`nf&H|8{3vMAWVXQfLJqOd!#E4@{6tFbZ?W8z=TsG|B8%dv0z_xEc0g> zv9Zjbjf#(DapP@5Ec0g@wDO35*Tr%jcuZ7d1k|*QGsL)@*j?0>ja(ng>B=N5AXvsY zyDXN+sR=pp=P-^NV&`$HY%gfBorr3W^M-~%eB45uQx#jq>6}E8jG$>N>A)gK+=#I) zIsMD$SmL&j1t(+gN=~M}GGm&w+B^AXY$GVW6iYrteI|Ao%?VnalO;amQY?E@aNw0# zwo_#M4Ozz>ZxY5yE6=*SvFwGAW%px$r(lT>W7!t(gU{q<*)L+tq-N_!zG0qc#)nwG z?E-@55ruG~%?3JIZPp;J6{kQ&##!OdCUNVzo@WxxLZa+!OTdhFam?p*>JZ0#&dZK* z%;#L~9M_4Os9mo(=0}B;5#hNI&sw_8n!>s^-t8i9`kc|>G6Ev|yo zxkw6zeW%CyQu4Phh+`fmc3~XzFryd6F%M(l8OJ=#POmuTVSIez*lt0+f7}6{DZ-M} zxUkPMrh(ycRT53`K@-QbL`(o<&^0k`7FFXFNpV+bF)1bPItR;;KyrOtWy=1z09e(U zxP;pCS$0Llt-vPPapgSB`WK)%M&`#^)0kIK7)L%!;LmtI(oKXP+3=kM&%y=BfmO1}< z5@$eDMayS#H#m3%+P~r!NE_xizKC1Pfq(>|El;>4Bl3e9MZB@N&nW+P!UEj;E>6ee z69p(FP_rmA#x#h3N-biPN&G(?x{n01Bj>21pxTa{-Zj=Po~`X#ImWZK-MdZVnTxGz z7SHuQG$G9sPP)dM;O2gS4KygelT59;m9)$#1) zhUHQ5>@DL}@v<0vHSsLceU%u`PHwoHM1&)G(uL{q?Bs?G+41Z+_nmn%LgMmx_F~I0 zh-b&SFDRBPbX*zFj&9hnCY~i^OV-A-qZ=wV#IvItoVUhvP2WVu?AjUsfWw9b@8XGl zevFT!?(&ykWZH9%$n2SOG@c~_4#(qJB5?dfJWB*(PQ|mwTtA(Q59PEUPq;CRq=Dj5 zEX%IO|3P12OS>1()}cHe$i3S>ir>Z4kD^(^WSsCKK3#hIAMU=5=X$AyzyN_U#%u55 zvv^o95F#PG_z>TU=SdYom;zNF<4v}&N(kcQg#@sCRf3Updc}I9gz?ma);CXJnbQ-C zga_2D?ph^8Q2X$=OW;{UM?!Z;o`_1?%|&dTaG9>Sl(tV8!!u16`8N5h1QRfCtZ{^D zO}aG8_Z)=f;ny+lHkURfCPb^$}x6a0t-Ej zCL}PQS2HmomRD);_vr~--!2w7h4FI}?olR%dB~&<{#GWHZL-Yz}%t6*fukPJ;l14lkgXh`7G?I znFYCJ3C2hc+Bc=&u+yzi;CTWsU?IWcNgRO@Vu>d=ByeRc1YtH-S0(($^JbCQ*mYlm zC1vfzpAy)NzSp6I6zbfLA5CDX+jqwkSj?M#GNF`KFgPbyxOP5aJ#~+H7ZTX#k8WN~ z;Q9uDKwo|*a7*L`#a$)9t)EZ#PiUk9fj~ZVKLq2ZKlw$-0ns_4a@Dy8fciDat$@js2KK`X_%by zEHuo|&9l-p<#BEzVf&kEOpt_zVVqVr8w3O(vA`VvbkYpr*k*`?kRYC%fV7LisNR}R zbO~VFNST$Xqh(f39xJo5&v*^{1WnT^nh}(%K{GUsc-0Qv=W8s{X|AS#S2d6zl+bf` zo~SkKq}i{cW%+)J(XcpnJWj)M_t*r@*K`0i$#UHdIt|OxRcRWwP0l|{^NKov(50H$ zw0J#V6T_`HRYe+_y>42mxkf=?@F4i4;!#sv&1oY)&!|mN>e>$Zt1T!O34WW_bOmCX-Vw{|kCN_B)~BTH6ws zj@`~^xIW<{N{lo%g-YM#{`laW<|{gPbNO9X`8PLY^Eh-Xht%h0$-k}IISb&qA)))p)A^+u$(<<>!W9@mKe3+3` z3uuY%&9v1GL{_15OD)!o&WetN*bi%F^nld1+Lv`;y9J0)@8)Qg(5|D_79zT8En$;3 z(ir;-iAo1?U@oN^lseWqxwkZ4sOp72h1F&GH~nUx5}hFxc9w{cK{1Sf!V_>=I{ z9IYYGv|msNC>*0TgTa~&rqFrJ)Fzngshvah< zq$Ara;WOH0;%#iIK@EtwyPMbiUXl0S;Y3kS6% ze-w+UKWoX_uUM>iR7=)=#p1YATC(;l7H6H45nBJIC0V6-^^Xf$vi2(!cU+V2AG@w4 zOTQApZ7o^)6^lLYXvxyASe*1wOO}4c;=$+IIXo_oaHk){y(VGefOVn~9N(w0g#(Q= zUGTTJ+DM+=2QnZM!1t8U6O9uY<4YY98RHil?IjO^zb;N>D!9}uk*VN(pG1-93YK}z3ogardqAtoA{tEU}T&B@x->!uW*Vj+8s(P;2jkZ!fcUXt*3-t zJe^2hjS)G&(Gw;aM zcfTi7fB!*ZLf!fy3~G@7ij3g+*2FAKd6vj^<`&ZgQFsm3y-K81Tfddf{mQ$g^wzEtkkHAG;dt{SD*5}0HPqs>=56+Dw5Ln%+ z9}Lj~3%V!0q!KLZmBfNyV4oxw{Cf0DV!`j;fFu_Djt@#=!Efr2q#G1r$jBsel9R}Q z8RL>z@Ow8Y={601PiG{t;P>MLeC&ox+n?1Ung#c^(l9BMS zU|V?7SL=#hQj&I>hzy3mvXfH2Jj)cLfPjnynQXBUWi@e068SWeSZtG*^b;+{EkYtlTT5F9zLsAVVTt|3To@9vii;`|pSN?ZN5;^K$r1;pXq@A?5bafKa z;;c1E13AMw zxBcHFvFT652YF;eKFOAAp-5)apMCX`+4QHcaq>{wai&EwoBph5n9LmbqDIMV`qQRy zGM)aQdsDfBsZ%nW|75mGX7itrHpy)MlhZMo&3_c#li%@113@dmu$=50sotvT32S>N zzvcG;wMd4-O0*qJ&M=;Wn!d?r>O`LF(BxK7lQr7~4c(J};hd36`cI(R^SmxAtJIze z$w%toeGPyBSm58&lV8vP|9X}z^MiAeSwP5|mz+ZbV3%)`Pw-|cqRr3qPQFzarU3yk zL$X{xjK;8fYMJB{VKT`D5y>ouO^-@uG0Zq7nZ>Z3vB^*9n6_(^>($9MG)qh7In0%2F+YJbZY$3i^rRk1?$ss(pD=?@QCI4WuA^vkX`2rRH zjpNB&udxx-DZ+WCG;`^5E_su&B*(w5^2%{0Dy}Dg;;;`S)O^#P!&yqwGe~h3*H9(F zsf|*Y;4(~7Zu6+s!X7DOp+z6^@xZqhDSvSc2x<{xtW(fZ(xag*Qpg5bQKee7OliX7 zJPGbB=}^SWT~cOps1p)|^>ne%pdVE4 zbH}BG^T?I zPs(x=2`f7!pan0;Iarcd3}l*th|yk z21}Dt`t!^+MS)fKC7<9p-CbuWsX>g`h4>+082iuwI$cR1(0$(v)|+0uW#tL#+g=%2V2KN?^Ri_tI@C$0U7&n7urF zN5ZfqPDW3~-Unp%HvK8ZL39K*IQ&QodFfU#VQh3XWd|)@J(kjzRAkr51sXVY}%NYpx%XK7qS@aU%-i6?HS7;{TE=;j6oobV{+JSRV0K|uJ- zxjuW6a#ms)oO_v)!Rredss-NuD}}75ijs-@C*>YxeAxSxH#~_}u%&LSq=vog>Dp2? z^f%M-m_NaqjG^YblN`Jwuk7gj=~(`>*7fHc%TQ5?B;WYLPUp;{NraN2AZpU_<~jwB zZJ!yYbA{g@ZD>s1kkZY>!VbFD)Ulp&)unN$z`p>E;aQQfAztmSo5R6q_`k4zbko^T z=3oCxXU@ZX2HQ+>vFrNj-f}P>2}~K~RmONOEhGqIBo5_F&_!`_h$5s-(veptL|aRo zqT@RMx)BNmNZY+m zDs?;ixkWBgeih^z*sXV;KD~SO?z7Of7pMy`fSBIJ)({n@3*ayw255<1;X3{5EE{GEg332D^i!eAfPDhUW5U4{{ zg3f@$aFCE^Vk|-I&eV~mIT0;6OSg|F(;;X>@P|CzOCBX#@=4bpf_Cdn(WykY(nzEP zj(@L9;^35w1q90&Ji>K`cy_Ih>kzB|0}I-%)7jv<^}0$PE-^qevNo8Sf>SDVNrn>N z|M)=`LB$T;$-01B!>&A%?f2fR+rcA@?k9Bt0F zT!()UeHeiY{?eIHUPr#=;WY>_Kwzl4C%hvrmd|uPhZ+4r=fELBB-Bi%EP8I3${fp& z#;LD)xK7YULaBMG1w`K_X`aq1br}WkWG{pN<&b)wXGOJp*VM_9yDxQ4{mn#jJSm-0 zc^nVHnt?f;Q-e8JkEC%S4|hnr(NJTv(FAUM(i!2`ZmEqpLQ#B=rm0^=ZsW5?LkJRY9^8wUJiQ=P%ue4qh-6QBAm&4!L?QdiMpR8ne3 znl5eCrMBUWCnDk2I4L8w5%oKvOJwm3%;Pi($`EVNl%yKL?mXRKJi8*blG8$Z;r%tK zVG0=j!=%yB; zX+2@W?$k!G|3z9Gbl#V`kVgvIp!5m&=}77fo-iad2GZC{dX4`6snnPCB~l-sO(mO& zM5>=%Bo5-sxd;S&JS^z4u?d7G%vNFCjnv*et5hOPfy>5DIOksK2~HM`ho{{(TH&_m zso6a4NM!QkKJSaBn`fD0_DNHQ-olGMS^~GY}(`oJL)!_4K#CT~lMm91#alM%U(u@_?9&+^UO1$?)2qXpr;{`8#JWA4)5%5| zvDl(*I{93pSiI9Qy(z70(=FYQf%Qy3Lo1l}P5*@!YX+vbrWG0uOD7xsM1)SG(^u09 z*T$!3(qiP4bn*_rSfSsHbn*#Au{eEBIyqZkEKZ)6zRpN08hNIt(+aDV>3eycIZ<;T z_~z$tx?#J(^iCZ1h6KTp$G}?Vr3d4HxO5UXgmJ;j>~x+-gCfkPob=%wqes%Xej5(k zBJDz8)%J7~azt!;YaS;lBDfw(x5v!~(|OJ>0|5aE!d;FRA;iW|eKFk%-ggQ#g99xC z$=8ai(+_cC&4aFED$OzOYI-N0Ku(4tA;5r?;f^rB19@^R<`((Cr+YM{y8b+U4o8NZ zmzmfUD_*7hDirIbwa5i;(hq#O$dRN>A30PEg1^d0L!*!BE|!FVUgjAb591|_Y>SMq zIqXwvTx6B8m`5^%`gG7(XEef-4KqqO_%C#y4qY8G%+b{`V=U(YD1v*_jLtk;GejD) zTr(O%Cv|2I^lhKPbs&WdgUXH>7dQw(f^g1Iu^vYZ$T&(A60HVh92R~r49+m;N!AEn zYf#P1n2oukGFF=s4eK$LSHmPAAV9{jz&MNKJ<~GOobnQ}!tmJij0wC5NQQNk#~m@A z%mHVw402k5O791KJu_@kwJ2k+0bzDWUy1oIl@jxJ`(-@hNVxM9N!`IOE@LKGeM~2( z6RI;d8xaAhVtE80fFS|XbGR5rNLzT8Ox~?|nwVjNMcNFW579EHNib;PMr+7@kePyS zQZw{|&ZcB%?Brk*4B4HbhlJHct3*C6%+El9PmU{j_#~rQV$!M%uEll(VH{!Ig&6W<9W+t zp`=|I)XdDVgR1)mHqf=x!Wo#mH^YNtwufXCCOonr?bgG)zccL6{%FPt9#m>E#>cLqtRUS@>Vg^(FYV4iZQ>}P}oDKg0eHX=E=XOL+N z7S@@T5UWV_#`Ff6a|J=(HOUmiY?WE27-l0ZGOuyCFya-Rp|o@6#C+#W>cwW+WhM)< z{JmKwM?&{Gpe1%{p4pp&l`_Z<=gfH=_QTpwf*R*ca^!03%)uPiE1)3ZO^OgA+Vzn5 z{mf0`H-44*ij&{?aX{unGs58qqq#XuAZAIaOrNotlXzJyqmZq%nKsbEIdcZC9G|(H z7jIu!=2X}>t4&+5CZi!iTfkwM|E9+hw;j!#!lM9;kU3DbSYZp+ zyE6+>buzO7$8=UC2?>i#tiOCgMIO&M@VJ+04Zo@~lhN*BW)B{9WP=(Hf6gSYhBSDd zIkYY;mSA9US{Fw+?UZ2w{YPd^#h90wRUB^cvw>z6Z8XIj?=$-g!Ln(6y_lTbX`mOA zlTC*DgFIuO(nUWFpIhjk66J>)TYW5tEJTc&M*6-yToW1tX>17_8|&Zm_5L;Z+v`oB z#!*l9G8^=DA)hbNKdcKB5~!}6?ED(8I_t?C+F8$)DHDEBglVnxop>~cAb6l8_l501~Mxg8>=^kfrV47A)uAs76U!>Q+Y@eIlFf@%lLj&=_`al zr3{uFK+jOg0lZV|xjq0(;K!hQtp1V-aR81wUI#D+2!;(hr|P{q)D8qHLlqbeBqD|1f zP`{8<=fz>0070-3pX=9ay%4%zCeiHR8ofaSLgkV5`ila!tIGA)h2OZ1`X|D#YP0nB zm`eQ$PU5k=a?&C%Bzv&x8)D5pj`0Awo7f$C* zsUcXG>k}S3T-Fx~GT3%q?_MWF*!zUYS2(>03;)oU)@h_ju%ZP$?(reO6D;}GWv<=;*@oUN0egY_!e2O1@?!x%}V%k z_Je={1fvnAwac2t!vyi!OZJ$orZ~Av)@dOgIrqxqSRfOg8ny-j2ndkBw1~61ch+Pc z?U1q1qkk6H#8XB9g5U+t!->LDa@ zJs@k8@Ecv6RV~yTw=%04Pb?)wOa$w{vnm>&a5}4^$eBCSI+LbKR^*>(E;^-IzVZ!x?g!FljvwCv!a3T^( zAdeGdVr&ej7FQYpVV@($zT*o?49f;VkzHCBYOLYLL$dl%ZIm6(p_^p+(*bj=vJcdU zq4O4v2C&Wko

Ljj}b0mGGodcC&=k2LJhwZrMcT3i`W~{;s3HTj{Tc{sR5|j{dF} ze?67YIvV|F-m(tL+$fX(C*b{adWaqLqTzNB{!D)U}2nNgdRpY*XqHlH`(Se+BC-k z4!p^3j4IQdd!NKD; zn#q@Hs)<-#E>)O9>6Hpotk{}!Ol}STz6s=}Gv3*mbIP7I zM^fXU75hu5?~ax?b5=G6x3MXs;jh;@`#G5aHNn~B+>3v5nzsSX0^#fyfe*Pq=MKbT zr`(>7Fw--CG&uCmy;z41jPk0itZ;gt+`M{cXYYAkr!~TvOL7%9;Bme)9i7O&U%ty-V)ofZQO<=G zxzQGije=^8hIxB(ck*@{XJdomdvn*-2g?c5KUc2!gSmGUwHJ|adeCQ;@ZI6ub0)R- zB}w!-lY7Nbku8xm=Th!3UrrVhjUQQ0k&OjcbH6c!;F|8Eq0g<{$}dNfZ08>va~yU% z_edEu+LJpPrs|h$=Y^`YY>fU{OI)hq)ZyH&@XVmt2v5&jTHg$&CJY}9O?;QG=Y$amaJGG{gAQc|RCH52xI&xZt4stvYVMO)trBkK55bPt@rmVDuo*7OJo1Sz&{Fc~f`O>YMT%@*mA@h?`e0`^P|0C^^li>z5Vru~Z<<4)2vM zGczS%&sP-3!^Z8)T4CO{Wos1V3h~l|K=aqKUPvzIw;)$+)R2Nlep~ilxGh?H!KGz3 zXmn|rw-LEA#I3*$9M?=UgIu@#KCtQ*0W+#u)~22W)&+#IA-Q~)!mGtPWaAq-hoH-y zW%mCIg1a9tOBF5)#2_KY+FYSqzGV4R{vn&?O=@C|w-w8uG=w0tqOP(S%)r%mPGblh zpYII!?3Y`@AT#ox^$t@*c(!_3W2m%S-U_NtW?QF{5?0#f4`?a@h{IaYJ^zJ5`a9_H zvavw^ZiNrs@^>2jyO$woKOn!O>Ax?2-u0VN`Q-Gt3Heq~dRAe87f0p~G>~ei%*mgK zIpg!~Kl>ZJzb5?*o0?xqJ7-Gu86=WAHm`hbeZ?mHN|~Q;04YixF{7C!O~EB7e`Ot{ht9$I`wd{hBOSGU%^hO?ZMUy}J^S|4r=4ZA2?0(Ir{H4~le*^h@ z96sEePu>Y)$WGEl`$PFDM&iZ%!s2f5ti#$C`1W}IIO&=cfr)-Jgafyx*unKn`9tyQ zxqNc|n}Ac>B;!KcAZb!2)fT`!;lri;*64IC-=&uRZjzNAxRt-9w?yA$ zw}Li;CANmiWIYA%H-WtkKBIh3Uzmceo#Ch2;ZTg(?cgVA;I*_x_XfLK3Y?I%uJ|9c z`-5OhEt(UEUD%I+?9WFfTm*8l6^d3n3z_q+n*`hHq7R!V!&I`QaC4Es&OnTx z0Us3NpWv*9a3FuXV7FQDqgCxiBxk=gFqYduz8WOUhS?$DB-!1l5I8E~Ai=@Gip3E1 z11y66Kfpl6VkG5R{S-Np4{q`&+~XKRODt%W7ckuhJ)gk@J1CzwTvBPgVNlT9toCmp z3D!_du_?G?DP1Ju^@fYh3&=hTmjWyJ^XFV+G;3M#RYUPMlG|ggq5d!u0~-u4u!Cbe z3oM}hEMj|_AuEia-S7gAxe*A|;-A9{E;Ug6h`)|0AjjJb9lv5U#7`g$3$%u2|Ppx+BaAaMt-1y}K%kaEYSOnrF$Fq@d(={Pra+(X4*q-TGjyhOR<_ zYXr{U752h8Muq8vq>EM03f(|As*u{1*T_P5htKX@Tv*r&J1i(1UQfFC|NXoM&=ea1I_5pM%XB~@FuZsnI7Rb zE?7}WqQbu}8lk4B(9f{;A`;5U3I9SR++SAMn8bbogcOH?#co2SHx~AwR1*JegeP|u z<`U0Cdm4yG_7^%jfT@1TXy|aMkT-au>*c}@hEOzbX;&yQE1CrMHw($PJ!%TAVC9}7 zdl+0(C^;)6CB0E?MI3d%aDcJ+Hxj1zttZ_QXSm~D7H+hY{;qCWIt`^4h9XK>W$>yUskN*a6_qmr zptkOU!$nW!F$$M)>&c?uY*=59-xdwUS2u_Z$dw_AVm0RdQRFQD(cwW+OW_ZZ?C>W= zgV-PNVrAzRJ6;qG5H37-EOEo2S4ET9T_mts>bDxD~&v zFBE$sG4Y-*(pAExA&nHvFE8FVj-sY7q`SMhh|3cbv66Otd5Sj!w2 z|J3oby)6)yn_~ZZB@>KEFQQelK^g&Z;oTs`qJ*Yz*DOk!i8D4FX;yMv!Ria%8i==c zM^aTqh()6Hwx)_D64B$^lpNzH&;yB$*($i3ZGDi&IWY-eT z)foq(c_w-8whghyrDTaIc?b~Fx1=js$M4?1#MV4OdHMg*_1*DR70us2Anm5!RFaT# z=^X+hAP5BMHKBJB1f)Y$z($E6Dm{v1RJc921W1Sl)&|6a9mr#Ozyd_EB0?S;Dgy6! z=j=H*7kvM@pS?Rfv$L}^v$L~%&KVH-eKxObsjtGODevC@BfSrcRa*FdXkh(@dF z+HKbE$hS%e4ee!(Zm>qfyBNTGO{=*UsCiPWDGAi<)oSv!n*Rgo9g=1?JqN|;%(gb~)}w8nyW{VX2c)wH8-PY6BN z$2y8arl7v~!mg&Y^eJl?4ee{qrRd?PJN^BxPV`w{>tM>s#oyJB6@=5px?Nc`uOI3{ zW}>d9pS6&NPef^<&6PvzbAcO`hrgHp+SP_EZ@R)LsXyu(T*oJc64qK za0iaZU)zk?I3IEO!f481)crgib*~M!PNofVM4g9Q!>R8O>jX+Fz~8+G7p0Qrq$i9% z8G^>4vXAsbi<0Q@WC(H0P}H56fVw4D@ip(ahJuZGcj#2?!#5xf`*=?n4I74bt7ZTI zNruxV*Q4NI82GDGji*z_Xh1Q_aN7Lm#>VvFaFA*~7d!r!G~`A5l1+)~L=>VSQ%X~|eLD;1>oNAASV9?4AU`Gg7?QCt2svc-iGP@4mkD z)?@%Sjl^GUf@e{gl*!&H*5!0ms!sYrjB3tQH0d@Cf2UOM>qx)Jzt{TU?}&Hy^`LFj z@b^opb`cGqZA)h#fxIl!QTN(7)NMQmc~!{2J>*~W4C`V#E=k#EVB`_9Uz9iyNiJOn z%^5ipZAnh!{+Vd8Q)w%jp9n|8JpP zmRifw!?M&(ma1f_zbx&PrO~ofDNEC2>2X<_FH7rXX@xAUlcjaC!GvQ#chyJg8C zOXae(N0tr_T#MpnS$tDgI%TOwmNv-JX;~_jrSr1HN9C7gNuIzj3>kzHADYL@5}%xB z$r2x*x0fY8L+>d|e2_j!miRP%tSrg%__YfQWYH!GE|#U|Wa$A}dRdkpm8BPC32F5I zTj-W0hb&oTsX~@sl%-c>>5weFBTENl=@VI6ElXd?(pFizC`)T(>5449wpJD+2BY|- zEG5g*URi1;OWS0rvn=h9rQ2nxOqPbp65~#krB`I#Y*~6lmWpKQSy@^wOOMLZCRy4i zOC(EA%Tn3k$h8=REIubIx69IDS$b8LK9Hr2vUEz8N@VFFkRlQ)1l!!Y%I2+Oo5;{$&TSq_wif`w38+q;38 zKHH2Y;SXC&6@luB%uFaP8`2<6oLOfbp>XT0c)w?Uj6Z~G9a!IL9&HdWW^S##6HWv9$T9F(6bKkyYMgTLKYAW`%5VcQPmo$(?uvscaD2t@C znI!U`wtl86&lcD+sc3M+a9TE{p-Iep){2iWbMpYCa9V{)EZJ=x+fbufW3%F*h8r1@ z5s(ZNg)8M)wZxgl)-YL|c3~s&FA(gcybWW-Pi5BsC~(nAMA>njX3;fNK7uchLwm>@zA->F9n;!5bCU!wMqxPh$(mB!X$7esZqKB`=8dAMNry&eiX3i>7eBl#b%Z(K;WPNv+Z)A+UthHj*TzS% zbexua8k0n|o2`*z<6$c)9N0w`$6XXQI)6 z*^)KHl35iY)Nym8R4SQbOAv3rWyJ?gnIZFe8xv2~)cMrgR(u+SAvIFUC9=ouvoJ}g z-?a`=tQvMk4p-9{TJzsV5n}oWR+mDQHpURq>6rB!Rf&OTlkIY&2)Z5_5>F+|Fo?w` zf;-DSfdHT|EhLtf9JIr-|6}d1dSrF0nVg+Qx!pp-Mc60SN}cX+=uARH-KSQ(rj1#z zd&gspMZ|kI73oI?pIcP!jromy#-wtJ#EJ)EZ+!;6glUte=Eq5SV&q{Qt{l1 zCbX@WTN2fL6BS9T^MKvvFYB8M z91tPf(b@^2QS@^o$fWy~e=)N>j|49cHHqk}hUEsPnMuetBKx`(*G-rKR$$8l=x*Nz zwz+B~uunvvZ-*v}3yo|#tC$+Cl4?FgKQ+-{BRtG@LL*eVL7`AixGkD87r=u0MA!x^ zist9-nLG2t(g*|-#FvpaWd~w=v@Kg}BhUe<=5o$T|A@n9hB}5tX*m1hZFa@8F(kbS zK9Q7Y(?@h>zT~rGn3=L8Y+2%DvJJ}@j}>N&W6Zp;IE~_csWzLUcq9Yvth${uU4qlK zu`N%x=`L~qDMSE;8MZ`4=*Tdbgk=d9;1i3&QrRwQvuw!db2r7)%1u=GmM=u)G_}2` zdVpunq?-4_!YJd(FcZD@sXJbDZEn*S8DmJAV@5-qLAXLfXv8^a^VF6$e0`dU>zqPi z-V3t`7>LefK$QxYRm4+8Q!EXSx3%?ATm`@---N}J7=-Cd?qJAN4zcw6uqKrIS6Bkg z9SAK??qut!kOO)s4T%c7+Cr)GqVNc^_p?Qcr*mviDfXm@1;A(3f5Z4BP8ih|RYVb- zWW3nf&4%yUX)1UNypv9s+aSJZAFkZ+vF^4YXKT3*jkvvYc#LL>=X%=IqAHH`vTeI* zu=yjy@FBp=0Pk1b$GF}|$Z#$qEWbelISz8Po{{Wk^ zehRGc*PY=>;@}{gzV_>DOA-Onjuw65j2E8`v3;tM6wsg?jn{)CZ7menat^fl2M&DW z@`@Px=TY#oVYJ?wmK{L&cBB%O-{c$Wi)9h((+}a%;?P(dZUjiN3PcHbK`2W&Hwx-) zxok_P+7$>0Mt% zcBajvMg>7Vtj59@RFvIm!#8%BkARj}-B-~;G%pw~;ams`Ox(-M<#eEnNNh4N4>ozX2 z;SH?Z1|A*D8o;IhL?j3-wZ|0zQJn^$ss}3Kv{m+nyKTKx*Ez2vcBxrnN)|cGjSi(3 zEp29sp~EdqQQEj#ue80cC`#wY(7jzuF(T)FeO^TNgSMTDEDWc;s9R;zLqHiHuzMRh z2Omd?d>EogTx-)8P%Jg<$wH{+Zc~H+SRa=8XI~7iv)RmKUR7Zt+6csi^|lhl3J^0z z%_BBF;*hKn{+r0L3QmI~j+n=6I6`G1@#>KOttnN2kUop7rgb8!2^D^8!h0~k(}!HX zS+_-kTSuzzS5uZ2iJjbP>!L_v1Bc-CDO-r>RbnVG3l){2v?eW5dB>Jd+VuDfQ<6oN zQd<0-?|IF{lAY9_IFaHI;329(-VWK3+sRl99CcX`^jr{2U6D$NvkSENZ) zJgeI$VFheM_GfLOqI$PY#rq^>Dc9anqoPp0?y*HYR~RVh6Td=ylu8(j&-YKZB&#Pdcd|%wd9BZ zmCkM<8OjrP}tk0vE|(R^rf+mjEt!8Q@88*l=XRD!cR{I8g>yAB{@mwRy)| zH(2jCQL)1Gjt%?PfR5S-v4HBSq6QvKM(+Q`H`C9uYV$r&i=m^SvJUWtc&tXV2J`a*1dlxiG5=CFykcTj& zrvoBryE9swvO{NVcc{^F5QSwDBRLWsPUBBO{NukeEIF`j=xq`NdjDL}XWxOfK22id zD>3g!N71q`LE@or4cpVAt8=)7#gO+wq|raAtr+IezKWF zzYB(;Xq|1Uu+YWGm>9w^C8Y_{rRX26EzV*!j(O?Lz?HUs_8{})8AS6C%8ax}i?}GezM!!A1;CyDh|z3tMvT3O zl1gqlLYTVy%0j7dd2BS!`eX5WLt8A4U{CoY#hEz!lS)}Q&ry?XkD`9*u_o&L7h>i& zi2@5U1Fb zZr39KeS4Zj5|RFSq9RRHWY~j}5LG*3)hrIkw(rvD3QQ9|uf|*ed5n`fGv*li#LmRml)c|K`$zC zkGF5U3fJFXW~dJ46>I0c_E1_nI$q7=4|m%GiHat>f$KY zfsHlq>l!{BJdon_OGaqxt+tJM7t8h{a`NJh`1;1Dt}(u z0U=+_wghZl?oCM3c7BVW3ikAp1jV}1BYUC8OM^UvKss@a8k3QLAtYeTbmTxnD7`+) znJBvLvTspb^11*>oVdE%AjGRMD#OHen_b_PvIQYX&eEo&gVTX#BjMW20kJtxNFse36gOqeU}`o><{gomU=<18jIL^P?=mq`H=h)|mU7Q0 zh8#R(&r@`?E#Ty&5W3}kEEYSC=(8eVLD!VXn4}qvMB$r8D8szUN<58_giq%j4W2rN zRF_vIXhF{N?*y;6h0i2K3v_w&Qp>vyi!~`$bo|heULcg!!68(54D-Xu%{j;Q^%lz8 zfvVhKs`y}%7VWrd{(tjUbtWlPgnt}7Z>Wr;FMF27i{C!62OZOJ&bD?hGL7umBTm|1 zRq|mg1Y#I{6LcnV=XrxTyK!XTqQqSn>?+|YaxdyWnb_#6Kf@q6NSsq=4~m=tiJ{!k6fJTV zkNgrGsQbGFw?X9BSqRvRms*i5Hg| zI8b5jjCa(VXJkiS zKv21T3UF{RqKDtCXLUu5@ji!Sho0JCSH^^@A8VW}_B3|ripToJ5c2^fN?uBHsFj-7 zTYyjm2MHMBEHVv62j@06BkCb8C8tI8k6Q%j0Fp^`Yr_ zu2rVWKAq(_s`RPeoXHH)rE%$TT7vHKY{MJ^`yi%szA!yQSnhJ@5qrS96~3OHs^tU@ z&3Dv4ixG~64n4kLqo}S%qJH2;q*UHq?07-(!p_d|GLmMkA9E#$H88KQ{=36G*Z+!cYv0ORQ+I+1o7xv#~1}+Yr)xO zs4%Z{s3nfIT-H(b)+Q0u@2v_g2I=>RD2RL`lMk)ZqJCO+>(q`QD=92r-Y`>*NC)O zI_Au-bFR%4xsDsm9Ir%sH8=_bb9g z^dz}O=xCWES-kzcZn7HH z=N# zFQn)cux=mC)Kt2`QAbeH2^+>}vGN_mUFwTnHaR|UgwUn`WoikSo$ulCcy040^-HF| z1zHrT`Qi|!s6!Ui=(z4Ii4_r*-Fcc;)C8-axmy+zxdXGBusmP>$WcF@B+JsQ7}4od zhkmgFM+t32=1Ip@UGdbNlq{OQG)pPo`p+EtwHoZGZl&UNS)rowm%0z2ZGUT(xb*jI zmXcWB8Hd_`iriYqi)uK5!=;*@P9&A9vHpQjycmDZp&u`zIkw{`vu@$ht^d}cXLtKX zId7xdU$UBNb9?T4V=?80A!n8)UKE{o=!xmkjh)?O^UzW-#kBTb&|?p=>!M@7;zE<#6nHdM1=*o=bx1ZIft`cB`|)3OOagm7DEq&-(yVFNAG&M=2&w&}01Z8YLHk>& z&YrEf9(Gl4FL$RsC^y!bBraYz77k$cpyCu<2H}VyxuMh8#!Eug?`MaK+z{u3|1Qwl zQ&@{mUxz@`!<|6_txm8s5f+m(Mne=3rcgBWV5T$G4z`3)Q8GOA_*kdX5Yfc!)Mvj{ zXJ=0;9%HevYMo7R>d}lo0V!JN>yn-N!j4(c&jKOyZdCPIg_1;Ax>HYT2UhOt_1Q_{ z=?teH!XI1ZF^Pw=ocbNZcP-B6727u;z0o`fiGb9Js;^-{KV7hB3*y06PL+cq(CHze zn$wxu#yPT{Fa$2+Tv7Ib(f6cL?V4t?26gS|REJdpvhXRKK-6G{#}=lp`sk@fIuv>L z&D%|RVD^Zz8C`t1X*Sipg=K9?cc;D_N>3_a8!9!)tt}gyLPdHx8>;Tu8KX@$T|eA3 zld3-eiCKM|`r5_Iw2TVH*?vy7Ht=G~k>c@lO`GsgBJOai65%ik$TWDGt#9 z#YS{xb1g*k-(x5Mf+^e_{h;~YW!e*0%kOiJrmF6^@m{snl_ z`MI_kbZKN+q8>0)JD^p#*4y|EPMe}uJq%p{+?nzob>bdy z!?FZX@R)OuB2gU+aDMBSU1;hW+(fFy}5 zn-d{0<2Z2bUZb}CzEsDf4xf7SM0ywB_Njb5t^>d@WP9*;{oL`_uwH;a` zBU)*Uhjj~;QMiABvnJjm_NWTRDY_Fl2cHkdK_#-_F9r`Ke_!jC;&vf@On@U&jRh%TOf&lqZTh8KB) zcF^{^^G;l0*aL9!2XaMY9LwjJa~+aROVg3iJ$B65{RWbF=h91ULdDP;L-lx2j9Bs~ zQdm7dlJ4>bl7OJwKamM$x~o13o)ybgjO_3KI?FUfftg&di)^n0_e#3AwTP8pIPHpX z?%mK_RA!4wr=3Xfb8oD)sLT}Ko;A#s^;K3<-<55nM9o)D+^5xKWLV6J=i0`KIo|~9 z9@`QiF;wsdUQ@-_qZWVX#73X7*?(ZrJw?)wPNXzsr8s-u=~wW84=VYmB1e4wv*E`W z6P2B*aA3Pgx_AnP{>LR<9=MWih>!I-|B-gdnkql=n-iB1xOZvOr4P5uqD$rNLd73{ zIFWu~fSd~n5TE_2YqQ9`;>6xV<62h%M$Y`bU5s|K@ZPIIdMs+LJCUH&D8hJ4+qG{= zncdo(#DxYf1U6T!u4VO}rF|&GH5w1)xRkg5ImET5f&7o>C#26a_v_G!idwmleh716 z1{uQgDV*v`rR+`Z@dlMe?M)gh??t%KHMfyAAu1zX=?w$_3IB6w#*^)1g(b#?;DKA_ zZSi0u{xm#(v9ol*hXetudHgQ_-XCaU$@3 zdqh(Q+k=i|b#jsm?wQ-LVd!nzim55C3kt$(fex|I=+E0n5iP?*J};)a;C{6pq?46x zM5iVOBFm+wQDtiy-2x1)$aGTWVCX%Reap}3YcrY`$qaj;f>kLGy-O?dRI6Avf~e~5LPnawY(PvGh;7B`o-S;a7*bOV z7sj$4+uMazjw{W_R3%+F-yx2U4aXpc^l>3zX0T;5IxBK_j1h15b3Lzc*rlP1W^}k? z$4Hv?I?k3p>+ix+&N%F8EQ4KHV!}X|pK+QC{9mcyCDLaVMOIqGXG0Y{f!JrEGMnu0 zbc__>1CEQyadXQ*9ka!ZQ7%M_T*=K**;X@)*?BI+=NjY+W~Hb@r)J{&F^1j*oI4;* zsj6=$dG@BE*u(hEYiq6);hxytsMc3YcTb zbXODgpO-9{ql{QOrBTe+onmPG_c(e5ZSuR}ds5c5}c|SGn zoG5&=T}WLsq@)VrTgg%f!nck&iNZG5utaz=1Z}9KYq6DanqYR#b0I^cAxg0`PV7P# zQm$G*a;adPnbA2ZB5tu^nMHe{7=WaUr`j#;cKGHk1ExvRCv zxYvbCX53PShys=O=^~z|k;Bt}ALNA6fOFVHzi^*xyK2soU_Jm2p))6PR3tK+Of6#l1DXLFZGacQ*+YY;bQHO%SOC0nd1Rx-i`+HPI4C~iJl7OhjfE8Q!$ zcQNDKzDpYYFcNdoe1l=<9DxDcO5kQ6j^miRrhqSZX)BPMR{lpoJka+w4J($(r~NH7 zX{&1}m6&h{ia`JI2C@jR9|>2ZKWG_RI-+YhRrl>0C6;WL$lS#7oHbqtMAM1nuIgFK zxlg!|E#)TCD)c64+GCchc1Te%wCEg^r1}gVQ>oeMdQqViFqbEbHaJ?0`&Ud?hY(Uo^!eg0uEyVrgSc_*bc{3Ac zcRkQR{)bp)2$4JZmR90jhYJUQTq&(eRJmN(=ktGQHUzUl{F74IO}hbgrObs5x&(_K zy{__x^~mL0Z)qt$FPBEj=)6Lqva_b{KkRj3*UgY4zeC*tLBL&gOC}wE9&WNnr8GST zYx@oBE!lMF!&@Rmb(ITe3k+cg3PgtB3Vd2+qB!xq3u$@=%aExwt6OV-}yD@yrJ< zT$bTBcvLrm&?Z|VVO;zA;x!JyHCYB%-B)W$RVqzfmA48geykEb=|W$Q!9`z)BFoK0b^G{i5yaP3fR ztv&6+lO{|9X%0M-GPg$zVI!R&CfB;2Rn%EpMVGr<=%4Spo5i57rHM-%Vfn_@K%wIp z9`A;|+`Xk(@SW>~j;S8U!84E&eMwdiWxG3naN*3B`{ldK3|@Lyk7z1dgT2yA=cVy7 zSkHH1-@OUXYZV{rVG$D^p- zB6j^M4U7?aYIF#){=fG~7d5}T5E3&O&m$eUYe~h&dWO>I z@Y`ZFSMxxu8y8F&jMGLn)an+uMTj5GZe;g@A>zvf_dBYR$IpVR9dVn927Cp#_)C%- zXv-y-ld*?c34`8`^mB zSf*Q78y;?Lwi{<$+z-zM2(=I~%?uiv>LvARPI)Q4)Hc0w3pYZy8@T?tf3Ijkt=w4e zZs0n9Ua$7zKpQtsTp5BSY!2nxdxcT;1pHXq<7M}+wR7YC2!jI_UgheQCT4YXBaGBY zsgV;sjp_E4@nTVDLlFXU0ywL*n;W+rySfoyNMwOtkq=`!dZwD`WKr$aUQyy; zcQ^6?3=Wuvq(fDSy_2-X;{Bd(U73TJjHZ%~m9YYO8r2!;r-`ZufMck5Y;PsM2l}`X zE^}W{F?bYLuV`Acq;~{;ET82|%ysK-1^1|61pVD>Rde+CDRBQ7XO2uv?;%?hjx|)5-6G?l5+Ar3uQwOS?f$9QV7)W< z>XS)v&)ps_u1|Jj#~P4M&0Du8iNtAc#2H*EWkTG%_$2tqJq0$+Gu&S&Fy^@p6@NVd zPY?jSb7`MA`fUs5e_VkZD=SmLB^IX847U{wMGwpZyrv)s7y+p7n!P9Kn2E=O%gAt3%`gGQ^A<;|RNa1M= zu5u%{yv)5{brDclw)17D`I@1jgb15%=qI-)*8I9h`zB~1 zU&vZFPKmTO@Z|(>Q}M{dZp5ry88BCd6s>npRn1w;QQ4B-?A-{F^`q`*6b`F;Nzcko zBIa>7PVt$Lwubbq%pk`n{X&F&lcBQgyg*1nwr>e`nhdc#+b>LX-u^FoP(xO zy?3Qq)7Gz_G2C=ub+5_GZ6YS_c4KqJ*eoYhwiLNGH}Y^?iK%Hr%WkhUiDQocpE3ZP zD2}*vW7MX+#Fd*OrhAO_N?J*2pUUQ9fzSP+>XCJ$uuo-*C@y#F(TQ9~DF4C!$&?+^ zKb-D&Blo{!ulosw!!FMLdoFGdSGbYJVJ-tWd3`G*#P9o!L2>i7mj01+>DK;{qV_pA zvapO35Cl4FBIdqm;An2~!Tv2p-ofB5ES~e}>WA^eY_)mUjc3pp%$mny&bb4t&A#{DdlVvTkq$}KUMC zm)?d-{&z>D=yt+T%p2STz&L!l1Jd9}qr3m-2G=!sK$1A}aj@%RwJsPi09(At15D!8 zPu)0|4oHK+H9H1`i-D(tq(SUlEHuC@I)Cm))`oGUx(UaZhVM80v2dJmBe%wlU}G)l zNanz3G4LxxZu&+BH>5HL;-IuCemK8;$2m7Po%dvE?*hVoU-_cJ1K+yGm$uY*pB=w* zuV{e3a8KoBcr||BKojK_f^|SVyyp_B0otUvxjv0Dm4H?@gn;Rd!Qpzd@0rxDEj% zY8@l-cEiH7LCKUm1pa_8F+cqa>=Ll&I+o#j`43>B_N{@jWd8)&w?n_V`!%djjcSHe zW{TS{LqT+Mc-3x80ZL=gP&|CaeMv(0XP|p|f+4$?RHJF_Q0QdURk&in@4m;;44|~q z=%Lz)-+@VGJ0;@7`>hgyC)pMcGU4gMveB~nn74iS!ayn>l_`lCoJJp<@h6B6L&}Kx ze%IDaRyWsPn)6Cn*;}%@YPcOQj9omqwYHJ_ETXIrkK~NC8P)g(r_=W%;Y{X6X+*~C z+M7moParJ~7+&ls9|0U6Q`T3aH1+v2MO9oG-p;zN^m$N4lO#GZd`P_3<0tWDZ_6IX z^m7DYc(&3pMD3?8CzjpHqp+4W7x^h=ugTVuDuHSoRqYuPL7m&S{4M`U`jTs_|Jhv88m|Hg_QC!F{3CUHEg?39FIQoB%5?9fo^ z+hwRa(g|r=*1bNZII*O8nfE42W|}#1s5*6+)3Qw0kuH=oacBsQ8jTg1Plz_Qu1BtF z_0UA|N81}2tILD7of(Z#6^zA;AKNoI0q&mE1w(aT4aKXJax~O{bc%AyB1B%-vackA zEMgFAt98A#TfMG}2MtRQe|0Z&2am+uW*9Oqve%z`)*D22n_;1JHosEIB%yabN`+%8 z6U3T6W%~^YIu;KLp-uM=Q$ya|udJ8kyFuqYX=Hh!45qttSc9HIV#gxJ_Lw>6L`OGca_8O|)VV$aDsj(hKD>qoF_Mj?_dslCyNn1Ey%v@s<;{3J=A5}BVsT{*pG?_sKcewL zi_5UV3-kqWl4!Ry7>9>fH>om$u!6^nZbb%;(c!^+%5Y2;=*HZ2WNc|UdO5isBW$+3 z3~9jt^Gq=N%@I+;yz*wzh=%tYW7X!VZbY&OdGKbLi{BoC!_f#Etnk=JHyIfw>Q)D% zfT<+${o3HcNlxj~(2-cz9u96UxfC_)4PIp8mmE{!Jb2o^-B5 zhVYjmjDs%X#akQ8-c^-`iiy`Y8`OEEk{Kbk8kLM*xMVawJMzQG2=VInU=FK39Uix{ zc$7K^c=HLEz1FRvmBO{d=$3onK|Q+@D?&X6xpF5Nm4TKe&y*q66c{AWT;7UN5tXZPvgXPt zY(9N@rGTX(Wyf3xsfC!fx9sS@0`e>V6_7~zlSYS%5&MJXju}Z3cRXj<9S;$jVWusQ zjgAogUodz!BuSli0n+Qh%@EOE7=q{d#;nGQ)-M}^=OMBaX!@!lCS9t~$UjDh6HGQ< z^f>hIvq9Tp^1?)uBfq@tPuZ&qQnD4zS4Dad#x}~27Uqx3K35Rj zUcl287d-er+V^?scu&12RrLR~3|UMj3GW<1Cmz7w_OaS@x0wV<@VkWV(CYD@iekgekvUw3+VbU5FBYxgvB_Ty5^0--LL#qvFfz+ z=Zsft^(Bhpvt^<9vWXlmPQ@dH{i`xunw0-bA7`>=%INRO6u+LknIbwh)9Ru5kyP^_ zI=%j_)F&oo42YXNG&Mht&gc2@in1T1y>SyMMuu*moo~idznj;{A1y{?E zPhl2dJo3XCQXTn!VMA}CsA}NBp%4GZSrslPJdJ5VWtOH&p&_1E6gV(z04GzGc}ytf zUV&M~g?W&|W)j7AC?bO`jmIFt7U4mnk0DYK1r+guYAKl^Fk{Bo+2I#rQXuRXqCK;5 z09B>!y!hqp7TOo)zV6Q`k~;S2u*~4nLXGTGZ@!V z7@S3&r;jnwKN-;AhKU}W5Z(apckdXmGS{0Rx+i;ZPdoZW5XY^H2$9p+)25;7Y#8|6 zHrOfEkb&Wh5m614+1F-Dle79P6lhBfG252dNW0M zYY&1R2G`m>i9SFS6SWiZp8NdcW8!FJ;@BvW+unm5C^wX2pu(CljYVNc5AKg>*sw^A zvy2^{Cc@L%1NC7D#;FLI+j>IDQsB)HC%bsCelS?N01dIvkg-Y`uiWCnfHbAfkKt2mEQ}X=8Pkg3R)K4`jK!s+Pobbc z-mY^cpff3o14PylqAu5yP+u@LTgIBHw_2^LTl-1?Hm(mbgJXejzlF;pXn-)uTtG7kCWY0~1E zIQxRS%5j<6KvQOVN>#T7F;X=u$7PYZ0Gh+Y2`%(s@d)%)Ij*xddAHtah}Y;)Smt=H zD`G~aMlt{Wacb^X-=$k8$z??YJLX}@vMl!EDfRgtY#5kRz6Mv&Od3$-xYpXNe!S3w z7?r`$8OZ!W>?bV0jKkY@q+9)Uu|7@~O-+aKo!AQr$1)F|*kC+e_`N9LVUFJI!BH23 zan(9P?7!F3LCFgz_YoBFUTG55t*-2>P34%C9&8)9dDdWz0sV9qYwq{_rYfbEB6ulW z`Fc=yK;rl+4-$+93j*_Bs{Tt26j;@D1qcYQ=#TLhs&$XYeGaL2p^pUXUG*2^v*|Uz zCq-mG8Z=P=V50tlLgqbgxSRl4#ykAoc#|mHialvvL)`K^n^RFmXUJMHXJ z&q_QFlH@_w4$+H1^a2mc{|*02wd;^J$nHG>*-07koP0+5U~a?Co5Ab|FYc21p;7w< zlTdRQ{nV_-QdT@>f>JS)P5K?#M!*S&;MoA#Ic|f6BMidJ4PTRPg8$?4F1~$r*b}AT#z+soZq!NVPjLQGBIiv{ zBh^r2_;GAt1Cy}*s0Y{g0&L`e=xM8swBNfPq|zC};{l|d==r|qS5+wuR-m$_LdS*5 z2(kURrv?7YsgdnV*H2LXFZDkjTvlOfxYCDx6`=Ll827PM>*g^PMK^w#=KW7Sqv?7~ zMGJBJe?2R3TPg-Gl)xj}CM`TK**`H^Alz^%2#!!p1nooEzkedMZF8k!;LK-o+8G;J zetb;$J5MS*p@Ux<0OZVZfl5Y*68Yd6xfC!)FhE#pCASR0d0mp~>e-2jV$#=gm<&Pc z9$%}v0E<9Z*q@Y5G*Q3ynA+lRq$A-rXYE+J&{r!>Cmi2-a6OeF=HVIyXJ7|`$OiNL z4;~!WG8nfkOoVVdit=kFriu@k-25ul`^c3+Ym*vmiD?NgINhF{o8{# zZkr}Grt0x<1tb6GL86OMcuYV^75TqDu^7IK+|Ox9>mF?Jyz^k8s&$4@6#60v?N|Pf|uc`IG@@qNJhs8@=maq>$vg$Fv!l!?;r+-g>&A zu_w-kd1q?eLo&^&YV)KxQEc)er6QRS7zdt8yn*M!^vSq%5aa#&rXB%luEmW1jjP{T zS8*oZ`+fa^aZ3(r+a>+Wpa5>6?LUX6cz*$6Z)_jn`r+}^N1CGPSgLm@W%bwh5Vxgy ziyO%QNS%(wVMgKL$#7IZu2Or5xF%kNp%N^x!ZdEEwM6k2%FUmwqVw+AUL40V4Ol;B z{*lSqVsul<0aq4$rV&mreQdH)2XAx9K11~d2N$~sPfn-eMLuPPM_YQarQkN)q1if1 zDffleUYzMMMBh8|r_EF8!bvO%_qX$6NnkL$=2c!5%kRs+2VVYv+psJe1WTs@UA5B9#Szz&t+zAo3-{$=_q;+_abU%;&R6(`%Wp{0LgGnzhtBr*3M9D(-?|yes^VKv3ayX zktY>+3<(iW=j#-GP;)gn8GUH}pBvU%EAjq-@m_?&Ogx}k5-i@DsFTn#46IdkOQ$vw zwUfPA%{3e&Rm3D?r{YcFyp;%>=7k&MHejF))oh&_C8B3|k^17wfEDB%o0_fp%-ajR zaPb?tzzRmq^5PN{g99?o{cUQJ_;9v&pF-^XG7yWLl}XeubQ)3~bG-;J7$*>G z<@_=g_nA%8lsElmo-P7Wy}*ktA~)xW;FdYg${5zau8V`UlcD=NO~X!lsTa954bSRJ z61hd*e{NtXnT~zrO%prs@ggU~EdzP9oCVYH>Z!-!{WDj1>1KWxOiLCQR~oVl%p(w! zsWx-E8cEUvx&V}w;st!)1}}m-+2-KmUR)L8 z)&XlR^i<;G0y38DwCP_sDH=XKBQVrqTfE3rFa;ynBiV$mpPHr;1NUz;90hX=a4TAK z8XfE^@gn+UY{P|U*f|%bX`bkfCvQT|s3)v%pYmcu%M{pR^{!RcAc2Aw1A(Xtv4O^} z%GqK&+Gs|qsMuvFcEICRIWf0p=X8^BSiK1LC8B^+Ld?rFu;WdloZ9JF+^$SlKIA9o zzl@0qo&E3hIC^su?z<(F8S}^a27vLD_?hWQPI`?QG3>VVr|H>j6=VIzXr%F>K9TzE z!L+hJUbZJ_kzi=aUauY{?K70_hVkWw%utKp{z@+*J54(B@eCwZA)TxljVWf=>ToUf zciVH`rrewsuu|Z;3ttWBn*9pMi5s_Y7s-!{0U(pXUeI$<%(&44fXw4C=ghjp<{B1{hmLnG|~b z{UC;kJ-J5w(2N*S^5MU@b0&WHnC{LG9ycc0&;Vi*YmY;syleZkM)y9%OC*Ckd^STF z_;(+9v3WGa#$4!-cv6?M4yG^%>OGDGCl8kPKP9@41M0@NZEb!kVU=o{|?>c4)T z5>>i-W-4`h9Eqf!-+P}`bPfFlG)qlNf$>#eD$qSQ*Q3NcRnb)4xFCw`cNK)uwxI=aig{9`vy2!^iB6+ZTJ^# z(I>-)O_sq+Y3IV0WRAU41-ivqKFlRUVJZlLKPhNQYqRxD$|{Qwiz9<&5G$~S#4d^d z!y4OB?uQsMAJLs@;lm=x5SXkY#QC$h*2a+aJZTi=T70dj=Cw*pL{kJp`E7j&+%z`S z@eA&K{Z)XKPo7q8ZEuVY58>kubw3}2v$WjZ+Z}y~P#GH!5973QIKa$WO~XPnCC3kXG2Ys}H*|Ndj439v6-U^Czkt@S<+M!D`q%pVhZPh%sYlDFW|s(L!Th9 zz_6PtHUiD-sw?Bf`Tjm+8JL3rq-c3zEdAKuhtsZsKI}LoSRhx0V@_^~=ZPc4(xJZA z>c5nWfb0+xGn^FyV`(YOqkLyH{DXNuoPIHwry1bZWP1}AViupmH#66b@eNX7-8Dqx z&Gm)Ng?YU11&xFz;Mu-75j)ZMo#I-$WC54lTw#OFc9b*OhbxR{3RAT6Th~+{GD;e2 zP!fSNx*NsOOv9-Po2C3vdVvp{NXCKxR3tgO-Dj2$TStcI`?F>ucebxit2DTzk~uhG z<%(mqCx_83IYHlZ?*uXur?5Tm9#O z7af>|*L`i8g)2|#Sju)i=tD}An{&3ZV3jXRYmR~Al`rojRN?sh>oqYy5XTB%im*Ix=rx{=z!uL*yO_ofr$s)VaZQ-Hq`=%%Ugo|R^5LA$xpgdo&Ns1&4)AwW3v`Z@WCg1NMdrG zW{bx$MmGLYJL+@Vj!KT>i2&Xvt=s9tewlIfprIMn9hdk1<)Og~6yzRdh7Gq^k5@*~ z+JElUR@vHT3^n7;0fx{_T-@cu>9Zs&FgdzM4QLKXMB}Swv!ldthYyGL$EIT~(?792 zn$FJG7qqT!Ur_`3UvBI0xcF;j(v8XgqSPw~#l_`*DQ_-L+~dQZoDsf!)gK`S?eif) z_WnY zfA}MOP-@Y!*=CXYqU3}d>CX;_it7jDx~^5qPm^svGdod4zvRQMf3Dn@jmi%b?nR zjC+Wf_J$7^HDqP!E_*ax`54q5d`r4VZiuW%v{?GKG;R%XD?So=rRAJxvF%-h8lH=f z7Pj|&4HesXFg#iu{?Kxy9`?)Wy^x&K@aqW~0i?}lh5CFhc z@_#&rjk|ka21bY{xdoo&h5|CYh`;z$>-$>$w-lj$_18W`&plc*}&fw;7RA3M4Ab3dgt zSRpcSi1<@hvhK1VO1^+Hy}SvmF9`J?R48ngw}tzarW5uu(JVJH%H&5{mg(|D=STUm z1RLWOc#Qx83I2b$H54H~&X0JN|4T)Z(;X>B#{1zFwMHMo`ubk?MT*=+KkftQl`*vC zM29$0o$S|DS$3yYIvV?f6l3#=4me94b{8JwPxIp(lxe^SVyNAp55x#dhQCDhCN)l+ z$n+!9l#K-Z1tNWJ&(r+qBX>0sP*Yv^4Z{=F&HcJ{8kK~~Fe*A*8A6?(zROIXH-{Ae zXsJt4KmdrGC3P0};EKCa=;8>pIp5a*lIm7k4}E#I68oxAfPCBDe?URl6;^fjhlwK{ z4TfZ;K&7rpfkqWw{F*r=2nc$Has}6J^&@K11acjyH9h>gs||S74{p=x3kXQDOmdh4 zPDh_^Ih{1J={$8A?&E&`AhUU<#k?5Wa|_1sR)7DkY7$=CzbAs`eU1AN-wi{`sOv!g zM#T-A+U~C_W5oA^{JM>@hD6^rFH(Fm#2BLVs1$`t+BSGzvgSno9_B~t7sFDnL4w8E z5q^Dfz|}{EGj#I27y;2@7s66td7}#x-Z*GzCae3gG5+cG**^8;cBt=oKO%DtQ@z0g zoAUepCd$|_PhI8fHqnm|QEMZ4?NEddOJz?s1g9@Oq13Smh?l;>9rW9#>N<$H1#-2_ zgkt7Q_hTDkuqjY!OqOb7qW7<2sGSN8nXw-S;V6-Dr!gR1MZ-kg9AiRRD3UqK`wnt% zf0rLSR_^Tv4zt_Lj}Kvx&6^6Tp!vlUx69~NCXKT6D5quZ15 zeiVHI4?;W(i*;e+O@@AivEV}~Bf3Nm>%IALV$CDQ1mf)|nr2X+PvLMyP8A1r2CQ-G;kL!XwerabSYrDT($%B<*ddh-m3UMKw(CCSqL>x-H zEeq1c)hB~3WA_EDEjeu#sP)sdGg!5!r7Vb~YaJITGfbyoGsL13M&@n{5=HDYem%Zo zvG2No^QX97hSsvBFCMZW_Mp`t6uhmv2nJ?{;QdYO?fxxlIILlvoPIsT;OMNA+y8?G zXYcyZMLbtjaNh!x81C`w(HIVX@TqB^Ut1az3{4IdqstYxnl!K;O2rou(X(Ex*<0Ta z$I@!amifsAq4aidsLj0<{;o>&yv{`Sm;m3nW?!WEV!y#P`{vaL{NZBjbN){PtctZS z_|Iy81&m)`E@kX0iiDvtazPS{UiKGg9SMZnl}aA$JY#;5PtqOoV-w0cz_G8aq>{fD zgb3#mL$g^MxcSD{4VyRIKQT_#)Mq2b<8S))kdx!s)kpomDe8t%ljA-3fKInAOc53D z_^}t@&JC~tSlK-Bie3A$Kb*>EFH8{cd~kDfNiBv>tXddf`Z~7%KOXbn7(In*{9Sr# zp;??hVazPA3g9n7eD)t*54b~t4)v8Q-zr;*Q{NbV00)lI)PC}!R)orU5%ImDVpzmu#FQWXNTIN>aiAAXvwwL5>Xw3iS?A$ayfo;Ne+I2>qV{EU_L9G2<#Fv*ULQoJa6xHx)0TKonuJvfh);jrj9%IjGkO9h88AkKk))V#b}fq4J`<8i7M<#>%p%W?!0 zj5u?Tj=23p2w~VN$mr|V^i ztp=1osStS{ua7K`qE!v{o5arpjTz>NU`Sodq9{=}xEu!nOf4W}2B!~&kwp$OgnVgi zc{)|@D8g&d#utT(q!H!Vtw}^tH?kbQRTcx|W)g=R?vD`WJiQ^IVLCZB7ln!FF*;oV zy6}L^f!;+7J{+%`XfR2UGN~MkCbtfZaqD+QCXqcwS6Ce-ip-_=gi!9nyCdnPbr8^t z)5@P!JYycND>|4qTtq7=sn?hjICV+6;75`#?+$O6O&%^BR4eH(RGpHM#i}nwcPtoY=qQ-;z>p}b4>noIl zd+#A#)Wj+eFs>M`xHm#TF4&L-B)w`EB%S}wy=HM_Z8@?N48h&C2yyt~a+5F6OLV(*H*fPh_86m00(uy-knaH5D&d9lzel)KwK zH0s(*5_>nXBsPpOcExVg==Ynqcc9<*{c~?;=e2q7&70ZTy&3;CMFGoE0z;Ic^ck}p z)d(1~t|+&1@)6aki)OhhQ>ZA3iH@mY5W)unMP^fAHp?J|!2t@35VE%{_Z^<-C*6Qz$te6-%0hj|y{go{MP z)ox8^W8<3ayxwMIumE63Kj!C^QL=OMvQ=~iNyefa2VRC4Hjc#2cB9j$z&OvCXBp3n zgZUwcj_}RynYvC|`0);F^%rs5!JV4_gE? z4-CSVEDm$IQPeSvVP8AX!Iw!@5$5&w{y!t+R5Us@e~zPSjTZa!uw1~_5S~(e59V2! zZGgQN?UW9O^FFKf#hpTMz`@2QD`m>jqA=k8fErKA*Uqz1qJOark_xPBnFjHDuJHot z;?TKRT<9{lEOkADvHa%~MFGPZ#e(Cmz_gap7K|$6xcIqtbZ`gk{nweI6s#sU!T0M~ z`0T~G|ECwQ)|D^hm8BDz*bT4x#XP+A;D)m^xmswY_*^cc=7~Y!+6^w`{CKXj()#zJ z#Kt~hntY#m)+GN4g#xbTbul|8^SWguP!omeI&?Gnz%anHgs7ON5!Zb6MWfhm7j71H z5LSz;qZZGzSKIvlcF}BzZJB!=V|V7YdFT{(^RW91M+F{tEHfLP6hz;H9H%mQ6_mL9 zMUxujJuD>NL%d}ClV?ucs~+SXFx#X!B$+y>;e5=2)6mEt9_3+8o9)H}^=@xdY0Ak( zjrG&KJ!Wc7^M_yH=8I=}CiSL*_Sl#yIVqsNG`YUaGyl!e;Z;$va@XhT!>b{;)e5{m zD)Xi&jf$6WwC6>hH>FoF)mH|;%fmVzw>;!So{w3CFpr}9n1>g%tgM(l6K2o0%8}1` z_!BAL6bYG-kZp;j`FzR4ABex^S!UoO!7APwy+!S!xrE|hN{^>Sm9h9PO-%Jw9=F{W zn3LcVYrT0wu7um_@fA3ubJItDKsXd6&vH`o?e*V;x2uxrs2^>{MCZnVBNG?8P)Gtk z!sZ!vR~LPnS#FUs0>_oUW-KU8=Y7%Zo4M&NGgo$UN5R7Hrv=zP)VRP#@hh#j%r!W5 zGc~GRl`bCoZ>HKT8|(S!7TBw!ewe4;GK1sLWWtM%3(fvpP)`3{Ughe_ji5OO3%uIzV)PX^I$zb~N^Pz}%lozU-#p;B z(uiG)T$JE?`dl+QM<#B%Qbsk*K>ZpNS*&=jk7~S!789YsMwT{cBOK&MDyE!??aZGIbpHAa-*Xq zn1xjpJOvb*H7K4X#=Kl)uiWmU$NwQ%H`o@>e6>xk%B1dkEZ6Z(ZVzs{QT`Y34et4^ zUm4v^3G8iYide-`Z&FC}XgfN+5dp3Z)PI|%6wF&K&m5Mt<)sV_DQanPPhq(!l}WuZnSn9w$5obUBA{`gO_%8)Utue zTlq9Yn4ZzuT|jpyQ=M2Gv%XmGt~o;6r|FxdCa2X>CePN7QZYH`9?cQCkqPnc#*V00 ztcx;pzJ9Bj8!z+mP5*`Z>&1jBqW@yiJf_Cdk(s({88WzMgVRhCvoEU{K|+U+zwR*OZgQZ-YLp`QtPI$f|uZ?C+` z(&L3=(M<(65$#+SW>x;!rpFQ`m&MqiT+Gp9xrECif|S#F`q$>N_@{$%&7jB1IM>60 z?iASuhW#Mv@g`N=RB#hdU*eKOX#aLG^f0=J7R7(39#bVQ^Ir$NwlA%z^w_P(B%N>a z2g$hUMdy{J=B0|Ud-Qk*#?{D9cEr`uEszX0wuE!0@6%%zD5_cFg##kNsS?Dpo0oNb zc`AIn)P_DE#EXnuheVp?%>%05?M{TF}9|5;z^8-FQ4L_g+wc2k`b zdVFkFvG-QaXNPw9J7el-3_#9M2%JFTCC^HZX?s`{NfBW4RJI_%id z>vui=+!F&jx5#)K<-|Fmxj^K135s+<|vMpU6xf;VxH^u-_(nn*a})SX+fbFjhT`&DmY=w!}gdK z7qnbvt!lgUl^CLy{EG~Vvk7cz`Q~NLRQN_efJT1APV(d5>Z3H`67T%(<=Im!FM}r) zR;h_~ruX`d<{H0W@yR*Y1b4tnOdBWk>USUXJI&QN+T4L!dl||qe|{86jk&2e9SnFh z+_wySo}Kf=SDNp!R6FB8J(g-!oG?LX#=+Mj%M$n&yknE2c z6vB*d!@FE0YS!?I9%AC_E$1Elb>%wY0?%V3Ld)|Fk$5C=tp3b;bXuzl+6<= zs4ci!+JKn?S7XO;dy=YvI;C@hmvYg=fX5}S$vl&5ufVRD`*IokVzQlai26{NqO}uF zPa5iN!0eT)?`%N>{3;lxeWR8Fwa@{$Ug)7f4OIam6OS6Ow`NyNCcd0VuvbFr z8t$mIod46im}`}h^$qqVnKOUtdNN}}*&J$UP;YU@bJJTmJ#S=iRj&HM4onant;%+$ zLmv~ccWe{G8M6onQ273a-BnltA7ukR=kADLeAUcw=zq~F1uYCW)q9q<;8^;fHsHgh z`H7g@w6fIlnDnBJA(~ZFV%l5O;8dgSX!xjd;njgVhoC`9PZQ1{+NCqUn%LdRVjzC< zg9)6~R*Fd!eLAC3)KHhVt-2dpsI@#YUF&J`P{#K(%+yebi?IbomCN?0qz^hTn$X)2 zL=|1pMQ`*r%+`oY^>5_L#6S_KTo${lDxpEJv|7gIviS6&jgZ*eR6TV9OtUYb$Xg)eX#%vN!HDR~$ym^=0V zQO|8A(p}x@qHhX9!CL`uELs-vQNU-Rxy%^^UB?}pX`t)Oj)vIRa}9XZVs!S5alQfL zDwna>uRW#hR?*9;YLr}Lzyl&zb3Q)O#DGmaq78>Ftrh96b*up^UW|n8gzc4~OAw4^ z8TH{f;Nu|Vcmsw6Mk;QvsXv}X-DW2V4bkZP2^NACs^sy2gOjcqX#M7ybzDg>sEL>mIL5e#>$a=J5CqbxSe6sWl z(Lj2UWpGrUXB0&*4=G4dc*p6x!d@x08A(W`gzg%%blwaAJ=~qisc!of?nsNH%OU z6C&qh)^-R3&@J5xe9BlGguC;LdJPW&%Xb(sZ)Q1ccY&@Lb{g=Y!Z$^ zi4aLF&4FBgS%HH&_Y~=F2~Payc%R`9GYt=N5QGC={(`yQA3#o2xrr{Vpi56Tw?%XX z1ziEdFiR`$@@}P9x=@V$O8nj7m!e2w=b*+z!P`T#3&`Reycj6EvMfCugj1!~oG{=o ziN&o1jrH!+2CUWaJ>e<^uEL6%C@ZDUi(#0naDc46GXJ6>$x=>3sQCS6!15T^^Dymw z#elgtm%q{Y?Mi1VSiI66XMGo;i+P7?J~vT4Y|Ba~#qSRTX0)m_5p7(Pa%d&?JH27R zV+q&%FG5s1DIvH1FQGEvPEnY`|F!7mpDP`dNp}rcBx6R!=7AhHDtNroN|}4F$RnVs zm--sA6Ym$vF77CqA68bU`!(=!#Eu7I4kI`!AhE$cnx6vb>`P#6R~EezSP!4)PNn~R zlf7xd8;p1RU*uL-p1m=+YQ&|x;{49g&wLs6-Z0#JdFz7#bJm-^aIUTtm{yJMe1w3^ z0f<+A%n0~osEplf1|TCX_-vS^p>|iW`OwHOhDr3|v1Rk27heoDG@@L3S52cZk;(O8xrKHC_};t58Br@d-+#-`@W@%F|^=F5K^ z1aC$dklwf%^EC&RZSF=`(69?L`-Z`3UX)b^d=4oVKF%J%+NB)w5Lh;^z%NWO zdeZ?0Zvb)O`8H+Zb!UOsQa;V7_#y1aoLsQk8YvrqIHXtFQxY zWn&QePsGl?Z1e~pVGfp;NmabvM_`|r)wTy$zm$Pac z*O)KM*EP;FUv8^s9B00))WA4Rz0ApMXe>$HPU)wTYh&YdYVe z)x@~Ve7U!oFs;@^X2q5#+4d+Pzn(| zr5!x(-^g-`=jV1tZ|ES-UaZxD8ze5XI~wPj@A`Ez&d0;^x@~4R7o5N|SNSf+$&{%# z#~vBFz{5xF(02;N4)ebCaW0);+|&?Cr*u-A81CzP$}PX9D)Zxn(?Cv-uh4}=(-Xv8J< zXy}h;Tc%RGFylCi z`GigM*%!ydjLkKoTv~A+X-riwY49i`{&_UgXs=ufH)7h$^|(3AeEI8WVL-kcGS-O6 z3|~%&6n5dum*Yjx~`7&|7$Q$MF!NpS+!ZIE2Tk^(-g~loxQ7*02TP$3~mph^b zew%XHQS@RE(%OMo$n&p;ZDWKysvU>^Y*hY;6PB3#2C;ug{C76f&64-}#)~e9GBzGq zCc>I8FC`eKm@oV4gsa3|GHoDHyUkV`Uz;ym zuQ9eaUnZ^<;l~KpsUkX#Nr>vNgVUvAjlq5fhwx_Ys51*~VpL z|Ie1{N~;_rh5=mSU--GAb$t0W&$!5ZIp1Jhtf4+15j~NTaRN>FY_=r5kznfm$~IY; z`te~{*$|r6j1J|aN#~EC2i4s!vOO-{l_@(!ZsE&HJB9CWO$2`V-AEhGQ!Eb8-EH*L zh%z>kRg9h0OOp5DQ`Uxig@3pT#A{?`O^7%(dD*3jM3)1EpCWB!?-7JitNvq z0k@5#%$JAn82?f)$+42Lf^z<@F;GJXf}x@A9!7@eeO0|YaDboDM5bK*cVmGfQQDZ=F2OOjBhoxp$AyGg{3v1aZimss9k`iotK^(D`IL90HUwY zL~rBEkQbth@#U35k#YF4^DE&^zP$Td zVZPjKFQLQnU2jJTD*<1vp`>X9lvJF- zHN*)@y17UgMQ~YKndvH}V!Gi5qE>mnve@i*CKwL$l*X7ZFM3JQnrM?%i4p-`+6;g`zi70vqS!&3FFQoO9Zge#tBeYn=3#kZJq!=+Drl3YxM$D(k7`lvjm9J#tYC*n<{{fHbH=N zZS;BpHQGHY$QEFyc837`jtb#QHSZlWmV5em|d+k0^ zveGV9Q8uWhWdfAa8r7RW3gD!b1hChx62MBkU#-(w1u|-iDB5UutCiaXu-0xAz)8DF zEiDwlPP<$!trfsVyF!4H+SLMRv`-j$}8E zWiJR);Z61>dy@UA6<%Z?j%C{mw3K=FCD@T#;YFs_W>*oH!h!5Qb{@Nq9XD1uj2cu- zE?)}%phlHfl`jR4P(ZC!KAL12SW#-OF;Y@RsfuPlNdl~<3l*i#9Hy%vQV2@nRuz{- z%odkK=oXhm1Q(Y?AQzWJJQtTlSQnQ>bQhO$g}aN3!aSlRf;NTiR9q6FUtAJBptvMV zSX>hQp|~V$DM}))Q`o4*rS(?PDymv3#1>bIE>m0*hA%FO4pdwc{iwJkx>IpU^s3_0 zGqWKw`ccsAZNr%Vl%gSCWjg4)$|2vC%Dhp< zi=LmNE&E-`>${Tocclv7m6|v?u(d^wNYOUqQgm%j87bNp-&MByuGHqc(&Nr58<8AR zv`@b)J^!v$_+9DMccnLKsRQSj6z#ijD`%~6j+``g)X14rN6(x-cI=F`!bzM7giMZP zH7D#>PWnpiH5wDyRFzUR8AMg3wE*?2F*vG%LDjkRL?4Fo-FVNlJW z8!DJmn@gHH4A!ckR$XbMCW(HjD~$rESx;I8u)ChL$&N=HyPzOCT&V3v8TBPMO#6)D;R@v85>Y&l&rSm8@RUic*>#)Uc0qM-xLX zK@wI$Xh9Ih{LS<#2o23q1_nz@HPIqJfKv2RfW0aZgCa^|Py|R*ffy7~>b}&zLlv4~;q=8+AM;>Nwf!cvRH!u&Cp4 zQO5(Lj^{QyPTo512s(D6PAhV>PP;=`M#saVj>knE4~#k<8Fk!WbnH7FyH3Z`867)L z$9~gkh1+!OFCDu}$KKMhvvfR*(Xp#^>?s{PO2>ZE!ALq+=K9*h4yY zkdFPMWB2ITJ34lbj(wwJ*XXpuGdgyRj{Txzx9Hd_I(CYVXDd4Ph)y`f0R+M!I{4$) z{?br%IG+Jh8-Sq$q|N|o1Eg+FJZ~9hj|}oJ-h$1Qyw~_WbzO7jkdvJ@B*U=;CN@-e zpwtcMQ3KIyO|)wu6Ms-a+d)zwZYB8UbRW)O^>8V~IRiG;POXQZH}y)8?_LR;r-exsfK@*X7RsP$ zVaQ1tbT|yA$snf@Qg$)KAfSV*mrQeTwj zjg&$FPLG7SGsrm{cFUmQ;mk8HTpEdzeFUpIFhc61YIUJKB+Tki0t#WX@yyLtoN4jZ zQud`)PqGqgIsoNC7uuc-CHybo@#^!lQVzCe45~khr7jx9O*k`(HS!!S4S=|bqoqNr zoaf!ZY(MY={Z>%4E)T=(r5syDNw2&_7DC_DldigLDfpmvRHohf}1TOxCs z6bgYKr?J3J)6rWqC`koZrgM+1FoUCT+zj^a@fqCQx-&5nXVA)-tl|Bc822;CXO`4i zRqbFLgg#x${j)X|%#xgoQbPtAXG#4v8L6|SaiEEuEe!-XIGa<#$Js2>e-1llH;~A z^Es$O=S#sT<;}N5|Mv9|uy%up{yG#@=zwG#WN%m0FZ(V)ibSSZAoWli_xzH{}Y zj1B3oWz6}RJKYaPpiGd+w<318H)B}Skxlq(vpG6;MN1u2c3K&@m3EdO_mfDt1t(yj zkkoG!Y!}1LN{x{MRXrQ*1i=SIgg+b9oxWtJ+ka!EHnGwWm3Q^sKz+Zv1o>S=9Q%E7 z!0A8|H|ImF)LLa{w+A>|57Lo=7-~{}D(#qB+tG<8$4Rzo{jt5Me{+EP4u?C!`GGbLbm+b#{_CWbY}IDWKMsU>C(H>6>B5ulym7=gjOb}9hVBF~hM$BHec)=w zSg=g03Nh)+IC5_;le(*@CC&h~(RtWpGwhw2AlXs+U?=zQ{MYe3a4wx!+YFS7V018n z+hUW*Z3#`}w#bRx7FQkjgkd`FaocqqkM_&CKTlrHb$gd{oof=;MJ93GnIx%)YJ=z- zkU0GgM~u+FECn}rE<+<$u(!spV5{z3!B+KN$s_0RmCQJIB`fr4r8G!o<$oWn9^a>^ z6>wNgvQz`gXD74rFOsExD$>3OKwABfs*FYux!rVjrpgW(j+DHLb11FiW_?&C`GdH1 ziquP`diVrXUN5Mzr(BN0XSz6%UpW`Jt4s#YfXcE&OsyBd`uM`!7J(Jj&!qyTCv#q` zxtiw^6IZhVkF4gwveFOSr0^f4eyW#-yakVX?@CbNb1_29baA7QA0%6f+2c~aD0jH5 z;iNib4O_>!MjEIRcl;N`r9YOSi;ocY1#2W1a((TBt~NH6^rN zFxH=x8q)a(uEi;D_>bIGw>P~=bHjH<8#$07H*&L1ZnWe`T{++n z^VNKlBcm(2ThsF~_|B^1CiYm5P2B7sH?a{OY_g2v-F-mY2efymi&3(-yFEpvas13n z4aT?#`3=A~PNcCQY?w{^c2dU3A175$UWvz-s=78~BJ4aAEG(31#dMoHP@ z?poykqzpFwr3{uapW;RRBEz)omzjG_# z*JzFN`lcYW9Ntyh`kSPDc#G6kMf;@<&|bCIkoy7^&4#|Fn>!Fx4B5(_UB8u8yt$R# zU3(jc_`+>0^4vC_5!q+6!a>T(D;@{Z{o5nsa zV^d_qGdaw%VlHQqskt0$`dp5+=ebLPv>;J}qby>WHgpF#` zHepYz#8A=`Pp zN#1UGIC{Gngr{Ta(jLTcbPm3oV}YfRh{tymd>=y{6F06W@4vcsY=~gZrGagEe;g$&v+cEdzc=f|)NrGx>J*vZ3g* znbHXJNpcVJWU25Vr=hxsIPxYR;!dC(;<~Sgm`mTo98TK~ z^N??Sgi}=D5iD%*40GRMsJZ3OGi&hk-)5TTI#KOtja@(^}zQ9cxK0FZ&S&I4ojKdR2a*n z*R|99G}Pe?J3x1apRS&s;hX)>a)@M}RfV6E#)I>eb8PEf=cEy;fO>Bspx!&PfQ!c~ zVN6jQHs?Ht=z;Sbl-?J(Df2H#JypUEpFr67tA--hK{K~zm1|n2-_YbvNQ!?_ho*PcK(e^3xAWQ=OKAI+rM_3C_7qan*NO_Sv&)WOW6Z|anLP74 zOMkDH#{I$4|M-K`d!s*DY}%jFG)Q;7!74@EV3p3?;JVf~IhI%6lqLe@-<#4@fC;zw z=D}Nhv(9b4x&Aiud~uuU!tOB73wPKdo(0kf(9J4f4_+^@b`O5yknV`~r4xI7# zS?rnn(m2(*JGw*c+8!k-YONUk!m^yc8SNMR!=Z5VA9i!62OR&a9H>PD&CkM7F5~Th=P}8+0#@L zvPUe9e}+hmrC*;xsaUG>TpI7poSV)8*>n6Ws!BzWh19Bn{oZ%ga5E1BvGn(IEJ?*u z#~0FkfPF9USi^Kn7l7_nG-bZTa$5UBsjSNG?n2!D8%KLYL|}HWvg=dRp~!%-lvRj` zi=_{R7=oBn^`#)Gl_(+=r!@-&R?VqtLrY#_${0)QULv!_(myXTCy2%Wm$|h16_=j8 zLUxX&Hm{|@s`Te6U{zubwlmud=_v=Zsyg(uEU&_xzyo^gH_T)C8!1#(Ad^6~W4&lf zWAc3~d8oH9uE%ZfGi?L?KI*0QG!;tx1$-lEq*tGDRavDEz?yDQ@zd>c!e_i%qK z1--{=6*sW%HZYo-Bf=Q#!;iDPso*`{=ERci2R!*RO6y#pT+-9g%NCTB4;ZOq$?yTe z8A~qza!bShtOT1 zpX)f%rmiMO%KRksPW_DcM6opaGkf^tXLOiYs{bELTJWF6rp=Fm&%_g|M^j_#R;Cwu zbuF{ZSgP`c-8uIQH~QEY^zvA$@RdzG=_|YG_*aaH`D^9APU6+OcEn{c{PQ}!c#gKZ zEw5LL!Y9_V3`P0tBzdGJpPV%eCTry3D4o{G6I5dN>mWXRU9_qkMJ=m`KTe#k=Tj73 z`IKBz9tDb*CFL;ygG$MR0HjiKUx2TrobDbzdenxl5Ie~&{_@y_|sY*0MN*Wd9JgO$D{NGC6#>YKOomWP+5mJ zXy8VsU+a63Y%ALVPqCH90aUh=M?14oVjls0;p39(GPr11`JvqcyLPffFC%Su45Y9Z z`2Xc%gg3YT>ErsYmdQ>&Ioiv8z&6yLTb*w&_d@BTz1$C=kAvJB;713!KfqJ9)Y6el zNse+LZeDkk2Ld#7;?e>qE?siM(?CAeca}#0BssHRo;b?^D7AEv1J&l*mo9~sTWl`r zF4v>bR(o?yI=W|ozk0pyis9uLaO9q=x=rYEGyG{+OxlscA7*gTM@k=ks>R~L!HH^ zE!yjoAZF0CQffTKRKft@bE26|QEy7bmwikURtW}9q?}5Sm`EQh$>9LQD$9c$nU8lo z`20@WE5Y{#%UgQVf0g0;M6&jQYKau#!_)>JrvBmsnZ^|!4FNY!+{BN`>Pr=pE3xQf)4g$!jjwohTrtJi(tWe+DLX~~3 z@Mpe|RyONyZE>Kf{@kSAH4uM^lv)FwKarl)Kze3qiIh@P?g4PUCY+i`b!s8T z6KM*7s>iio!2JHNWdqei1rjd+qB4}tMjwoXzWR*m+^uuc>d4(OCZfjLSd(y#5ZM9pQ_El+0 zoAwUWrx|-w-;}98HI+kE3s!OhzO4&gYL5W$O>XZ&=_+P+Ga(?gImd25a}LG~we(mm zb!fp+p4ft0bfX1h)@;d`^INi~PPAm}R%*otncRvEa=aBcq-<;U>Ezbz_WiBpL8?ak z{h-nAW^}2Q+{!7aThVj|-Kve;6DHKRVWWL+BM(+75?g};GsM-wh=Pm3{uRFI&l}sa z=qGJiyB6(OyXEcVeky6x&LExLh1{B=`6-+I9q9aCf6MY_BGqfpZCl))gYkHKHl9}p zE{*KKrTh-uGv9Y$IXyaZ-KvgUSJ08`YWZ{B9DlAm?9X*>owzil6PNNju}wa7Vw;3? zW^FfiW^G?|W)%M}?C}j<Eq~dcW50) zwmqOy91ZD#q!33^52z$Q57e&1H!9kYWT6r~(F2>dE`HY4JX*w2_nwdzN2_`wDB|dT zPmE}BRHqjrC5~qILh^{C{k;$kab({c3dPZ|-q0kDvU&09Z4Q5(1!C z9Nh@O&=W`Afm|0Ji2lo(Ts#U*y8moNmqtJp|H2*~=JhA89rH74lTKKP7gb*5+o-1p z9dzz#Z<$xbQQJP;vXnj;(c#5WB=eDk$>vu7~tu`HPNI2X*yRS99t z@DRq#4Po;C)SK=4a%pv6xwESAx?9lc;a%vo06MwN?}cZYE?XUnb@J_p3=&5R`ms@t z_Jc!m>0Li~BA0sfmqSzEOV+flzuboko=Dbq10I22!ZSPui`Nb*)qB^Z!WO+9D15MF z%c%VZfL|_217vKKP0t3%{s0XJ%H5oEg)fg4fFjOmVSX>j)x%$*`rd1^ zx+#ZxSFvcCOJ4^vFaJRdVh6zrxpZU@TFRusA3=Kc6Am8=ldIF6#sQYN%%x6)S((_u zDhZcThrqPC)L{r$EgphtQ7#=FBKtcrw{Eu9m>}Cx-w~Kd-7XBUtOauAO*>SMcA(WG zC zTBAb$Zv8s<>J(JOSXl4pazN-+p4=nk8szsh(9zs4S*y_Us4S?!TG55Cfwq=6c3fLn z0kv}~ac%jY-8%Q{HuyW%36)Uq;-ktQFtA_1w~Z3AEBgRpn=i|*G%%oFr(Qw-TfJSr zKxtQ%c~Hvwt#;pO5Lgwpzg1IfgJ<=ze4N7S-K&O5Z4J6K5-syx(Z|-@vAA-64OD7s zS<}&hBIpkFcBZeJ`#8~;FwAXo$$A7wME4PF)ny~(4yq5Y)&p5s1JxkmIa|LEwaE=o z`=+6_I-j{%7~n$TWrJMI$t;(8k7Pe4s^B<)%Jo!J(1kQtxlW!O^gY+`=BRzp!mMiM zP}z-EBn08)ns8QiSvc!>Tm?1}91cArI5-j_I0jEguw1)QTnZS)b<0Qb&6A^;+-|g5 zHyW8Qm)4G!8{<33 z-!|#R(4vjvPWMQ|0ohmxJ9YuvCa;eLIg%jYV$C zBe!u#{dp8Q4*4gK4vd3ld1M{Qb%BwX?B&sqk;ut;bU#vV3s7Y|Qga@S8;^XQM|!pN z0zefyI1EB-g;Q1v6wALCQjTJ-g;GZ_!4nfR}gJlaY8`$BtZA{azZqE6Ff99=&}u8Z0mQy90^RJ1gc;-_Lr!p*5r zBon7J;CVNblA3TI%LV(N(tKwY@Nnqs#j0AfbDR4H7n@MT2 zxuG9tV|gGG$0=|_cgzwPckulu}{V>VBSX;u-uvp@r;s52@CPCmPv0G%8>xW z7qO#$UL;RMso`RIj4H6@1_)feK@IgIHwIKLn$Km@oyGD173;+&V7YFltkqBpSUwau zPj&*M_-K}VH=31e5hD**ZM}U92)b{zrqu^v>!^1FT2WyP8}364nBs_X815SfSL$g>oE%8OvAA(KPVTK zpxrWgsLEyIGC5Qg|L-ycn4SU?F9i9g`?XVQo&L@2C)`h z6Xk&_eR?A1SbBPv2(^SbyVAQsRcfC#Y0kr1A!oPMrHQo%Sw;f!pAKy;1t|D>=j%cd z7-zS&{f4vaa(R^6z8QOfRb?+lEl{!QrY;$1Loo}n3H#;c@RXh!Cdo~0lLW_@eRL-l zy*$M?)cBS0~Z4B*a=0by|Ubn?!3=aDN5dm_%(? z!fQ#STM5G?(an|U8%b0<8M!QpCMR><{$#nAD&fChAz|<_%KAaBLPzWeds!wkNffe* z*=4UnI3>}iRZQ6{1$iThQd3y|;}mq6BxU)n=Y3IX2BY{zlsuh6(~oq zs#ax`i(}+6KuKB4((kTC5NDCcI_Q~&mo{ia7AY!lPDK{VqDiU93|Vw46~@aV>`Wz4 zrV$L3MY{>j%p$8Fk+riZ=tt<8MeBcro>}zlM?8LK33si&2PJC$O<5uxrFeuQ^{>a{ zH`lfJ8+9%2bNt{t1LsgL%6~ir`~Tj?eo!OE;Tb%OUaprzR8H>y0DH?nDkp!RP~^f5 zvKvrVZ-Cje=${Q32bu4k2f%FoP>crX_64CHG`g7ul8)hiG* zeNBb&DuHKeJk%(dA-e)?_aL^uN%p0} zDMN8sgvifX6q}By%A#}WOjkaGEjcNJ6;U!+kuMpD4VW;KF*ju5p_O?`_BMEr>_F4< z!80lgCl;hv80JVm2e>iavf#xmO3gxMg~hX&NBhl~Ol08;QD${^Gi&Lw1p{~%g>7Nq zY~R9~eA$BDoJD=MBKET=b1M@(-75D~WsfKi+10C3<9#^8FJ|KK3KU*pI5rp8VkwxF z+g||)Wh;{AoEagt>Tp~043-gUR0Kku$`rF5+WRMG*W#`ZS@pA7WOO#tG-E#Z0cMP^ z+RpIc;hrQ8l%~o#+|F7#Z2y=Xw%p|$OnS1YTrO)LnJf2JdEBW99<6IpR+j9`2gn!Z z%H@D)pU1&5B9Dz_%3~%PJsYd9p5r-3&%EC0F?q?NHU>6Nf`M&z(ZJ+2j7%^KKo!@q z3B+A$qM9dsf3_zznuSBmeR5=5HMZ{xgpN(Ir^W>2Mn3MHr)^pIbGIC*;y5=0PGmD1 ziq!|;zlahu;s92o6o);d{cgWZ+6!!$#mf z@vQAw70ANt4vb(~RBHz&3T*Zt+e3W!4s0@U+Ic+ z#NBP$Pb~4kPnIsO?*hyrUBAH$*~yp@J2^D>?BrJ1?_!0A?P60Jc42yluvKq%+|BJ> zwwqaB+RZMgtZ-?9!c9{Yxs@iK3KcMmr%rpoC7xFAL3R*-3Di1=K#739!XY(_4%W6z zG2_W^FP6a>F|Z#HhxRu+#&VK&MKHUz7jY0zHTNNpFzV9*K#dM0N#M7z$a6&xQJ^+`*Q~UwUb>ivq0jyTX zQ_w*<0wDh&UeCl+nL`X_AHuAPC7c)m2~|d_5<+wlHK@{I@I&XdmUh@Z40vaO0RM<87J76C^@ zdqS4&QPy$7QOw8U>C#cW(ut=wKeMW7KOR@Lw@`j;DRUGRvyR*cQuoJZKI7Q`H2bgDX}pJmS5C8Rr!!c-ji*UxSfLYVWUb1ha4vYH&!ds&RUTL)ii%JZ zB+!32%Z++>Rt{3pQ|1Hx*gC4RUl>Rn_KS0e9VmYto&@44?VQDsPojZ02RqvchvER@ z##C^OeLmnk>#_5^9H!dfd@?WxtTNlc&t^0}f5rL1l&>($$rq3|VS)>6&q^0r{ka$A z%J}0PU6kts{CZKY4e(3_o|o{{lS-W~$qfLeUXtV0JOS{ zu9!g6F3YU}443i5nn1TMVCshVgh;pj)_A8jrbiY zJb||Uj$WQXFMr3lnm}!@$Ss`2pAEIwa?!3ndGzu=20Y8rx24s(usqZS>M5!Kbjce^7UQkZ`xuz4Y0jTqw?hTb{$ytLZ}82?8*IHTH`oU^Zm{*L++xKmk#;Rab0gJsi zR_X3Nwu|@QOxNpgiyyldK;HSk>E&PWHcYL5Sp1lOu!zJItDb=3@Ke#UN_U2SPqZEO=O zj=3WobLUJe?HF<4zi2k3{EIbx#xLvv{I|ij^s*}OFT`!a$yXoIZ?dV~N3;~p_y{Xx z)2WY4==h0CfuHc;!1VivfWB8KRVfL*_^>-1ROdh!KEcV^boCQ#mrdTE*&>5JBRaBa z9APJhM_`60*)}OhSlfNt0;c;F6{` zYLn(HK$9vhBv&gm$t@?!k#O>vD^Sh@1;D-(6ZBR=QYjN8(}_~d+RBPc{#K??+}vQr zV((a)gsL^IO#!OW*RO9{IBAx*apFXwQuqVs9D z6zjy)H=S4^UuU*Sq_e5FYRKA`K`mc4M|*PgtTL4OV_wmx&)M|ZS;PYMbYYk2T-bcS zx|l@IEa%Ehhr3$LSNb-%O}-8D)rI*i=VMu3MWHFKrsjgqO{H_=DB9>|68-j`n@I$9 z9e1vq>~3n0lEIyW;-R~#B}%@f*@sg~vo5C6CUckF`Y*(O{nzZZ5oI8|(ZM;Eml-f! z8B;%yr<7rDoGrsKj-mG7i8$Guy%R63{6?E}5bx}HAEGIdo=?d%DvF6Hbf%K-{5>@^Q( zPFYTG!bdzNH(>AcVo@c_u~GxdnOfoI%5o;rU$2)liOf^pn+-I=n+>$do4e;lZ#JH1 zd3I0V@?4_w%Nr(4d2f%LwESFB4=)}U1g5bft6WKW@T=EL1lJXIUkeAU&DMjQ*85L z-5>dI6#DtHM$>#*&Aq-%_pdK|yhRmmm$nLrNM03g(2FWuSHCKAiK@!(G*)FJ-LJ~> zDplhKO|8bP^Q*D+*VUNLuewQO&&cYm?#}9L&Ue*WLh~BTb6yQD?Ww^Qu&v1|^{B~$ zmegdePuDcHQp4cvT$ttK5;))Fxo$ypdFoJ$vqX-vs@T?Me|1yAlG<#K zbF~@MwGQjvqYfKlRUIa{SciqX)#Yd%SeHxd>Y9R8;Y*Vtyy|MYR0}bfU&n+KVn)PZ zL8TtMq-H&4HAMxx>v4B=sL$5uQ=j!(Uf)z5+kKeoo0Xlevdp%MD`4(i*8F_$+&vv$zWjiCAt zD(Pox2GG(EPS`&RKFRwD6$!xw}a$ntmkbNxHM;G zy_>VTOPa&(JLuQuFx?JvY5~{mpr96fb5#q*Jkx@8ac#+3hqhz|vs=PLFo9ZX)rwIT zwt|8&I4uWsF?6pLn8i?y)?gMx<60w{W60Q=Z$57g&0?r|8>E~VifzLvKes_&iXrE= zjM={}c*YR5g$ZKlYFnhL81iX{bQB||MfKkx6n4C!==LUWy8T4&Ny%*yh%uDi4o!)n z=k4Il7^>f%OEcRe3SvlUZ)%ABUH)m0wiEeufG$K49e_!cp@Lf-pczs1jvye4>x4EC-ROiUAga(A$`g(044V<< zb!N=RolU)P2s@hcmm~K2y5&TfolF%eYI*{;%uh?OrSOi3YNGjFVARdDtqUBynQnCf z$IVo!D@N7Lg7~Zph>zodtuPZlPca{HVEHs|Gi~XL=-NzgyP6^Z26sa{Hd977G<-AN z?S^)2CZFzHis%mQHdA(Y#32Z}n>wljCO3cpn`V^N2LdYJ#xDO;dzdN$WknCPaWh@+ zfyQm73O!lSB466?`3M@oFm#$qXlrf*p;BH zAtoP+a$D|7QZG0&hj#ZejRf%QjZ~dOlY2wA96Hb&Jv)co0uYHg6c&Iu$)T(O4EZ_q zIlwdoU|=9-3e0(4ir_D5jl(8c~3pK_@704A6}fVrF-fH2D;kAbEzwMD&x z(4uL5sY-9OsCYN~BLlfvrv@Uc!%brWYDaL3#zkHxINK3_#Mmh|z|%3--|$(iFOtGRa+3lL9}1xTeN0TL)r06fJ2v=`gsX^(HT`$kHG9Ys<&XYc#x+u8}m zwS;d&z-cpe6ac+yJf{6S6=l51OQTst7bci0Yb1I;0fVc<1!VR(4mey9sH;gt8_=H#7C{fBmV7%iSbVzHeq1j1)YfT-ZPg<+n z^a;)>E1YJ|nmKj)gosHEXUvXV3yM?URog~HO|aCQ{;tMt^wcRcr%xC)YvzP0krtE_ n-=R2RYquFQBBswXSI-igySYt=&$Y9}&s6aKciuVp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<_5+(9sr8E6MX;x delta 62 zcmew-{ZD#>Kck^>MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<_5+(9spxA5-|V( diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index c9be195e7b5226ffb441e2f213cf7eee88666308..a06d8bc6d9817980cbc01e59d4783f7e9cb01994 100644 GIT binary patch delta 62 zcmaEt@-AhAC!=A7p}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<|@W71^}e=6ny{y delta 62 zcmaEt@-AhAC!?WpMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<|@W71^|6+6EOe) diff --git a/master/.doctrees/tutorial/index.doctree b/master/.doctrees/tutorial/index.doctree index c416acf4ece04f1383c7367674f002579c32db84..f8154b57073136e75ade4408e6938d4010ec6288 100644 GIT binary patch delta 62 zcmew@^;>E~AfsW0p}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5<|f9U+yIJ06Y~H7 delta 62 zcmew@^;>E~AfusiMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=<|f9U+yG*{5~lzF diff --git a/master/.doctrees/tutorial/intro.doctree b/master/.doctrees/tutorial/intro.doctree index 186e58d7315088efecce5bbcf8a2cd3699c0eb59..d78350e58321df41cfc27922bb0fb0672d101be2 100644 GIT binary patch delta 62 zcmbOeIVW<15Tjv*p}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5W@pAoZ2)Rw614yT delta 62 zcmbOeIVW<15Tl`SMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5=W@pAoZ2&^s5orJb diff --git a/master/.doctrees/tutorial/tutorial-basics/basic-types.doctree b/master/.doctrees/tutorial/tutorial-basics/basic-types.doctree index 3bff01f9be02f67be5775cedab03e0a3e6cf3c3a..67cc420e936958f80d0f1c9b0a2dfb472dcbc105 100644 GIT binary patch delta 74 zcmZ4fn{oMX#trU_<`stKW+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< esb;B3i6)6ghGzOH`N_rllkHhlHZNjitpNb6#22Xm delta 74 zcmZ4fn{oMX#trU_=EfDtS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? e=7uH~#%V@r=H~h-`N_rllkHhlHZNjitpNadMHXEE diff --git a/master/.doctrees/tutorial/tutorial-basics/entity-linking.doctree b/master/.doctrees/tutorial/tutorial-basics/entity-linking.doctree index 1e807de139230d09fc21493b9ab07602fcfe0e2c..cfb7a65c0b5810bcacf255ee2b77ba8dd78a09f0 100644 GIT binary patch delta 62 zcmeA#=r7n%%xG9)Xl_aVw9R}mXwm1Y;JC1W@=_(YLaS} Rnv`ggXk=)%c?n~-832Yv6Q}?H delta 62 zcmeA#=r7n%%xGv_k(^~(V34nGZed|=W^R#aU~FlTW@emXZjzE>nv`N_WMW~IWNL0` RVqu(SlxA+ec?n~-8310r5?lZP diff --git a/master/.doctrees/tutorial/tutorial-basics/entity-mention-linking.doctree b/master/.doctrees/tutorial/tutorial-basics/entity-mention-linking.doctree index 43cca2e281a3010dc3be298e4c4c1e4131adf99c..0735b2d9d84643c356f2e9d539db1b5b2cde367b 100644 GIT binary patch delta 64 zcmaDekMYes#tq$!h82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv`hFmCV#0MnQiOaK4? delta 64 zcmaDekMYes#tq$!hQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{FCFmCV#0IU%d00000 diff --git a/master/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree b/master/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree index 79eb7c03d1cf3bef47099855d437817fd5bd22a0..7e6e04c4fb2017aff0d5a04d37f261c9ccde774c 100644 GIT binary patch delta 72 zcmeAQ>I&MB%xGR=Xl_aVw9R}mXwm1Y;JC1W@=_(YLaS} bnv`ggXk=)npOT+ktUuY7Uw89yMrU;ZLr)f0 delta 72 zcmeAQ>I&MB%xG?0k(^~(V34nGZed|=W^R#aU~FlTW@emXZjzE>nv`N_WMW~IWNL0` bVqu(SlxA+OpOT+ktUuY7Uw89yMrU;Z4$u_~ diff --git a/master/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree b/master/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree index 879380408a05d6bd7fd0b6a7d8ce6ecadf636328..69e7d783dafa3ebb628d08507c78ae6f57cdcf18 100644 GIT binary patch delta 62 zcmX?San52xE~8qDsY$9? RYEq&}qLHE5=6Q@8qyUKu6Vm_y delta 62 zcmX?San52xE~BAwMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==6Q@8qyS-q5{Cc) diff --git a/master/.doctrees/tutorial/tutorial-basics/index.doctree b/master/.doctrees/tutorial/tutorial-basics/index.doctree index 4c30be074d3b2f319d6bd1b8c2b15e451f068bb3..9e244b11867c6a4906923ce6bc1f17b4a04234d0 100644 GIT binary patch delta 72 zcmaDZ^IT>_A)|SPp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? cYEq&}qLHDQeoB6FvHoOPR>{o=8JF<@09)J^w*UYD delta 72 zcmaDZ^IT>_A)~o*MRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& ciG^{RQJT5AeoB6FvHoOPR>{o=8JF<@04H4)YXATM diff --git a/master/.doctrees/tutorial/tutorial-basics/other-models.doctree b/master/.doctrees/tutorial/tutorial-basics/other-models.doctree index d76b70eebeb3626e6d46d690dafab75246bb588d..75bd87246897e50c2cd8fc1422f6cfc4e28407c3 100644 GIT binary patch delta 64 zcmdn? U=7uH~#%V@r=H{EHFs`Tp0JvflGXMYp diff --git a/master/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree b/master/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree index 57f4ad2c387c80b090fe00b1f601299fdcc1becc..a0e4613351c2e5112895194bec74d9aff991dfa6 100644 GIT binary patch delta 64 zcmdmTh-u3qrVW{lh82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv^*G0vI~0KyR!9smFU delta 64 zcmdmTh-u3qrVW{lhQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{DcG0vI~0Gf&u(f|Me diff --git a/master/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree b/master/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree index 7e8a905b6c52e9963229f4cc84233fa687c90c8b..75f4d730979634f31ca07d6e70d43b05da17fc16 100644 GIT binary patch delta 64 zcmZpg%iJ`Vc|$a#VTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI Ts#$7MqDi8Wq1omh#&2f;mFN`T delta 64 zcmZpg%iJ`Vc|$a#p>aiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J TxuJ=Lahg$@x%uWE#&2f;ZebIX diff --git a/master/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree b/master/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree index 124de5834ea0e3e203f58e2c64aa42748aabf0f7..b1c62035ede45290fdf8e246fdb0965d4e00b701 100644 GIT binary patch delta 62 zcmaD?@UCD(ETdtCp}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5=03&;W&p1?6t4gP delta 62 zcmaD?@UCD(ETf@uMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==03&;W&nq;6Jr1X diff --git a/master/.doctrees/tutorial/tutorial-embeddings/classic-word-embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/classic-word-embeddings.doctree index e3d100e7310c474125b93e7e571bdc32128b8fb2..0e2a6643f2cb8c7ce558e05b92b0b9df7f68fb69 100644 GIT binary patch delta 64 zcmX@QmFehKrVW{lh82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv^*F>22Q0K+>Ju>b%7 delta 64 zcmX@QmFehKrVW{lhQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{DcF>22Q0GqTEWdHyG diff --git a/master/.doctrees/tutorial/tutorial-embeddings/embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/embeddings.doctree index 9758984351cbee602e8c13a693b6060259b43c79..a0d142cb1e86a16df55c53c0954c4d2f0fa5552b 100644 GIT binary patch delta 64 zcmbO?n{nQ3#tr_Ah82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Tsb;B3i6)6ghGv@^80CBboS+k* delta 64 zcmbO?n{nQ3#tr_AhQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? T=7uH~#%V@r=H{Cl80CBbbr}*< diff --git a/master/.doctrees/tutorial/tutorial-embeddings/flair-embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/flair-embeddings.doctree index 300bb997f269cf502faca76d3b41edd16e6c196d..fc176e18bf409ed77727b9a6abeb37c5f05a50f5 100644 GIT binary patch delta 67 zcmccG!g95RWkWQhVTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI Ws#$7MqDi8Wp;>beaiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J WxuJ=Lahg$@xp{LB=Xq6 diff --git a/master/.doctrees/tutorial/tutorial-embeddings/index.doctree b/master/.doctrees/tutorial/tutorial-embeddings/index.doctree index 51c7b8efa007ecb1ef9c8adc8b510d7b376f4074..3fd42a54e7ebf9481b4401ccb0d7766d841752e9 100644 GIT binary patch delta 62 zcmeB`>y_J(&1hI*Xl_aVw9R}mXwm1Y;JC1W@=_(YLaS} Rnv`ggXk=)%c@ASCF92NI63qYr delta 62 zcmeB`>y_J(&1h&`k(^~(V34nGZed|=W^R#aU~FlTW@emXZjzE>nv`N_WMW~IWNL0` RVqu(SlxA+ec@ASCF90=E5rF^z diff --git a/master/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree index b1d829a2c1afec130d0a3589095ed8f1f4ed27a3..418ad512827873a5e88ec8ad93172774d25ee700 100644 GIT binary patch delta 64 zcmbRFoN4BBrVY7_h82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv`RG5+2N0LXC_tpET3 delta 64 zcmbRFoN4BBrVY7_hQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{E{G5+2N0HEp=VE_OC diff --git a/master/.doctrees/tutorial/tutorial-embeddings/transformer-embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/transformer-embeddings.doctree index 48fb2bd84c621f788c5d33aad25be638d4d81ba4..296f3b88e5247e79c7ee5c5b3a13d55c0208e09f 100644 GIT binary patch delta 81 zcmeDA&DissaYH(zVTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI ls#$7MqDi8Wq1omcjITWyizdr^Cr^IvWzJZ%S>8L>2moje8!-R? delta 81 zcmeDA&DissaYH(zp>aiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J lxuJ=Lahg$@x%uW9jITWyQzpxMCr^IvWzLwgS>8L>2mmQY8OZ4J!=I%}UHlO7tzv5>3;RjV+Q=j1p6fQj^V+QWBHR%}vZq%`8k! UQq5A65=|0~49zy5Vbt*i0N3Rd>Hq)$ delta 64 zcmew{mGQ?^#tpL>4UH?3vrG#N^7YLvEX>W!EfNikEiKZ_j8n`_Qc_HlQVfkuER2#& U%?(W~jMI$L%*{8SVbt*i0I*&Yo&W#< diff --git a/master/.doctrees/tutorial/tutorial-hunflair2/index.doctree b/master/.doctrees/tutorial/tutorial-hunflair2/index.doctree index f15128cdb3ac43633d1e3a8215e19b87678cf98b..e621c6b3a22f1405bcf4705e81dcbc5fdf393e9c 100644 GIT binary patch delta 75 zcmdlYzeRpSDx+D2p}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? fYEq&}qLHDQeoB6F@#F$F*~#}=SvT)x{LTviiL)3z delta 75 zcmdlYzeRpSDx;ZkMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& fiG^{RQJT5AeoB6F@#F$F*~#}=SvT)x{LTviQBW4~ diff --git a/master/.doctrees/tutorial/tutorial-hunflair2/linking.doctree b/master/.doctrees/tutorial/tutorial-hunflair2/linking.doctree index 7ad094b2309ba0753988ed43ce9d598897f14b96..a77698665f53f58ffd80f403ad2c183499a84346 100644 GIT binary patch delta 74 zcmZ3#l5zb?#trR^<`stKW+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< esb;B3i6)6ghGzOH`N_rllP7q}Y`(>KH3$Hj<e~ delta 74 zcmZ3#l5zb?#trR^=EfDtS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? e=7uH~#%V@r=H~h-`N_rllP7q}Y`(>KH3$G^P#1Lo diff --git a/master/.doctrees/tutorial/tutorial-hunflair2/overview.doctree b/master/.doctrees/tutorial/tutorial-hunflair2/overview.doctree index 65e1ee85344829997e7c91a6db6f8903a7455b8e..f27d84483cf016222499ef4caf40ed9e4b25819e 100644 GIT binary patch delta 74 zcmbR9jB(C0#tq4g<`stKW+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< esb;B3i6)6ghGzOH`N_rllh5#~Y~IHhR|o*7;24Df delta 74 zcmbR9jB(C0#tq4g=EfDtS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? e=7uH~#%V@r=H~h-`N_rllh5#~Y~IHhR|o)eVHY_7 diff --git a/master/.doctrees/tutorial/tutorial-hunflair2/tagging.doctree b/master/.doctrees/tutorial/tutorial-hunflair2/tagging.doctree index 51a6eec63435bade3bad43b6d0ea02cbfb10c1a5..e6311a80a2a073b50cdd347d0c5468a76486d6a8 100644 GIT binary patch delta 64 zcmdnKh;jQO#toH>h82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv^rG4}cc0Jjwsr2qf` delta 64 zcmdnKh;jQO#toH>hQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{DMG4}cc0FRCnSpWb4 diff --git a/master/.doctrees/tutorial/tutorial-hunflair2/training-ner-models.doctree b/master/.doctrees/tutorial/tutorial-hunflair2/training-ner-models.doctree index f5e06aa281283e21cda6e8dc9d891d1724fe7d06..23b929676e81772b8532684fc2b5663474fbbf97 100644 GIT binary patch delta 64 zcmeyilJVP0#tprUh82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv`hF? U=7uH~#%V@r=H{FCFaiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J UxuJ=Lahg$@x%uXGjMp~-0Gp*0IsgCw diff --git a/master/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree b/master/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree index 2705af3637e14a508ffcac00e784ebfee31a458a..3786e264d86b144c634ce45f84c07c5d769171cb 100644 GIT binary patch delta 64 zcmV~$(G7qw2nE0}kpbx|>p-as*bfKNe-o!@(xJSYi{_&DB)+&}V2sV+? U=7uH~#%V@r=H{E1FfL620IOXS@&Et; diff --git a/master/.doctrees/tutorial/tutorial-training/how-to-load-prepared-dataset.doctree b/master/.doctrees/tutorial/tutorial-training/how-to-load-prepared-dataset.doctree index f9cd4e5575395c67d9f00d86b04f5282a31417f7..cedea9f70fbe9b6e3a31c2cac12b1e8edfa6c258 100644 GIT binary patch delta 64 zcmaF5i|OeurVZtch82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv^rFz%fV0NK73s{jB1 delta 64 zcmaF5i|OeurVZtchQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{DMFz%fV0J1j}UjP6A diff --git a/master/.doctrees/tutorial/tutorial-training/how-to-train-sequence-tagger.doctree b/master/.doctrees/tutorial/tutorial-training/how-to-train-sequence-tagger.doctree index 625ab4bff5af745416a3c9311959f2deb88b6d71..587ac96f70b5a947650a72008208dd5eed8c4cfc 100644 GIT binary patch delta 64 zcmeypjq&$3#toT_h82e9W+i4NCHfX-iKc1E#uiB_Mu{m#smW$ZDT&GE<|byQW)`L< Usb;B3i6)6ghGv^*F+Pk00N%$HlK=n! delta 64 zcmeypjq&$3#toT_hQ<}iS*8UB`TFJ-7UpK=7KsMNmKJGd#wq3|DJiB&DTYQS7Dh>? U=7uH~#%V@r=H{DcF+Pk00JlICM*si- diff --git a/master/.doctrees/tutorial/tutorial-training/how-to-train-span-classifier.doctree b/master/.doctrees/tutorial/tutorial-training/how-to-train-span-classifier.doctree index 9ab6b7cf48b791dcef1dcff0a1cac4a0685e66c2..225f10b89a9661845e5946d2fe50ebc6bb64fd1d 100644 GIT binary patch delta 64 zcmZp9$Jp|YaYH7fVTGZ&S&3OmiN1wdqG?*Pu|-mfQDTZwYO+~UN@B9Pxrv#nnT4rI Ts#$7MqDi8Wq1onHj9H}szQPo` delta 64 zcmZp9$Jp|YaYH7fp>aiWmT7@OzP`DIg}IrzMWTVRrA3;Vaf-P~N{VSxilLE-g;A2J TxuJ=Lahg$@x%uWqDsY$9? RYEq&}qLHE5=2?uAN&tZx6C?lt delta 62 zcmdn&zS(_4CZnNoMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==2?uAN&s1t5!e6# diff --git a/master/.doctrees/tutorial/tutorial-training/index.doctree b/master/.doctrees/tutorial/tutorial-training/index.doctree index 301a4e06721a7440f8ece340826ea690bdaf5b0f..6e0bdb9caf2a19aacabe511a52c7f0fe2c91db99 100644 GIT binary patch delta 72 zcmeB?>5aVw9R}mXwm1Y;JC1W@=_(YLaS} bnv`ggXk=)npOT+ktUo!BSz+@TMh6}MD~c84 delta 72 zcmeB?>5nv`N_WMW~IWNL0` bVqu(SlxA+OpOT+ktUo!BSz+@TMh6}M_WTr= diff --git a/master/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree b/master/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree index 067ae6fabc1ad762f83b4aec0bb6fc76a6547c77..905a3b1130442204001e6ec4f8b6304f68a29f5c 100644 GIT binary patch delta 62 zcmX>jdq#FcCZl16p}AR!SxJe$g;}C$TC%Z4Qi@SxicxB^SyD=3vbnj5nW>qDsY$9? RYEq&}qLHE5=2?tJya0J|69xbP delta 62 zcmX>jdq#FcCZnNoMRJyDfkD2$xrK$fnYl%xfw84UnwfEmxk*ZjX;O-zk%@&-lBv0& RiG^{RQJT5==2?tJyZ}+^5xM{X diff --git a/master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt index eae5eb35b..f7c263114 100644 --- a/master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt +++ b/master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt @@ -111,7 +111,7 @@ torch.Size([1536]) torch.Size([9984]) ``` -I.e. the size of the embedding increases the mode layers we use (but ONLY if layer_mean is set to False, otherwise the length is always the same). +I.e. the size of the embedding increases the more layers we use (but ONLY if layer_mean is set to False, otherwise the length is always the same). (pooling)= ### Pooling operation diff --git a/master/searchindex.js b/master/searchindex.js index d0967e7a9..fab3faefa 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api/datasets/base", "api/datasets/biomedical", "api/datasets/document_classification", "api/datasets/entity_linking", "api/datasets/ocr", "api/datasets/relation_extraction", "api/datasets/sequence_labeling", "api/datasets/text_image", "api/datasets/text_text", "api/datasets/treebanks", "api/embeddings/base", "api/embeddings/document", "api/embeddings/image", "api/embeddings/legacy", "api/embeddings/token", "api/embeddings/transformer", "api/flair", "api/flair.data", "api/flair.datasets", "api/flair.embeddings", "api/flair.models", "api/flair.nn", "api/flair.splitter", "api/flair.tokenization", "api/flair.trainers", "api/flair.trainers.plugins", "api/index", "contributing/index", "contributing/local_development", "contributing/making_a_pull_request", "contributing/updating_documentation", "contributing/writing_a_good_issue", "glossary/index", "index", "tutorial/index", "tutorial/intro", "tutorial/tutorial-basics/basic-types", "tutorial/tutorial-basics/entity-linking", "tutorial/tutorial-basics/entity-mention-linking", "tutorial/tutorial-basics/how-predictions-work", "tutorial/tutorial-basics/how-to-tag-corpus", "tutorial/tutorial-basics/index", "tutorial/tutorial-basics/other-models", "tutorial/tutorial-basics/part-of-speech-tagging", "tutorial/tutorial-basics/tagging-entities", "tutorial/tutorial-basics/tagging-sentiment", "tutorial/tutorial-embeddings/classic-word-embeddings", "tutorial/tutorial-embeddings/embeddings", "tutorial/tutorial-embeddings/flair-embeddings", "tutorial/tutorial-embeddings/index", "tutorial/tutorial-embeddings/other-embeddings", "tutorial/tutorial-embeddings/transformer-embeddings", "tutorial/tutorial-hunflair2/customize-linking", "tutorial/tutorial-hunflair2/index", "tutorial/tutorial-hunflair2/linking", "tutorial/tutorial-hunflair2/overview", "tutorial/tutorial-hunflair2/tagging", "tutorial/tutorial-hunflair2/training-ner-models", "tutorial/tutorial-training/how-model-training-works", "tutorial/tutorial-training/how-to-load-custom-dataset", "tutorial/tutorial-training/how-to-load-prepared-dataset", "tutorial/tutorial-training/how-to-train-sequence-tagger", "tutorial/tutorial-training/how-to-train-span-classifier", "tutorial/tutorial-training/how-to-train-text-classifier", "tutorial/tutorial-training/index", "tutorial/tutorial-training/train-vs-fine-tune"], "filenames": ["api/datasets/base.rst", "api/datasets/biomedical.rst", "api/datasets/document_classification.rst", "api/datasets/entity_linking.rst", "api/datasets/ocr.rst", "api/datasets/relation_extraction.rst", "api/datasets/sequence_labeling.rst", "api/datasets/text_image.rst", "api/datasets/text_text.rst", "api/datasets/treebanks.rst", "api/embeddings/base.rst", "api/embeddings/document.rst", "api/embeddings/image.rst", "api/embeddings/legacy.rst", "api/embeddings/token.rst", "api/embeddings/transformer.rst", "api/flair.rst", "api/flair.data.rst", "api/flair.datasets.rst", "api/flair.embeddings.rst", "api/flair.models.rst", "api/flair.nn.rst", "api/flair.splitter.rst", "api/flair.tokenization.rst", "api/flair.trainers.rst", "api/flair.trainers.plugins.rst", "api/index.rst", "contributing/index.rst", "contributing/local_development.md", "contributing/making_a_pull_request.md", "contributing/updating_documentation.md", "contributing/writing_a_good_issue.md", "glossary/index.rst", "index.rst", "tutorial/index.rst", "tutorial/intro.md", "tutorial/tutorial-basics/basic-types.md", "tutorial/tutorial-basics/entity-linking.md", "tutorial/tutorial-basics/entity-mention-linking.md", "tutorial/tutorial-basics/how-predictions-work.md", "tutorial/tutorial-basics/how-to-tag-corpus.md", "tutorial/tutorial-basics/index.rst", "tutorial/tutorial-basics/other-models.md", "tutorial/tutorial-basics/part-of-speech-tagging.md", "tutorial/tutorial-basics/tagging-entities.md", "tutorial/tutorial-basics/tagging-sentiment.md", "tutorial/tutorial-embeddings/classic-word-embeddings.md", "tutorial/tutorial-embeddings/embeddings.md", "tutorial/tutorial-embeddings/flair-embeddings.md", "tutorial/tutorial-embeddings/index.rst", "tutorial/tutorial-embeddings/other-embeddings.md", "tutorial/tutorial-embeddings/transformer-embeddings.md", "tutorial/tutorial-hunflair2/customize-linking.md", "tutorial/tutorial-hunflair2/index.rst", "tutorial/tutorial-hunflair2/linking.md", "tutorial/tutorial-hunflair2/overview.md", "tutorial/tutorial-hunflair2/tagging.md", "tutorial/tutorial-hunflair2/training-ner-models.md", "tutorial/tutorial-training/how-model-training-works.md", "tutorial/tutorial-training/how-to-load-custom-dataset.md", "tutorial/tutorial-training/how-to-load-prepared-dataset.md", "tutorial/tutorial-training/how-to-train-sequence-tagger.md", "tutorial/tutorial-training/how-to-train-span-classifier.md", "tutorial/tutorial-training/how-to-train-text-classifier.md", "tutorial/tutorial-training/index.rst", "tutorial/tutorial-training/train-vs-fine-tune.md"], "titles": ["flair.datasets.base", "flair.datasets.biomedical", "flair.datasets.document_classification", "flair.datasets.entity_linking", "flair.datasets.ocr", "flair.datasets.relation_extraction", "flair.datasets.sequence_labeling", "flair.datasets.text_image", "flair.datasets.text_text", "flair.datasets.treebanks", "flair.embeddings.base", "flair.embeddings.document", "flair.embeddings.image", "flair.embeddings.legacy", "flair.embeddings.token", "flair.embeddings.transformer", "flair", "flair.data", "flair.datasets", "flair.embeddings", "flair.models", "flair.nn", "flair.splitter", "flair.tokenization", "flair.trainers", "flair.trainers.plugins", "API Docs", "Contributing", "Local Development", "Making a pull request", "Updating documentation", "Writing a good issue", "Glossary", "flair", "Tutorials", "Quick Start", "Basics", "Tagging and linking entities", "Using and creating entity mention linker", "How predictions work", "How to tag a whole corpus", "Tutorial 1: Basic Tagging", "Tagging other things", "Tagging parts-of-speech", "Tagging entities", "Tagging sentiment", "Classic Word Embeddings", "Embeddings", "Flair embeddings", "Tutorial 3: Embeddings", "Other embeddings in Flair", "Transformer embeddings", "HunFlair2 Tutorial 4: Customizing linking models", "Tutorial: HunFlair2", "HunFlair2 - Tutorial 2: Entity Linking", "HunFlair2 - Overview", "HunFlair2 - Tutorial 1: Tagging", "HunFlair2 Tutorial 3: Training NER models", "How model training works in Flair", "How to load a custom dataset", "How to load a prepared dataset", "Train a sequence tagger", "Train a span classifier", "Train a text classifier", "Tutorial 2: Training models", "Training vs fine-tuning"], "terms": {"class": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 33, 36, 39, 46, 47, 48, 50, 51, 52, 57, 58, 63], "dataload": [0, 17, 18], "batch_siz": [0, 11, 20, 21], "1": [0, 1, 2, 3, 5, 6, 8, 11, 13, 14, 15, 17, 20, 24, 30, 33, 34, 42, 43, 44, 45, 48, 51, 52, 53, 54, 57, 59, 60, 61, 62, 63], "shuffl": [0, 17, 24, 57], "fals": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 24, 46, 51, 52, 57, 61, 62], "sampler": [0, 24], "none": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 38, 50], "batch_sampl": 0, "drop_last": 0, "timeout": 0, "0": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 24, 33, 35, 36, 37, 38, 39, 42, 45, 47, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "worker_init_fn": 0, "view": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 30], "github": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 48], "typevar": [0, 10, 21], "t_co": [0, 17], "covari": 0, "true": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 24, 51, 57, 59, 61, 62, 63], "option": [0, 1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 20, 21, 22, 24, 25, 46, 50, 51], "int": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25], "num_work": [0, 24], "pin_memori": [0, 17], "bool": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 24], "float": [0, 3, 11, 13, 14, 15, 17, 20, 24, 25], "union": [0, 1, 2, 3, 4, 6, 8, 9, 11, 15, 17, 20, 21, 22, 24, 25], "iter": [0, 3, 6, 20, 21, 25, 37, 39, 40, 42, 47, 56, 58], "pin_memory_devic": 0, "str": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25], "prefetch_factor": 0, "flairdatapointdataset": [0, 18, 20, 62], "datapoint": [0, 10, 17, 20, 21, 26, 62], "flairdataset": [0, 2, 4, 6, 7, 8, 9, 17, 26], "gener": [0, 6, 10, 14, 16, 17, 20, 21, 28, 30, 31, 46, 51, 56, 58, 60, 62], "dt": [0, 10, 17, 21, 43], "A": [0, 1, 2, 3, 6, 14, 16, 17, 20, 21, 23, 24, 30, 31, 36, 39, 43, 44, 58, 59, 60], "simpl": [0, 8, 20, 25, 30, 31, 32, 33, 50, 58], "object": [0, 1, 2, 3, 4, 5, 6, 8, 14, 17, 20, 21, 22, 24, 25, 30, 36, 37, 38, 40, 47, 48, 50, 56, 58, 59, 61, 62], "wrap": [0, 20, 23, 24], "list": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 37, 40, 46, 47, 50, 52, 56, 59, 60, 62], "exampl": [0, 14, 17, 21, 25, 28, 29, 31, 34, 40, 42, 44, 45, 46, 50, 52, 57, 59, 60, 61, 63], "sentenc": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 24, 26, 31, 32, 35, 38, 39, 40, 42, 43, 45, 46, 47, 48, 50, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63], "__init__": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 24, 25], "instanti": [0, 2, 4, 6, 8, 9, 11, 14, 15, 20, 22, 46, 47, 48, 50, 59, 60, 62], "paramet": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 36, 40, 42, 50, 52, 56, 58, 59, 61, 62], "bound": [0, 10, 15, 21], "make": [0, 11, 20, 27, 28, 31, 35, 36, 37, 39, 42, 43, 44, 45, 46, 50, 51, 55, 57, 58, 60, 61, 62, 63], "up": [0, 6, 10, 11, 14, 20, 30, 38, 50, 60, 61, 62], "is_in_memori": [0, 2, 4, 6, 7, 8, 9, 17], "return": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 42, 46, 60, 62], "type": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 30, 35, 36, 38, 44, 46, 52, 54, 55, 56, 61, 62], "sentencedataset": [0, 18], "deprec": [0, 1, 13, 14, 17, 20], "sinc": [0, 1, 2, 3, 6, 12, 13, 15, 17, 20, 21, 36, 38, 46, 48, 50, 51, 58, 59], "version": [0, 1, 3, 6, 13, 17, 20, 24, 28, 33, 42, 48], "11": [0, 38, 52, 54, 55], "The": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 31, 33, 35, 36, 37, 38, 39, 42, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 61, 62, 65], "wa": [0, 3, 6, 10, 20, 35, 37, 42, 44, 45, 56], "renam": [0, 20], "stringdataset": [0, 18], "text": [0, 1, 2, 3, 4, 6, 8, 14, 15, 17, 20, 21, 22, 23, 32, 34, 36, 38, 39, 40, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64], "use_token": [0, 8, 17, 38, 56], "token": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 26, 32, 38, 42, 46, 47, 48, 50, 51, 62], "spacetoken": [0, 2, 17, 23, 26], "take": [0, 6, 11, 12, 13, 14, 15, 17, 20, 21, 25, 28, 31, 50, 54, 55], "string": [0, 2, 3, 4, 6, 8, 11, 13, 14, 17, 20, 21, 25, 36, 43, 44, 46, 48, 51, 57], "input": [0, 10, 15, 20, 21, 50], "dure": [0, 2, 11, 14, 15, 20, 24, 50, 58, 60], "custom": [0, 1, 2, 3, 11, 13, 14, 17, 20, 21, 22, 31, 34, 46, 50, 53, 54, 62, 64], "us": [0, 1, 2, 3, 6, 8, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63], "If": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 24, 25, 28, 29, 36, 38, 44, 46, 50, 51, 52, 54, 57, 58, 59, 60, 61, 62], "instead": [0, 1, 2, 6, 12, 13, 14, 15, 17, 20, 21, 30, 31, 35, 36, 37, 38, 44, 45, 50, 51, 57, 58, 61, 62], "provid": [0, 1, 2, 3, 6, 11, 13, 14, 15, 17, 20, 21, 30, 31, 33, 42, 44, 46, 48, 50], "function": [0, 1, 2, 3, 6, 8, 12, 13, 14, 15, 17, 20, 21, 23, 25, 30, 33, 42, 46, 51, 56, 58, 62], "thi": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 29, 31, 32, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "just": [0, 8, 10, 11, 14, 23, 30, 31, 35, 38, 44, 45, 47, 48, 51, 56, 57, 58, 60, 62, 63], "set": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 24, 25, 36, 40, 43, 50, 51, 54, 55, 56, 57, 58, 60, 61, 62], "segtoktoken": [0, 2, 17, 22, 23, 26], "abstract": [0, 1, 10, 17, 20, 21, 22, 23, 48, 55, 56], "mongodataset": [0, 18], "queri": [0, 20], "host": [0, 3, 14], "port": 0, "databas": [0, 1, 3], "collect": [0, 3, 6, 52, 55], "text_field": 0, "categories_field": 0, "max_tokens_per_doc": [0, 2, 8], "max_chars_per_doc": [0, 2, 8], "in_memori": [0, 1, 2, 3, 4, 5, 6, 8, 9], "tag_typ": [0, 1, 17, 20, 31, 57, 58, 61, 62], "read": [0, 1, 2, 3, 4, 6, 9, 14, 30, 31, 38, 60, 62], "mongo": 0, "each": [0, 1, 2, 3, 6, 8, 17, 20, 21, 24, 25, 37, 38, 43, 46, 47, 48, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62], "should": [0, 2, 3, 6, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 31, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62], "contain": [0, 1, 2, 3, 4, 6, 8, 10, 11, 14, 17, 20, 21, 24, 33, 36, 38, 47, 50, 54, 58, 59, 60], "one": [0, 1, 2, 3, 6, 8, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 25, 29, 31, 36, 37, 38, 42, 46, 47, 50, 51, 55, 56, 57, 58, 59, 60, 62], "document": [0, 1, 2, 3, 6, 10, 13, 14, 15, 16, 17, 19, 20, 26, 27, 28, 32, 33, 49, 51, 54, 55, 59, 61, 62, 63], "per": [0, 2, 6, 14, 15, 20, 21, 39, 42, 44, 55, 59], "item": [0, 2, 10, 11, 14, 17, 52], "have": [0, 1, 2, 3, 8, 17, 20, 21, 30, 31, 35, 36, 38, 42, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 61, 62], "follow": [0, 1, 2, 3, 9, 29, 30, 35, 36, 37, 38, 46, 48, 50, 51, 52, 54, 55, 57, 60, 61, 62], "format": [0, 1, 2, 3, 4, 6, 8, 9, 14, 17, 20, 30, 46, 62], "beskrivn": 0, "abrahamsbi": 0, "g\u00e5rd": 0, "gottr\u00f6ra": 0, "sn": 0, "l\u00e5nghundra": 0, "hd": 0, "stockholm": 0, "l\u00e4n": 0, "n\u00e4ra": 0, "l\u00e5ngsj\u00f6n": 0, "h\u00e4rad": 0, "f\u00f6rsaml": 0, "plat": 0, "e": [0, 1, 2, 3, 6, 8, 13, 14, 15, 20, 25, 28, 30, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "g": [0, 1, 2, 3, 6, 8, 13, 14, 15, 20, 25, 30, 51, 52, 54, 55, 56, 57, 60, 61, 62], "localhost": 0, "27017": 0, "rosenberg": 0, "book": 0, "field": [0, 1, 4, 14, 17, 20, 50, 54, 59], "categori": [0, 2, 6, 52], "tingslag": 0, "most": [0, 2, 10, 11, 14, 17, 20, 21, 22, 28, 31, 36, 38, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 62], "amount": [0, 21, 54, 55], "all": [0, 1, 2, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 30, 35, 36, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61], "ar": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30, 31, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65], "taken": [0, 11, 13, 17, 20, 21, 50], "truncat": [0, 2, 15, 47], "maximum": [0, 2, 8, 15, 17, 20, 24], "number": [0, 1, 2, 6, 8, 10, 11, 13, 14, 17, 20, 24, 29, 50, 51, 58, 60, 61], "char": [0, 1, 2, 6, 14, 17, 20, 55], "default": [0, 1, 2, 3, 6, 8, 9, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 30, 46, 50, 51, 52, 57, 58, 59], "keep": [0, 1, 2, 3, 6, 8, 9, 20, 21, 48], "memori": [0, 1, 2, 3, 4, 6, 8, 9, 13, 14, 20, 21, 44, 48, 61], "otherwis": [0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 16, 17, 20, 51], "onli": [0, 1, 2, 3, 6, 10, 11, 13, 14, 17, 20, 21, 23, 28, 31, 36, 37, 38, 47, 50, 51, 54, 58, 60], "tag": [0, 3, 4, 6, 14, 17, 20, 22, 34, 36, 38, 39, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62], "assign": [0, 6, 17, 20, 25, 38], "label": [0, 2, 3, 4, 6, 8, 14, 17, 20, 21, 24, 26, 32, 37, 38, 39, 40, 42, 44, 56, 59, 61, 62, 63], "find_train_dev_test_fil": [0, 18], "data_fold": [0, 1, 2, 3, 5, 6, 8, 9, 59, 62], "dev_fil": [0, 1, 2, 6, 8, 9, 59], "test_fil": [0, 1, 2, 6, 8, 9, 59], "train_fil": [0, 1, 2, 6, 8, 9, 59], "autofind_split": [0, 1, 6, 8], "entiti": [1, 3, 5, 6, 17, 18, 20, 30, 34, 39, 41, 42, 50, 52, 53, 56, 60], "char_span": [1, 5], "entity_typ": [1, 20, 38, 52, 57], "base": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 45, 47, 48, 50, 51, 54, 55, 57, 58, 61, 62, 63], "intern": [1, 20, 62], "repres": [1, 3, 6, 15, 17, 20, 21, 22, 23, 25, 59, 60], "while": [1, 12, 15, 20, 21, 31, 42, 44, 48, 50, 58], "convert": [1, 3, 5, 6, 14, 17, 46, 52, 59], "ner": [1, 4, 6, 20, 21, 31, 34, 35, 36, 38, 39, 40, 42, 43, 45, 52, 53, 54, 56, 58, 59, 60, 62], "corpora": [1, 6, 9, 17, 20, 43, 45, 48, 50, 53, 55, 57, 58, 61], "standard": [1, 14, 20, 28, 39, 47, 48, 51, 54, 55, 58], "consist": [1, 3, 6, 17, 20, 32, 36, 50, 59, 60], "span": [1, 3, 6, 17, 20, 21, 26, 34, 37, 38, 39, 42, 52, 54, 55, 56, 64], "address": 1, "origin": [1, 2, 3, 6, 8, 13, 17, 20, 52, 55, 58, 60], "well": [1, 3, 11, 20, 56, 57, 58], "chemic": [1, 3, 5, 20, 38, 53, 54, 55, 56, 57], "gene": [1, 3, 20, 38, 44, 52, 53, 54, 55, 56, 57], "so": [1, 2, 6, 13, 14, 20, 28, 31, 36, 38, 43, 44, 46, 47, 48, 49, 50, 51, 56, 59, 60, 61], "is_befor": 1, "other_ent": 1, "check": [1, 3, 17, 28, 29, 33, 36, 42, 46, 47, 48, 50, 58, 59, 60], "whether": [1, 2, 3, 6, 8, 11, 13, 14, 17, 20, 35, 50, 51], "locat": [1, 6, 35, 39, 42, 44, 59], "befor": [1, 11, 13, 17, 20, 24, 28, 31, 50, 61], "given": [1, 3, 6, 8, 11, 13, 14, 17, 20, 21, 22, 23, 54, 56], "fulli": [1, 8, 58, 60], "overlap": [1, 20], "internalbionerdataset": [1, 18], "entities_per_docu": 1, "corpu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 17, 20, 21, 24, 25, 26, 34, 41, 45, 48, 50, 55, 57, 59, 61, 62, 63], "": [1, 2, 6, 10, 11, 14, 20, 22, 23, 33, 35, 36, 37, 38, 39, 42, 44, 45, 46, 47, 48, 50, 51, 52, 55, 56, 58, 59, 60, 62], "dpentri": [1, 18], "position_end": 1, "entity_count": 1, "entity_lengths_sum": 1, "last_ent": 1, "tupl": [1, 4, 6, 15, 17, 20, 21, 24, 25, 62], "alia": [1, 11, 14, 15, 17], "2": [1, 2, 3, 8, 10, 14, 15, 17, 20, 24, 34, 39, 42, 44, 48, 51, 53, 56, 57, 59, 60, 61, 62, 63], "3": [1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 24, 28, 31, 34, 35, 36, 37, 42, 47, 48, 50, 51, 53, 61, 62, 63], "merge_dataset": [1, 18], "data_set": 1, "filter_and_map_ent": [1, 18], "entity_type_to_canon": 1, "filter_nested_ent": [1, 18], "bioc_to_intern": [1, 18], "bioc_fil": 1, "helper": [1, 23, 58], "pars": [1, 3], "bioc": 1, "see": [1, 2, 3, 5, 6, 8, 11, 13, 14, 15, 16, 20, 22, 23, 36, 37, 38, 39, 42, 44, 45, 48, 50, 51, 52, 59, 60, 61, 62, 63], "http": [1, 2, 3, 5, 6, 8, 10, 11, 14, 16, 20, 52, 56], "sourceforg": 1, "net": 1, "detail": [1, 6, 13, 14, 22, 23, 30, 41, 48, 54, 55, 61, 62], "brat_to_intern": [1, 18], "corpus_dir": 1, "ann_file_suffix": 1, "annot": [1, 2, 3, 6, 8, 9, 17, 20, 35, 36, 39, 44, 50, 52, 54, 55, 56, 58, 59, 60, 62], "brat": 1, "nlplab": 1, "org": [1, 3, 5, 6, 10, 14, 20, 21, 52], "conllwrit": [1, 18], "sentence_splitt": [1, 3, 5], "util": 1, "write": [1, 13, 24, 27, 44], "conll": [1, 3, 6, 9, 17, 42, 44], "file": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 20, 21, 24, 25, 30, 50, 52, 62], "initi": [1, 2, 3, 5, 6, 13, 14, 17, 20, 21, 24, 25, 37, 40, 46, 50, 52, 56, 57, 59, 60, 61, 62, 63], "sentencesplitt": [1, 3, 22, 26, 40], "splitter": [1, 3, 5, 26, 37, 40, 56], "which": [1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 30, 31, 36, 38, 39, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "segment": [1, 3, 36], "process_dataset": 1, "out_dir": 1, "write_to_conl": 1, "output_fil": 1, "hunerdataset": [1, 18], "base_path": [1, 2, 3, 4, 5, 6, 8, 9, 24, 25, 57], "columncorpu": [1, 3, 5, 6, 18], "abc": [1, 3, 20, 21, 22, 23], "huner": [1, 3], "everi": [1, 3, 10, 11, 12, 13, 15, 20, 21, 25, 50], "subclass": [1, 12, 15, 20, 21, 22, 23], "ha": [1, 6, 8, 13, 14, 17, 20, 25, 31, 36, 38, 43, 48, 50, 51, 52, 55, 58, 59, 60], "implement": [1, 3, 10, 11, 13, 14, 15, 20, 21, 22, 23, 24, 38, 51, 57], "method": [1, 3, 6, 10, 11, 13, 14, 16, 17, 20, 21, 25, 28, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 60, 62, 63], "to_intern": 1, "complet": [1, 6, 22, 48, 50, 56], "data": [1, 2, 3, 4, 6, 8, 9, 14, 15, 16, 20, 21, 24, 26, 31, 35, 36, 37, 38, 39, 42, 43, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63], "incl": 1, "train": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 28, 31, 34, 35, 37, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 55, 59, 60], "dev": [1, 2, 4, 6, 8, 9, 17, 24, 25, 28, 58, 59, 60, 62], "test": [1, 2, 3, 4, 6, 8, 9, 17, 20, 24, 31, 58, 59, 60, 62], "split_url": 1, "url": [1, 3, 16, 20, 37], "without": [1, 2, 30, 31, 48, 61], "split": [1, 2, 3, 6, 9, 17, 20, 22, 23, 24, 37, 40, 50, 56, 58, 59, 60], "For": [1, 6, 8, 20, 22, 23, 28, 30, 31, 36, 39, 40, 42, 43, 44, 46, 47, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63], "further": [1, 3, 15, 22, 23, 38, 54, 55, 56], "inform": [1, 3, 4, 6, 11, 13, 14, 20, 21, 24, 33, 38, 39, 46, 48, 50, 52, 54, 56, 60], "weber": [1, 55], "et": [1, 3, 6, 10, 13, 14, 20, 48, 51, 61], "al": [1, 3, 6, 10, 13, 14, 20, 48, 61], "improv": [1, 33, 37, 54, 55, 58], "pretrain": [1, 12, 15, 53, 55, 57], "academ": [1, 3], "oup": [1, 3], "com": [1, 2, 3, 6, 8, 56], "bioinformat": [1, 3, 57], "articl": [1, 2, 3, 6, 55], "36": [1, 55, 56, 58], "295": 1, "5523847": 1, "redirectedfrom": 1, "fulltext": [1, 52], "repositori": [1, 6, 10, 20, 28, 33, 48], "hu": 1, "static": [1, 10, 11, 13, 14, 17, 20, 21, 23, 24, 46], "get_corpus_sentence_splitt": 1, "pre": [1, 17, 20, 35, 42, 43, 44, 46, 50, 55], "defin": [1, 6, 12, 15, 17, 20, 21, 24, 30, 51, 52, 57, 59, 62], "path": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 16, 20, 21, 24, 31, 46, 50, 58, 59, 62], "your": [1, 2, 3, 6, 10, 11, 13, 14, 16, 21, 28, 29, 30, 31, 35, 40, 41, 46, 47, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64], "machin": [1, 6, 58], "give": [1, 3, 6, 20, 30, 42, 43, 47, 48, 50, 58, 59, 61], "speedup": [1, 2, 3, 6], "scispacysentencesplitt": [1, 22, 26, 56], "get_subset": 1, "split_dir": 1, "bio_inf": [1, 18], "bioinfer": 1, "pyysalo": 1, "extract": [1, 5, 6, 15, 20, 21, 25, 30, 38, 42, 60, 62], "domain": [1, 6, 20, 45, 48, 53, 55, 56], "bmcbioinformat": 1, "biomedcentr": 1, "10": [1, 2, 3, 24, 50, 55, 58, 60, 63], "1186": 1, "1471": 1, "2105": 1, "8": [1, 2, 4, 5, 6, 8, 17, 28, 35, 42, 45], "50": [1, 2, 14, 20, 43, 50, 60], "classmethod": [1, 3, 6, 10, 11, 12, 14, 15, 17, 20, 21, 25], "download_dataset": 1, "data_dir": [1, 3], "parse_dataset": 1, "original_fil": [1, 3], "huner_gene_bio_inf": [1, 18], "arg": [1, 2, 10, 14, 17, 20, 21, 25], "kwarg": [1, 3, 7, 11, 14, 15, 20, 21, 24, 25], "protein": [1, 3, 5, 52, 53, 54, 55, 56], "get_entity_type_map": [1, 57], "dict": [1, 2, 3, 4, 6, 10, 11, 12, 14, 16, 17, 20, 21, 24, 25], "jnlpba": [1, 18], "share": [1, 17, 20, 21, 31, 48, 62], "task": [1, 2, 3, 4, 5, 6, 8, 9, 17, 21, 37, 42, 43, 44, 45, 48, 51, 58, 59, 60, 61, 62], "kim": 1, "introduct": [1, 33, 58], "bio": [1, 4, 6, 20, 59, 62], "recognit": [1, 3, 6, 20, 35, 44, 54, 55, 56, 57, 60, 62], "www": [1, 3, 6, 14], "aclweb": 1, "anthologi": 1, "w04": 1, "1213": 1, "pdf": [1, 3, 5], "13": [1, 6, 33, 38, 44, 52, 54], "pleas": [1, 6, 14, 29, 31, 50, 51, 54, 55], "from": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 30, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 60, 61, 62, 63], "bigbio": [1, 3], "bigbio_ner_corpu": [1, 18, 57], "hunerjnlpba": [1, 18], "download_and_prepare_train": 1, "sentence_tag": 1, "download_and_prepare_test": 1, "read_fil": 1, "input_iob_fil": 1, "huner_jnlpba": [1, 18], "entity_type_map": 1, "huner_gene_jnlpba": [1, 18], "huner_cell_line_jnlpba": [1, 18], "cell": [1, 20, 53, 55, 56, 57], "line": [1, 2, 3, 6, 8, 11, 13, 14, 21, 36, 43, 53, 55, 56, 57, 58, 59, 60, 62], "huner_all_jnlpba": [1, 18], "cell_find": [1, 18], "cellfind": 1, "speci": [1, 3, 20, 38, 44, 53, 54, 55, 56, 57], "futher": 1, "neve": 1, "evalu": [1, 2, 3, 8, 13, 14, 20, 21, 24, 55, 58], "stem": 1, "research": [1, 2, 3, 6, 8, 42], "semanticscholar": 1, "38e3": 1, "75aeeeb1937d03c3c80128a70d8e7a74441f": 1, "download_and_prepar": 1, "read_fold": 1, "huner_cell_line_cell_find": [1, 18], "huner_species_cell_find": [1, 18], "huner_gene_cell_find": [1, 18], "huner_all_cell_find": [1, 18], "mirna": [1, 18], "bagewadi": 1, "detect": [1, 3, 20, 34, 44, 45, 63], "mention": [1, 3, 20, 30, 34, 37, 41, 52, 54, 56, 59], "relat": [1, 5, 9, 17, 20, 26, 54, 60], "literatur": 1, "ncbi": [1, 3, 54, 57], "nlm": [1, 3], "nih": [1, 3], "gov": [1, 3], "pmc": 1, "pmc4602280": 1, "callabl": [1, 25], "word": [1, 3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 22, 23, 34, 36, 42, 48, 49, 50, 56, 57, 58, 59, 62], "scispaci": [1, 23, 55, 56], "sentence_separ": 1, "parse_fil": [1, 3], "input_fil": 1, "hunermirnahelp": [1, 18], "get_mirna_subset": 1, "huner_mirna": [1, 18], "huner_gene_mirna": [1, 18], "huner_species_mirna": [1, 18], "huner_disease_mirna": [1, 18], "diseas": [1, 3, 20, 38, 44, 52, 53, 54, 55, 56, 57], "huner_all_mirna": [1, 18], "kaewphancorpushelp": [1, 18], "kaewphan": 1, "cll": [1, 18], "gellu": [1, 18], "download_cll_dataset": 1, "prepare_and_save_dataset": 1, "nersuite_fold": 1, "download_gellus_dataset": 1, "read_dataset": 1, "name": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 30, 31, 35, 36, 38, 42, 44, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62], "support": [1, 6, 20, 23, 28, 46, 50, 51, 52, 58, 60], "identif": [1, 2], "synthet": 1, "lethal": 1, "cancer": [1, 57], "pmc4708107": 1, "huner_cell_line_cl": [1, 18], "huner_cell_line_gellu": [1, 18], "loctext": [1, 18], "cejuela": 1, "local": [1, 10, 27, 31], "assist": 1, "curat": [1, 44], "s12859": 1, "018": 1, "2021": [1, 6, 61], "9": [1, 42, 52, 54, 55, 56], "huner_loctext": [1, 18], "huner_species_loctext": [1, 18], "huner_gene_loctext": [1, 18], "huner_all_loctext": [1, 18], "chemdner": [1, 18], "kralling": 1, "drug": [1, 5], "its": [1, 3, 16, 17, 20, 30, 39, 45, 48, 50, 56, 57, 58], "principl": 1, "jcheminf": 1, "1758": 1, "2946": 1, "7": [1, 35, 37, 38, 42, 43, 52, 54, 55, 56, 61, 62, 63], "s1": 1, "s2": [1, 56], "segement": 1, "huner_chemical_chemdn": [1, 18], "iepa": [1, 18], "informatik": 1, "berlin": [1, 35, 40, 42, 58], "de": [1, 3, 6, 8, 42, 43, 44, 45, 46, 48], "ding": 1, "berleant": 1, "nettleton": 1, "wurtel": 1, "mine": [1, 56], "medlin": 1, "phrase": [1, 32, 42], "pubm": [1, 48], "11928487": 1, "huner_gene_iepa": [1, 18], "linneau": [1, 18], "gerner": 1, "linnaeu": 1, "system": [1, 3, 6, 61], "20149233": 1, "scispacytoken": [1, 22, 23, 26, 38, 56], "download_and_parse_dataset": 1, "huner_species_linneau": [1, 18, 57], "cdr": [1, 3, 18], "jhnlp": 1, "biocr": [1, 3, 5], "v": [1, 3, 34, 55, 59, 64], "li": 1, "resourc": [1, 40, 58, 59, 61, 62, 63], "pmc4860626": 1, "huner_disease_cdr": [1, 18], "huner_chemical_cdr": [1, 18], "huner_all_cdr": [1, 18, 57], "variom": [1, 18], "brat2bioc": 1, "hvp_bioc": 1, "xml": [1, 3], "zip": [1, 6], "verspoor": 1, "human": [1, 3, 6, 52, 54], "pmc3676157": 1, "parse_corpu": 1, "corpus_xml": 1, "huner_gene_variom": [1, 18], "huner_disease_variom": [1, 18], "huner_species_variom": [1, 18], "huner_all_variom": [1, 18], "ncbi_diseas": [1, 18, 57], "dogan": [1, 3], "concept": [1, 3, 17, 20, 33, 36, 47, 52, 54], "normal": [1, 5, 6, 20, 23, 24, 54, 55, 58, 60], "24393765": 1, "download_corpu": 1, "patch_training_fil": 1, "orig_train_fil": 1, "patched_fil": 1, "parse_input_fil": 1, "huner_disease_ncbi": [1, 18, 57], "scaicorpu": [1, 18], "scai": 1, "scau": 1, "scai_chem": [1, 18], "kol\u00e1\u0159ik": 1, "terminolog": 1, "pub": 1, "uni": 1, "bielefeld": 1, "record": [1, 5, 25, 52], "2603498": 1, "perform_corpus_download": 1, "scai_diseas": [1, 18], "gurulingappa": 1, "an": [1, 2, 3, 6, 8, 10, 11, 14, 15, 17, 20, 21, 22, 23, 24, 29, 31, 33, 36, 37, 38, 40, 42, 45, 46, 47, 50, 51, 55, 56, 58], "empir": [1, 3], "advers": 1, "effect": [1, 13, 14, 20, 25], "2603398": 1, "huner_chemical_scai": [1, 18], "huner_disease_scai": [1, 18], "huner_all_scai": [1, 18, 57], "osiri": [1, 18], "load_original_unfixed_annot": 1, "variat": [1, 15, 21], "furlong": 1, "v1": [1, 6, 48, 52], "sequenc": [1, 3, 15, 17, 20, 22, 25, 34, 36, 48, 51, 57, 58, 59, 60, 62, 64], "variant": [1, 20, 45, 48], "18251998": 1, "erron": 1, "two": [1, 2, 6, 8, 10, 14, 17, 20, 31, 36, 37, 39, 42, 44, 46, 47, 48, 51, 56, 58, 59, 65], "you": [1, 2, 3, 6, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "don": [1, 31, 59, 60, 62], "t": [1, 3, 6, 8, 15, 20, 21, 30, 31, 57, 59, 60, 62], "want": [1, 2, 3, 6, 16, 20, 23, 24, 31, 33, 36, 38, 40, 44, 46, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 62, 63], "fix": [1, 20, 28], "corpus_fold": 1, "fix_annot": 1, "huner_gene_osiri": [1, 18], "s800": [1, 18], "pafili": 1, "organ": [1, 3, 6, 20], "fast": [1, 13, 14, 42, 43, 44, 48, 58], "accur": [1, 45], "taxonom": 1, "ploson": 1, "info": [1, 16, 17, 47], "doi": [1, 3], "2f10": 1, "1371": 1, "2fjournal": 1, "pone": 1, "0065390": 1, "huner_species_s800": [1, 18, 57], "gpro": [1, 18], "udel": [1, 3], "edu": [1, 2, 3, 5, 6], "descript": [1, 3, 17, 50, 51], "download_train_corpu": 1, "download_dev_corpu": 1, "text_fil": 1, "ann_fil": 1, "huner_gene_gpro": [1, 18], "deca": [1, 18], "wang": [1, 55], "disambigu": [1, 3, 42], "natur": [1, 8, 33, 56], "languag": [1, 2, 3, 6, 8, 9, 13, 14, 17, 23, 33, 42, 44, 45, 46, 48, 50, 53, 55, 56, 58, 61, 63], "parser": [1, 30], "pmc2828111": 1, "biospacysentencespliit": 1, "text_dir": 1, "gold_fil": 1, "huner_gene_deca": [1, 18], "fsu": [1, 18], "deriv": [1, 6, 50], "hahn": 1, "propos": [1, 10, 13, 14, 48, 50], "configur": [1, 20, 22, 23, 28, 52], "silver": 1, "w10": 1, "1838": 1, "huner_gene_fsu": [1, 18], "craft": [1, 18], "corefer": [1, 6], "section": [1, 42, 43, 44, 45, 50, 51, 52, 58, 61, 62, 65], "typographi": 1, "bada": 1, "161": 1, "biosemant": [1, 18], "akhondi": 1, "patent": [1, 55], "gold": [1, 3, 20, 21, 55], "pmc4182036": 1, "bc2gm": [1, 18], "ii": [1, 6], "gm": 1, "smith": [1, 6], "overview": [1, 34, 53, 58], "pmc2559986": 1, "parse_train_dataset": 1, "parse_test_dataset": 1, "huner_gene_bc2gm": [1, 18], "cemp": [1, 18], "huner_chemical_cemp": [1, 18], "chebi": [1, 18], "shardlow": 1, "new": [1, 2, 3, 6, 10, 13, 14, 17, 20, 21, 24, 29, 30, 33, 35, 46, 47, 48, 50, 52, 57, 58, 61, 63], "metabolit": 1, "lrec": 1, "conf": [1, 30], "proceed": [1, 6], "lrec2018": 1, "229": 1, "been": [1, 6, 31, 42, 60], "can": [1, 2, 3, 6, 8, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], "select": [1, 6, 51, 58], "choos": [1, 16, 20, 31, 43, 44, 46, 48, 50, 51], "both": [1, 11, 13, 14, 15, 20, 21, 35, 36, 42, 48, 52, 54, 58, 60, 61, 62], "get_ent": 1, "f": [1, 20, 36, 39, 57, 58, 62], "huner_chebi": [1, 18], "huner_chemical_chebi": [1, 18], "huner_gene_chebi": [1, 18], "huner_species_chebi": [1, 18], "huner_all_chebi": [1, 18], "bionlpcorpu": [1, 18], "bionlp": [1, 3], "event": [1, 24, 25], "2013": 1, "st": [1, 8], "intro": 1, "input_fold": 1, "bionlp2013_pc": [1, 18], "pathwai": 1, "ohta": 1, "pc": 1, "w13": 1, "2009": [1, 6], "download_fold": 1, "bionlp2013_cg": [1, 18], "genet": 1, "ananiad": 1, "cg": 1, "2008": 1, "anat_em": [1, 18], "anatom": 1, "scale": 1, "pmc3957068": 1, "nactem": 1, "ac": [1, 3], "uk": [1, 6, 44, 48], "anatomytagg": 1, "anatem": 1, "input_dir": 1, "bioberthelp": [1, 18], "column_format": [1, 3, 6, 62], "comment_symbol": [1, 6], "corpusarg": [1, 2, 3, 4, 5, 6, 8, 17], "respect": [1, 3, 4, 6, 8, 14, 20, 21, 30, 38, 50, 52, 60, 62], "biobert": 1, "lee": 1, "4": [1, 2, 11, 13, 15, 24, 34, 36, 38, 39, 42, 44, 47, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63], "1234": 1, "5566506": 1, "dmi": 1, "lab": [1, 6, 14], "download_corpora": 1, "download_dir": 1, "convert_and_writ": 1, "biobert_chemical_bc4chemd": [1, 18], "bc4chemd": 1, "regard": 1, "biobert_gene_bc2gm": [1, 18], "biobert_gene_jnlpba": [1, 18], "biobert_chemical_bc5cdr": [1, 18], "bc5cdr": [1, 3, 54], "biobert_disease_bc5cdr": [1, 18], "biobert_disease_ncbi": [1, 18], "biobert_species_linnaeu": [1, 18], "linneaeu": 1, "biobert_species_s800": [1, 18], "craft_v4": [1, 18], "co": [1, 11, 14, 20], "refer": [1, 3, 6, 14, 17, 20, 30, 37, 38, 54], "structur": [1, 4, 56, 59, 62], "ucdenv": 1, "ccp": 1, "filter_ent": 1, "prepare_split": 1, "huner_craft_v4": [1, 18], "huner_chemical_craft_v4": [1, 18], "huner_gene_craft_v4": [1, 18], "huner_species_craft_v4": [1, 18], "huner_all_craft_v4": [1, 18], "huner_bionlp2013_cg": [1, 18], "huner_chemical_bionlp2013_cg": [1, 18], "huner_disease_bionlp2013_cg": [1, 18], "huner_gene_bionlp2013_cg": [1, 18], "huner_species_bionlp2013_cg": [1, 18], "huner_all_bionlp2013_cg": [1, 18], "azdz": [1, 18], "arizona": 1, "informat": 1, "state": [1, 3, 11, 13, 14, 15, 20, 21, 24, 25, 33, 48, 50, 53, 55, 57, 58, 61, 62, 63, 64], "univers": [1, 6, 50, 58, 60, 61], "diego": 1, "asu": 1, "index": [1, 2, 6, 16, 20, 30, 36], "php": [1, 6], "pdr": [1, 18], "plant": 1, "journal": [1, 3, 55], "plo": 1, "id": [1, 3, 6, 17, 20, 28, 36, 38, 42, 43, 44, 45, 46, 48, 52, 60], "0221582": 1, "gcancer": 1, "huner_disease_pdr": [1, 18], "hunermulticorpu": [1, 18], "multicorpu": [1, 3, 6, 17, 26, 57, 61, 62], "build": [1, 20, 52, 53, 55], "consid": [1, 3, 6, 13, 17, 20, 21, 23, 29, 30], "particular": [1, 6, 13, 14, 24, 56, 58], "huner_cell_lin": [1, 18], "huner_chem": [1, 18], "huner_diseas": [1, 18], "huner_gen": [1, 18], "huner_speci": [1, 18], "dataset_nam": [1, 3, 6, 20, 52], "train_split_nam": 1, "dev_split_nam": [1, 6], "test_split_nam": 1, "adapt": [1, 3, 6], "framework": [1, 3, 33, 38], "bigscienc": [1, 3], "workshop": [1, 3, 6], "harmon": [1, 3], "over": [1, 3, 6, 14, 20, 30, 35, 37, 39, 42, 43, 44, 45, 46, 47, 48, 50, 51, 55, 56, 58, 59, 62], "120": [1, 3], "uniform": [1, 3, 17], "program": [1, 3], "api": [1, 3, 28, 30, 33, 50], "access": [1, 3, 17, 31, 39, 41, 50, 56, 59, 60], "them": [1, 3, 11, 12, 13, 15, 20, 21, 24, 28, 50, 56, 58, 59, 62], "allow": [1, 2, 3, 11, 13, 14, 15, 16, 20, 24, 25, 47, 55, 57], "bigbio_kb": [1, 3], "schema": [1, 2, 3, 4, 6, 8, 38], "huggingfac": [1, 11, 14, 15, 20, 51], "hub": [1, 15, 20, 43, 44, 51], "nlmchem": 1, "usual": [1, 10, 20, 30, 31, 60], "develop": [1, 6, 27, 48, 57, 58], "valid": [1, 17, 20, 54, 60], "map": [1, 2, 4, 6, 17, 20, 21, 52, 54, 57, 62], "canon": [1, 17], "note": [1, 3, 6, 20, 23, 42, 43, 44, 48, 50, 59], "present": [1, 6, 16, 50, 56], "discard": 1, "build_corpus_directory_nam": 1, "directori": [1, 6, 13, 16, 25], "to_internal_dataset": 1, "hug": [1, 20], "our": [1, 6, 28, 35, 36, 37, 39, 43, 48, 50, 52, 54, 55, 56, 58, 59, 61, 62], "represent": [1, 10, 11, 13, 14, 20, 21, 47, 48, 49, 51], "bin_search_passag": 1, "passag": 1, "low": 1, "high": [1, 38, 52, 54, 61], "find": [1, 20, 28, 33, 35, 44, 50, 51, 52, 55, 60], "offset": [1, 17, 55, 56], "binari": [1, 20, 46, 50], "search": [1, 59], "order": [1, 6, 14, 20, 36, 38, 50, 58], "huner_gene_nlm_gen": [1, 18, 57], "huner_gene_drugprot": [1, 18], "huner_chemical_drugprot": [1, 18], "huner_all_drugprot": [1, 18], "huner_gene_bior": [1, 18], "huner_chemical_bior": [1, 18], "huner_disease_bior": [1, 18], "huner_species_bior": [1, 18], "huner_cell_line_bior": [1, 18], "huner_all_bior": [1, 18, 57], "huner_gene_cpi": [1, 18], "huner_chemical_cpi": [1, 18], "huner_all_cpi": [1, 18], "huner_gene_bionlp_st_2013_pc": [1, 18], "huner_chemical_bionlp_st_2013_pc": [1, 18], "huner_all_bionlp_st_2013_pc": [1, 18], "huner_gene_bionlp_st_2013_g": [1, 18], "huner_gene_bionlp_st_2011_g": [1, 18], "huner_gene_bionlp_st_2011_id": [1, 18], "huner_chemical_bionlp_st_2011_id": [1, 18], "huner_species_bionlp_st_2011_id": [1, 18], "huner_all_bionlp_st_2011_id": [1, 18], "huner_gene_bionlp_st_2011_rel": [1, 18], "huner_gene_bionlp_st_2011_epi": [1, 18], "huner_species_bionlp_st_2019_bb": [1, 18], "huner_gene_bioid": [1, 18], "huner_chemical_bioid": [1, 18], "huner_species_bioid": [1, 18], "huner_cell_line_bioid": [1, 18], "huner_all_bioid": [1, 18], "huner_gene_gnormplu": [1, 18, 57], "huner_gene_progen": [1, 18], "huner_chemical_nlm_chem": [1, 18, 57], "huner_gene_seth_corpu": [1, 18], "huner_gene_tmvar_v3": [1, 18], "classificationcorpu": [2, 18, 59], "label_typ": [2, 3, 4, 6, 8, 17, 20, 21, 38, 57, 58, 59, 60, 61, 62, 63], "truncate_to_max_token": 2, "truncate_to_max_char": 2, "filter_if_longer_than": 2, "memory_mod": 2, "partial": [2, 6, 55], "label_name_map": [2, 3, 4, 6], "skip_label": 2, "allow_examples_without_label": 2, "sample_missing_split": [2, 3, 6, 8, 17], "encod": [2, 3, 4, 6, 8, 14, 17, 20, 21, 50, 62], "utf": [2, 4, 6, 8], "classif": [2, 5, 6, 8, 20, 21, 58, 60, 62], "fasttext": [2, 14, 46], "folder": [2, 3, 4, 6, 8, 9, 16, 28, 30, 59, 62], "sampl": [2, 3, 6, 8, 9, 17, 20, 24, 58], "filter": [2, 20, 31], "longer": [2, 31, 47, 51], "specifi": [2, 3, 6, 15, 17, 20, 21, 25, 30, 50, 52, 57, 58, 59, 62], "what": [2, 20, 29, 31, 33, 37, 39, 42, 43, 58, 60, 61, 62, 63], "degre": [2, 60], "full": [2, 9, 22, 31, 32, 36, 43, 44, 55, 56, 58, 61, 62], "disk": [2, 4, 6, 9, 13, 20], "embed": [2, 17, 20, 21, 24, 26, 29, 34, 44, 45, 57, 62, 63], "fit": [2, 13, 20], "even": [2, 6, 20, 39, 48, 57, 58], "too": [2, 11, 14, 15, 20, 58, 60], "much": [2, 31, 44, 47, 48, 54, 55, 58], "differ": [2, 3, 4, 6, 10, 11, 13, 14, 17, 20, 25, 36, 42, 43, 44, 47, 48, 50, 51, 54, 55, 56, 57, 58, 59, 62, 65], "some": [2, 3, 6, 10, 11, 14, 15, 17, 20, 23, 24, 30, 31, 46, 48, 51, 58, 59, 62], "latin": 2, "classificationdataset": [2, 18], "path_to_fil": 2, "singl": [2, 3, 6, 9, 11, 13, 14, 16, 20, 21, 22, 31, 47, 48, 50, 51, 55, 56, 61, 62], "__label__": [2, 59], "class_nam": 2, "multi": [2, 3, 5, 6, 8, 11, 13, 14, 20, 21, 43, 48, 50, 60], "mani": [2, 20, 24, 36, 37, 40, 43, 48, 50, 58, 59, 60, 63], "begin": [2, 6, 21, 59], "class_name_1": 2, "class_name_2": 2, "param": [2, 4, 6, 8, 10, 11, 12, 14, 15], "csvclassificationcorpu": [2, 18, 59], "column_name_map": [2, 6, 59], "csv_corpu": 2, "skip_head": [2, 59], "no_class_label": 2, "fmtparam": 2, "csv": [2, 8], "column": [2, 3, 6, 8, 9, 59, 62], "indic": [2, 3, 6, 8, 11, 13, 15, 20, 21, 36, 39, 42, 45, 56, 59], "skip": [2, 3, 14, 59], "first": [2, 3, 6, 8, 14, 15, 16, 17, 20, 24, 36, 37, 38, 47, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "becaus": [2, 3, 31, 58, 59, 61], "header": [2, 6, 59], "addit": [2, 3, 6, 14, 15, 17, 23, 24, 25, 30, 56, 59], "reader": [2, 14], "csvclassificationdataset": [2, 18], "amazon_review": [2, 18], "split_max": 2, "30000": [2, 43], "neg": [2, 20, 35, 45], "posit": [2, 3, 14, 20, 35, 36, 45, 56], "5": [2, 3, 11, 13, 15, 20, 21, 24, 35, 36, 37, 38, 39, 42, 44, 48, 52, 54, 55, 56, 57, 60, 61, 62, 63], "fraction_of_5_star_review": 2, "veri": [2, 33, 44, 45, 48, 50, 58, 61], "larg": [2, 14, 44, 50, 56, 61], "amazon": [2, 45], "review": [2, 45], "rate": [2, 24, 38, 58, 61], "download": [2, 3, 5, 6, 14, 16, 52, 56, 60], "nijianmo": 2, "io": [2, 3, 6, 16], "html": [2, 11, 14, 20, 30], "we": [2, 3, 6, 8, 13, 20, 28, 29, 30, 31, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63], "core": [2, 38], "subset": [2, 6, 17, 57], "still": [2, 13, 47], "ten": [2, 6], "million": [2, 3, 48], "construct": [2, 11, 13, 20, 50], "how": [2, 15, 20, 28, 30, 31, 34, 35, 36, 37, 41, 43, 44, 45, 48, 49, 52, 54, 56, 57, 61, 62, 63, 64], "point": [2, 3, 6, 14, 17, 20, 21, 24, 36, 39, 48, 59], "28": [2, 6, 55, 58], "higher": [2, 14, 24, 28, 50, 58], "lower": [2, 3, 14, 48, 50], "increas": [2, 6, 46, 51], "decreas": 2, "size": [2, 10, 11, 14, 17, 20, 21, 24, 32, 40, 51, 58], "By": [2, 17, 46, 50, 51, 52, 58, 59], "star": [2, 37], "onto": [2, 20, 60], "neutral": [2, 8], "argument": [2, 6, 11, 14, 20, 21, 24, 25, 50], "download_and_prepare_amazon_product_fil": 2, "part_nam": 2, "max_data_point": 2, "imdb": [2, 18, 59], "rebalance_corpu": 2, "movi": [2, 6, 45], "sentiment": [2, 20, 34, 36, 41, 63], "ai": 2, "stanford": [2, 5], "amaa": 2, "move": [2, 13, 14], "store": [2, 4, 14, 15, 20, 21, 24, 30, 43], "specif": [2, 3, 6, 14, 16, 20, 36, 50, 53, 54, 55, 58], "weather": [2, 10, 14, 20, 21], "80": [2, 42], "huge": 2, "also": [2, 3, 6, 14, 17, 20, 21, 25, 28, 31, 36, 37, 38, 42, 44, 45, 46, 48, 50, 51, 56, 57, 59, 60, 61, 62], "faster": [2, 14, 45, 54, 55, 61], "process": [2, 6, 11, 20, 24, 29, 33, 38, 54, 55, 56], "less": [2, 3, 8, 14, 35, 45, 61], "other": [2, 8, 20, 21, 31, 34, 39, 41, 43, 44, 46, 47, 48, 49, 53, 58, 59, 61], "newsgroup": [2, 18], "20": [2, 6, 20, 24, 57, 58], "classifi": [2, 6, 8, 20, 21, 26, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 50, 54, 55, 56, 64], "qwone": 2, "jason": 2, "20newsgroup": 2, "mai": [2, 17, 20, 22, 23, 36, 40, 48, 51, 54, 59, 61], "long": [2, 14, 15, 47], "big": [2, 61, 62], "agnew": [2, 18], "ag": 2, "topic": [2, 55, 59], "coars": [2, 6, 59], "grain": [2, 6, 43, 62], "world": [2, 51], "sport": 2, "busi": [2, 6], "sci": 2, "tech": 2, "stackoverflow": [2, 18], "question": [2, 8, 39, 63], "jacoxu": 2, "sentiment_140": [2, 18], "twitter": [2, 3, 46], "help": [2, 20, 33, 39], "sentiment140": 2, "student": 2, "three": [2, 6, 47, 48, 58, 59, 60], "numer": 2, "valu": [2, 6, 11, 13, 15, 16, 17, 20, 21, 24, 25, 30, 36, 38, 50, 51, 56, 57, 58], "senteval_cr": [2, 18], "sentev": 2, "facebookresearch": 2, "small": [2, 9, 28, 31, 46, 50, 55, 58, 61, 62], "senteval_mr": [2, 18], "senteval_subj": [2, 18], "subject": 2, "senteval_mpqa": [2, 18], "opinion": 2, "polar": 2, "senteval_sst_binari": [2, 18], "treebank": [2, 18, 26, 43, 58, 60], "senteval_sst_granular": [2, 18], "glue_cola": [2, 18], "accept": [2, 11, 13, 14, 21, 29], "linguist": [2, 10, 32, 59, 62], "glue": [2, 8, 60], "benchmark": [2, 3, 8, 20, 60], "gluebenchmark": [2, 8], "predict": [2, 8, 15, 17, 20, 21, 31, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 48, 54, 55, 56, 57, 60, 61, 62, 63], "english": [2, 6, 42, 45, 46, 48, 50, 58, 60, 61], "grammat": 2, "correct": [2, 20, 37], "additionali": [2, 8], "eval_dataset": [2, 8], "unlabel": [2, 8], "cola": 2, "tsv_from_eval_dataset": [2, 8], "folder_path": [2, 8], "creat": [2, 3, 6, 8, 14, 17, 20, 24, 25, 28, 31, 34, 36, 41, 46, 47, 48, 50, 51, 57, 59, 61, 62, 63], "eval": 2, "tsv": [2, 3, 8, 25], "after": [2, 6, 8, 14, 17, 31, 38, 48, 54, 58], "call": [2, 3, 6, 8, 12, 14, 15, 17, 20, 21, 24, 25, 28, 30, 36, 46, 47, 48, 50, 54, 55, 56, 57, 58, 60, 63], "label_nam": [2, 8, 20, 21, 52], "result": [2, 6, 10, 13, 20, 21, 38, 47, 48, 50, 51, 55, 57, 58], "requir": [2, 5, 6, 11, 14, 20, 28, 30, 31, 34, 38, 48, 50, 54, 55, 58, 61], "submiss": [2, 8], "glue_sst2": [2, 18], "datasetarg": 2, "label_map": 2, "go_emot": [2, 18], "goemot": 2, "58k": 2, "reddit": [2, 3], "comment": [2, 3, 6, 25], "27": [2, 44, 55, 56, 58], "emot": 2, "googl": [2, 6, 20, 30, 60], "trec_50": [2, 18], "trec": 2, "fine": [2, 6, 11, 14, 20, 34, 43, 47, 52, 58, 61, 62, 63, 64], "answer": [2, 8], "6": [2, 37, 42, 43, 45, 48, 55, 56, 61, 62, 63], "trec_6": [2, 18, 60, 63], "yahoo_answ": [2, 18], "yahoo": 2, "rather": [2, 30, 55], "germeval_2018_offensive_languag": [2, 18], "fine_grained_class": 2, "germev": [2, 6, 44, 45], "2018": [2, 13, 14, 45, 50, 61], "offens": [2, 45, 63], "german": [2, 3, 6, 13, 14, 42, 45, 46, 48, 60, 61], "tweet": [2, 3, 43], "abus": 2, "insult": 2, "profatinti": 2, "load": [2, 3, 4, 6, 14, 15, 17, 20, 21, 22, 23, 25, 31, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 61, 63, 64], "communicative_funct": [2, 18], "commun": [2, 42, 43, 44, 56], "scientif": [2, 55, 56], "paper": [2, 3, 6, 10, 20, 42, 48, 54, 55, 61, 62], "39": [2, 43, 57, 58], "date": [2, 3, 44], "wassa_ang": [2, 18], "wassa": 2, "2017": 2, "anger": 2, "intens": 2, "saifmohammad": 2, "webpag": 2, "emotionintens": 2, "sharedtask": 2, "wassa_fear": [2, 18], "fear": 2, "wassa_joi": [2, 18], "joi": 2, "wassa_sad": [2, 18], "sad": 2, "entitylinkingdictionari": [3, 18, 20], "candid": [3, 20, 38, 52, 62], "dictionari": [3, 6, 14, 16, 17, 20, 21, 24, 26, 38, 50, 54, 57, 59, 61, 62, 63], "link": [3, 6, 9, 20, 30, 33, 34, 41, 53, 55, 56, 60, 62], "knowledg": [3, 6, 10, 50, 54, 55], "associ": 3, "entitycandid": [3, 17, 26, 38, 52], "prefix": [3, 14, 20, 57, 59], "To": [3, 11, 13, 14, 20, 21, 28, 29, 33, 35, 36, 37, 38, 43, 44, 50, 51, 52, 56, 58, 59, 60, 61, 62], "properti": [3, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 31], "database_nam": [3, 17, 52], "text_to_index": 3, "to_in_memory_dictionari": 3, "inmemoryentitylinkingdictionari": [3, 18, 52], "to_stat": 3, "ani": [3, 6, 10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 24, 25, 31, 38, 46, 47, 48, 50, 51, 55, 60], "from_stat": 3, "hunerentitylinkingdictionari": [3, 18], "alreadi": [3, 10, 11, 13, 14, 17, 20, 21, 29, 62], "must": [3, 6, 8, 10, 17, 20, 21, 30, 42, 59], "concept_id": [3, 17, 52], "concept_nam": [3, 17, 52], "multipl": [3, 6, 15, 17, 20, 21, 23, 38, 54, 55, 56, 59, 60], "thei": [3, 13, 14, 15, 24, 43, 48, 50, 55, 57, 58, 60], "separ": [3, 6, 8, 11, 13, 15, 20, 23, 24, 36, 52, 56, 59], "7157": [3, 54], "tp53": [3, 54], "tumor": [3, 54], "p53": [3, 54], "ctd_diseases_dictionari": [3, 18], "compar": [3, 20, 54], "toxicogenom": 3, "ctd": [3, 52, 54], "fur": 3, "found": [3, 10, 17, 20, 38, 42, 48, 50, 55], "ctdbase": 3, "download_dictionari": 3, "ctd_chemicals_dictionari": [3, 18], "ncbi_gene_human_dictionari": [3, 18], "ontologi": [3, 17, 52, 54, 55], "aren": 3, "includ": [3, 6, 8, 9, 14, 17, 20, 21, 25, 36, 42, 46, 51, 56, 58], "_is_invalid_nam": 3, "determin": [3, 6, 8, 17, 20, 24, 35, 58], "parse_dictionari": 3, "ncbi_taxonomy_dictionari": [3, 18], "taxonomi": 3, "about": [3, 6, 17, 36, 38, 58, 59], "zelda": [3, 18, 37, 62], "nel": [3, 20, 38], "multifilecolumncorpu": [3, 6, 18], "introduc": [3, 6, 50], "comprehens": 3, "supervis": [3, 6], "milich": 3, "akbik": [3, 13, 14, 48, 55, 61], "2023": [3, 6, 57, 58], "when": [3, 6, 8, 14, 15, 17, 20, 25, 30, 31, 36, 37, 47, 51, 55, 56], "constructor": [3, 6, 11, 13, 14, 20, 46, 48, 50, 51, 60], "time": [3, 6, 8, 17, 20, 25, 28, 31, 48, 50, 54, 55, 57, 58, 60, 62], "get": [3, 6, 17, 20, 24, 25, 28, 31, 33, 36, 38, 42, 46, 47, 48, 50, 52, 56, 57, 58, 59, 60, 61, 62, 63], "automat": [3, 6, 8, 16, 24, 36, 50, 59, 60], "mean": [3, 6, 11, 14, 15, 20, 21, 24, 33, 36, 42, 43, 46, 47, 48, 50, 58, 60, 62], "auto": [3, 6, 20], "overrid": [3, 6], "typic": [3, 6, 24, 37, 46, 55, 61], "necessari": [3, 6, 20, 58], "correspond": [3, 14, 20, 36, 37, 50, 59, 60], "nel_english_aquaint": [3, 18], "agreement_threshold": 3, "segtoksentencesplitt": [3, 5, 22, 26, 37, 40], "aquaint": 3, "d": [3, 37], "miln": 3, "h": [3, 20, 24, 57], "witten": 3, "learn": [3, 6, 10, 11, 20, 24, 36, 57, 58, 60, 61], "wikipedia": [3, 6, 37, 46, 48], "cm": 3, "waikato": 3, "nz": 3, "ihw": 3, "08": 3, "dnm": 3, "learningtolinkwithwikipedia": 3, "transform": [3, 6, 11, 12, 14, 19, 20, 26, 34, 44, 45, 49, 50, 57, 58], "tab": [3, 6, 59], "txt": [3, 6, 24, 28, 30, 46, 50, 59], "come": [3, 6, 52, 53, 54, 55], "agreement_scor": 3, "agreement": 3, "score": [3, 17, 20, 21, 24, 25, 36, 38, 39, 54, 55, 56, 58, 63], "rang": [3, 4, 6], "lowest": 3, "highest": 3, "import": [3, 20, 28, 31, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "fewer": 3, "thought": 3, "worth": 3, "major": 3, "annotet": 3, "nel_german_hip": [3, 18], "wiki_languag": 3, "dewiki": 3, "hipe": [3, 6, 48], "histor": [3, 6, 42, 48], "impresso": [3, 48], "clef": [3, 6, 48], "2020": 3, "stefan": [3, 6, 43, 48], "page": [3, 20, 30, 50], "nel_english_aida": [3, 18], "use_ids_and_check_exist": 3, "aida": 3, "yago": [3, 6], "got": 3, "here": [3, 6, 14, 20, 21, 24, 31, 36, 38, 42, 46, 50, 52, 57, 58, 62], "mpi": 3, "inf": 3, "mpg": 3, "depart": 3, "ambivers": 3, "nlu": 3, "licens": [3, 6, 10, 48], "creativecommon": 3, "sa": [3, 48], "deed": 3, "en_u": 3, "exist": [3, 6, 17, 20, 37, 43, 50], "pagenam": 3, "non": [3, 10, 11, 13, 14, 20], "ignor": [3, 6, 8, 12, 15, 17, 20, 21], "work": [3, 6, 11, 13, 15, 17, 29, 31, 34, 36, 37, 38, 41, 43, 44, 47, 48, 49, 57, 64], "current": [3, 6, 14, 20, 21, 25, 42, 43, 44, 45, 46, 48, 58, 59], "arcticl": 3, "possibli": [3, 32], "alter": [3, 56], "out": [3, 20, 21, 24, 28, 33, 36, 39, 46, 47, 48, 50, 58, 59, 60], "ones": [3, 14, 61], "nel_english_iitb": [3, 18], "ignore_disagr": 3, "ittb": 3, "web": [3, 46, 48, 50], "sayali": 3, "kulkarni": 3, "amit": 3, "singh": 3, "ganesh": 3, "ramakrishnan": 3, "soumen": 3, "chakrabarti": 3, "disagr": 3, "nel_english_tweeki": [3, 18], "tweeki": 3, "graph": [3, 52], "harandizadeh": 3, "consit": 3, "manual": [3, 5, 6, 15, 20, 28, 36, 59, 62], "nel_english_reddit": [3, 18], "arxiv": [3, 10, 14, 20, 55], "ab": [3, 10, 14, 20], "2101": 3, "01228v2": 3, "document_as_sequ": [3, 6], "_text_to_col": 3, "outfil": 3, "post": 3, "titl": [3, 55, 59], "thread": 3, "arrai": [3, 17], "start": [3, 6, 17, 20, 24, 29, 31, 33, 34, 36, 38, 42, 58, 59, 61, 62], "end": [3, 6, 14, 20, 21, 24, 36, 38, 42, 43, 44, 45, 55, 58, 61, 62], "wiki": 3, "output": [3, 11, 13, 16, 20, 21, 24, 25, 35, 36, 47, 50, 52, 54, 56, 58], "written": [3, 13, 24, 25], "_fill_annot_arrai": 3, "annot_arrai": 3, "kei": [3, 14, 17, 20, 24, 48], "post_flag": 3, "fill": [3, 6, 20], "match": [3, 4, 20, 37, 55], "flag": 3, "_fill_curr_com": 3, "fix_flag": 3, "extend": [3, 15, 23], "pass": [3, 6, 10, 12, 14, 15, 20, 21, 22, 24, 36, 37, 40, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 60], "incorrectli": 3, "row": [3, 25, 59], "regular": [3, 48, 58, 60], "from_ufsac_to_tsv": [3, 18], "xml_file": 3, "conll_fil": 3, "datasetnam": 3, "utf8": [3, 6], "cut_multisens": 3, "ufsac": 3, "need": [3, 8, 12, 14, 15, 17, 20, 21, 29, 30, 31, 35, 36, 38, 40, 46, 52, 55, 56, 58, 59, 60, 61, 62, 65], "handl": [3, 15, 20, 25, 45, 57], "open": [3, 6, 29, 30, 51, 52], "boolean": [3, 11, 13], "wn30_kei": 3, "cut": 3, "possibl": [3, 6, 14, 31, 38, 60], "sens": [3, 20, 42, 50], "whole": [3, 14, 34, 37, 41, 47, 51], "determine_tsv_fil": [3, 18], "filenam": [3, 17], "resid": [3, 6, 59, 62], "wsd_ufsac": [3, 18], "masc": 3, "semcor": 3, "banned_sent": [3, 6], "sample_missing_splits_in_multicorpu": 3, "sample_missing_splits_in_each_corpu": 3, "use_raganato_all_as_test_data": 3, "wsd": 3, "getalp": 3, "wordnet": 3, "avail": [3, 6, 8, 16, 50, 63], "were": [3, 31, 35, 38, 43, 50, 54], "omsti": 3, "raganato_al": 3, "raganato_semeval2007": 3, "raganato_semeval2013": 3, "raganato_semeval2015": 3, "raganato_senseval2": 3, "raganato_senseval3": 3, "semeval2007task17": 3, "semeval2007task7": 3, "semeval2013task12": 3, "semeval2015task13": 3, "senseval2": 3, "senseval2_lexical_sample_test": 3, "senseval2_lexical_sample_train": 3, "senseval3task1": 3, "senseval3task6_test": 3, "senseval3task6_train": 3, "trainomat": 3, "wngt": 3, "suffix": [3, 25], "_cut": 3, "ad": [3, 4, 10, 11, 13, 14, 17, 20, 21, 24, 29, 30, 36, 38, 42, 43, 48, 54], "add": [3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 24, 25, 30, 31, 33, 36, 38, 56, 57], "lemma": [3, 6, 20, 60], "po": [3, 6, 14, 50, 58, 59, 60, 61], "remov": [3, 6, 8, 20, 21, 25, 61, 62], "miss": [3, 8], "redund": 3, "raganato": 3, "unifi": [3, 21], "compariso": 3, "only_dev": 3, "case": [3, 10, 11, 14, 17, 20, 21, 22, 31, 36, 37, 40, 47, 48, 50, 51, 58, 59, 60, 62], "wsd_raganato_al": [3, 18], "ragnato_al": 3, "concaten": [3, 13, 15, 17, 20, 47, 48, 51], "sensev": 3, "semev": [3, 5], "wsd_semcor": [3, 18], "wsd_wordnet_gloss_tag": [3, 18], "princeton": 3, "gloss": 3, "wsd_masc": [3, 18], "sub": [3, 6, 15, 46, 54, 62], "wsd_omsti": [3, 18], "One": [3, 14, 20, 21, 24], "instanc": [3, 6, 12, 15, 17, 20, 21, 24, 25, 36, 40, 42, 43, 44, 47, 50, 51, 52, 54, 56, 58, 59, 60, 62, 63], "wsd_trainomat": [3, 18], "o": [3, 6, 17, 20, 59, 62], "matic": 3, "bigbioentitylinkingcorpu": [3, 18], "el": 3, "norm_kei": 3, "db_name": 3, "db_id": 3, "biomed": [3, 18, 20, 26, 38, 53, 54, 60], "bigbio_el_ncbi_diseas": [3, 18], "implent": 3, "sciencedirect": 3, "scienc": 3, "pii": 3, "s1532046413001974": 3, "cbbresearch": 3, "bigbio_el_bc5cdr_chem": [3, 18], "1093": 3, "baw068": 3, "2630414": 3, "track": [3, 5], "bigbio_el_gnormplu": [3, 18], "gnormplu": 3, "hindawi": 3, "bmri": 3, "2015": [3, 6, 48], "918710": 3, "tool": [3, 53], "ocrjsondataset": [4, 18], "path_to_split_directori": 4, "load_imag": 4, "normalize_coords_to_thousand": 4, "json": [4, 52, 62], "imag": [4, 17, 19, 25, 26], "those": [4, 20, 30, 31, 38, 46, 54], "jpg": 4, "bbox": [4, 15], "equal": [4, 20], "length": [4, 10, 11, 12, 13, 14, 15, 17, 20, 21, 51, 60], "left": [4, 17, 44], "top": [4, 13, 17, 20, 47, 49, 51, 61], "right": [4, 17, 44, 58], "bottom": [4, 17], "coordin": 4, "1000": [4, 14, 20, 24], "pillow": 4, "metadata": [4, 6, 17, 32, 59], "kept": [4, 6, 9, 21], "doe": [4, 6, 9, 20, 37, 59, 61], "ocrcorpu": [4, 18], "train_path": 4, "dev_path": 4, "test_path": 4, "sroie": [4, 18], "perfect": 4, "box": [4, 15, 60], "convert_ptb_token": [5, 18], "ptb": 5, "re_english_semeval2010": [5, 18], "augment_train": 5, "2010": 5, "wai": [5, 13, 15, 20, 21, 28, 30, 31, 56, 62, 65], "semant": [5, 8, 20, 48], "between": [5, 8, 15, 17, 20, 21, 42, 44, 46], "pair": [5, 8, 20, 52], "nomin": 5, "aclanthologi": [5, 6], "s10": 5, "1006": 5, "extract_and_convert_to_conllu": 5, "data_fil": [5, 6], "re_english_tacr": [5, 18], "tac": 5, "41": [5, 43, 55, 56, 58], "nlp": [5, 6, 17, 33, 59, 62, 64], "project": [5, 6, 30, 42], "tacr": [5, 42], "re_english_conll04": [5, 18], "convert_to_conllu": 5, "source_data_fold": 5, "re_english_drugprot": [5, 18], "drugprot": 5, "vii": 5, "zenodo": 5, "5119892": 5, "ysdsavuxu5k": 5, "interact": [5, 56], "char_spans_to_token_span": 5, "token_offset": 5, "has_overlap": 5, "b": [5, 6, 8, 57, 59, 62], "drugprot_document_to_tokenlist": 5, "pmid": 5, "title_sent": 5, "abstract_sent": 5, "abstract_offset": 5, "tokenlist": 5, "multifilejsonlcorpu": [6, 18], "text_column_nam": 6, "label_column_nam": 6, "metadata_column_nam": 6, "jsonl": 6, "mulifilejsonlcorpu": 6, "doccano": 6, "export": [6, 15], "least": [6, 10, 17, 20, 24, 50], "fail": [6, 20, 28], "empti": [6, 11, 21, 59], "insid": [6, 21], "rais": [6, 20, 21], "runtimeerror": [6, 21], "jsonlcorpu": [6, 18], "jsonldataset": [6, 18], "path_to_jsonl_fil": 6, "iob": [6, 17], "scheme": [6, 57], "expect": [6, 8, 15, 20, 31], "start_char_index": 6, "end_char_index": 6, "metadata_kei": 6, "metadata_valu": 6, "_add_label_to_sent": 6, "ne": 6, "raw": 6, "whitespac": [6, 14, 17], "etc": [6, 8, 13, 14, 17, 20, 25], "charact": [6, 8, 13, 14, 20, 21, 23, 48, 55, 59], "noth": [6, 20], "chang": [6, 16, 20, 21, 29, 30, 50, 52], "inout": 6, "column_delimit": 6, "document_separator_token": 6, "skip_first_lin": [6, 8], "default_whitespace_aft": 6, "conll03": 6, "conll2000": 6, "separat": 6, "overwrit": [6, 10, 16, 20, 22, 23, 24], "symbol": [6, 20, 30], "treat": [6, 22], "boundari": [6, 15, 22], "mark": [6, 20, 22, 25], "columndataset": [6, 18], "path_to_column_fil": 6, "space_after_kei": 6, "space": [6, 8, 13, 20, 21, 23], "feat": 6, "misc": 6, "head": [6, 14, 17, 20, 21], "head_id": [6, 17], "ontonot": [6, 18, 43, 44], "v4": 6, "archive_url": 6, "mendelei": 6, "public": [6, 31, 33], "zmycy7t9h9": 6, "b078e1c4": 6, "f7a4": 6, "4427": 6, "be7f": 6, "9389967831ef": 6, "file_download": 6, "get_available_domain": 6, "_process_coref_span_annotations_for_word": 6, "word_index": 6, "cluster": [6, 20], "coref_stack": 6, "coref": 6, "outsid": [6, 51], "mutat": [6, 38, 52, 54, 56], "defaultdict": [6, 52], "inclus": 6, "stack": [6, 10, 11, 14, 20, 31, 61], "hold": [6, 15, 17, 32, 36, 42, 58, 59], "same": [6, 10, 11, 13, 14, 20, 31, 35, 36, 44, 45, 48, 50, 51, 52, 54, 61, 62], "nest": [6, 20], "why": [6, 30, 31, 58], "greg": 6, "baker": 6, "who": [6, 50, 57, 63], "himself": 6, "_id1": 6, "bread": 6, "man": 6, "dataset_document_iter": 6, "file_path": [6, 8], "yield": [6, 20], "regardless": 6, "preprocess": [6, 20], "place": [6, 14, 37], "2012": 6, "resolut": 6, "sentence_iter": 6, "individu": [6, 20, 22, 23, 47, 58], "conll_03": [6, 18, 61], "03": [6, 17, 44], "ve": 6, "obtain": [6, 9, 20, 50], "clip": [6, 24], "uantwerpen": 6, "conll2003": 6, "put": [6, 11, 13, 20, 50], "eng": 6, "testa": 6, "testb": 6, "Then": [6, 10, 11, 14, 20, 30, 52, 56, 62], "parent": [6, 17], "where": [6, 8, 10, 15, 20, 31, 62], "dateset": 6, "reduc": [6, 17, 20, 24], "part": [6, 17, 34, 41, 48, 50, 54, 56, 57, 59, 60], "chunk": [6, 24], "conll_03_german": [6, 18], "conll_03_dutch": [6, 18], "dutch": [6, 44, 46, 48, 60], "conll_03_spanish": [6, 18], "spanish": [6, 44, 46, 48], "conll_2000": [6, 18], "2000": [6, 17, 42], "wnut_17": [6, 18], "fewnerd": [6, 18], "bioscop": [6, 18, 42], "ner_arabic_an": [6, 18], "arab": [6, 46, 48], "anercorp": [6, 44], "curti": 6, "ml": [6, 43], "cmu": 6, "w": [6, 10], "cours": 6, "swap": 6, "ner_arabic_aqmar": [6, 18], "modifi": [6, 10, 14, 42], "american": 6, "qatari": 6, "model": [6, 8, 11, 13, 14, 15, 21, 22, 23, 24, 25, 26, 28, 30, 31, 34, 35, 36, 37, 38, 39, 41, 46, 47, 48, 49, 50, 53, 55, 59, 60, 65], "aqmar": [6, 44], "c": [6, 48, 57], "ark": 6, "modif": 6, "miscellan": 6, "mis0": 6, "mis1": 6, "mis2": 6, "mis3": 6, "merg": 6, "deviat": 6, "across": [6, 43], "alphabet": 6, "under": [6, 10, 20, 23, 46, 48], "creativ": 6, "common": [6, 20, 31, 39, 56], "attribut": [6, 10, 20, 39], "sharealik": 6, "unport": 6, "cite": 6, "behrang": 6, "mohit": 6, "nathan": 6, "schneider": 6, "rishav": 6, "bhowmick": 6, "kemal": 6, "oflaz": 6, "noah": 6, "recal": [6, 58], "orient": 6, "eacl": 6, "ner_basqu": [6, 18], "ner_chinese_weibo": [6, 18], "weibo_n": 6, "ner_danish_dan": [6, 18], "ner_english_movie_simpl": [6, 18], "mit": 6, "ner_english_movie_complex": [6, 18], "trivia10k13": 6, "ner_english_sec_fil": [6, 18], "sec": [6, 58], "credit": 6, "risk": 6, "assess": 6, "alvarado": 6, "u15": 6, "1010": 6, "ner_english_restaur": [6, 18], "restaur": 6, "group": 6, "csail": 6, "sl": [6, 46, 48], "ner_english_stackoverflow": [6, 18], "stackoverflow_n": 6, "ner_english_twitt": [6, 18], "twitter_n": 6, "downoad": 6, "githubusercont": 6, "aritt": 6, "twitter_nlp": 6, "master": [6, 9, 30], "ner_english_person": [6, 18], "person_n": 6, "person": [6, 21, 39, 44, 60], "ner_english_webpag": [6, 18], "webpages_n": 6, "design": [6, 14, 33, 56], "challeng": [6, 8], "misconcept": 6, "ratinov": 6, "roth": 6, "w09": 6, "1119": 6, "ner_english_wnut_2020": [6, 18], "wnut_2020_ner": 6, "ner_english_wikigold": [6, 18], "wikigold": 6, "ner_finnish": [6, 18], "ner_german_biofid": [6, 18], "ner_german_europarl": [6, 18], "europarl_ner_german": 6, "Not": [6, 33, 37], "recommend": [6, 13, 15, 28, 46], "due": 6, "heavi": 6, "ram": [6, 20, 24], "usag": [6, 24], "_add_iob_tag": 6, "ner_column": 6, "replac": [6, 48, 52], "letter": [6, 14, 20, 46], "addition": [6, 8, 20, 21], "second": [6, 8, 17, 36, 37, 59, 60, 62], "ner_german_leg": [6, 18], "ler_german": 6, "legal": [6, 44], "ner_german_germev": [6, 18], "site": 6, "germeval2014n": 6, "ner_german_polit": [6, 18], "polit": 6, "nemgp": 6, "thoma": 6, "zastrow": 6, "ner_hungarian": [6, 18], "hungarian": 6, "ner_iceland": [6, 18], "icelandic_n": 6, "ner_japanes": [6, 18], "hironsan": 6, "iob2": [6, 17, 26], "japanes": [6, 23, 46, 48], "ner_masakhan": [6, 18], "luo": [6, 57], "v2": [6, 22, 23], "masakhan": 6, "It": [6, 10, 14, 15, 17, 21, 31, 33, 36, 44, 53, 55, 58, 60], "african": 6, "code": [6, 8, 14, 17, 29, 30, 31, 35, 44, 45, 46, 50, 54, 56, 57, 58], "ner_multi_con": [6, 18], "multicon": 6, "either": [6, 15, 20, 29, 32, 48, 50], "switch": [6, 20], "mono": 6, "ner_multi_coner_v2": [6, 18], "use_dev_as_test": 6, "semeval2023": 6, "appli": [6, 20, 37, 50, 52, 55, 56], "unpack": 6, "content": 6, "flair_cache_root": [6, 16], "leav": [6, 20], "random": [6, 16, 20, 60], "ner_multi_wikiann": [6, 18], "en": [6, 8, 16, 46, 48, 50], "wkiann": 6, "cross": [6, 20, 30, 55], "lingual": 6, "282": 6, "elisa": 6, "ie": 6, "wikiann": 6, "abbrev": 6, "opendatacommon": 6, "abbrevi": 6, "save": [6, 8, 13, 14, 15, 17, 20, 21, 24, 25, 31, 46, 59, 62], "though": [6, 20], "aa": 6, "cho": 6, "ho": 6, "hz": 6, "jam": 6, "kj": 6, "kr": 6, "mu": [6, 54, 55], "olo": 6, "tcy": 6, "bioe": [6, 20, 57], "dont": 6, "speed": [6, 14, 40, 44, 46, 61, 62], "significantli": 6, "ner_multi_xtrem": [6, 18], "xtreme": 6, "total": [6, 20], "40": [6, 55, 58], "ner_multi_wikin": [6, 18, 62], "ner_swedish": [6, 18], "swedish": [6, 46, 48], "_add_iob2_tag": 6, "ner_turku": [6, 18], "finnish": [6, 46, 48], "turkun": 6, "ner_ukrainian": [6, 18], "ukrainian": [6, 44, 48], "lang": [6, 15], "keyphrase_semeval2017": [6, 18], "keyphrase_inspec": [6, 18], "keyphrase_semeval2010": [6, 18], "up_chines": [6, 18], "chines": [6, 46], "proposit": [6, 60], "bank": [6, 60], "universalproposit": 6, "up_english": [6, 18], "up_french": [6, 18], "french": [6, 44, 46, 48], "up_finnish": [6, 18], "up_german": [6, 18], "up_italian": [6, 18], "italian": [6, 46, 48], "up_spanish": [6, 18], "up_spanish_ancora": [6, 18], "ancora": 6, "ner_hipe_2022": [6, 18], "branch_nam": 6, "main": [6, 24, 33, 58], "add_document_separ": 6, "preproc_fn": 6, "2022": 6, "ajmc": 6, "hipe2020": 6, "letemp": 6, "newsey": 6, "sonar": 6, "topres19th": 6, "git": 6, "branch": [6, 30], "dev2": 6, "special": [6, 20, 22, 23, 24, 55, 56, 57], "seper": [6, 8], "highli": 6, "flert": [6, 61, 62], "approach": [6, 38, 65], "certain": [6, 13, 14, 20, 21, 25, 33, 51, 54, 55], "perform": [6, 12, 14, 15, 20, 21, 54, 55, 56], "ner_icdar_europeana": [6, 18], "icdar": 6, "europeana": 6, "newspap": [6, 48], "kb": [6, 17], "nl": [6, 44, 46, 48], "step": [6, 24, 25, 52], "being": [6, 14], "punctuat": [6, 36], "releas": [6, 14, 56], "centric": 6, "ocr": [6, 18, 26, 60], "error": [6, 10, 20, 31], "luisa": 6, "m\u00e4rz": 6, "schweter": [6, 61], "nina": 6, "poerner": 6, "benjamin": 6, "hinrich": 6, "sch\u00fctze": 6, "fr": [6, 44, 46, 48], "ner_nermud": [6, 18], "initil": 6, "nermud": 6, "evalita": 6, "agnost": 6, "dac": 6, "particip": [6, 20], "ask": [6, 39, 58], "among": 6, "fiction": 6, "speech": [6, 34, 41, 42, 50, 60], "dsc": 6, "deploi": 6, "abov": [6, 20, 35, 36, 45, 46, 51, 52, 57, 58, 59, 60], "try": [6, 44, 46, 50, 61], "accuraci": [6, 20, 24, 37, 42, 43, 44, 45, 48, 50, 51, 58, 61], "wn": 6, "wikinew": 6, "fic": 6, "adg": 6, "gasperi": 6, "ner_german_mobi": [6, 18], "mobi": 6, "konven": 6, "22": [6, 42, 58], "geograph": 6, "linkabl": 6, "compris": 6, "232": 6, "social": [6, 56], "media": 6, "traffic": 6, "report": [6, 42, 58, 61], "91k": 6, "5k": 6, "1k": 6, "In": [6, 10, 11, 14, 20, 22, 28, 30, 31, 35, 37, 40, 47, 48, 50, 51, 52, 58, 59, 61, 62], "masakha_po": [6, 18], "bam": 6, "masakhapo": 6, "feideggercorpu": [7, 18], "feideggerdataset": [7, 18], "dataset_info": 7, "paralleltextcorpu": [8, 18], "source_fil": 8, "target_fil": 8, "opusparallelcorpu": [8, 18], "l1": 8, "l2": 8, "parallel": [8, 20], "opu": [8, 48], "nlpl": 8, "eu": [8, 46, 48], "tatoeba": 8, "built": [8, 63], "shorten": 8, "paralleltextdataset": [8, 18], "path_to_sourc": 8, "path_to_target": 8, "datapaircorpu": [8, 18], "involv": [8, 31, 56], "paragraph": [8, 32], "entri": [8, 17, 20], "last": [8, 14, 15, 20, 37, 50, 51], "datapair": [8, 17, 20, 26], "wise": [8, 48], "identifi": [8, 17, 20, 22, 23, 35, 46, 51, 52, 54, 55, 59], "datapairdataset": [8, 18], "path_to_data": 8, "like": [8, 15, 16, 31, 36, 42, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 60, 62], "rte": 8, "integ": [8, 15, 20], "third": [8, 17, 23, 59], "datatriplecorpu": [8, 18], "tripl": [8, 20], "datatripl": [8, 17, 20, 26], "datatripledataset": [8, 18], "fourth": 8, "glue_rt": [8, 18], "entail": [8, 20], "recogn": [8, 20, 44, 56], "textual": [8, 17, 20], "glue_mnli": [8, 18], "evaluate_on_match": 8, "genr": [8, 55], "infer": [8, 17, 20], "mnli": 8, "contradict": 8, "mathc": 8, "mismatch": 8, "eval_dataset_match": 8, "eval_dataset_mismatch": 8, "glue_mrpc": [8, 18], "paraphras": 8, "microsoft": 8, "mrpc": 8, "glue_qnli": [8, 18], "qnli": 8, "glue_qqp": [8, 18], "quora": 8, "qqp": 8, "equival": 8, "glue_wnli": [8, 18], "winograd": 8, "wnli": 8, "pronoun": 8, "substitut": 8, "glue_stsb": [8, 18], "similar": [8, 14, 20, 54, 61], "produc": [8, 47, 49, 51, 58], "suitabl": 8, "superglue_rt": [8, 18], "superglu": 8, "super": 8, "jsonl_from_eval_dataset": 8, "rte_jsonl_to_tsv": [8, 18], "universaldependenciescorpu": [9, 18], "split_multiword": 9, "u": [9, 36, 39, 42, 43, 44, 45, 50, 56, 58, 60, 61], "ud": [9, 43, 50, 58, 60, 61], "multiword": 9, "universaldependenciesdataset": [9, 18], "path_to_conll_fil": 9, "ud_english": [9, 18, 50, 58, 60, 61], "revis": 9, "ud_galician": [9, 18], "ud_ancient_greek": [9, 18], "ud_kazakh": [9, 18], "ud_old_church_slavon": [9, 18], "ud_armenian": [9, 18], "ud_estonian": [9, 18], "ud_german": [9, 18, 60, 61], "ud_german_hdt": [9, 18], "ud_dutch": [9, 18, 60], "ud_faroes": [9, 18], "faroes": 9, "universaldepend": 9, "farpahc": 9, "farones": 9, "western": 9, "scandinavian": 9, "60": 9, "000": 9, "100": [9, 11, 14, 15, 20, 24, 31, 46, 48, 50], "iceland": 9, "old": [9, 17], "nors": 9, "ud_french": [9, 18], "ud_italian": [9, 18], "ud_latin": [9, 18], "ud_spanish": [9, 18], "ud_portugues": [9, 18], "ud_romanian": [9, 18], "ud_catalan": [9, 18], "ud_polish": [9, 18], "ud_czech": [9, 18], "ud_slovak": [9, 18], "ud_swedish": [9, 18], "ud_danish": [9, 18], "ud_norwegian": [9, 18], "ud_finnish": [9, 18], "ud_slovenian": [9, 18], "ud_croatian": [9, 18], "ud_serbian": [9, 18], "ud_bulgarian": [9, 18], "ud_arab": [9, 18], "ud_hebrew": [9, 18], "ud_turkish": [9, 18], "ud_ukrainian": [9, 18], "ud_persian": [9, 18], "ud_russian": [9, 18], "ud_hindi": [9, 18], "ud_indonesian": [9, 18], "ud_japanes": [9, 18], "ud_chines": [9, 18], "ud_korean": [9, 18], "ud_basqu": [9, 18], "ud_chinese_kyoto": [9, 18], "ud_greek": [9, 18], "ud_naija": [9, 18], "ud_livvi": [9, 18], "ud_buryat": [9, 18], "ud_north_sami": [9, 18], "ud_marathi": [9, 18], "ud_maltes": [9, 18], "ud_afrikaan": [9, 18], "ud_goth": [9, 18], "ud_old_french": [9, 18], "ud_wolof": [9, 18], "ud_belarusian": [9, 18], "ud_copt": [9, 18], "ud_irish": [9, 18], "ud_latvian": [9, 18], "ud_lithuanian": [9, 18], "ud_bavarian_maibaam": [9, 18], "modul": [10, 11, 12, 13, 14, 15, 20, 21, 60], "embeddings_nam": [10, 11, 12, 13, 14, 15], "would": [10, 20, 29, 31, 38, 47, 48], "embedding_length": [10, 11, 12, 13, 14, 15, 50, 62], "vector": [10, 11, 12, 13, 14, 15, 17, 20, 46, 47, 49, 50, 51], "embedding_typ": [10, 12, 14, 15, 61], "emb": [10, 11, 13, 14, 20, 36, 46, 47, 48, 50, 51], "data_point": [10, 17, 20, 21, 36, 39], "updat": [10, 11, 13, 14, 15, 27, 57], "_add_embeddings_intern": [10, 11], "privat": [10, 20], "get_nam": [10, 11, 14], "But": [10, 11, 14, 58], "made": [10, 11, 14], "stackedembed": [10, 11, 14, 19, 47, 48, 61], "get_named_embeddings_dict": [10, 14], "get_instance_paramet": 10, "from_param": [10, 11, 12, 14, 15], "to_param": [10, 11, 12, 14, 15], "load_embed": [10, 19], "save_embed": 10, "use_state_dict": 10, "scalarmix": [10, 19], "mixture_s": 10, "trainabl": [10, 11, 14, 20], "mix": [10, 11, 13, 14, 24, 43, 45, 48], "sever": [10, 14, 17, 20, 38, 43, 51, 55, 56], "tensor": [10, 14, 15, 17, 20, 21, 24, 25, 47, 51], "weight": [10, 14, 15, 20, 24, 25, 58], "comput": [10, 12, 13, 15, 20, 21, 46, 50, 52, 58, 61, 62], "parameteris": 10, "scalar": [10, 11, 25], "mixtur": 10, "n": [10, 20, 22, 24, 39, 52, 59], "liu": 10, "2019": [10, 48], "transfer": 10, "contextu": [10, 13, 14, 48], "1903": 10, "08855": 10, "copi": [10, 14], "slightli": 10, "allennlp": 10, "apach": 10, "allenai": 10, "init": [10, 46, 47, 48, 50, 51, 59, 62], "gamma": 10, "sum": [10, 20], "s_k": 10, "tensor_k": 10, "softmax": [10, 20], "layer": [10, 11, 13, 14, 15, 17, 20, 48, 50, 57, 58, 59, 60, 61, 62], "learnabl": 10, "forward": [10, 12, 13, 14, 15, 16, 20, 21, 24, 47, 48, 61], "averag": [10, 14, 15, 20, 24, 43, 55], "shape": [10, 20], "dimens": [10, 11, 13, 20, 50], "documentembed": [10, 11, 13, 14, 15, 19, 20, 29, 47, 50], "level": [10, 11, 13, 14, 38, 46, 50, 52, 54, 59, 62], "tokenembed": [10, 11, 13, 14, 15, 19, 20, 21, 50], "ever": 10, "register_embed": [10, 19], "transformerdocumentembed": [11, 19, 20, 47, 51, 63], "bert": [11, 14, 15, 20, 21, 47, 51, 62], "uncas": [11, 14, 15, 20, 47, 51, 62, 63], "layer_mean": [11, 15, 51], "is_token_embed": [11, 15], "transformerembed": [11, 14, 15, 19, 50], "onnx_cl": [11, 14, 15], "transformeronnxdocumentembed": [11, 15, 19], "bidirect": [11, 13, 14, 20, 50], "variou": [11, 14, 41, 44, 48, 51], "architectur": [11, 14, 51], "pretrained_model": [11, 14, 52], "topmost": [11, 51], "cls_pool": [11, 15], "pool": [11, 14, 44], "strategi": [11, 20], "combin": [11, 13, 14, 15, 20, 43, 47, 48, 57, 60, 61], "cl": [11, 15], "max": [11, 14, 15, 50, 55], "fine_tun": [11, 14, 15, 24, 51, 57, 58, 61, 62, 63], "tune": [11, 14, 20, 34, 47, 51, 52, 58, 61, 62, 63, 64], "propag": [11, 13, 14, 20], "create_from_st": [11, 14, 15], "documentpoolembed": [11, 13, 19, 50], "fine_tune_mod": [11, 50], "linear": [11, 13, 14, 20, 25, 50, 58], "nonlinear": [11, 50], "min": [11, 14, 50], "extra_repr": [11, 13, 14, 21], "extra": [11, 13, 14, 21], "print": [11, 13, 14, 17, 20, 21, 25, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "re": [11, 13, 14, 20, 21, 36, 57], "own": [11, 13, 14, 21, 47, 49, 57, 59, 63, 64], "documenttfidfembed": [11, 19], "train_dataset": 11, "vectorizer_param": 11, "dataset": [11, 17, 20, 21, 24, 26, 31, 34, 37, 42, 43, 44, 45, 50, 52, 57, 58, 63, 64], "tfidfvector": 11, "precalcul": 11, "scikit": [11, 20], "documentrnnembed": [11, 13, 19, 50], "hidden_s": [11, 13, 20, 57, 58, 61], "128": [11, 13, 20, 58], "rnn_layer": [11, 13, 20], "reproject_word": [11, 13], "reproject_words_dimens": [11, 13], "dropout": [11, 13, 14, 20, 21], "word_dropout": [11, 13, 20, 21], "locked_dropout": [11, 13, 20, 21], "rnn_type": [11, 20, 50], "gru": [11, 20, 50], "rnn": [11, 14, 20, 44, 45, 61, 62], "upon": [11, 20], "hidden": [11, 13, 14, 20, 24, 48, 50], "reproject": [11, 13, 61, 62], "lock": [11, 13, 20, 21], "lstm": [11, 13, 14, 20, 50, 61], "finetun": 11, "documentlmembed": [11, 19], "flair_embed": 11, "sentencetransformerdocumentembed": [11, 19], "nli": 11, "sentencetransform": 11, "sentencestransform": 11, "batch": [11, 20, 21, 24, 40, 46], "documentcnnembed": [11, 19], "kernel": 11, "cnn": 11, "imageembed": [12, 19], "identityimageembed": [12, 19], "precomputedimageembed": [12, 19], "url2tensor_dict": 12, "networkimageembed": [12, 19], "convtransformnetworkimageembed": [12, 19], "feats_in": 12, "convnet_parm": 12, "posnet_parm": 12, "transformer_parm": 12, "x": [12, 13, 20, 21, 28, 38, 44, 48, 52, 54, 55, 56, 58, 60], "overridden": [12, 15, 20, 21], "although": [12, 15, 20, 21], "recip": [12, 15, 20, 21], "within": [12, 15, 20, 21, 22, 62], "afterward": [12, 14, 15, 20, 21, 50, 60], "former": [12, 15, 20, 21], "care": [12, 15, 20, 21, 25], "run": [12, 14, 15, 20, 21, 28, 30, 35, 38, 44, 54, 55, 58, 61, 62, 63], "regist": [12, 15, 20, 21, 25], "hook": [12, 15, 20, 21, 25], "latter": [12, 15, 20, 21, 23, 58, 60], "silent": [12, 15, 20, 21], "guarante": [13, 16], "elmoembed": [13, 19], "options_fil": 13, "weight_fil": 13, "embedding_mod": 13, "lm": [13, 14, 48], "peter": 13, "elmo": 13, "use_layers_al": 13, "use_layers_top": 13, "use_layers_averag": 13, "charlmembed": [13, 19], "detach": [13, 14, 20, 24, 25], "use_cach": 13, "cache_directori": 13, "backward": [13, 14, 24, 47, 48, 61], "polish": [13, 14, 46, 48], "depend": [13, 14, 17, 20, 30, 38, 40, 43, 48, 50, 58, 60, 61, 62], "desir": [13, 14, 17, 60], "gradient": [13, 14, 24, 51], "dramat": [13, 14], "slow": [13, 14, 20, 51], "down": [13, 14, 20, 24, 31, 51], "often": [13, 14, 15, 24, 36, 40, 47, 48, 50, 55, 56, 58, 59, 62], "lead": [13, 14, 55], "wors": 13, "later": 13, "retriev": [13, 17], "onc": [13, 15, 50, 57, 58, 60, 62, 63], "do": [13, 20, 21, 25, 30, 35, 36, 39, 42, 43, 44, 45, 50, 51, 55, 56, 58, 59, 61, 62, 63, 65], "cach": [13, 14, 16], "flairembed": [13, 14, 19, 47, 48, 50, 61], "mode": [13, 14, 20, 51, 58], "behavior": [13, 14, 44, 55, 56], "affect": [13, 14, 51], "batchnorm": [13, 14], "self": [13, 14, 20, 21], "documentmeanembed": [13, 19], "token_embed": [13, 15, 20], "documentlstmembed": [13, 19], "transformerwordembed": [14, 19, 20, 21, 47, 51, 57, 61, 62], "is_document_embed": [14, 15], "allow_long_sent": [14, 15, 51], "transformeronnxwordembed": [14, 15, 19], "patch": [14, 15], "stride": [14, 15], "overwrite_nam": 14, "static_embed": 14, "wordembed": [14, 19, 46, 47, 48, 50, 58, 61], "force_cpu": 14, "stabl": [14, 20], "no_head": 14, "vocab": [14, 24], "glove": [14, 46, 47, 48, 50, 58, 61], "classic": [14, 34, 47, 49, 58, 61, 65], "extvec": [14, 46], "crawl": [14, 46, 48], "plain": [14, 22, 23, 50], "matrix": [14, 20], "gpu": [14, 16, 20, 21, 24, 61, 62], "describ": [14, 17, 29, 57], "2110": 14, "02861": 14, "word2vec": [14, 50], "assum": [14, 20, 22, 57, 59, 62], "resolve_precomputed_path": 14, "get_cached_token_index": 14, "get_vec": 14, "devic": [14, 15, 16, 17, 26, 47, 51, 58], "cast": 14, "buffer": 14, "dtype": 14, "non_block": 14, "memory_format": 14, "torch": [14, 20, 21, 24, 51], "channels_last": 14, "Its": 14, "signatur": [14, 30], "complex": 14, "integr": [14, 28, 54, 55, 56], "unchang": 14, "tri": [14, 31], "asynchron": 14, "cpu": [14, 16, 20, 21, 24, 48, 58], "pin": 14, "cuda": [14, 47, 51, 58], "below": [14, 29, 52, 58, 63], "whose": [14, 31], "4d": 14, "keyword": 14, "xdoctest": 14, "ignore_w": 14, "determinist": 14, "nn": [14, 20, 24, 26, 35, 37, 38, 39, 40, 42, 43, 44, 45, 54, 55, 56, 62], "1913": 14, "3420": 14, "5113": 14, "2325": 14, "doubl": 14, "in_featur": 14, "out_featur": 14, "bia": 14, "float64": 14, "env": 14, "torch_doctest_cuda1": 14, "gpu1": 14, "half": 14, "1914": 14, "5112": 14, "2324": 14, "float16": 14, "cdoubl": 14, "3741": 14, "j": 14, "2382": 14, "5593": 14, "4443": 14, "complex128": 14, "6122": 14, "1150": [14, 48], "state_dict": 14, "persist": 14, "shallow": 14, "destin": 14, "keep_var": 14, "howev": [14, 15, 37, 38, 43, 46, 50, 54, 55, 60], "enforc": 14, "futur": [14, 30], "avoid": [14, 29], "user": [14, 16, 20, 31], "ordereddict": 14, "compos": 14, "autograd": 14, "undefin": 14, "var": 14, "characterembed": [14, 19], "path_to_char_dict": 14, "char_embedding_dim": 14, "25": [14, 24, 44, 54], "hidden_size_char": 14, "lampl": 14, "2016": 14, "toi": 14, "chars_per_chunk": [14, 20], "512": [14, 20, 57], "with_whitespac": 14, "tokenized_lm": 14, "is_low": 14, "has_decod": [14, 20], "overfit": 14, "caution": 14, "control": [14, 20, 22, 51], "tradeoff": [14, 44], "more": [14, 17, 20, 28, 29, 30, 36, 38, 41, 44, 46, 47, 48, 50, 52, 57, 58, 61, 62], "slower": 14, "unprocess": 14, "might": [14, 21, 31, 38, 40, 42, 50, 54, 55, 58, 62], "better": [14, 20, 29, 31, 38, 43, 50, 58, 60], "decod": [14, 20, 21, 24, 62], "languagemodel": [14, 20, 26], "intend": 14, "pooledflairembed": [14, 19, 48], "contextual_embed": 14, "only_capit": 14, "fasttextembed": [14, 19, 46], "use_loc": 14, "oov": 14, "bin": 14, "remot": 14, "sourc": [14, 33, 48, 51, 62], "get_cached_vec": 14, "onehotembed": [14, 19, 50], "vocab_dictionari": [14, 50], "300": [14, 48, 50], "hot": [14, 17, 20], "vocabulari": [14, 46], "dimension": [14, 46, 51], "from_corpu": [14, 50], "min_freq": [14, 17, 50], "hashembed": [14, 19], "num_embed": 14, "hash_method": 14, "md5": 14, "hash": 14, "trick": 14, "musecrosslingualembed": [14, 19], "language_cod": [14, 17], "bytepairembed": [14, 19, 50], "dim": 14, "syllabl": [14, 50], "100000": [14, 58], "cache_dir": 14, "model_file_path": [14, 50], "embedding_file_path": [14, 50], "bp": 14, "nilcembed": [14, 19], "layer_norm": 14, "layernorm": 14, "portugues": [14, 43, 46, 48], "nilc": 14, "icmc": 14, "usp": 14, "br": 14, "wang2vec": 14, "cbow": 14, "applic": 14, "600": 14, "pad_sequence_embed": [15, 19], "all_hidden_st": 15, "truncate_hidden_st": [15, 19], "hidden_st": 15, "input_id": 15, "combine_strided_tensor": [15, 19], "overflow_to_sample_map": 15, "half_strid": 15, "max_length": 15, "default_valu": 15, "fill_masked_el": [15, 19], "all_token_embed": 15, "sentence_hidden_st": 15, "mask": [15, 20], "word_id": 15, "insert_missing_embed": [15, 19], "fill_mean_token_embed": [15, 19], "token_length": 15, "document_mean_pool": [15, 19], "sentence_length": 15, "document_max_pool": [15, 19], "remove_special_markup": [15, 19], "transformerbaseembed": [15, 19], "context_length": [15, 17, 20, 21], "context_dropout": 15, "respect_document_boundari": [15, 17, 20, 21], "use_lang_emb": 15, "force_devic": 15, "force_max_length": 15, "feature_extractor": 15, "needs_manual_ocr": 15, "use_context_separ": 15, "prepar": [15, 34, 64], "won": [15, 20, 21, 30, 31, 44], "actual": [15, 20, 31, 47, 59], "pytorch": [15, 20, 46, 47, 58], "jit": 15, "onnx": 15, "to_arg": 15, "prepare_tensor": 15, "transformeronnxembed": [15, 19], "onnx_model": 15, "session_opt": 15, "create_sess": 15, "remove_sess": 15, "optimize_model": 15, "optimize_model_path": 15, "use_external_data_format": 15, "wrapper": [15, 20], "onnxruntim": 15, "optim": [15, 20, 24, 25, 40, 58], "quantize_model": 15, "quantize_model_path": 15, "collect_dynamic_ax": 15, "export_from_embed": 15, "example_sent": 15, "opset_vers": 15, "14": [15, 38, 43, 55, 58], "pretrainedtoken": 15, "transformerjitembed": [15, 19], "jit_model": 15, "param_nam": 15, "create_from_embed": 15, "parameter_to_list": 15, "transformerjitwordembed": [15, 19], "transformerjitdocumentembed": [15, 19], "subtoken_pool": [15, 51, 57, 61, 62], "use_context": [15, 51, 57, 61, 62], "saved_config": 15, "tokenizer_data": 15, "feature_extractor_data": 15, "comma": 15, "liter": 15, "first_last": [15, 20, 51, 62], "aggreg": [15, 54, 55], "previou": [15, 17, 20, 36], "next": [15, 17, 25, 36, 50], "context": [15, 17, 21, 31, 51, 61, 62], "calcul": [15, 20, 21, 50, 51, 62], "stop": [15, 17, 25, 36, 58], "percentag": [15, 17, 24], "pretrainedconfig": 15, "config": 15, "alwai": [15, 20, 21, 28, 30, 38, 46, 51, 62], "bytesio": 15, "featur": [15, 20, 21], "extractor": [15, 42], "pad": [15, 20], "layoutlm": 15, "doesn": [15, 20, 30, 31], "itself": [15, 20, 32, 36, 59, 62], "distingulish": 15, "sub_token_length": 15, "attention_mask": 15, "pixel_valu": 15, "export_onnx": 15, "onnxformat": 15, "notic": [15, 31, 32], "extern": 15, "henc": [15, 17, 32, 57], "matter": 15, "absolu": 15, "rel": 15, "trace": [15, 31], "cache_root": [16, 26], "posixpath": 16, "home": [16, 59, 62], "runner": 16, "environ": [16, 28, 35], "variabl": [16, 20, 50], "everyth": [16, 30], "flair_devic": 16, "chosen": [16, 17, 20, 62], "logger": [16, 25, 26], "reconfigur": 16, "log": [16, 20, 24, 25], "set_se": [16, 26, 30], "seed": 16, "reproduc": [16, 31], "experi": [16, 61], "set_proxi": [16, 26], "proxi": 16, "request": [16, 17, 27, 57], "readthedoc": 16, "latest": 16, "advanc": 16, "accord": [16, 20, 52], "boundingbox": [17, 26], "add_unk": [17, 57, 61, 62], "remove_item": 17, "add_item": 17, "get_idx_for_item": 17, "get_item": 17, "get_item_for_index": 17, "idx": 17, "set_start_stop_tag": 17, "is_span_prediction_problem": 17, "start_stop_tags_are_set": 17, "savefil": 17, "load_from_fil": 17, "confid": [17, 20, 36, 39, 56], "set_valu": 17, "to_dict": [17, 31, 56], "shortstr": 17, "metadata_str": 17, "labeled_identifi": 17, "unlabeled_identifi": 17, "embedd": 17, "clear_embed": [17, 51], "add_label": [17, 36, 62], "get_label": [17, 36, 37, 38, 39, 42, 52, 54, 55, 56], "set_embed": 17, "get_embed": [17, 50], "get_each_embed": 17, "embedding_nam": [17, 20], "has_label": 17, "add_metadata": 17, "get_metadata": 17, "has_metadata": 17, "typenam": 17, "set_label": 17, "remove_label": [17, 20], "zero_tag_valu": [17, 20], "start_posit": [17, 38], "end_posit": [17, 38], "additional_id": [17, 52], "synonym": [17, 52], "knowledgebas": 17, "whitespace_aft": 17, "_partofsent": 17, "tree": 17, "add_tags_proba_dist": 17, "get_tags_proba_dist": 17, "get_head": 17, "fragment": 17, "pretoken": 17, "langdetect": 17, "superordin": 17, "get_rel": 17, "get_span": [17, 38], "get_token": [17, 36], "token_id": 17, "left_context": 17, "right_context": 17, "to_tagged_str": [17, 56, 57, 58, 59, 60], "main_label": 17, "to_tokenized_str": 17, "to_plain_str": 17, "infer_space_aft": 17, "heurist": [17, 23], "wish": [17, 20, 21, 46, 47, 50, 51, 54], "to_original_text": 17, "get_language_cod": 17, "next_sent": 17, "through": [17, 20, 28, 33, 36, 37, 40, 42, 47], "elsewher": 17, "previous_sent": 17, "is_context_set": 17, "rtype": [17, 20], "els": [17, 20, 38], "copy_context_from_sent": 17, "set_context_for_sent": 17, "dt2": [17, 21], "dt3": 17, "imageurl": 17, "random_se": 17, "downsampl": [17, 58, 60, 61], "downsample_train": 17, "downsample_dev": 17, "downsample_test": 17, "proportion": 17, "filter_empty_sent": 17, "filter_long_sent": 17, "max_charlength": 17, "make_vocab_dictionari": 17, "max_token": 17, "than": [17, 20, 24, 35, 38, 44, 50, 51, 58], "frequent": 17, "greater": 17, "occur": [17, 31, 48, 50], "limit": [17, 24, 32, 62], "obtain_statist": 17, "pretty_print": 17, "statist": [17, 58, 60], "distribut": [17, 55, 59], "account": [17, 20], "make_label_dictionari": [17, 21, 57, 58, 60, 61, 62, 63], "min_count": 17, "add_dev_test": 17, "add_label_nois": 17, "noise_shar": 17, "noise_transition_matrix": 17, "nois": 17, "simul": 17, "uniqu": [17, 22, 23, 50], "said": 17, "probabl": [17, 20, 21, 38, 50], "flip": 17, "relev": [17, 25, 38, 62], "get_label_distribut": 17, "get_all_sent": 17, "concatdataset": 17, "make_tag_dictionari": 17, "gather": 17, "task_id": [17, 20], "kwd": 17, "concatflairdataset": [17, 26], "assembl": 17, "cumsum": 17, "cumulative_s": 17, "cummulative_s": 17, "iob1": 17, "randomly_split_into_two_dataset": [17, 26], "length_of_first": 17, "remain": [17, 20], "go": [17, 20, 42, 59], "get_spans_from_bio": [17, 26], "bioes_tag": 17, "bioes_scor": 17, "document_classif": [18, 26, 60], "entity_link": [18, 26, 52, 60], "relation_extract": [18, 26, 60], "sequence_label": [18, 26, 60], "text_imag": [18, 26], "text_text": [18, 26, 60], "legaci": [19, 26], "entitymentionlink": [20, 26, 38, 52, 54, 55], "candidate_gener": 20, "preprocessor": 20, "entity_label_typ": [20, 52], "1024": 20, "linker": [20, 34, 37, 41, 52, 53, 54, 55], "candidatesearchindex": 20, "entitypreprocessor": 20, "clean": 20, "tagger": [20, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 52, 53, 55, 56, 57, 62, 63, 64], "get_entity_label_typ": 20, "extract_entities_ment": 20, "top_k": [20, 38], "pred_label_typ": [20, 52], "best": [20, 21, 24, 37, 38, 47, 48, 51, 57], "k": [20, 24, 25, 38], "input_entity_annotation_lay": 20, "_get_state_dict": [20, 21], "model_name_or_path": 20, "dictionary_name_or_path": 20, "hybrid_search": [20, 52], "similarity_metr": 20, "similaritymetr": 20, "inner_product": 20, "sparse_weight": 20, "exact": [20, 33, 38, 54], "asign": 20, "ngram": 20, "tfidf": 20, "metric": [20, 21, 24, 25], "ad3p": 20, "processor": 20, "spars": 20, "overwritten": 20, "forward_loss": [20, 21], "loss": [20, 21, 24, 25, 58], "backpropag": [20, 21], "enabl": [20, 21, 25, 61, 62], "model_path": [20, 21], "gold_label_typ": [20, 21], "out_path": [20, 21], "embedding_storage_mod": [20, 21], "mini_batch_s": [20, 21, 24, 25, 40, 57, 58, 61, 62, 63], "32": [20, 21, 24, 38, 56, 58, 61], "main_evaluation_metr": [20, 21, 24], "f1": [20, 21, 24, 25, 42, 43, 44, 45, 55, 58], "exclude_label": [20, 21, 24], "gold_label_dictionari": [20, 21], "return_loss": [20, 21], "delet": [20, 21, 24], "freshli": [20, 21, 24], "recomput": [20, 21, 24], "highlight": [20, 21, 55], "main_scor": [20, 21, 25], "unk": [20, 21, 50, 58], "spanclassifi": [20, 26, 62], "label_dictionari": [20, 21, 62, 63], "pooling_oper": 20, "span_label_typ": [20, 62], "classifierarg": 20, "defaultclassifi": [20, 21, 26], "goe": [20, 48], "abl": [20, 50, 52], "known": 20, "candidategener": [20, 62], "emb_first": 20, "emb_last": 20, "emb_firstandlast": 20, "emb_mean": 20, "is_forward_lm": 20, "nlayer": 20, "embedding_s": 20, "nout": 20, "document_delimit": [20, 24], "recurrent_typ": 20, "recurr": 20, "init_weight": 20, "set_hidden": 20, "ordered_sequence_length": 20, "init_hidden": 20, "bsz": 20, "get_represent": 20, "start_mark": 20, "end_mark": 20, "get_output": 20, "repackage_hidden": 20, "histori": [20, 24, 25], "load_language_model": 20, "model_fil": [20, 21], "load_checkpoint": [20, 24], "save_checkpoint": 20, "epoch": [20, 24, 25, 31, 58], "generate_text": 20, "number_of_charact": 20, "temperatur": 20, "break_on_suffix": 20, "calculate_perplex": 20, "lemmat": [20, 26], "rnn_input_s": 20, "rnn_hidden_s": 20, "256": [20, 57, 58, 61], "encode_charact": 20, "char_dict": 20, "max_sequence_length_dependent_on_input": 20, "max_sequence_length": 20, "use_attent": 20, "beam_siz": 20, "start_symbol_for_encod": 20, "end_symbol_for_encod": 20, "bidirectional_encod": 20, "hand": [20, 50, 62], "mayb": [20, 31], "input_s": 20, "hypothesi": 20, "unknown": [20, 21, 58], "precis": [20, 24, 25, 58], "longest": 20, "plu": [20, 50, 58], "max_sequence_length_dependend_on_input": 20, "attent": 20, "sensibl": 20, "via": [20, 28, 30, 36, 38, 54], "words_to_char_indic": 20, "end_symbol": 20, "start_symbol": 20, "padding_in_front": 20, "seq_length": 20, "sequence_length": [20, 24], "toeken": 20, "end_index": 20, "start_index": 20, "front": [20, 57], "dummy_index": 20, "back": [20, 36, 42], "forward_pass": 20, "decoder_input_indic": 20, "initial_hidden_st": 20, "all_encoder_output": 20, "encoder_input_indic": 20, "token_embedding_hidden": 20, "encode_token": 20, "16": [20, 24, 57, 58], "return_probabilities_for_all_class": [20, 21], "verbos": [20, 21], "send": 20, "simultan": 20, "batching_in_rnn": 20, "consol": 20, "unus": [20, 21], "textpairclassifi": [20, 21, 26], "embed_separ": 20, "textclassifi": [20, 21, 26, 58, 63], "newli": 20, "multi_label": [20, 21], "forc": [20, 24], "multi_label_threshold": [20, 21], "threshold": [20, 58], "loss_weight": [20, 21], "unspecifi": 20, "get_used_token": [20, 21], "texttripleclassifi": [20, 26], "textpairregressor": [20, 26], "reducetransformervocabmixin": [20, 21], "regress": [20, 60], "micro": [20, 21, 24, 58], "avg": [20, 21, 24, 25, 58], "relationclassifi": [20, 26], "entity_pair_label": 20, "entity_threshold": 20, "cross_augment": 20, "encoding_strategi": 20, "relation_classifier_model": 20, "typedentitymark": 20, "allow_unk_tag": 20, "encodedsent": 20, "rc": 20, "contrast": 20, "founded_bi": 20, "tail": 20, "larri": 20, "sergei": 20, "brin": 20, "product": [20, 45], "docstr": 20, "zhou": 20, "2102": 20, "01373": 20, "born_in": [20, 42], "loc": [20, 35, 39, 42, 44, 59], "meaning": [20, 29, 50], "advis": [20, 58], "disabl": 20, "ineffici": [20, 44], "augment": 20, "encodedsentenec": 20, "transform_corpu": 20, "encodingstrategi": 20, "conform": 20, "protocol": 20, "underli": 20, "_valid_ent": 20, "_entiti": 20, "_entity_pair_permut": 20, "permut": 20, "along": [20, 52], "py": [20, 30, 31], "meth": 20, "gold_label": 20, "_encode_sent": 20, "induc": 20, "_encode_sentence_for_infer": 20, "exactli": [20, 46], "therefor": [20, 21, 28, 36, 38, 43, 54], "_encode_sentence_for_train": 20, "transform_sent": 20, "procedur": [20, 58], "transform_dataset": 20, "_get_data_points_from_sent": [20, 21], "directli": [20, 21, 39, 50, 56, 60, 62], "mini": [20, 21, 24, 40], "displai": [20, 21], "progress": [20, 21], "bar": [20, 21], "relationextractor": [20, 21, 26], "entity_pair_filt": 20, "train_on_gold_pairs_onli": [20, 21], "regexptagg": [20, 26], "capabl": [20, 50, 57], "regexp": 20, "r": [20, 28, 30, 57], "quot": [20, 59], "multilabel": 20, "compil": 20, "violat": 20, "except": [20, 25, 51, 62], "registered_label": 20, "register_label": 20, "_label": 20, "complex_label": 20, "registered_map": 20, "sequencetagg": [20, 21, 26, 30, 52, 57, 58, 61, 62], "tag_dictionari": [20, 57, 58, 61, 62], "use_rnn": [20, 57, 61, 62], "tag_format": [20, 57], "use_crf": [20, 57, 61, 62], "reproject_embed": [20, 57, 61, 62], "05": [20, 21, 24, 44], "train_initial_hidden_st": 20, "init_from_state_dict": 20, "allow_unk_predict": 20, "parameter": 20, "multitask": 20, "becom": 20, "condit": 20, "imit": 20, "crf": [20, 61, 62], "_init_loss_weight": 20, "_init_initial_hidden_st": 20, "num_direct": 20, "direct": [20, 42], "rnn_input_dim": 20, "sentence_tensor": 20, "network": [20, 21, 62], "longtensor": 20, "inttensor": 20, "_get_scores_from_featur": 20, "smaller": [20, 46], "trim": 20, "tagset": 20, "_get_gold_label": 20, "force_token_predict": 20, "predict_span": 20, "_standard_infer": 20, "probabilities_for_all_class": 20, "emiss": 20, "_all_scores_for_token": 20, "push_to_hub": 20, "repo_id": 20, "commit_messag": 20, "upload": 20, "face": 20, "namespac": 20, "repo": 20, "authent": 20, "messag": [20, 29], "commit": [20, 30], "push": 20, "prefixedsequencetagg": [20, 26, 57], "augmentation_strategi": [20, 57], "prefixedsent": 20, "augment_sent": 20, "annotation_lay": 20, "tokenclassifi": [20, 21, 26], "span_encod": 20, "wordtagg": [20, 26], "12": [20, 37, 43, 55, 56, 58], "fewshotclassifi": [20, 26], "tars_embed": 20, "popul": [20, 38, 52, 54], "cosin": 20, "num_negative_labels_to_sampl": 20, "measur": 20, "distanc": 20, "_compute_label_similarity_for_current_epoch": 20, "get_current_label_dictionari": 20, "get_current_label_typ": 20, "is_current_task_multi_label": 20, "add_and_switch_to_new_task": 20, "task_nam": 20, "force_switch": 20, "tar": [20, 56], "final": [20, 24, 51, 57, 58, 63], "choic": [20, 50], "depict": 20, "problem": [20, 31, 61, 62], "list_existing_task": 20, "switch_to_task": 20, "previous": [20, 59], "predict_zero_shot": 20, "candidate_label_set": 20, "zero": [20, 21], "shot": [20, 62], "tarsclassifi": [20, 26], "tagger_arg": 20, "backend": 20, "inflat": 20, "static_label_typ": 20, "tars_label": 20, "label_match": 20, "ye": 20, "label_no_match": 20, "NO": 20, "against": [20, 37, 58], "That": [20, 21, 31, 47, 48], "consider": 20, "beta": [20, 42], "anneal": [20, 25, 58], "label_threshold": 20, "force_label": 20, "activ": 20, "minibatch": 20, "bigger": 20, "rapid": 20, "consum": 20, "all_tag_prob": 20, "tarstagg": [20, 26], "belong": 20, "most_probable_first": 20, "textregressor": [20, 26], "document_embed": [20, 50, 63], "forward_labels_and_loss": 20, "clusteringmodel": [20, 26], "sklearn": 20, "clustermixin": 20, "baseestim": 20, "algorithm": [20, 22, 23, 52, 54], "_convert_dataset": 20, "return_label_dict": 20, "compat": 20, "turn": [20, 22], "y": 20, "ref": 20, "multitaskmodel": [20, 26, 62], "loss_factor": 20, "use_all_task": [20, 62], "act": 20, "done": [20, 55, 58], "hard": [20, 37, 60], "child": 20, "task_0": [20, 62], "task_1": [20, 62], "teh": 20, "factor": 20, "count": 20, "predictarg": 20, "noqa": [20, 21, 24], "e501": [20, 21, 24], "split_batch_to_task_id": 20, "all_task": 20, "randomli": [20, 21, 50], "deactiv": [20, 61], "evaluate_al": 20, "evalarg": 20, "underneath": 20, "_init_model_with_state_dict": [20, 21], "lockeddropout": [21, 26], "dropout_r": 21, "batch_first": 21, "inplac": 21, "drop": [21, 55], "entir": [21, 36, 40, 47], "worddropout": [21, 26], "inherit": [21, 24, 60], "ensur": [21, 28, 30, 31], "fair": 21, "comparison": [21, 50], "final_embedding_s": 21, "inverse_model": 21, "should_embed_sent": 21, "thu": [21, 44, 45, 48, 50, 59], "_filter_data_point": 21, "_get_data_points_for_batch": 21, "_get_label_of_datapoint": 21, "downstream": [21, 50], "model_card": 21, "checkpoint": [21, 24], "print_model_card": 21, "prototypicaldecod": [21, 26, 62], "num_prototyp": [21, 62], "embeddings_s": [21, 62], "prototype_s": 21, "distance_funct": [21, 62], "euclidean": 21, "use_radiu": 21, "min_radiu": 21, "unlabeled_dist": 21, "unlabeled_idx": 21, "learning_mod": 21, "joint": 21, "normal_distributed_initial_prototyp": 21, "labelverbalizerdecod": [21, 26], "label_embed": 21, "idea": [21, 31, 58], "siames": 21, "bi": 21, "label_encod": 21, "context_embed": 21, "ucnas": 21, "label_verbalizer_decod": 21, "verbalize_label": 21, "verbal": 21, "verbalized_label": 21, "subdivid": 22, "moreov": [22, 23, 52, 54], "link_sent": 22, "segtok": [22, 23, 36], "librari": [22, 23, 24, 31, 36, 56, 59], "fnl": [22, 23], "spacysentencesplitt": [22, 26], "spaci": [22, 23], "spacytoken": [22, 23, 26], "en_core_sci_sm": [22, 23, 56], "conveni": 22, "tagsentencesplitt": [22, 26], "newlinesentencesplitt": [22, 26], "newlin": 22, "marker": 22, "sentencetagsplitt": 22, "nosentencesplitt": [22, 26], "hood": 23, "parti": 23, "dedic": [23, 47, 54, 58], "rule": 23, "indo": 23, "european": [23, 43], "run_token": 23, "japanesetoken": [23, 26], "sudachi_mod": 23, "konoha": 23, "popular": [23, 46], "mecab": 23, "janom": 23, "sudachipi": 23, "himkt": 23, "tokenizerwrapp": [23, 26], "tokenizer_func": 23, "interfac": [23, 24], "distinguish": [23, 44], "modeltrain": [24, 26, 57, 58, 61, 62, 63], "pluggabl": [24, 25, 26], "valid_ev": [24, 25], "_training_except": 24, "_training_fin": [24, 25], "after_evalu": [24, 25], "after_setup": [24, 25], "after_train": [24, 25], "after_training_batch": [24, 25], "after_training_epoch": [24, 25], "after_training_loop": 24, "before_training_batch": 24, "before_training_epoch": [24, 25], "before_training_optimizer_step": 24, "metric_record": [24, 25], "training_interrupt": 24, "reset_training_attribut": 24, "check_for_and_delete_previous_best_model": 24, "get_batch_step": 24, "mini_batch_chunk_s": [24, 61, 62], "_backward": 24, "plugin": [24, 26], "anneal_factor": [24, 25], "patienc": [24, 25], "min_learning_r": [24, 25], "0001": 24, "initial_extra_pati": [24, 25], "anneal_with_restart": [24, 25], "learning_r": [24, 57, 58, 61, 62, 63], "decoder_learning_r": 24, "eval_batch_s": 24, "64": 24, "max_epoch": [24, 25, 57, 58, 61, 63], "sgd": [24, 58], "train_with_dev": [24, 25, 57], "train_with_test": 24, "reduce_transformer_vocab": 24, "monitor_test": 24, "monitor_train_sampl": 24, "use_final_model_for_ev": 24, "gold_label_dictionary_for_ev": 24, "shuffle_first_epoch": 24, "embeddings_storage_mod": 24, "save_final_model": 24, "save_optimizer_st": [24, 25], "save_model_each_k_epoch": [24, 25], "create_file_log": 24, "create_loss_fil": 24, "write_weight": 24, "attach_default_schedul": 24, "warmup_fract": [24, 25], "5e": 24, "adamw": [24, 58], "use_amp": 24, "train_custom": 24, "max_grad_norm": 24, "larger": [24, 38, 55], "broken": 24, "purpos": [24, 50], "termin": 24, "surpass": 24, "adam": 24, "temporari": 24, "macro": [24, 25, 45, 58], "exclud": 24, "flairsampl": 24, "could": [24, 25, 31, 32, 38, 51, 59, 63], "continu": 24, "alongsid": 24, "trainerplugin": [24, 25, 26], "test_scor": 24, "metrichistoryplugin": [24, 25, 26], "_initialize_model_card": 24, "training_paramet": 24, "card": 24, "languagemodeltrain": [24, 26], "test_mod": 24, "10000": 24, "optimizer_st": 24, "scaler_st": 24, "grow_to_sequence_length": 24, "data_sourc": 24, "_repackage_hidden": 24, "checkpoint_fil": 24, "textcorpu": [24, 26], "character_level": 24, "random_case_flip": 24, "annealingplugin": [25, 26], "logic": 25, "store_learning_r": 25, "kw": 25, "schedul": [25, 58], "target": 25, "annealonplateau": 25, "batch_growth_ann": 25, "current_model_is_best": 25, "validation_scor": 25, "get_stat": 25, "checkpointplugin": [25, 26], "clearmlloggerplugin": [25, 26], "task_id_or_task": 25, "linearschedulerplugin": [25, 26], "linearschedulerwithwarmup": 25, "dataset_s": 25, "earli": [25, 58], "optimizer_was_run": 25, "cycl": 25, "decai": 25, "weightextractorplugin": [25, 26], "batch_no": 25, "total_number_of_batch": 25, "logfileplugin": [25, 26], "close_file_handl": 25, "lossfileplugin": [25, 26], "metrics_to_collect": 25, "manag": [25, 48], "dev_loss_histori": 25, "dev_score_histori": 25, "train_loss_histori": 25, "tensorboardlogg": [25, 26], "log_dir": 25, "tracked_metr": 25, "tensorboard": 25, "append": [25, 38, 52, 57], "shall": 25, "plot": 25, "close": [25, 29], "writer": 25, "baseplugin": [25, 26], "attach_to": 25, "attach": [25, 36, 39], "mark_func_as_hook": 25, "func": 25, "trigger": [25, 60], "first_arg": 25, "other_arg": 25, "convienc": 25, "syntax": [25, 30, 43], "some_ev": 25, "another_ev": 25, "dispatch": 25, "react": 25, "append_plugin": 25, "validate_ev": 25, "register_hook": 25, "emit": 25, "remove_hook": 25, "traininginterrupt": [25, 26], "interrupt": 25, "loop": 25, "reducetransformervocabplugin": [25, 26], "register_transformer_smaller_training_vocab": 25, "save_model_at_the_end": 25, "metricnam": [25, 26], "metricrecord": [25, 26], "global_step": 25, "typ": 25, "walltim": 25, "recordtyp": 25, "anyth": 25, "time_step": 25, "increment": 25, "again": [25, 47, 59], "joined_nam": 25, "scalar_list": 25, "histogram": 25, "is_typ": 25, "is_scalar": 25, "is_scalar_list": 25, "is_str": 25, "is_histogram": 25, "flair": [26, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 54, 55, 56, 57, 59, 62, 63, 64], "trainer": [26, 57, 61, 62, 63], "good": [27, 44, 48, 58], "issu": [27, 29, 33, 56], "pull": 27, "contributor": [28, 33, 42, 43, 44], "look": [28, 38, 50, 51, 58, 59, 60, 62], "deeper": 28, "suggest": 28, "clone": 28, "unit": [28, 32, 36, 42, 43], "around": [28, 40], "hopefulli": 28, "easi": [28, 30, 37, 63], "python": [28, 35, 52, 59], "sure": [28, 31, 33, 46], "oldest": 28, "prefer": 28, "pip": [28, 30, 35, 38, 56], "instal": [28, 30, 34, 38, 56], "typecheck": 28, "execut": [28, 54, 55, 59], "pytest": 28, "basic": [28, 30, 34, 38], "runintegr": 28, "style": [28, 60], "formatt": 28, "black": 28, "ruff": 28, "properli": 28, "root": 28, "happi": 29, "contribut": [29, 33, 43, 44], "awesom": [29, 51], "unnecessari": 29, "side": 29, "stick": 29, "concern": [29, 54, 56], "discuss": [29, 55, 58], "hate": 29, "finish": 29, "pr": 29, "decid": [29, 58], "ticket": 29, "did": 29, "gh": 29, "42": [29, 58], "endus": 30, "someth": [30, 31, 42, 50], "lie": 30, "ate": 30, "whenev": 30, "accordingli": 30, "reflect": 30, "realiti": 30, "usabl": 30, "anoth": [30, 40], "markdown": 30, "rst": 30, "myst": 30, "understand": [30, 31, 39, 43, 47, 49], "md": 30, "liner": 30, "explan": 30, "temporarili": 30, "smv_branch_whitelist": 30, "pattern": 30, "sphinx": 30, "multivers": 30, "doc_build": 30, "great": [31, 50], "feedback": 31, "guidelin": [31, 33], "insight": 31, "There": [31, 51, 58, 65], "unrel": 31, "potenti": 31, "didn": 31, "ran": 31, "collect_env": 31, "minim": [31, 43, 58], "sai": [31, 36], "realli": 31, "encount": 31, "ok": [31, 37], "recreat": 31, "manni": 31, "quicker": 31, "spend": 31, "debug": 31, "show": [31, 35, 36, 39, 41, 43, 44, 45, 47, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63], "verifi": 31, "enough": [31, 59], "easier": 31, "judg": 31, "know": [31, 35, 37, 57, 58, 60], "lack": 31, "wrong": 31, "multitagg": 31, "cannot": 31, "clearli": 31, "resolv": [31, 37, 38], "tracker": 33, "art": [33, 43, 44, 48, 53, 55, 57, 58, 61, 62, 63, 64], "tutori": [33, 36, 38, 39, 42, 43, 44, 45, 47, 58, 59, 60, 61, 62, 63], "doc": [33, 50], "depth": 33, "guid": 33, "codebas": 33, "glossari": 33, "term": [33, 54], "definit": [33, 60], "quick": [34, 42], "summari": 34, "thing": [34, 41, 58, 65], "hunflair2": [34, 38], "let": [35, 36, 37, 38, 39, 42, 44, 45, 47, 55, 56, 58, 59, 60, 61, 62], "discov": 35, "minut": 35, "favorit": 35, "virtual": 35, "simpli": [35, 46, 47, 48, 50, 51, 58, 60, 61], "love": [35, 40, 58], "york": 35, "goal": 35, "analysi": [35, 36, 45, 63], "essenti": 35, "now": [35, 36, 46, 47, 48, 50, 51, 52, 55, 58, 59, 61], "9982": 35, "congrat": [35, 58], "explain": [36, 51, 58, 65], "familiar": [36, 57], "grass": [36, 46, 47, 48, 50, 51], "green": [36, 46, 47, 48, 50, 51], "tell": [36, 42, 43, 44], "atom": 36, "printout": [36, 43, 44], "lexic": [36, 50], "illustr": [36, 37, 38, 39, 64], "color": 36, "mandatori": 36, "sometim": [36, 47, 50], "importantli": 36, "bring": 36, "togeth": [36, 39, 42, 50], "overal": [36, 45, 58], "pointer": 36, "As": [37, 38, 39, 42, 44, 45, 52, 58, 59, 61, 62], "ship": [37, 38, 41, 42, 43, 44, 45], "experiment": [37, 42], "attempt": 37, "kirk": 37, "spock": 37, "met": 37, "enterpris": 37, "james_t": 37, "_kirk": 37, "9969": 37, "9971": [37, 42], "uss_enterprise_": 37, "ncc": 37, "1701": 37, "975": [37, 58], "barcelona": 37, "bad": [37, 45, 58], "eh": 37, "quit": [37, 61], "trek": 37, "fan": 37, "short": 37, "bayern": 37, "plai": [37, 40], "took": 37, "fc_bayern_munich": 37, "fc_barcelona": 37, "soccer": 37, "club": 37, "fc": 37, "munich": 37, "citi": 37, "behind": 38, "hunflair": [38, 44, 52, 55, 56], "bionen": 38, "abcd1": [38, 52, 54], "caus": [38, 47, 52, 54, 56], "adrenoleukodystrophi": [38, 52, 54], "neurodegen": [38, 52, 54], "exacerb": [38, 52, 54], "exposur": [38, 52, 54], "mercuri": [38, 52, 54], "dolphin": 38, "ner_tagg": [38, 54], "nen_tagg": 38, "ab3p": 38, "simplest": 38, "pyab3p": 38, "analog": 38, "9509": 38, "9872": 38, "mesh": [38, 52, 54, 55], "d000326": [38, 52, 54], "195": [38, 52, 54], "30780029296875": [38, 52, 54], "15": [38, 58], "8988": 38, "d019636": [38, 52, 54], "201": [38, 52, 54, 60], "1804962158203": [38, 52, 54], "29": 38, "30": [38, 58], "9484": 38, "31": [38, 42, 44, 55, 60], "8071": 38, "huflair": 38, "referenc": 38, "ascend": 38, "descend": 38, "result_ment": 38, "span_data": 38, "ner_label": [38, 62], "mentions_found": 38, "nen": [38, 52], "nen_id": 38, "explor": 38, "mention_candid": 38, "georg": [39, 42, 43, 44, 59, 62], "washington": [39, 42, 43, 44, 59, 62], "went": [39, 43, 44, 59, 62], "9989": 39, "9942": 39, "bracket": 39, "998886227607727": 39, "9942097663879395": 39, "showcas": [41, 43, 44], "tour": 42, "crazi": 42, "These": [42, 48, 50], "propbank": 42, "sort": [42, 57, 59, 62], "evok": 42, "curiou": 42, "hi": [42, 46, 48], "hat": 42, "01": 42, "9951": 42, "02": [42, 55, 58], "6361": 42, "detector": 42, "distinct": [42, 46, 48, 54], "verb": [42, 43, 58, 60], "noun": [42, 43, 58, 60], "brown": 42, "fox": 42, "jump": 42, "lazi": 42, "dog": 42, "np": 42, "9914": 42, "vp": 42, "pp": 42, "9967": 42, "9991": 42, "form": 42, "born": 42, "express": 42, "relationship": 42, "9847": 42, "96": [42, 43, 44, 45, 55], "47": [42, 43, 55], "97": [42, 43], "54": [42, 44, 55], "negat": 42, "specul": 42, "scholarli": 42, "indirect": 42, "redewiedergab": [42, 48], "87": [42, 43, 44, 45], "94": [42, 44, 55], "free": 42, "univer": 43, "fundament": [43, 48], "offer": [43, 44, 45, 50], "dirk": 43, "nnp": [43, 60], "vbd": [43, 60], "IN": [43, 60], "proper": 43, "past": [43, 48], "tens": [43, 60], "consult": 43, "penn": 43, "dort": 43, "hatt": 43, "er": [43, 51], "einen": 43, "hut": 43, "gekauft": 43, "adv": [43, 58, 60], "vafin": 43, "pper": 43, "vvpp": 43, "\u0441\u044c\u043e\u0433\u043e\u0434\u043d\u0456": 43, "\u0432": 43, "\u0437\u043d\u0430\u043c": 43, "\u044f\u043d\u0446\u0456": 43, "\u043f\u0440\u043e\u0436\u0438\u0432\u0430\u044e\u0442\u044c": 43, "\u043d\u0430\u0449\u0430\u0434\u043a\u0438": 43, "\u043f\u043e\u0435\u0442\u0430": 43, "\u0440\u043e\u0434\u0438\u043d\u0430": 43, "\u0448\u043a\u043e\u0434\u0438": 43, "\u0639\u0645\u0631\u0648": 43, "\u0639\u0627\u062f\u0644\u064a": 43, "\u0623\u0633\u062a\u0627\u0630": 43, "\u0644\u0644\u0627\u0642\u062a\u0635\u0627\u062f": 43, "\u0627\u0644\u0633\u064a\u0627\u0633\u064a": 43, "\u0627\u0644\u0645\u0633\u0627\u0639\u062f": 43, "\u0641\u064a": 43, "\u0627\u0644\u062c\u0627\u0645\u0639\u0629": 43, "\u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a\u0629": 43, "\u0628\u0627\u0644\u0642\u0627\u0647\u0631\u0629": 43, "syntact": [43, 48, 60], "langag": 43, "multilingu": [43, 44, 50, 61], "kauft": 43, "break": 43, "readabl": [43, 47, 60], "propn": [43, 58, 60], "adp": [43, 58, 60], "punct": [43, 58, 60], "pron": [43, 58, 60], "det": [43, 58, 60], "98": [43, 45, 58, 60], "19": 43, "acc": 43, "92": [43, 44], "88": [43, 58], "dialect": 43, "hdt": 43, "93": [43, 44, 58], "06": [43, 44], "da": [43, 44, 46], "danish": [43, 44, 46], "amaliepauli": [43, 44], "malayalam": 43, "83": [43, 45], "sabiqueqb": 43, "pt": [43, 46, 48, 57, 58, 63], "clinic": [43, 48], "pucpr": 43, "lucasferrohailab": 43, "dchaplinski": [43, 44, 48], "appropri": [43, 44, 46, 48, 58, 59, 63], "brows": [43, 44], "fastest": 44, "ging": 44, "nach": 44, "\u0627\u062d\u0628": 44, "\u0628\u0631\u0644\u064a\u0646": 44, "On": 44, "septemb": 44, "1st": 44, "dollar": 44, "watch": 44, "game": 44, "throne": 44, "monei": 44, "work_of_art": 44, "abnorm": [44, 55, 56], "fmr1": [44, 55, 56], "ko2": [44, 55, 56], "mous": [44, 52, 54, 55, 56], "fragil": [44, 55, 56], "syndrom": [44, 55, 56], "bioner": 44, "75": [44, 45, 55], "09": [44, 58], "24": [44, 54, 55, 56, 58], "89": 44, "90": [44, 55], "86": [44, 55], "66": [44, 55], "84": [44, 58], "ler": 44, "35": [44, 55, 56], "wikin": 44, "aij": 44, "wp3": 44, "95": [44, 55, 58], "57": [44, 55], "mhham": [44, 48], "2002": [44, 60], "58": [44, 55], "79": [44, 55], "distilbert": [45, 62, 63], "notabl": 45, "varieti": [45, 47, 49], "9929": 45, "9999": 45, "71": 45, "fall": [46, 58], "komnino": 46, "glove_embed": [46, 47, 50], "few": [46, 62], "turian": 46, "ro": 46, "romanian": 46, "ca": 46, "catalan": 46, "sv": [46, 48], "norwegian": [46, 48], "fi": [46, 48], "pl": [46, 48], "cz": 46, "czech": [46, 48], "sk": 46, "slovak": 46, "slovenian": [46, 48], "sr": 46, "serbian": 46, "hr": [46, 48], "croatian": [46, 48], "bg": [46, 48], "bulgarian": [46, 48], "ru": 46, "russian": 46, "he": [46, 48], "hebrew": [46, 48], "tr": 46, "turkish": 46, "fa": [46, 48], "persian": [46, 48], "ja": [46, 48], "ko": 46, "korean": 46, "zh": 46, "hindi": [46, 48], "indonesian": [46, 48], "basqu": [46, 48], "german_embed": 46, "altern": [46, 51, 61], "custom_embed": 46, "gensim": [46, 50], "correctli": [46, 57, 58], "snippet": [46, 60], "word_vector": 46, "keyedvector": 46, "load_word2vec_format": 46, "reason": [47, 49], "0323": [47, 51], "3904": [47, 51], "1946": [47, 51], "1296": 47, "5806": 47, "3973": 47, "2652": 47, "1337": 47, "4473": 47, "1641": 47, "1374": 47, "3688": 47, "8292": 47, "4068": 47, "7717": 47, "7722": 47, "1152": 47, "3661": 47, "3570": 47, "6573": 47, "1441": 47, "1772": 47, "5911": 47, "2236": 47, "0497": 47, "chapter": [47, 58], "flair_embedding_forward": [47, 48], "flair_embedding_backward": 47, "stacked_embed": [47, 48], "power": [48, 61], "captur": 48, "latent": 48, "beyond": 48, "explicit": 48, "notion": 48, "surround": 48, "With": [48, 60], "jw300": 48, "agi\u0107": 48, "vuli\u0107": 48, "cc": 48, "BY": 48, "nc": 48, "subtitl": 48, "friendli": 48, "billion": 48, "europarl": 48, "setim": 48, "v0": [48, 56], "earlier": 48, "hamburg": 48, "anzeig": 48, "wz": 48, "wiener": 48, "zeitung": 48, "rw": 48, "iamyihwa": 48, "matirojasg": 48, "frtacoa": 48, "439m": 48, "2048": 48, "borchmann": 48, "commoncrawl": 48, "ericlief": 48, "opensubtitles2018": 48, "ta": 48, "tamil": 48, "jessepeng": 48, "until": 48, "swiss": 48, "luxembourgish": 48, "chronicl": 48, "america": 48, "materi": 48, "am": 48, "amhar": 48, "5m": 48, "offici": [48, 54], "ubertext": 48, "flair_de_forward": 48, "And": [48, 50, 58, 62], "flair_bg_backward": 48, "constantli": 48, "evolv": 48, "global": 48, "oper": 48, "ineffect": 48, "nearli": [48, 50], "mostli": 50, "prior": 50, "Such": 50, "rare": 50, "unless": 50, "upo": [50, 58, 60, 61], "18": [50, 58], "precomput": 50, "subword": [50, 51], "heinzerl": 50, "strube": 50, "fraction": 50, "275": 50, "200": [50, 58], "sentencepiec": 50, "m": 50, "w2v": 50, "sky": 50, "blue": 50, "off": 50, "besid": 50, "document_lstm_embed": 50, "immedi": 50, "happen": [50, 58], "hyperparamet": 50, "xlnet": 51, "roberta": [51, 61], "maxim": 51, "greatli": 51, "768": 51, "1536": 51, "9984": 51, "xl": 51, "puppet": 51, "pupp": 51, "subtoken": 51, "oktoberfest": 51, "largest": 51, "volksfest": 51, "setup": [51, 52, 54, 61], "routin": 51, "1305": 51, "1365": 51, "4323": 51, "grad_fn": 51, "catbackward": 51, "ll": [52, 58], "phenotyp": 52, "hp": 52, "fp": 52, "node": 52, "hpo": 52, "purl": 52, "obolibrari": 52, "obo": 52, "lbl": 52, "val": 52, "cambridgeltl": 52, "sapbert": [52, 54], "pubmedbert": 52, "omit": 52, "gene_link": [52, 54, 55], "my": 52, "disease_link": [52, 54, 55], "disease_tag": [52, 57], "ngene": 52, "gene_tag": [52, 57], "215": [52, 54], "210": [52, 54], "89810180664062": [52, 54], "hunflair1_tagg": 52, "granular": 52, "outperform": [53, 55], "unseen": [53, 55], "suppressor": 54, "trp53": 54, "chemical_link": 54, "species_link": [54, 55], "normalis": [54, 55], "inspect": 54, "23": [54, 56], "d008628": 54, "220": 54, "39199829101562": 54, "26": 54, "10090": [54, 55], "musculu": [54, 55], "213": [54, 55], "6201934814453": [54, 55], "bc2gn": 54, "taxonmi": 54, "uml": 54, "d001523": 55, "mental": 55, "disord": [55, 56], "197": 55, "9467010498047": 55, "108684022": 55, "fraxa": 55, "219": 55, "9510040283203": 55, "d005600": 55, "193": 55, "7115020751953": 55, "wild": 55, "vari": 55, "neither": 55, "nor": 55, "competitor": 55, "bent": 55, "bern2": 55, "pubtat": 55, "central": 55, "medment": 55, "34": 55, "51": 55, "17": [55, 58, 60], "45": [55, 58], "33": [55, 58], "78": 55, "tmvar": 55, "v3": 55, "43": 55, "76": [55, 58], "bioid": 55, "37": 55, "49": 55, "61": 55, "shift": 55, "sanger2024hunflair2": 55, "author": 55, "nger": 55, "mario": 55, "garda": 55, "samuel": 55, "xing": 55, "david": 55, "genzel": 55, "leon": 55, "droop": 55, "pia": 55, "fuch": 55, "benedikt": 55, "alan": 55, "leser": 55, "ulf": 55, "preprint": 55, "2402": 55, "12372": 55, "year": 55, "2024": 55, "four": [56, 57], "start_po": 56, "end_po": 56, "9999860525131226": 56, "9999895095825195": 56, "46": 56, "9999873638153076": 56, "56": [56, 58], "74": 56, "9999928871790568": 56, "far": 56, "unfavour": 56, "s3": 56, "west": 56, "amazonaw": 56, "ai2": 56, "gz": 56, "fx": 56, "development": 56, "fmrp": 56, "synapt": 56, "patient": 56, "hyperact": 56, "anxieti": 56, "sensori": 56, "hyper": 56, "respons": 56, "cognit": 56, "deficit": 56, "autist": 56, "symptom": 56, "observ": 56, "inde": 56, "monogen": 56, "autism": 56, "transformers_word": 57, "michiyasunaga": 57, "biolinkbert": 57, "model_max_length": 57, "0e": [57, 61, 62, 63], "women": 57, "smoke": 57, "cigarett": 57, "dai": 57, "breast": 57, "deal": 57, "opt": 57, "achiev": 57, "prompt": 57, "especi": 57, "cover": 57, "prepend": 57, "prefixed_tagg": 57, "entitytypetaskpromptaugmentationstrategi": 57, "cell_line_tag": 57, "chemical_tag": 57, "species_tag": 57, "prefixed_corpora": 57, "all_entity_typ": 57, "augment_corpu": 57, "seen": 57, "cdr_nlm_chem": 57, "l": 57, "wei": 57, "lai": 57, "p": [57, 59], "leaman": 57, "chen": 57, "q": 57, "lu": 57, "z": 57, "aioner": 57, "deep": 57, "btad310": 57, "decis": 58, "label_dict": [58, 61, 62, 63], "script": [58, 61, 62, 63], "07": 58, "38": 58, "014": 58, "016": 58, "017": 58, "020": 58, "022": 58, "023": 58, "storag": 58, "025": 58, "28409882": 58, "2611": 58, "lr": 58, "474": 58, "13510367": 58, "3143": 58, "21": 58, "910": 58, "02619775": 58, "3434": 58, "167": 58, "95288554": 58, "3783": 58, "504": 58, "86820018": 58, "48": 58, "4171": 58, "843": 58, "80507526": 58, "82": 58, "4557": 58, "72": 58, "118": 58, "74217397": 58, "4878": 58, "00": 58, "420": 58, "69161746": 58, "5072": 58, "705": 58, "63837577": 58, "68": 58, "5260": 58, "972": 58, "58915523": 58, "5394": 58, "977": 58, "5892": 58, "567": 58, "009714126586914": 58, "579": 58, "monitor": 58, "At": 58, "7732": 58, "6329": 58, "7199": 58, "407": 58, "9263": 58, "9843": 58, "9544": 58, "319": 58, "7521": 58, "6938": 58, "7218": 58, "258": 58, "7782": 58, "9300": 58, "8474": 58, "8559": 58, "9515": 58, "9011": 58, "206": 58, "6585": 58, "6398": 58, "6490": 58, "211": 58, "adj": [58, 60], "5654": 58, "6914": 58, "6221": 58, "175": 58, "9572": 58, "8995": 58, "9275": 58, "199": 58, "aux": [58, 60], "8609": 58, "8784": 58, "8696": 58, "148": 58, "5052": 58, "5000": 58, "5026": 58, "cconj": [58, 60], "9833": 58, "9077": 58, "9440": 58, "65": 58, "num": [58, 60], "5435": 58, "3289": 58, "4098": 58, "9091": 58, "7143": 58, "8000": 58, "sconj": [58, 60], "7083": 58, "5667": 58, "6296": 58, "sym": [58, 60], "3333": 58, "2143": 58, "2609": 58, "0000": 58, "intj": [58, 60], "2491": 58, "6504": 58, "6247": 58, "7635": 58, "7655": 58, "breakdown": 58, "1254": 58, "208": [58, 60], "handi": 58, "manipul": 58, "crucial": 58, "launch": 58, "fo": 58, "halv": 58, "150": [58, 61], "mechan": 58, "workflow": 58, "invok": 58, "gave": 58, "sam": [59, 62], "houston": [59, 62], "stai": [59, 62], "len": [59, 60, 62], "command": 59, "excel": 59, "delimit": 59, "label_top": 59, "label_subtop": 59, "practic": 59, "label_1": 59, "label_2": 59, "therebi": 59, "yourself": 59, "chose": 59, "denot": 59, "drive": 60, "morpholog": 60, "morph": 60, "Into": 60, "googleo": 60, "wp": 60, "readi": 60, "bunch": 60, "ratio": 60, "downsampled_corpu": 60, "12543": 60, "2077": 60, "1255": 60, "upos_dictionari": 60, "abcd": 60, "12036": 60, "verbform": 60, "10122": 60, "prontyp": 60, "9744": 60, "9381": 60, "mood": 60, "8911": 60, "8747": 60, "7148": 60, "6851": 60, "6486": 60, "gender": 60, "2824": 60, "numtyp": 60, "2771": 60, "poss": 60, "2516": 60, "voic": 60, "1085": 60, "typo": 60, "399": 60, "extpo": 60, "185": 60, "abbr": 60, "168": 60, "reflex": 60, "foreign": 60, "pos_dictionari": 60, "tense_dictionari": 60, "singular": 60, "plural": 60, "question_class": [60, 63], "english_corpu": 60, "german_corpu": 60, "dutch_corpu": 60, "multi_corpu": 60, "layout": 60, "tuneabl": [61, 62], "WITH": [61, 62], "xlm": 61, "bare": [61, 62], "bone": [61, 62], "sota": 61, "compon": 61, "frozen": 61, "exchang": 61, "rest": 61, "sytem": 62, "entity_linker_model": 62, "dot_product": 62, "prototyp": 62, "bettwer": 62, "george_washington": 62, "washington_d_c": 62, "sam_houston": 62, "pipelin": 62, "create_datapoint": 62, "somewhat": 62, "def": 62, "create_sent": 62, "panda": 62, "datafram": 62, "start_token": 62, "end_token": 62, "construct_corpu": 62, "alon": 62, "make_multitask_model_and_corpu": 62, "ner_corpu": 62, "nel_corpu": 62, "shared_embed": 62, "ner_label_dict": 62, "ner_model": 62, "nel_label_dict": 62, "nel_model": 62, "multitask_model": 62, "zelda_with_ment": 62, "multitask_id": 62, "nel_label": 62, "jointli": 62, "lot": 62, "twice": 62, "reach": 63, "eiffel": 63, "tower": 63, "broad": 65}, "objects": {"": [[16, 0, 0, "-", "flair"]], "flair": [[16, 1, 1, "", "cache_root"], [17, 0, 0, "-", "data"], [16, 1, 1, "", "device"], [16, 1, 1, "", "logger"], [20, 0, 0, "-", "models"], [21, 0, 0, "-", "nn"], [16, 6, 1, "", "set_proxies"], [16, 6, 1, "", "set_seed"], [22, 0, 0, "-", "splitter"], [23, 0, 0, "-", "tokenization"], [24, 0, 0, "-", "trainers"]], "flair.data": [[17, 2, 1, "", "BoundingBox"], [17, 2, 1, "", "ConcatFlairDataset"], [17, 2, 1, "", "Corpus"], [17, 2, 1, "", "DataPair"], [17, 2, 1, "", "DataPoint"], [17, 2, 1, "", "DataTriple"], [17, 2, 1, "", "Dictionary"], [17, 2, 1, "", "EntityCandidate"], [17, 2, 1, "", "FlairDataset"], [17, 2, 1, "", "Image"], [17, 2, 1, "", "Label"], [17, 2, 1, "", "MultiCorpus"], [17, 2, 1, "", "Relation"], [17, 2, 1, "", "Sentence"], [17, 2, 1, "", "Span"], [17, 2, 1, "", "Token"], [17, 6, 1, "", "get_spans_from_bio"], [17, 6, 1, "", "iob2"], [17, 6, 1, "", "randomly_split_into_two_datasets"]], "flair.data.BoundingBox": [[17, 3, 1, "", "bottom"], [17, 3, 1, "", "left"], [17, 3, 1, "", "right"], [17, 3, 1, "", "top"]], "flair.data.ConcatFlairDataset": [[17, 4, 1, "", "cummulative_sizes"], [17, 5, 1, "", "cumsum"], [17, 3, 1, "", "cumulative_sizes"], [17, 3, 1, "", "datasets"]], "flair.data.Corpus": [[17, 5, 1, "", "add_label_noise"], [17, 4, 1, "", "dev"], [17, 5, 1, "", "downsample"], [17, 5, 1, "", "filter_empty_sentences"], [17, 5, 1, "", "filter_long_sentences"], [17, 5, 1, "", "get_all_sentences"], [17, 5, 1, "", "get_label_distribution"], [17, 5, 1, "", "make_label_dictionary"], [17, 5, 1, "", "make_tag_dictionary"], [17, 5, 1, "", "make_vocab_dictionary"], [17, 5, 1, "", "obtain_statistics"], [17, 4, 1, "", "test"], [17, 4, 1, "", "train"]], "flair.data.DataPair": [[17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.DataPoint": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_metadata"], [17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_each_embedding"], [17, 5, 1, "", "get_embedding"], [17, 5, 1, "", "get_label"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_metadata"], [17, 5, 1, "", "has_label"], [17, 5, 1, "", "has_metadata"], [17, 4, 1, "", "labels"], [17, 5, 1, "", "remove_labels"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_embedding"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.DataTriple": [[17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Dictionary": [[17, 5, 1, "", "add_item"], [17, 5, 1, "", "get_idx_for_item"], [17, 5, 1, "", "get_idx_for_items"], [17, 5, 1, "", "get_item_for_index"], [17, 5, 1, "", "get_items"], [17, 5, 1, "", "is_span_prediction_problem"], [17, 5, 1, "", "load"], [17, 5, 1, "", "load_from_file"], [17, 5, 1, "", "remove_item"], [17, 5, 1, "", "save"], [17, 5, 1, "", "set_start_stop_tags"], [17, 5, 1, "", "start_stop_tags_are_set"]], "flair.data.EntityCandidate": [[17, 5, 1, "", "__init__"], [17, 5, 1, "", "to_dict"]], "flair.data.FlairDataset": [[17, 5, 1, "", "is_in_memory"]], "flair.data.Image": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Label": [[17, 4, 1, "", "labeled_identifier"], [17, 4, 1, "", "metadata_str"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_value"], [17, 4, 1, "", "shortstring"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"], [17, 4, 1, "", "value"]], "flair.data.Relation": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Sentence": [[17, 5, 1, "", "__init__"], [17, 5, 1, "", "clear_embeddings"], [17, 5, 1, "", "copy_context_from_sentence"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_language_code"], [17, 5, 1, "", "get_relations"], [17, 5, 1, "", "get_span"], [17, 5, 1, "", "get_spans"], [17, 5, 1, "", "get_token"], [17, 5, 1, "", "infer_space_after"], [17, 5, 1, "", "is_context_set"], [17, 5, 1, "", "left_context"], [17, 5, 1, "", "next_sentence"], [17, 5, 1, "", "previous_sentence"], [17, 5, 1, "", "remove_labels"], [17, 5, 1, "", "right_context"], [17, 5, 1, "", "set_context_for_sentences"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 5, 1, "", "to_dict"], [17, 5, 1, "", "to_original_text"], [17, 5, 1, "", "to_plain_string"], [17, 5, 1, "", "to_tagged_string"], [17, 5, 1, "", "to_tokenized_string"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Span": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Token": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_tags_proba_dist"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_head"], [17, 5, 1, "", "get_tags_proba_dist"], [17, 4, 1, "", "idx"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.datasets": [[0, 0, 0, "-", "base"], [1, 0, 0, "-", "biomedical"], [2, 0, 0, "-", "document_classification"], [3, 0, 0, "-", "entity_linking"], [4, 0, 0, "-", "ocr"], [5, 0, 0, "-", "relation_extraction"], [6, 0, 0, "-", "sequence_labeling"], [7, 0, 0, "-", "text_image"], [8, 0, 0, "-", "text_text"], [9, 0, 0, "-", "treebanks"]], "flair.datasets.base": [[0, 2, 1, "", "DataLoader"], [0, 2, 1, "", "FlairDatapointDataset"], [0, 2, 1, "", "MongoDataset"], [0, 2, 1, "", "SentenceDataset"], [0, 2, 1, "", "StringDataset"], [0, 6, 1, "", "find_train_dev_test_files"]], "flair.datasets.base.DataLoader": [[0, 3, 1, "", "batch_size"], [0, 3, 1, "", "dataset"], [0, 3, 1, "", "drop_last"], [0, 3, 1, "", "num_workers"], [0, 3, 1, "", "pin_memory"], [0, 3, 1, "", "pin_memory_device"], [0, 3, 1, "", "prefetch_factor"], [0, 3, 1, "", "sampler"], [0, 3, 1, "", "timeout"]], "flair.datasets.base.FlairDatapointDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.MongoDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.SentenceDataset": [[0, 5, 1, "", "__init__"]], "flair.datasets.base.StringDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.biomedical": [[1, 2, 1, "", "ANAT_EM"], [1, 2, 1, "", "AZDZ"], [1, 2, 1, "", "BC2GM"], [1, 2, 1, "", "BIGBIO_NER_CORPUS"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC4CHEMD"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_NCBI"], [1, 2, 1, "", "BIOBERT_GENE_BC2GM"], [1, 2, 1, "", "BIOBERT_GENE_JNLPBA"], [1, 2, 1, "", "BIOBERT_SPECIES_LINNAEUS"], [1, 2, 1, "", "BIOBERT_SPECIES_S800"], [1, 2, 1, "", "BIONLP2013_CG"], [1, 2, 1, "", "BIONLP2013_PC"], [1, 2, 1, "", "BIOSEMANTICS"], [1, 2, 1, "", "BIO_INFER"], [1, 2, 1, "", "BioBertHelper"], [1, 2, 1, "", "BioNLPCorpus"], [1, 2, 1, "", "CDR"], [1, 2, 1, "", "CELL_FINDER"], [1, 2, 1, "", "CEMP"], [1, 2, 1, "", "CHEBI"], [1, 2, 1, "", "CHEMDNER"], [1, 2, 1, "", "CLL"], [1, 2, 1, "", "CRAFT"], [1, 2, 1, "", "CRAFT_V4"], [1, 2, 1, "", "CoNLLWriter"], [1, 2, 1, "", "DECA"], [1, 2, 1, "", "DpEntry"], [1, 2, 1, "", "Entity"], [1, 2, 1, "", "FSU"], [1, 2, 1, "", "GELLUS"], [1, 2, 1, "", "GPRO"], [1, 2, 1, "", "HUNER_ALL_BIOID"], [1, 2, 1, "", "HUNER_ALL_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_ALL_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_ALL_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_ALL_BIORED"], [1, 2, 1, "", "HUNER_ALL_CDR"], [1, 2, 1, "", "HUNER_ALL_CELL_FINDER"], [1, 2, 1, "", "HUNER_ALL_CHEBI"], [1, 2, 1, "", "HUNER_ALL_CPI"], [1, 2, 1, "", "HUNER_ALL_CRAFT_V4"], [1, 2, 1, "", "HUNER_ALL_DRUGPROT"], [1, 2, 1, "", "HUNER_ALL_JNLPBA"], [1, 2, 1, "", "HUNER_ALL_LOCTEXT"], [1, 2, 1, "", "HUNER_ALL_MIRNA"], [1, 2, 1, "", "HUNER_ALL_SCAI"], [1, 2, 1, "", "HUNER_ALL_VARIOME"], [1, 2, 1, "", "HUNER_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_CELL_LINE"], [1, 2, 1, "", "HUNER_CELL_LINE_BIOID"], [1, 2, 1, "", "HUNER_CELL_LINE_BIORED"], [1, 2, 1, "", "HUNER_CELL_LINE_CELL_FINDER"], [1, 2, 1, "", "HUNER_CELL_LINE_CLL"], [1, 2, 1, "", "HUNER_CELL_LINE_GELLUS"], [1, 2, 1, "", "HUNER_CELL_LINE_JNLPBA"], [1, 2, 1, "", "HUNER_CHEBI"], [1, 2, 1, "", "HUNER_CHEMICAL"], [1, 2, 1, "", "HUNER_CHEMICAL_BIOID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_CHEMICAL_BIORED"], [1, 2, 1, "", "HUNER_CHEMICAL_CDR"], [1, 2, 1, "", "HUNER_CHEMICAL_CEMP"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEBI"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEMDNER"], [1, 2, 1, "", "HUNER_CHEMICAL_CPI"], [1, 2, 1, "", "HUNER_CHEMICAL_CRAFT_V4"], [1, 2, 1, "", "HUNER_CHEMICAL_DRUGPROT"], [1, 2, 1, "", "HUNER_CHEMICAL_NLM_CHEM"], [1, 2, 1, "", "HUNER_CHEMICAL_SCAI"], [1, 2, 1, "", "HUNER_CRAFT_V4"], [1, 2, 1, "", "HUNER_DISEASE"], [1, 2, 1, "", "HUNER_DISEASE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_DISEASE_BIORED"], [1, 2, 1, "", "HUNER_DISEASE_CDR"], [1, 2, 1, "", "HUNER_DISEASE_MIRNA"], [1, 2, 1, "", "HUNER_DISEASE_NCBI"], [1, 2, 1, "", "HUNER_DISEASE_PDR"], [1, 2, 1, "", "HUNER_DISEASE_SCAI"], [1, 2, 1, "", "HUNER_DISEASE_VARIOME"], [1, 2, 1, "", "HUNER_GENE"], [1, 2, 1, "", "HUNER_GENE_BC2GM"], [1, 2, 1, "", "HUNER_GENE_BIOID"], [1, 2, 1, "", "HUNER_GENE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_EPI"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_REL"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_GENE_BIORED"], [1, 2, 1, "", "HUNER_GENE_BIO_INFER"], [1, 2, 1, "", "HUNER_GENE_CELL_FINDER"], [1, 2, 1, "", "HUNER_GENE_CHEBI"], [1, 2, 1, "", "HUNER_GENE_CPI"], [1, 2, 1, "", "HUNER_GENE_CRAFT_V4"], [1, 2, 1, "", "HUNER_GENE_DECA"], [1, 2, 1, "", "HUNER_GENE_DRUGPROT"], [1, 2, 1, "", "HUNER_GENE_FSU"], [1, 2, 1, "", "HUNER_GENE_GNORMPLUS"], [1, 2, 1, "", "HUNER_GENE_GPRO"], [1, 2, 1, "", "HUNER_GENE_IEPA"], [1, 2, 1, "", "HUNER_GENE_JNLPBA"], [1, 2, 1, "", "HUNER_GENE_LOCTEXT"], [1, 2, 1, "", "HUNER_GENE_MIRNA"], [1, 2, 1, "", "HUNER_GENE_NLM_GENE"], [1, 2, 1, "", "HUNER_GENE_OSIRIS"], [1, 2, 1, "", "HUNER_GENE_PROGENE"], [1, 2, 1, "", "HUNER_GENE_SETH_CORPUS"], [1, 2, 1, "", "HUNER_GENE_TMVAR_V3"], [1, 2, 1, "", "HUNER_GENE_VARIOME"], [1, 2, 1, "", "HUNER_JNLPBA"], [1, 2, 1, "", "HUNER_LOCTEXT"], [1, 2, 1, "", "HUNER_MIRNA"], [1, 2, 1, "", "HUNER_SPECIES"], [1, 2, 1, "", "HUNER_SPECIES_BIOID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2019_BB"], [1, 2, 1, "", "HUNER_SPECIES_BIORED"], [1, 2, 1, "", "HUNER_SPECIES_CELL_FINDER"], [1, 2, 1, "", "HUNER_SPECIES_CHEBI"], [1, 2, 1, "", "HUNER_SPECIES_CRAFT_V4"], [1, 2, 1, "", "HUNER_SPECIES_LINNEAUS"], [1, 2, 1, "", "HUNER_SPECIES_LOCTEXT"], [1, 2, 1, "", "HUNER_SPECIES_MIRNA"], [1, 2, 1, "", "HUNER_SPECIES_S800"], [1, 2, 1, "", "HUNER_SPECIES_VARIOME"], [1, 2, 1, "", "HunerDataset"], [1, 2, 1, "", "HunerJNLPBA"], [1, 2, 1, "", "HunerMiRNAHelper"], [1, 2, 1, "", "HunerMultiCorpus"], [1, 2, 1, "", "IEPA"], [1, 2, 1, "", "InternalBioNerDataset"], [1, 2, 1, "", "JNLPBA"], [1, 2, 1, "", "KaewphanCorpusHelper"], [1, 2, 1, "", "LINNEAUS"], [1, 2, 1, "", "LOCTEXT"], [1, 2, 1, "", "MIRNA"], [1, 2, 1, "", "NCBI_DISEASE"], [1, 2, 1, "", "OSIRIS"], [1, 2, 1, "", "PDR"], [1, 2, 1, "", "S800"], [1, 2, 1, "", "SCAI_CHEMICALS"], [1, 2, 1, "", "SCAI_DISEASE"], [1, 2, 1, "", "ScaiCorpus"], [1, 2, 1, "", "VARIOME"], [1, 6, 1, "", "bioc_to_internal"], [1, 6, 1, "", "brat_to_internal"], [1, 6, 1, "", "filter_and_map_entities"], [1, 6, 1, "", "filter_nested_entities"], [1, 6, 1, "", "merge_datasets"]], "flair.datasets.biomedical.ANAT_EM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.AZDZ": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.BC2GM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"], [1, 5, 1, "", "parse_test_dataset"], [1, 5, 1, "", "parse_train_dataset"]], "flair.datasets.biomedical.BIGBIO_NER_CORPUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "bin_search_passage"], [1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "to_internal_dataset"]], "flair.datasets.biomedical.BIONLP2013_CG": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIONLP2013_PC": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIOSEMANTICS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BIO_INFER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BioBertHelper": [[1, 5, 1, "", "convert_and_write"], [1, 5, 1, "", "download_corpora"]], "flair.datasets.biomedical.BioNLPCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.CDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CELL_FINDER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare"], [1, 5, 1, "", "read_folder"]], "flair.datasets.biomedical.CEMP": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.CHEBI": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "get_entities"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.CHEMDNER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CLL": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.CRAFT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.CRAFT_V4": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "filter_entities"], [1, 5, 1, "", "parse_corpus"], [1, 5, 1, "", "prepare_splits"]], "flair.datasets.biomedical.CoNLLWriter": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "process_dataset"], [1, 5, 1, "", "write_to_conll"]], "flair.datasets.biomedical.DECA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.DpEntry": [[1, 3, 1, "", "entity_count"], [1, 3, 1, "", "entity_lengths_sum"], [1, 3, 1, "", "last_entity"], [1, 3, 1, "", "position_end"]], "flair.datasets.biomedical.Entity": [[1, 5, 1, "", "contains"], [1, 5, 1, "", "is_before"], [1, 5, 1, "", "overlaps"]], "flair.datasets.biomedical.FSU": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.GELLUS": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.GPRO": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.HUNER_ALL_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_BIONLP2013_CG": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CLL": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEBI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CRAFT_V4": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_DISEASE_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_NCBI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_PDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BC2GM": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIO_INFER": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_DECA": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_FSU": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_GPRO": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_IEPA": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_NLM_GENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_OSIRIS": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_PROGENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_JNLPBA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_LOCTEXT": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_MIRNA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_S800": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerDataset": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerJNLPBA": [[1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "read_file"]], "flair.datasets.biomedical.HunerMiRNAHelper": [[1, 5, 1, "", "get_mirna_subset"]], "flair.datasets.biomedical.IEPA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.JNLPBA": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.KaewphanCorpusHelper": [[1, 5, 1, "", "download_cll_dataset"], [1, 5, 1, "", "download_gellus_dataset"], [1, 5, 1, "", "prepare_and_save_dataset"], [1, 5, 1, "", "read_dataset"]], "flair.datasets.biomedical.LINNEAUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_parse_dataset"]], "flair.datasets.biomedical.LOCTEXT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.MIRNA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "parse_file"]], "flair.datasets.biomedical.NCBI_DISEASE": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"], [1, 5, 1, "", "patch_training_file"]], "flair.datasets.biomedical.OSIRIS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.PDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.S800": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.SCAI_CHEMICALS": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.SCAI_DISEASE": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.ScaiCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.VARIOME": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.document_classification": [[2, 2, 1, "", "AGNEWS"], [2, 2, 1, "", "AMAZON_REVIEWS"], [2, 2, 1, "", "COMMUNICATIVE_FUNCTIONS"], [2, 2, 1, "", "CSVClassificationCorpus"], [2, 2, 1, "", "CSVClassificationDataset"], [2, 2, 1, "", "ClassificationCorpus"], [2, 2, 1, "", "ClassificationDataset"], [2, 2, 1, "", "GERMEVAL_2018_OFFENSIVE_LANGUAGE"], [2, 2, 1, "", "GLUE_COLA"], [2, 2, 1, "", "GLUE_SST2"], [2, 2, 1, "", "GO_EMOTIONS"], [2, 2, 1, "", "IMDB"], [2, 2, 1, "", "NEWSGROUPS"], [2, 2, 1, "", "SENTEVAL_CR"], [2, 2, 1, "", "SENTEVAL_MPQA"], [2, 2, 1, "", "SENTEVAL_MR"], [2, 2, 1, "", "SENTEVAL_SST_BINARY"], [2, 2, 1, "", "SENTEVAL_SST_GRANULAR"], [2, 2, 1, "", "SENTEVAL_SUBJ"], [2, 2, 1, "", "SENTIMENT_140"], [2, 2, 1, "", "STACKOVERFLOW"], [2, 2, 1, "", "TREC_50"], [2, 2, 1, "", "TREC_6"], [2, 2, 1, "", "WASSA_ANGER"], [2, 2, 1, "", "WASSA_FEAR"], [2, 2, 1, "", "WASSA_JOY"], [2, 2, 1, "", "WASSA_SADNESS"], [2, 2, 1, "", "YAHOO_ANSWERS"]], "flair.datasets.document_classification.AGNEWS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.AMAZON_REVIEWS": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.ClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.ClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.GLUE_COLA": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GLUE_SST2": [[2, 3, 1, "", "label_map"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GO_EMOTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.IMDB": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.NEWSGROUPS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_CR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MPQA": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_BINARY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SUBJ": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTIMENT_140": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.STACKOVERFLOW": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_50": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_6": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_ANGER": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_FEAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_JOY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_SADNESS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.YAHOO_ANSWERS": [[2, 5, 1, "", "__init__"]], "flair.datasets.entity_linking": [[3, 2, 1, "", "BIGBIO_EL_BC5CDR_CHEMICAL"], [3, 2, 1, "", "BIGBIO_EL_GNORMPLUS"], [3, 2, 1, "", "BIGBIO_EL_NCBI_DISEASE"], [3, 2, 1, "", "BigBioEntityLinkingCorpus"], [3, 2, 1, "", "CTD_CHEMICALS_DICTIONARY"], [3, 2, 1, "", "CTD_DISEASES_DICTIONARY"], [3, 2, 1, "", "EntityLinkingDictionary"], [3, 2, 1, "", "HunerEntityLinkingDictionary"], [3, 2, 1, "", "InMemoryEntityLinkingDictionary"], [3, 2, 1, "", "NCBI_GENE_HUMAN_DICTIONARY"], [3, 2, 1, "", "NCBI_TAXONOMY_DICTIONARY"], [3, 2, 1, "", "NEL_ENGLISH_AIDA"], [3, 2, 1, "", "NEL_ENGLISH_AQUAINT"], [3, 2, 1, "", "NEL_ENGLISH_IITB"], [3, 2, 1, "", "NEL_ENGLISH_REDDIT"], [3, 2, 1, "", "NEL_ENGLISH_TWEEKI"], [3, 2, 1, "", "NEL_GERMAN_HIPE"], [3, 2, 1, "", "WSD_MASC"], [3, 2, 1, "", "WSD_OMSTI"], [3, 2, 1, "", "WSD_RAGANATO_ALL"], [3, 2, 1, "", "WSD_SEMCOR"], [3, 2, 1, "", "WSD_TRAINOMATIC"], [3, 2, 1, "", "WSD_UFSAC"], [3, 2, 1, "", "WSD_WORDNET_GLOSS_TAGGED"], [3, 2, 1, "", "ZELDA"], [3, 6, 1, "", "determine_tsv_file"], [3, 6, 1, "", "from_ufsac_to_tsv"]], "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_file"]], "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_file"]], "flair.datasets.entity_linking.EntityLinkingDictionary": [[3, 5, 1, "", "__init__"], [3, 4, 1, "", "candidates"], [3, 4, 1, "", "database_name"], [3, 4, 1, "", "text_to_index"], [3, 5, 1, "", "to_in_memory_dictionary"]], "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary": [[3, 5, 1, "", "from_state"], [3, 5, 1, "", "to_state"]], "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY": [[3, 5, 1, "", "_is_invalid_name"], [3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_dictionary"]], "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_dictionary"]], "flair.datasets.entity_linking.NEL_ENGLISH_AIDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_IITB": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT": [[3, 5, 1, "", "__init__"], [3, 5, 1, "", "_fill_annot_array"], [3, 5, 1, "", "_fill_curr_comment"], [3, 5, 1, "", "_text_to_cols"]], "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_GERMAN_HIPE": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_MASC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_OMSTI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_RAGANATO_ALL": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_SEMCOR": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_TRAINOMATIC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_UFSAC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.ZELDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.ocr": [[4, 2, 1, "", "OcrCorpus"], [4, 2, 1, "", "OcrJsonDataset"], [4, 2, 1, "", "SROIE"]], "flair.datasets.ocr.OcrCorpus": [[4, 5, 1, "", "__init__"]], "flair.datasets.ocr.OcrJsonDataset": [[4, 5, 1, "", "__init__"], [4, 5, 1, "", "is_in_memory"]], "flair.datasets.ocr.SROIE": [[4, 5, 1, "", "__init__"]], "flair.datasets.relation_extraction": [[5, 2, 1, "", "RE_ENGLISH_CONLL04"], [5, 2, 1, "", "RE_ENGLISH_DRUGPROT"], [5, 2, 1, "", "RE_ENGLISH_SEMEVAL2010"], [5, 2, 1, "", "RE_ENGLISH_TACRED"], [5, 6, 1, "", "convert_ptb_token"]], "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04": [[5, 5, 1, "", "convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "char_spans_to_token_spans"], [5, 5, 1, "", "drugprot_document_to_tokenlists"], [5, 5, 1, "", "extract_and_convert_to_conllu"], [5, 5, 1, "", "has_overlap"]], "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_TACRED": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.sequence_labeling": [[6, 2, 1, "", "BIOSCOPE"], [6, 2, 1, "", "CONLL_03"], [6, 2, 1, "", "CONLL_03_DUTCH"], [6, 2, 1, "", "CONLL_03_GERMAN"], [6, 2, 1, "", "CONLL_03_SPANISH"], [6, 2, 1, "", "CONLL_2000"], [6, 2, 1, "", "ColumnCorpus"], [6, 2, 1, "", "ColumnDataset"], [6, 2, 1, "", "FEWNERD"], [6, 2, 1, "", "JsonlCorpus"], [6, 2, 1, "", "JsonlDataset"], [6, 2, 1, "", "KEYPHRASE_INSPEC"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2010"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2017"], [6, 2, 1, "", "MASAKHA_POS"], [6, 2, 1, "", "MultiFileColumnCorpus"], [6, 2, 1, "", "MultiFileJsonlCorpus"], [6, 2, 1, "", "NER_ARABIC_ANER"], [6, 2, 1, "", "NER_ARABIC_AQMAR"], [6, 2, 1, "", "NER_BASQUE"], [6, 2, 1, "", "NER_CHINESE_WEIBO"], [6, 2, 1, "", "NER_DANISH_DANE"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_COMPLEX"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_SIMPLE"], [6, 2, 1, "", "NER_ENGLISH_PERSON"], [6, 2, 1, "", "NER_ENGLISH_RESTAURANT"], [6, 2, 1, "", "NER_ENGLISH_SEC_FILLINGS"], [6, 2, 1, "", "NER_ENGLISH_STACKOVERFLOW"], [6, 2, 1, "", "NER_ENGLISH_TWITTER"], [6, 2, 1, "", "NER_ENGLISH_WEBPAGES"], [6, 2, 1, "", "NER_ENGLISH_WIKIGOLD"], [6, 2, 1, "", "NER_ENGLISH_WNUT_2020"], [6, 2, 1, "", "NER_FINNISH"], [6, 2, 1, "", "NER_GERMAN_BIOFID"], [6, 2, 1, "", "NER_GERMAN_EUROPARL"], [6, 2, 1, "", "NER_GERMAN_GERMEVAL"], [6, 2, 1, "", "NER_GERMAN_LEGAL"], [6, 2, 1, "", "NER_GERMAN_MOBIE"], [6, 2, 1, "", "NER_GERMAN_POLITICS"], [6, 2, 1, "", "NER_HIPE_2022"], [6, 2, 1, "", "NER_HUNGARIAN"], [6, 2, 1, "", "NER_ICDAR_EUROPEANA"], [6, 2, 1, "", "NER_ICELANDIC"], [6, 2, 1, "", "NER_JAPANESE"], [6, 2, 1, "", "NER_MASAKHANE"], [6, 2, 1, "", "NER_MULTI_CONER"], [6, 2, 1, "", "NER_MULTI_CONER_V2"], [6, 2, 1, "", "NER_MULTI_WIKIANN"], [6, 2, 1, "", "NER_MULTI_WIKINER"], [6, 2, 1, "", "NER_MULTI_XTREME"], [6, 2, 1, "", "NER_NERMUD"], [6, 2, 1, "", "NER_SWEDISH"], [6, 2, 1, "", "NER_TURKU"], [6, 2, 1, "", "NER_UKRAINIAN"], [6, 2, 1, "", "ONTONOTES"], [6, 2, 1, "", "UP_CHINESE"], [6, 2, 1, "", "UP_ENGLISH"], [6, 2, 1, "", "UP_FINNISH"], [6, 2, 1, "", "UP_FRENCH"], [6, 2, 1, "", "UP_GERMAN"], [6, 2, 1, "", "UP_ITALIAN"], [6, 2, 1, "", "UP_SPANISH"], [6, 2, 1, "", "UP_SPANISH_ANCORA"], [6, 2, 1, "", "WNUT_17"]], "flair.datasets.sequence_labeling.CONLL_03": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_DUTCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_2000": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnDataset": [[6, 3, 1, "", "FEATS"], [6, 3, 1, "", "HEAD"], [6, 3, 1, "", "SPACE_AFTER_KEY"], [6, 5, 1, "", "__init__"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.JsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.JsonlDataset": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_label_to_sentence"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.MASAKHA_POS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileJsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_ANER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB_tags"]], "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HIPE_2022": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HUNGARIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICELANDIC": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_JAPANESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MASAKHANE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_XTREME": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_NERMUD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_SWEDISH": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB2_tags"]], "flair.datasets.sequence_labeling.NER_TURKU": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_UKRAINIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ONTONOTES": [[6, 5, 1, "", "_process_coref_span_annotations_for_word"], [6, 3, 1, "", "archive_url"], [6, 5, 1, "", "dataset_document_iterator"], [6, 5, 1, "", "get_available_domains"], [6, 5, 1, "", "sentence_iterator"]], "flair.datasets.sequence_labeling.UP_CHINESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ENGLISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FINNISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FRENCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ITALIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA": [[6, 5, 1, "", "__init__"]], "flair.datasets.text_image": [[7, 2, 1, "", "FeideggerCorpus"], [7, 2, 1, "", "FeideggerDataset"]], "flair.datasets.text_image.FeideggerDataset": [[7, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text": [[8, 2, 1, "", "DataPairCorpus"], [8, 2, 1, "", "DataPairDataset"], [8, 2, 1, "", "DataTripleCorpus"], [8, 2, 1, "", "DataTripleDataset"], [8, 2, 1, "", "GLUE_MNLI"], [8, 2, 1, "", "GLUE_MRPC"], [8, 2, 1, "", "GLUE_QNLI"], [8, 2, 1, "", "GLUE_QQP"], [8, 2, 1, "", "GLUE_RTE"], [8, 2, 1, "", "GLUE_STSB"], [8, 2, 1, "", "GLUE_WNLI"], [8, 2, 1, "", "OpusParallelCorpus"], [8, 2, 1, "", "ParallelTextCorpus"], [8, 2, 1, "", "ParallelTextDataset"], [8, 2, 1, "", "SUPERGLUE_RTE"], [8, 6, 1, "", "rte_jsonl_to_tsv"]], "flair.datasets.text_text.DataPairCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.DataPairDataset": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.DataTripleCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.DataTripleDataset": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.GLUE_MNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_MRPC": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QQP": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_STSB": [[8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_WNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.OpusParallelCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.ParallelTextCorpus": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.ParallelTextDataset": [[8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.SUPERGLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "jsonl_from_eval_dataset"]], "flair.datasets.treebanks": [[9, 2, 1, "", "UD_AFRIKAANS"], [9, 2, 1, "", "UD_ANCIENT_GREEK"], [9, 2, 1, "", "UD_ARABIC"], [9, 2, 1, "", "UD_ARMENIAN"], [9, 2, 1, "", "UD_BASQUE"], [9, 2, 1, "", "UD_BAVARIAN_MAIBAAM"], [9, 2, 1, "", "UD_BELARUSIAN"], [9, 2, 1, "", "UD_BULGARIAN"], [9, 2, 1, "", "UD_BURYAT"], [9, 2, 1, "", "UD_CATALAN"], [9, 2, 1, "", "UD_CHINESE"], [9, 2, 1, "", "UD_CHINESE_KYOTO"], [9, 2, 1, "", "UD_COPTIC"], [9, 2, 1, "", "UD_CROATIAN"], [9, 2, 1, "", "UD_CZECH"], [9, 2, 1, "", "UD_DANISH"], [9, 2, 1, "", "UD_DUTCH"], [9, 2, 1, "", "UD_ENGLISH"], [9, 2, 1, "", "UD_ESTONIAN"], [9, 2, 1, "", "UD_FAROESE"], [9, 2, 1, "", "UD_FINNISH"], [9, 2, 1, "", "UD_FRENCH"], [9, 2, 1, "", "UD_GALICIAN"], [9, 2, 1, "", "UD_GERMAN"], [9, 2, 1, "", "UD_GERMAN_HDT"], [9, 2, 1, "", "UD_GOTHIC"], [9, 2, 1, "", "UD_GREEK"], [9, 2, 1, "", "UD_HEBREW"], [9, 2, 1, "", "UD_HINDI"], [9, 2, 1, "", "UD_INDONESIAN"], [9, 2, 1, "", "UD_IRISH"], [9, 2, 1, "", "UD_ITALIAN"], [9, 2, 1, "", "UD_JAPANESE"], [9, 2, 1, "", "UD_KAZAKH"], [9, 2, 1, "", "UD_KOREAN"], [9, 2, 1, "", "UD_LATIN"], [9, 2, 1, "", "UD_LATVIAN"], [9, 2, 1, "", "UD_LITHUANIAN"], [9, 2, 1, "", "UD_LIVVI"], [9, 2, 1, "", "UD_MALTESE"], [9, 2, 1, "", "UD_MARATHI"], [9, 2, 1, "", "UD_NAIJA"], [9, 2, 1, "", "UD_NORTH_SAMI"], [9, 2, 1, "", "UD_NORWEGIAN"], [9, 2, 1, "", "UD_OLD_CHURCH_SLAVONIC"], [9, 2, 1, "", "UD_OLD_FRENCH"], [9, 2, 1, "", "UD_PERSIAN"], [9, 2, 1, "", "UD_POLISH"], [9, 2, 1, "", "UD_PORTUGUESE"], [9, 2, 1, "", "UD_ROMANIAN"], [9, 2, 1, "", "UD_RUSSIAN"], [9, 2, 1, "", "UD_SERBIAN"], [9, 2, 1, "", "UD_SLOVAK"], [9, 2, 1, "", "UD_SLOVENIAN"], [9, 2, 1, "", "UD_SPANISH"], [9, 2, 1, "", "UD_SWEDISH"], [9, 2, 1, "", "UD_TURKISH"], [9, 2, 1, "", "UD_UKRAINIAN"], [9, 2, 1, "", "UD_WOLOF"], [9, 2, 1, "", "UniversalDependenciesCorpus"], [9, 2, 1, "", "UniversalDependenciesDataset"]], "flair.datasets.treebanks.UniversalDependenciesCorpus": [[9, 5, 1, "", "__init__"]], "flair.datasets.treebanks.UniversalDependenciesDataset": [[9, 5, 1, "", "__init__"], [9, 5, 1, "", "is_in_memory"]], "flair.embeddings": [[10, 0, 0, "-", "base"], [11, 0, 0, "-", "document"], [12, 0, 0, "-", "image"], [13, 0, 0, "-", "legacy"], [14, 0, 0, "-", "token"], [15, 0, 0, "-", "transformer"]], "flair.embeddings.base": [[10, 2, 1, "", "DocumentEmbeddings"], [10, 2, 1, "", "Embeddings"], [10, 2, 1, "", "ScalarMix"], [10, 2, 1, "", "TokenEmbeddings"], [10, 6, 1, "", "load_embeddings"], [10, 6, 1, "", "register_embeddings"]], "flair.embeddings.base.DocumentEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.base.Embeddings": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "_add_embeddings_internal"], [10, 5, 1, "", "embed"], [10, 4, 1, "", "embedding_length"], [10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 5, 1, "", "from_params"], [10, 5, 1, "", "get_instance_parameters"], [10, 5, 1, "", "get_named_embeddings_dict"], [10, 5, 1, "", "get_names"], [10, 5, 1, "", "load_embedding"], [10, 5, 1, "", "save_embeddings"], [10, 5, 1, "", "to_params"]], "flair.embeddings.base.ScalarMix": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "forward"], [10, 3, 1, "", "training"]], "flair.embeddings.base.TokenEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.document": [[11, 2, 1, "", "DocumentCNNEmbeddings"], [11, 2, 1, "", "DocumentLMEmbeddings"], [11, 2, 1, "", "DocumentPoolEmbeddings"], [11, 2, 1, "", "DocumentRNNEmbeddings"], [11, 2, 1, "", "DocumentTFIDFEmbeddings"], [11, 2, 1, "", "SentenceTransformerDocumentEmbeddings"], [11, 2, 1, "", "TransformerDocumentEmbeddings"]], "flair.embeddings.document.DocumentCNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentLMEmbeddings": [[11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 5, 1, "", "get_names"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentPoolEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "extra_repr"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentRNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentTFIDFEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.SentenceTransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.TransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "create_from_state"], [11, 3, 1, "", "embeddings_name"], [11, 3, 1, "", "name"], [11, 3, 1, "", "onnx_cls"], [11, 3, 1, "", "training"]], "flair.embeddings.image": [[12, 2, 1, "", "ConvTransformNetworkImageEmbeddings"], [12, 2, 1, "", "IdentityImageEmbeddings"], [12, 2, 1, "", "ImageEmbeddings"], [12, 2, 1, "", "NetworkImageEmbeddings"], [12, 2, 1, "", "PrecomputedImageEmbeddings"]], "flair.embeddings.image.ConvTransformNetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "forward"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.IdentityImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.ImageEmbeddings": [[12, 4, 1, "", "embedding_type"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "from_params"], [12, 3, 1, "", "name"], [12, 5, 1, "", "to_params"], [12, 3, 1, "", "training"]], "flair.embeddings.image.NetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.PrecomputedImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.legacy": [[13, 2, 1, "", "CharLMEmbeddings"], [13, 2, 1, "", "DocumentLSTMEmbeddings"], [13, 2, 1, "", "DocumentMeanEmbeddings"], [13, 2, 1, "", "ELMoEmbeddings"]], "flair.embeddings.legacy.CharLMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 5, 1, "", "train"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentLSTMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentMeanEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.ELMoEmbeddings": [[13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 5, 1, "", "extra_repr"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"], [13, 5, 1, "", "use_layers_all"], [13, 5, 1, "", "use_layers_average"], [13, 5, 1, "", "use_layers_top"]], "flair.embeddings.token": [[14, 2, 1, "", "BytePairEmbeddings"], [14, 2, 1, "", "CharacterEmbeddings"], [14, 2, 1, "", "FastTextEmbeddings"], [14, 2, 1, "", "FlairEmbeddings"], [14, 2, 1, "", "HashEmbeddings"], [14, 2, 1, "", "MuseCrosslingualEmbeddings"], [14, 2, 1, "", "NILCEmbeddings"], [14, 2, 1, "", "OneHotEmbeddings"], [14, 2, 1, "", "PooledFlairEmbeddings"], [14, 2, 1, "", "StackedEmbeddings"], [14, 2, 1, "", "TransformerWordEmbeddings"], [14, 2, 1, "", "WordEmbeddings"]], "flair.embeddings.token.BytePairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.CharacterEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FastTextEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FlairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.HashEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 4, 1, "", "num_embeddings"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.MuseCrosslingualEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.NILCEmbeddings": [[14, 5, 1, "", "__init__"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "layer_norm"], [14, 3, 1, "", "name"], [14, 3, 1, "", "training"]], "flair.embeddings.token.OneHotEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_corpus"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.PooledFlairEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.StackedEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "embed"], [14, 4, 1, "", "embedding_length"], [14, 4, 1, "", "embedding_type"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_named_embeddings_dict"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.TransformerWordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "create_from_state"], [14, 3, 1, "", "embeddings_name"], [14, 3, 1, "", "name"], [14, 3, 1, "", "onnx_cls"], [14, 3, 1, "", "training"]], "flair.embeddings.token.WordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_token_index"], [14, 5, 1, "", "get_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "resolve_precomputed_path"], [14, 5, 1, "", "state_dict"], [14, 5, 1, "", "to"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.transformer": [[15, 2, 1, "", "TransformerBaseEmbeddings"], [15, 2, 1, "", "TransformerEmbeddings"], [15, 2, 1, "", "TransformerJitDocumentEmbeddings"], [15, 2, 1, "", "TransformerJitEmbeddings"], [15, 2, 1, "", "TransformerJitWordEmbeddings"], [15, 2, 1, "", "TransformerOnnxDocumentEmbeddings"], [15, 2, 1, "", "TransformerOnnxEmbeddings"], [15, 2, 1, "", "TransformerOnnxWordEmbeddings"], [15, 6, 1, "", "combine_strided_tensors"], [15, 6, 1, "", "document_max_pooling"], [15, 6, 1, "", "document_mean_pooling"], [15, 6, 1, "", "fill_masked_elements"], [15, 6, 1, "", "fill_mean_token_embeddings"], [15, 6, 1, "", "insert_missing_embeddings"], [15, 6, 1, "", "pad_sequence_embeddings"], [15, 6, 1, "", "remove_special_markup"], [15, 6, 1, "", "truncate_hidden_states"]], "flair.embeddings.transformer.TransformerBaseEmbeddings": [[15, 5, 1, "", "create_from_state"], [15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "prepare_tensors"], [15, 5, 1, "", "to_args"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerEmbeddings": [[15, 5, 1, "", "__init__"], [15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_onnx"], [15, 5, 1, "", "forward"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "onnx_cls"], [15, 5, 1, "", "to_params"]], "flair.embeddings.transformer.TransformerJitDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitEmbeddings": [[15, 5, 1, "", "create_from_embedding"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "parameter_to_list"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxEmbeddings": [[15, 5, 1, "", "collect_dynamic_axes"], [15, 5, 1, "", "create_session"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_from_embedding"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "optimize_model"], [15, 5, 1, "", "quantize_model"], [15, 5, 1, "", "remove_session"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.models": [[20, 2, 1, "", "ClusteringModel"], [20, 2, 1, "", "EntityMentionLinker"], [20, 2, 1, "", "FewshotClassifier"], [20, 2, 1, "", "LanguageModel"], [20, 2, 1, "", "Lemmatizer"], [20, 2, 1, "", "MultitaskModel"], [20, 2, 1, "", "PrefixedSequenceTagger"], [20, 2, 1, "", "RegexpTagger"], [20, 2, 1, "", "RelationClassifier"], [20, 2, 1, "", "RelationExtractor"], [20, 2, 1, "", "SequenceTagger"], [20, 2, 1, "", "SpanClassifier"], [20, 2, 1, "", "TARSClassifier"], [20, 2, 1, "", "TARSTagger"], [20, 2, 1, "", "TextClassifier"], [20, 2, 1, "", "TextPairClassifier"], [20, 2, 1, "", "TextPairRegressor"], [20, 2, 1, "", "TextRegressor"], [20, 2, 1, "", "TextTripleClassifier"], [20, 2, 1, "", "TokenClassifier"], [20, 2, 1, "", "WordTagger"]], "flair.models.ClusteringModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_convert_dataset"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "fit"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "save"]], "flair.models.EntityMentionLinker": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "build"], [20, 4, 1, "", "dictionary"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "extract_entities_mentions"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_entity_label_types"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.FewshotClassifier": [[20, 5, 1, "", "_compute_label_similarity_for_current_epoch"], [20, 5, 1, "", "add_and_switch_to_new_task"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_current_label_dictionary"], [20, 5, 1, "", "get_current_label_type"], [20, 5, 1, "", "get_used_tokens"], [20, 5, 1, "", "is_current_task_multi_label"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "list_existing_tasks"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict_zero_shot"], [20, 5, 1, "", "switch_to_task"], [20, 4, 1, "", "tars_embeddings"], [20, 5, 1, "", "train"]], "flair.models.LanguageModel": [[20, 5, 1, "", "calculate_perplexity"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "generate_text"], [20, 5, 1, "", "get_output"], [20, 5, 1, "", "get_representation"], [20, 5, 1, "", "init_hidden"], [20, 5, 1, "", "init_weights"], [20, 5, 1, "", "initialize"], [20, 5, 1, "", "load_checkpoint"], [20, 5, 1, "", "load_language_model"], [20, 5, 1, "", "repackage_hidden"], [20, 5, 1, "", "save"], [20, 5, 1, "", "save_checkpoint"], [20, 5, 1, "", "set_hidden"], [20, 3, 1, "", "training"]], "flair.models.Lemmatizer": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "decode"], [20, 5, 1, "", "encode"], [20, 5, 1, "", "encode_token"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "forward_pass"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "words_to_char_indices"]], "flair.models.MultitaskModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_model_with_state_dict"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "split_batch_to_task_ids"]], "flair.models.PrefixedSequenceTagger": [[20, 5, 1, "", "augment_sentences"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.RegexpTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_label"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "register_labels"], [20, 4, 1, "", "registered_labels"], [20, 5, 1, "", "remove_labels"]], "flair.models.RelationClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_encode_sentence"], [20, 5, 1, "", "_encode_sentence_for_inference"], [20, 5, 1, "", "_encode_sentence_for_training"], [20, 5, 1, "", "_entity_pair_permutations"], [20, 5, 1, "", "_get_data_points_from_sentence"], [20, 5, 1, "", "_valid_entities"], [20, 4, 1, "", "allow_unk_tag"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "transform_corpus"], [20, 5, 1, "", "transform_dataset"], [20, 5, 1, "", "transform_sentence"], [20, 4, 1, "", "zero_tag_value"]], "flair.models.RelationExtractor": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.SequenceTagger": [[20, 5, 1, "", "RNN"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "_all_scores_for_token"], [20, 5, 1, "", "_get_gold_labels"], [20, 5, 1, "", "_get_scores_from_features"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_initial_hidden_state"], [20, 5, 1, "", "_init_loss_weights"], [20, 5, 1, "", "_standard_inference"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "push_to_hub"]], "flair.models.SpanClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "emb_first"], [20, 5, 1, "", "emb_firstAndLast"], [20, 5, 1, "", "emb_last"], [20, 5, 1, "", "emb_mean"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TARSClassifier": [[20, 3, 1, "", "LABEL_MATCH"], [20, 3, 1, "", "LABEL_NO_MATCH"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TARSTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TextClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TextPairClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"]], "flair.models.TextPairRegressor": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"]], "flair.models.TextRegressor": [[20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_labels_and_loss"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.TextTripleClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"]], "flair.models.TokenClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.nn": [[21, 2, 1, "", "Classifier"], [21, 2, 1, "", "DefaultClassifier"], [21, 2, 1, "", "LabelVerbalizerDecoder"], [21, 2, 1, "", "LockedDropout"], [21, 2, 1, "", "Model"], [21, 2, 1, "", "PrototypicalDecoder"], [21, 2, 1, "", "WordDropout"]], "flair.nn.Classifier": [[21, 5, 1, "", "evaluate"], [21, 5, 1, "", "get_used_tokens"], [21, 5, 1, "", "load"], [21, 5, 1, "", "predict"]], "flair.nn.DefaultClassifier": [[21, 5, 1, "", "_filter_data_point"], [21, 5, 1, "", "_get_data_points_for_batch"], [21, 5, 1, "", "_get_data_points_from_sentence"], [21, 5, 1, "", "_get_label_of_datapoint"], [21, 5, 1, "", "forward_loss"], [21, 5, 1, "", "load"], [21, 4, 1, "", "multi_label_threshold"], [21, 5, 1, "", "predict"]], "flair.nn.LabelVerbalizerDecoder": [[21, 5, 1, "", "forward"], [21, 3, 1, "", "label_dictionary"], [21, 3, 1, "", "label_encoder"], [21, 3, 1, "", "training"], [21, 5, 1, "", "verbalize_labels"]], "flair.nn.LockedDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.nn.Model": [[21, 5, 1, "", "_get_state_dict"], [21, 5, 1, "", "_init_model_with_state_dict"], [21, 5, 1, "", "evaluate"], [21, 5, 1, "", "forward_loss"], [21, 4, 1, "", "label_type"], [21, 5, 1, "", "load"], [21, 3, 1, "", "model_card"], [21, 5, 1, "", "print_model_card"], [21, 5, 1, "", "save"]], "flair.nn.PrototypicalDecoder": [[21, 5, 1, "", "forward"], [21, 4, 1, "", "num_prototypes"], [21, 3, 1, "", "training"]], "flair.nn.WordDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.splitter": [[22, 2, 1, "", "NewlineSentenceSplitter"], [22, 2, 1, "", "NoSentenceSplitter"], [22, 2, 1, "", "SciSpacySentenceSplitter"], [22, 2, 1, "", "SegtokSentenceSplitter"], [22, 2, 1, "", "SentenceSplitter"], [22, 2, 1, "", "SpacySentenceSplitter"], [22, 2, 1, "", "TagSentenceSplitter"]], "flair.splitter.NewlineSentenceSplitter": [[22, 4, 1, "", "name"]], "flair.splitter.NoSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SegtokSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SpacySentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.TagSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.tokenization": [[23, 2, 1, "", "JapaneseTokenizer"], [23, 2, 1, "", "SciSpacyTokenizer"], [23, 2, 1, "", "SegtokTokenizer"], [23, 2, 1, "", "SpaceTokenizer"], [23, 2, 1, "", "SpacyTokenizer"], [23, 2, 1, "", "Tokenizer"], [23, 2, 1, "", "TokenizerWrapper"]], "flair.tokenization.JapaneseTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SciSpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SegtokTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpaceTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.Tokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.TokenizerWrapper": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.trainers": [[24, 2, 1, "", "LanguageModelTrainer"], [24, 2, 1, "", "ModelTrainer"], [24, 2, 1, "", "TextCorpus"], [25, 0, 0, "-", "plugins"]], "flair.trainers.LanguageModelTrainer": [[24, 5, 1, "", "_repackage_hidden"], [24, 5, 1, "", "evaluate"], [24, 5, 1, "", "load_checkpoint"], [24, 5, 1, "", "train"]], "flair.trainers.ModelTrainer": [[24, 5, 1, "", "__init__"], [24, 5, 1, "", "_backward"], [24, 5, 1, "", "_initialize_model_card"], [24, 5, 1, "", "check_for_and_delete_previous_best_models"], [24, 5, 1, "", "fine_tune"], [24, 5, 1, "", "get_batch_steps"], [24, 5, 1, "", "reset_training_attributes"], [24, 5, 1, "", "train"], [24, 5, 1, "", "train_custom"], [24, 3, 1, "", "valid_events"]], "flair.trainers.plugins": [[25, 2, 1, "", "AnnealingPlugin"], [25, 2, 1, "", "BasePlugin"], [25, 2, 1, "", "CheckpointPlugin"], [25, 2, 1, "", "ClearmlLoggerPlugin"], [25, 2, 1, "", "LinearSchedulerPlugin"], [25, 2, 1, "", "LogFilePlugin"], [25, 2, 1, "", "LossFilePlugin"], [25, 2, 1, "", "MetricHistoryPlugin"], [25, 2, 1, "", "MetricName"], [25, 2, 1, "", "MetricRecord"], [25, 2, 1, "", "Pluggable"], [25, 2, 1, "", "ReduceTransformerVocabPlugin"], [25, 2, 1, "", "TensorboardLogger"], [25, 2, 1, "", "TrainerPlugin"], [25, 7, 1, "", "TrainingInterrupt"], [25, 2, 1, "", "WeightExtractorPlugin"]], "flair.trainers.plugins.AnnealingPlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "after_setup"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.BasePlugin": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "attach_to"], [25, 5, 1, "", "detach"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "hook"], [25, 5, 1, "", "mark_func_as_hook"], [25, 4, 1, "", "pluggable"]], "flair.trainers.plugins.CheckpointPlugin": [[25, 5, 1, "", "after_training_epoch"], [25, 5, 1, "", "get_state"]], "flair.trainers.plugins.ClearmlLoggerPlugin": [[25, 4, 1, "", "logger"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.LinearSchedulerPlugin": [[25, 5, 1, "", "after_setup"], [25, 5, 1, "", "after_training_batch"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.LogFilePlugin": [[25, 5, 1, "", "close_file_handler"], [25, 5, 1, "", "get_state"]], "flair.trainers.plugins.LossFilePlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricHistoryPlugin": [[25, 5, 1, "", "after_training"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricRecord": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "histogram"], [25, 4, 1, "", "is_histogram"], [25, 4, 1, "", "is_scalar"], [25, 4, 1, "", "is_scalar_list"], [25, 4, 1, "", "is_string"], [25, 5, 1, "", "is_type"], [25, 4, 1, "", "joined_name"], [25, 5, 1, "", "scalar"], [25, 5, 1, "", "scalar_list"], [25, 5, 1, "", "string"]], "flair.trainers.plugins.Pluggable": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "append_plugin"], [25, 5, 1, "", "dispatch"], [25, 4, 1, "", "plugins"], [25, 5, 1, "", "register_hook"], [25, 5, 1, "", "remove_hook"], [25, 3, 1, "", "valid_events"], [25, 5, 1, "", "validate_event"]], "flair.trainers.plugins.ReduceTransformerVocabPlugin": [[25, 5, 1, "", "register_transformer_smaller_training_vocab"], [25, 5, 1, "", "save_model_at_the_end"]], "flair.trainers.plugins.TensorboardLogger": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "_training_finally"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.TrainerPlugin": [[25, 4, 1, "", "corpus"], [25, 4, 1, "", "model"], [25, 4, 1, "", "trainer"]], "flair.trainers.plugins.WeightExtractorPlugin": [[25, 5, 1, "", "after_training_batch"], [25, 5, 1, "", "get_state"]]}, "objtypes": {"0": "py:module", "1": "py:data", "2": "py:class", "3": "py:attribute", "4": "py:property", "5": "py:method", "6": "py:function", "7": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "data", "Python data"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "property", "Python property"], "5": ["py", "method", "Python method"], "6": ["py", "function", "Python function"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"flair": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 33, 48, 50, 58, 60, 61], "dataset": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 59, 60, 61, 62], "base": [0, 10], "biomed": [1, 44, 55, 56, 57], "document_classif": 2, "entity_link": 3, "ocr": 4, "relation_extract": 5, "sequence_label": 6, "text_imag": 7, "text_text": 8, "treebank": 9, "embed": [10, 11, 12, 13, 14, 15, 19, 46, 47, 48, 49, 50, 51, 58, 61], "document": [11, 30, 37, 47, 50], "imag": 12, "legaci": 13, "token": [14, 23, 36, 56], "transform": [15, 47, 51, 61, 62, 63], "data": [17, 44, 62], "model": [20, 42, 43, 44, 45, 51, 52, 54, 56, 57, 58, 61, 62, 63, 64], "task": [20, 50], "exampl": [20, 35, 36, 37, 38, 39, 47, 55, 58], "architectur": 20, "nn": 21, "splitter": 22, "trainer": [24, 25, 58], "plugin": 25, "api": 26, "doc": [26, 30], "contribut": 27, "local": [28, 30], "develop": 28, "setup": 28, "test": 28, "code": 28, "format": [28, 59], "make": 29, "pull": 29, "request": [29, 31], "git": 29, "commit": 29, "guidelin": 29, "updat": 30, "what": [30, 36], "i": [30, 36], "good": [30, 31], "tutori": [30, 34, 41, 49, 52, 53, 54, 56, 57, 64], "docstr": 30, "build": 30, "write": 31, "issu": 31, "type": [31, 50, 57, 58, 60], "bug": 31, "report": 31, "featur": 31, "enhanc": 31, "question": 31, "glossari": 32, "quick": [35, 55], "start": [35, 55], "requir": 35, "instal": 35, "1": [35, 36, 37, 38, 41, 47, 55, 56, 58], "tag": [35, 37, 40, 41, 42, 43, 44, 45, 50, 56], "entiti": [35, 37, 38, 44, 54, 55, 57, 61, 62], "text": [35, 37, 44, 56, 59, 63], "2": [35, 36, 37, 38, 47, 54, 55, 58, 64], "detect": [35, 42, 62], "sentiment": [35, 45], "summari": [35, 58], "basic": [36, 41], "sentenc": [36, 37, 44, 51], "iter": 36, "over": 36, "directli": 36, "access": 36, "label": [36, 52, 58, 60], "whole": [36, 40], "multipl": [36, 37, 57], "inform": 36, "each": [36, 39], "link": [37, 38, 52, 54], "singl": [37, 57], "us": [38, 56], "creat": [38, 58, 60], "mention": [38, 62], "linker": [38, 62], "print": 38, "output": 38, "consol": 38, "structur": 38, "handl": 38, "predict": [38, 39, 52, 58], "how": [39, 40, 47, 58, 59, 60], "work": [39, 56, 58], "run": 39, "get": 39, "valu": 39, "corpu": [40, 58, 60], "other": [42, 50, 55, 60], "thing": 42, "semant": 42, "frame": 42, "syntact": 42, "chunk": 42, "relat": 42, "list": [42, 43, 44, 45], "part": [43, 58, 61], "speech": [43, 58, 61], "languag": 43, "specif": 43, "po": 43, "english": [43, 44], "german": [43, 44], "ukrainian": 43, "arab": [43, 44], "univers": 43, "upo": 43, "our": [44, 45], "standard": [44, 45], "best": 44, "non": 44, "an": [44, 62], "18": 44, "class": 44, "ner": [44, 55, 57, 61], "fast": 45, "classic": 46, "word": [46, 47, 51], "stack": 47, "recommend": 48, "usag": 48, "pool": [48, 50, 51], "3": [49, 57, 58], "One": 50, "hot": 50, "vocabulari": 50, "size": 50, "dimension": 50, "byte": 50, "pair": 50, "oper": [50, 51], "fine": [50, 51, 65], "tune": [50, 65], "mode": 50, "rnn": 50, "need": 50, "train": [50, 52, 54, 56, 57, 58, 61, 62, 63, 64, 65], "argument": 51, "layer": 51, "mean": 51, "tuneabl": 51, "hunflair2": [52, 53, 54, 55, 56, 57], "4": [52, 58], "custom": [52, 59], "dictionari": [52, 58, 60], "pre": [52, 54, 56], "overview": [54, 55], "nen": 55, "comparison": 55, "extract": 55, "tool": 55, "cite": 55, "longer": 56, "from": [57, 59], "scratch": 57, "refer": 57, "tagger": [58, 61], "step": 58, "walkthrough": 58, "load": [58, 59, 60, 62], "choos": 58, "initi": 58, "5": 58, "6": 58, "7": 58, "8": 58, "columncorpu": [59, 62], "read": 59, "classif": [59, 63], "simpl": 59, "csv": 59, "file": 59, "fasttext": 59, "prepar": 60, "The": 60, "object": 60, "helper": 60, "function": 60, "corpora": 60, "multicorpu": 60, "includ": 60, "sequenc": 61, "name": 61, "recognit": 61, "multi": 61, "span": 62, "classifi": [62, 63], "nel": 62, "construct": 62, "memori": 62, "combin": 62, "multitask": 62, "align": 62, "v": 65}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 58}, "alltitles": {"flair.datasets.base": [[0, "module-flair.datasets.base"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "flair.embeddings.legacy": [[13, "flair-embeddings-legacy"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "flair": [[16, "module-flair"], [33, "flair"]], "flair.data": [[17, "module-flair.data"]], "flair.datasets": [[18, "flair-datasets"]], "flair.embeddings": [[19, "flair-embeddings"]], "flair.models": [[20, "module-flair.models"]], "Task": [[20, "task"]], "Example:": [[20, "example"]], "Architecture": [[20, "architecture"]], "flair.nn": [[21, "module-flair.nn"]], "flair.splitter": [[22, "module-flair.splitter"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "flair.trainers": [[24, "module-flair.trainers"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "API Docs": [[26, "api-docs"]], "Contributing": [[27, "contributing"]], "Local Development": [[28, "local-development"]], "Setup": [[28, "setup"]], "Tests": [[28, "tests"]], "Code Formatting": [[28, "code-formatting"]], "Making a pull request": [[29, "making-a-pull-request"]], "Git Commit Guidelines": [[29, "git-commit-guidelines"]], "Updating documentation": [[30, "updating-documentation"]], "What is good documentation?": [[30, "what-is-good-documentation"]], "Tutorials": [[30, "tutorials"], [34, "tutorials"]], "Docstrings": [[30, "docstrings"]], "Building the local docs": [[30, "building-the-local-docs"]], "Writing a good issue": [[31, "writing-a-good-issue"]], "Issue types": [[31, "issue-types"]], "Bug Report": [[31, "bug-report"]], "Feature/Enhancement request": [[31, "feature-enhancement-request"]], "Question": [[31, "question"]], "Glossary": [[32, "glossary"]], "Quick Start": [[35, "quick-start"], [55, "quick-start"]], "Requirements and Installation": [[35, "requirements-and-installation"]], "Example 1: Tag Entities in Text": [[35, "example-1-tag-entities-in-text"]], "Example 2: Detect Sentiment": [[35, "example-2-detect-sentiment"]], "Summary": [[35, "summary"], [58, "summary"]], "Basics": [[36, "basics"]], "What is a Sentence": [[36, "what-is-a-sentence"]], "Iterating over the tokens in a Sentence": [[36, "iterating-over-the-tokens-in-a-sentence"]], "Directly accessing a token": [[36, "directly-accessing-a-token"]], "Tokenization": [[36, "tokenization"]], "What is a Label": [[36, "what-is-a-label"]], "Example 1: Labeling a token in a sentence": [[36, "example-1-labeling-a-token-in-a-sentence"]], "Example 2: Labeling a whole sentence": [[36, "example-2-labeling-a-whole-sentence"]], "Multiple labels": [[36, "multiple-labels"]], "Accessing labels": [[36, "accessing-labels"]], "Information for each label": [[36, "information-for-each-label"]], "Tagging and linking entities": [[37, "tagging-and-linking-entities"]], "Example 1: Entity linking on a single sentence\u200b": [[37, "example-1-entity-linking-on-a-single-sentence"]], "Example 2: Entity linking on a text document (multiple sentences)": [[37, "example-2-entity-linking-on-a-text-document-multiple-sentences"]], "Using and creating entity mention linker": [[38, "using-and-creating-entity-mention-linker"]], "Example 1: Printing Entity linking outputs to console": [[38, "example-1-printing-entity-linking-outputs-to-console"]], "Example 2: Structured handling of predictions": [[38, "example-2-structured-handling-of-predictions"]], "How predictions work": [[39, "how-predictions-work"]], "Running example": [[39, "running-example"]], "Getting the predictions": [[39, "getting-the-predictions"]], "Values for each prediction": [[39, "values-for-each-prediction"]], "How to tag a whole corpus": [[40, "how-to-tag-a-whole-corpus"]], "Tutorial 1: Basic Tagging": [[41, "tutorial-1-basic-tagging"]], "Tagging other things": [[42, "tagging-other-things"]], "Semantic Frame Detection": [[42, "semantic-frame-detection"]], "Syntactic Chunking": [[42, "syntactic-chunking"]], "Tagging Relations": [[42, "tagging-relations"]], "List of Other Models": [[42, "list-of-other-models"]], "Tagging parts-of-speech": [[43, "tagging-parts-of-speech"]], "Language-specific parts-of-speech (PoS)": [[43, "language-specific-parts-of-speech-pos"]], "\u2026 in English": [[43, "in-english"]], "\u2026 in German": [[43, "in-german"]], "\u2026 in Ukrainian": [[43, "in-ukrainian"]], "\u2026 in Arabic": [[43, "in-arabic"]], "Tagging universal parts-of-speech (uPoS)\u200b": [[43, "tagging-universal-parts-of-speech-upos"]], "List of POS Models": [[43, "list-of-pos-models"]], "Tagging entities": [[44, "tagging-entities"]], "Tagging entities with our standard model\u200b": [[44, "tagging-entities-with-our-standard-model"]], "Tagging entities with our best model\u200b": [[44, "tagging-entities-with-our-best-model"]], "Tagging entities in non-English text": [[44, "tagging-entities-in-non-english-text"]], "Tagging a German sentence": [[44, "tagging-a-german-sentence"]], "Tagging an Arabic sentence": [[44, "tagging-an-arabic-sentence"]], "Tagging Entities with 18 Classes": [[44, "tagging-entities-with-18-classes"]], "Biomedical Data": [[44, "biomedical-data"]], "List of NER Models": [[44, "list-of-ner-models"]], "Tagging sentiment": [[45, "tagging-sentiment"]], "Tagging sentiment with our standard model\u200b": [[45, "tagging-sentiment-with-our-standard-model"]], "Tagging sentiment with our fast model": [[45, "tagging-sentiment-with-our-fast-model"]], "List of Sentiment Models": [[45, "list-of-sentiment-models"]], "Classic Word Embeddings": [[46, "classic-word-embeddings"]], "Embeddings": [[47, "embeddings"]], "Example 1: Embeddings Words with Transformers": [[47, "example-1-embeddings-words-with-transformers"]], "Example 2: Embeddings Documents with Transformers": [[47, "example-2-embeddings-documents-with-transformers"]], "How to Stack Embeddings": [[47, "how-to-stack-embeddings"]], "Flair embeddings": [[48, "flair-embeddings"]], "Recommended Flair usage": [[48, "recommended-flair-usage"]], "Pooled Flair embeddings": [[48, "pooled-flair-embeddings"]], "Tutorial 3: Embeddings": [[49, "tutorial-3-embeddings"]], "Other embeddings in Flair": [[50, "other-embeddings-in-flair"]], "One-Hot Embeddings": [[50, "one-hot-embeddings"]], "Vocabulary size": [[50, "vocabulary-size"]], "Embedding dimensionality": [[50, "embedding-dimensionality"]], "Embedding other tags": [[50, "embedding-other-tags"]], "Byte Pair Embeddings": [[50, "byte-pair-embeddings"]], "Document Pool Embeddings": [[50, "document-pool-embeddings"]], "Pooling operation": [[50, "pooling-operation"], [51, "pooling-operation"]], "Fine-tune mode": [[50, "fine-tune-mode"]], "Document RNN Embeddings": [[50, "document-rnn-embeddings"]], "RNN type": [[50, "rnn-type"]], "Need to be trained on a task": [[50, "need-to-be-trained-on-a-task"]], "Transformer embeddings": [[51, "transformer-embeddings"]], "Embeddings words": [[51, "embeddings-words"]], "Embeddings sentences": [[51, "embeddings-sentences"]], "Arguments": [[51, "arguments"]], "Layers": [[51, "layers"]], "Layer mean": [[51, "layer-mean"]], "Fine-tuneable or not": [[51, "fine-tuneable-or-not"]], "Models": [[51, "models"]], "HunFlair2 Tutorial 4: Customizing linking models": [[52, "hunflair2-tutorial-4-customizing-linking-models"]], "Customize dictionary": [[52, "customize-dictionary"]], "Custom pre-trained model": [[52, "custom-pre-trained-model"]], "Customizing Prediction Labels": [[52, "customizing-prediction-labels"]], "Tutorial: HunFlair2": [[53, "tutorial-hunflair2"]], "HunFlair2 - Tutorial 2: Entity Linking": [[54, "hunflair2-tutorial-2-entity-linking"]], "Linking with pre-trained HunFlair2 Models": [[54, "linking-with-pre-trained-hunflair2-models"]], "Overview of pre-trained Entity Linking Models": [[54, "overview-of-pre-trained-entity-linking-models"]], "HunFlair2 - Overview": [[55, "hunflair2-overview"]], "Example 1: Biomedical NER": [[55, "example-1-biomedical-ner"]], "Example 2: Biomedical NEN": [[55, "example-2-biomedical-nen"]], "Comparison to other biomedical entity extraction tools": [[55, "comparison-to-other-biomedical-entity-extraction-tools"]], "Citing HunFlair2": [[55, "citing-hunflair2"]], "HunFlair2 - Tutorial 1: Tagging": [[56, "hunflair2-tutorial-1-tagging"]], "Tagging with Pre-trained HunFlair2-Models": [[56, "tagging-with-pre-trained-hunflair2-models"]], "Using a Biomedical Tokenizer": [[56, "using-a-biomedical-tokenizer"]], "Working with longer Texts": [[56, "working-with-longer-texts"]], "HunFlair2 Tutorial 3: Training NER models": [[57, "hunflair2-tutorial-3-training-ner-models"]], "Train a biomedical NER model from scratch: single entity type": [[57, "train-a-biomedical-ner-model-from-scratch-single-entity-type"]], "Train a biomedical NER model: multiple entity types": [[57, "train-a-biomedical-ner-model-multiple-entity-types"]], "Training HunFlair2 from scratch": [[57, "training-hunflair2-from-scratch"]], "References": [[57, "references"]], "How model training works in Flair": [[58, "how-model-training-works-in-flair"]], "Example: Training a Part-of-Speech Tagger": [[58, "example-training-a-part-of-speech-tagger"]], "Step-by-step walkthrough": [[58, "step-by-step-walkthrough"]], "Step 1: Load a Corpus": [[58, "step-1-load-a-corpus"]], "Step 2: Choose the label type": [[58, "step-2-choose-the-label-type"]], "Step 3: Creating a label dictionary": [[58, "step-3-creating-a-label-dictionary"]], "Step 4: Initialize embeddings": [[58, "step-4-initialize-embeddings"]], "Step 5: Initialize the Model": [[58, "step-5-initialize-the-model"]], "Step 6: Initialize the Trainer": [[58, "step-6-initialize-the-trainer"]], "Step 7: Train": [[58, "step-7-train"]], "Step 8: Predict": [[58, "step-8-predict"]], "How to load a custom dataset": [[59, "how-to-load-a-custom-dataset"]], "loading a ColumnCorpus": [[59, "loading-a-columncorpus"]], "Reading a text classification dataset": [[59, "reading-a-text-classification-dataset"]], "Load from simple CSV file": [[59, "load-from-simple-csv-file"]], "FastText format": [[59, "fasttext-format"]], "How to load a prepared dataset": [[60, "how-to-load-a-prepared-dataset"]], "The Corpus Object": [[60, "the-corpus-object"]], "Helper functions": [[60, "helper-functions"]], "Creating label dictionaries": [[60, "creating-label-dictionaries"]], "Dictionaries for other label types": [[60, "dictionaries-for-other-label-types"]], "Dictionaries for other corpora types": [[60, "dictionaries-for-other-corpora-types"]], "The MultiCorpus Object": [[60, "the-multicorpus-object"]], "Datasets included in Flair": [[60, "datasets-included-in-flair"]], "Train a sequence tagger": [[61, "train-a-sequence-tagger"]], "Training a named entity recognition (NER) model with transformers": [[61, "training-a-named-entity-recognition-ner-model-with-transformers"]], "Training a named entity recognition (NER) model with Flair embeddings": [[61, "training-a-named-entity-recognition-ner-model-with-flair-embeddings"]], "Training a part-of-speech tagger": [[61, "training-a-part-of-speech-tagger"]], "Multi-dataset training": [[61, "multi-dataset-training"]], "Train a span classifier": [[62, "train-a-span-classifier"]], "Training an entity linker (NEL) model with transformers": [[62, "training-an-entity-linker-nel-model-with-transformers"]], "Loading a ColumnCorpus": [[62, "loading-a-columncorpus"]], "constructing a dataset in memory": [[62, "constructing-a-dataset-in-memory"]], "Combining NEL with Mention Detection": [[62, "combining-nel-with-mention-detection"]], "Multitask with aligned training data": [[62, "multitask-with-aligned-training-data"]], "Train a text classifier": [[63, "train-a-text-classifier"]], "Training a text classification model with transformers": [[63, "training-a-text-classification-model-with-transformers"]], "Tutorial 2: Training models": [[64, "tutorial-2-training-models"]], "Training vs fine-tuning": [[65, "training-vs-fine-tuning"]], "Fine-Tuning": [[65, "fine-tuning"]], "Training": [[65, "training"]]}, "indexentries": {"dataloader (class in flair.datasets.base)": [[0, "flair.datasets.base.DataLoader"]], "flairdatapointdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.FlairDatapointDataset"]], "mongodataset (class in flair.datasets.base)": [[0, "flair.datasets.base.MongoDataset"]], "sentencedataset (class in flair.datasets.base)": [[0, "flair.datasets.base.SentenceDataset"]], "stringdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.StringDataset"]], "__init__() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.__init__"]], "__init__() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.__init__"]], "__init__() (flair.datasets.base.sentencedataset method)": [[0, "flair.datasets.base.SentenceDataset.__init__"]], "__init__() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.__init__"]], "batch_size (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.batch_size"]], "dataset (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.dataset"]], "drop_last (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.drop_last"]], "find_train_dev_test_files() (in module flair.datasets.base)": [[0, "flair.datasets.base.find_train_dev_test_files"]], "flair.datasets.base": [[0, "module-flair.datasets.base"]], "is_in_memory() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.is_in_memory"]], "module": [[0, "module-flair.datasets.base"], [1, "module-flair.datasets.biomedical"], [2, "module-flair.datasets.document_classification"], [3, "module-flair.datasets.entity_linking"], [4, "module-flair.datasets.ocr"], [5, "module-flair.datasets.relation_extraction"], [6, "module-flair.datasets.sequence_labeling"], [7, "module-flair.datasets.text_image"], [8, "module-flair.datasets.text_text"], [9, "module-flair.datasets.treebanks"], [10, "module-flair.embeddings.base"], [11, "module-flair.embeddings.document"], [12, "module-flair.embeddings.image"], [13, "module-flair.embeddings.legacy"], [14, "module-flair.embeddings.token"], [15, "module-flair.embeddings.transformer"], [16, "module-flair"], [17, "module-flair.data"], [20, "module-flair.models"], [21, "module-flair.nn"], [22, "module-flair.splitter"], [23, "module-flair.tokenization"], [24, "module-flair.trainers"], [25, "module-flair.trainers.plugins"]], "num_workers (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.num_workers"]], "pin_memory (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory"]], "pin_memory_device (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory_device"]], "prefetch_factor (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.prefetch_factor"]], "sampler (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.sampler"]], "timeout (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.timeout"]], "anat_em (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ANAT_EM"]], "azdz (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.AZDZ"]], "bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BC2GM"]], "bigbio_ner_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS"]], "biobert_chemical_bc4chemd (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC4CHEMD"]], "biobert_chemical_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC5CDR"]], "biobert_disease_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_BC5CDR"]], "biobert_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_NCBI"]], "biobert_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_BC2GM"]], "biobert_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_JNLPBA"]], "biobert_species_linnaeus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_LINNAEUS"]], "biobert_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_S800"]], "bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_CG"]], "bionlp2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_PC"]], "biosemantics (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOSEMANTICS"]], "bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIO_INFER"]], "bioberthelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioBertHelper"]], "bionlpcorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioNLPCorpus"]], "cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CDR"]], "cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CELL_FINDER"]], "cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CEMP"]], "chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEBI"]], "chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEMDNER"]], "cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CLL"]], "craft (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT"]], "craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT_V4"]], "conllwriter (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CoNLLWriter"]], "deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DECA"]], "dpentry (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DpEntry"]], "entity (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.Entity"]], "fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.FSU"]], "gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GELLUS"]], "gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GPRO"]], "huner_all_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID"]], "huner_all_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP2013_CG"]], "huner_all_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID"]], "huner_all_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC"]], "huner_all_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED"]], "huner_all_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR"]], "huner_all_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER"]], "huner_all_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CHEBI"]], "huner_all_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI"]], "huner_all_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CRAFT_V4"]], "huner_all_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT"]], "huner_all_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_JNLPBA"]], "huner_all_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_LOCTEXT"]], "huner_all_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_MIRNA"]], "huner_all_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI"]], "huner_all_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME"]], "huner_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG"]], "huner_cell_line (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE"]], "huner_cell_line_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID"]], "huner_cell_line_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED"]], "huner_cell_line_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER"]], "huner_cell_line_cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL"]], "huner_cell_line_gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS"]], "huner_cell_line_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA"]], "huner_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEBI"]], "huner_chemical (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL"]], "huner_chemical_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID"]], "huner_chemical_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG"]], "huner_chemical_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID"]], "huner_chemical_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC"]], "huner_chemical_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED"]], "huner_chemical_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR"]], "huner_chemical_cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP"]], "huner_chemical_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI"]], "huner_chemical_chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER"]], "huner_chemical_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI"]], "huner_chemical_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4"]], "huner_chemical_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT"]], "huner_chemical_nlm_chem (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM"]], "huner_chemical_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI"]], "huner_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4"]], "huner_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE"]], "huner_disease_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG"]], "huner_disease_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED"]], "huner_disease_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR"]], "huner_disease_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA"]], "huner_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI"]], "huner_disease_pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR"]], "huner_disease_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI"]], "huner_disease_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME"]], "huner_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE"]], "huner_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM"]], "huner_gene_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID"]], "huner_gene_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG"]], "huner_gene_bionlp_st_2011_epi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI"]], "huner_gene_bionlp_st_2011_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE"]], "huner_gene_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID"]], "huner_gene_bionlp_st_2011_rel (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL"]], "huner_gene_bionlp_st_2013_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE"]], "huner_gene_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC"]], "huner_gene_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED"]], "huner_gene_bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER"]], "huner_gene_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER"]], "huner_gene_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CHEBI"]], "huner_gene_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI"]], "huner_gene_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4"]], "huner_gene_deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA"]], "huner_gene_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT"]], "huner_gene_fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU"]], "huner_gene_gnormplus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS"]], "huner_gene_gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO"]], "huner_gene_iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA"]], "huner_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA"]], "huner_gene_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_LOCTEXT"]], "huner_gene_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA"]], "huner_gene_nlm_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE"]], "huner_gene_osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS"]], "huner_gene_progene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE"]], "huner_gene_seth_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS"]], "huner_gene_tmvar_v3 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3"]], "huner_gene_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME"]], "huner_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA"]], "huner_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT"]], "huner_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_MIRNA"]], "huner_species (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES"]], "huner_species_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID"]], "huner_species_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG"]], "huner_species_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID"]], "huner_species_bionlp_st_2019_bb (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB"]], "huner_species_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED"]], "huner_species_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER"]], "huner_species_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CHEBI"]], "huner_species_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4"]], "huner_species_linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS"]], "huner_species_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT"]], "huner_species_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA"]], "huner_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800"]], "huner_species_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME"]], "hunerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerDataset"]], "hunerjnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerJNLPBA"]], "hunermirnahelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper"]], "hunermulticorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMultiCorpus"]], "iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.IEPA"]], "internalbionerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.InternalBioNerDataset"]], "jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.JNLPBA"]], "kaewphancorpushelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper"]], "linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LINNEAUS"]], "loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LOCTEXT"]], "mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.MIRNA"]], "ncbi_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.NCBI_DISEASE"]], "osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.OSIRIS"]], "pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.PDR"]], "s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.S800"]], "scai_chemicals (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS"]], "scai_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_DISEASE"]], "scaicorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ScaiCorpus"]], "variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.VARIOME"]], "__init__() (flair.datasets.biomedical.anat_em method)": [[1, "flair.datasets.biomedical.ANAT_EM.__init__"]], "__init__() (flair.datasets.biomedical.azdz method)": [[1, "flair.datasets.biomedical.AZDZ.__init__"]], "__init__() (flair.datasets.biomedical.bc2gm method)": [[1, "flair.datasets.biomedical.BC2GM.__init__"]], "__init__() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.__init__"]], "__init__() (flair.datasets.biomedical.biosemantics method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.__init__"]], "__init__() (flair.datasets.biomedical.bio_infer method)": [[1, "flair.datasets.biomedical.BIO_INFER.__init__"]], "__init__() (flair.datasets.biomedical.bionlpcorpus method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.__init__"]], "__init__() (flair.datasets.biomedical.cdr method)": [[1, "flair.datasets.biomedical.CDR.__init__"]], "__init__() (flair.datasets.biomedical.cell_finder method)": [[1, "flair.datasets.biomedical.CELL_FINDER.__init__"]], "__init__() (flair.datasets.biomedical.cemp method)": [[1, "flair.datasets.biomedical.CEMP.__init__"]], "__init__() (flair.datasets.biomedical.chebi method)": [[1, "flair.datasets.biomedical.CHEBI.__init__"]], "__init__() (flair.datasets.biomedical.chemdner method)": [[1, "flair.datasets.biomedical.CHEMDNER.__init__"]], "__init__() (flair.datasets.biomedical.cll method)": [[1, "flair.datasets.biomedical.CLL.__init__"]], "__init__() (flair.datasets.biomedical.craft method)": [[1, "flair.datasets.biomedical.CRAFT.__init__"]], "__init__() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.__init__"]], "__init__() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.__init__"]], "__init__() (flair.datasets.biomedical.deca method)": [[1, "flair.datasets.biomedical.DECA.__init__"]], "__init__() (flair.datasets.biomedical.fsu method)": [[1, "flair.datasets.biomedical.FSU.__init__"]], "__init__() (flair.datasets.biomedical.gellus method)": [[1, "flair.datasets.biomedical.GELLUS.__init__"]], "__init__() (flair.datasets.biomedical.gpro method)": [[1, "flair.datasets.biomedical.GPRO.__init__"]], "__init__() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.__init__"]], "__init__() (flair.datasets.biomedical.iepa method)": [[1, "flair.datasets.biomedical.IEPA.__init__"]], "__init__() (flair.datasets.biomedical.jnlpba method)": [[1, "flair.datasets.biomedical.JNLPBA.__init__"]], "__init__() (flair.datasets.biomedical.linneaus method)": [[1, "flair.datasets.biomedical.LINNEAUS.__init__"]], "__init__() (flair.datasets.biomedical.loctext method)": [[1, "flair.datasets.biomedical.LOCTEXT.__init__"]], "__init__() (flair.datasets.biomedical.mirna method)": [[1, "flair.datasets.biomedical.MIRNA.__init__"]], "__init__() (flair.datasets.biomedical.ncbi_disease method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.__init__"]], "__init__() (flair.datasets.biomedical.osiris method)": [[1, "flair.datasets.biomedical.OSIRIS.__init__"]], "__init__() (flair.datasets.biomedical.pdr method)": [[1, "flair.datasets.biomedical.PDR.__init__"]], "__init__() (flair.datasets.biomedical.s800 method)": [[1, "flair.datasets.biomedical.S800.__init__"]], "__init__() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.__init__"]], "__init__() (flair.datasets.biomedical.variome method)": [[1, "flair.datasets.biomedical.VARIOME.__init__"]], "bin_search_passage() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.bin_search_passage"]], "bioc_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.bioc_to_internal"]], "brat_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.brat_to_internal"]], "build_corpus_directory_name() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bioid method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_biored method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_cpi method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.build_corpus_directory_name"]], "contains() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.contains"]], "convert_and_write() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.convert_and_write"]], "download_and_parse_dataset() (flair.datasets.biomedical.linneaus static method)": [[1, "flair.datasets.biomedical.LINNEAUS.download_and_parse_dataset"]], "download_and_prepare() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.download_and_prepare"]], "download_and_prepare_test() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_test"]], "download_and_prepare_test() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_test"]], "download_and_prepare_train() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_train"]], "download_and_prepare_train() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_train"]], "download_cll_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_cll_dataset"]], "download_corpora() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.download_corpora"]], "download_corpus() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.download_corpus"]], "download_corpus() (flair.datasets.biomedical.azdz class method)": [[1, "flair.datasets.biomedical.AZDZ.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.BIONLP2013_CG.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_pc static method)": [[1, "flair.datasets.biomedical.BIONLP2013_PC.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft class method)": [[1, "flair.datasets.biomedical.CRAFT.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft_v4 class method)": [[1, "flair.datasets.biomedical.CRAFT_V4.download_corpus"]], "download_corpus() (flair.datasets.biomedical.deca class method)": [[1, "flair.datasets.biomedical.DECA.download_corpus"]], "download_corpus() (flair.datasets.biomedical.fsu class method)": [[1, "flair.datasets.biomedical.FSU.download_corpus"]], "download_corpus() (flair.datasets.biomedical.ncbi_disease class method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.pdr class method)": [[1, "flair.datasets.biomedical.PDR.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_chemicals method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_disease method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.download_corpus"]], "download_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.download_dataset"]], "download_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.cdr static method)": [[1, "flair.datasets.biomedical.CDR.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chemdner static method)": [[1, "flair.datasets.biomedical.CHEMDNER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.iepa static method)": [[1, "flair.datasets.biomedical.IEPA.download_dataset"]], "download_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.download_dataset"]], "download_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.download_dataset"]], "download_dataset() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.download_dataset"]], "download_dev_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_dev_corpus"]], "download_dev_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_dev_corpus"]], "download_gellus_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_gellus_dataset"]], "download_train_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_train_corpus"]], "download_train_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_train_corpus"]], "entity_count (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_count"]], "entity_lengths_sum (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_lengths_sum"]], "filter_and_map_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_and_map_entities"]], "filter_entities() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.filter_entities"]], "filter_nested_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_nested_entities"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_corpus_sentence_splitter"]], "get_entities() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.get_entities"]], "get_entity_type_mapping() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bioid method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_biored method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cdr method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cpi method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_scai method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_variome method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chebi method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cdr method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cemp method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_scai method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_cdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_ncbi method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_pdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_scai method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_variome method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bio_infer method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_deca method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_gpro method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_osiris method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_variome method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_loctext method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_linneaus method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_s800 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_variome method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.get_entity_type_mapping"]], "get_mirna_subset() (flair.datasets.biomedical.hunermirnahelper static method)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper.get_mirna_subset"]], "get_subset() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_subset"]], "get_subset() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_subset"]], "is_before() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.is_before"]], "last_entity (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.last_entity"]], "merge_datasets() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.merge_datasets"]], "overlaps() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.overlaps"]], "parse_corpus() (flair.datasets.biomedical.azdz static method)": [[1, "flair.datasets.biomedical.AZDZ.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft static method)": [[1, "flair.datasets.biomedical.CRAFT.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.deca static method)": [[1, "flair.datasets.biomedical.DECA.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.fsu static method)": [[1, "flair.datasets.biomedical.FSU.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.parse_corpus"]], "parse_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.iepa class method)": [[1, "flair.datasets.biomedical.IEPA.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.parse_dataset"]], "parse_file() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.parse_file"]], "parse_input_file() (flair.datasets.biomedical.cemp static method)": [[1, "flair.datasets.biomedical.CEMP.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.gpro static method)": [[1, "flair.datasets.biomedical.GPRO.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.scaicorpus static method)": [[1, "flair.datasets.biomedical.ScaiCorpus.parse_input_file"]], "parse_input_files() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.parse_input_files"]], "parse_input_files() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.parse_input_files"]], "parse_test_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_test_dataset"]], "parse_train_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_train_dataset"]], "patch_training_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.patch_training_file"]], "perform_corpus_download() (flair.datasets.biomedical.scai_chemicals static method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.perform_corpus_download"]], "perform_corpus_download() (flair.datasets.biomedical.scai_disease static method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.perform_corpus_download"]], "position_end (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.position_end"]], "prepare_and_save_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.prepare_and_save_dataset"]], "prepare_splits() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.prepare_splits"]], "process_dataset() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.process_dataset"]], "read_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.read_dataset"]], "read_file() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.read_file"]], "read_folder() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.read_folder"]], "split_url() (flair.datasets.biomedical.huner_all_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_scai static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_variome static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cll static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_gellus static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_chebi static method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cemp static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_chemdner static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_scai static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_craft_v4 static method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_ncbi static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_pdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_scai static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_variome static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bc2gm static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bio_infer static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_deca static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_fsu static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_gpro static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_iepa static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_osiris static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_variome static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_jnlpba static method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.split_url"]], "split_url() (flair.datasets.biomedical.huner_loctext static method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.split_url"]], "split_url() (flair.datasets.biomedical.huner_mirna static method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_linneaus static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_s800 static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_variome static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.hunerdataset static method)": [[1, "flair.datasets.biomedical.HunerDataset.split_url"]], "to_internal() (flair.datasets.biomedical.huner_all_cdr method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_scai method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_variome method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chebi method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cdr method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cemp method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_chemdner method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_scai method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_cdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_ncbi method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_pdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_scai method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_variome method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bc2gm method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bio_infer method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_deca method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_gpro method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_iepa method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_osiris method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_variome method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_loctext method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_linneaus method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_s800 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_variome method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.to_internal"]], "to_internal_dataset() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.to_internal_dataset"]], "write_to_conll() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.write_to_conll"]], "agnews (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.AGNEWS"]], "amazon_reviews (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS"]], "communicative_functions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS"]], "csvclassificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus"]], "csvclassificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationDataset"]], "classificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationCorpus"]], "classificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationDataset"]], "germeval_2018_offensive_language (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE"]], "glue_cola (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_COLA"]], "glue_sst2 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_SST2"]], "go_emotions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GO_EMOTIONS"]], "imdb (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.IMDB"]], "newsgroups (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.NEWSGROUPS"]], "senteval_cr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_CR"]], "senteval_mpqa (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA"]], "senteval_mr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MR"]], "senteval_sst_binary (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY"]], "senteval_sst_granular (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR"]], "senteval_subj (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ"]], "sentiment_140 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTIMENT_140"]], "stackoverflow (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.STACKOVERFLOW"]], "trec_50 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_50"]], "trec_6 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_6"]], "wassa_anger (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_ANGER"]], "wassa_fear (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_FEAR"]], "wassa_joy (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_JOY"]], "wassa_sadness (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_SADNESS"]], "yahoo_answers (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS"]], "__init__() (flair.datasets.document_classification.agnews method)": [[2, "flair.datasets.document_classification.AGNEWS.__init__"]], "__init__() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.__init__"]], "__init__() (flair.datasets.document_classification.communicative_functions method)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationcorpus method)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.classificationcorpus method)": [[2, "flair.datasets.document_classification.ClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.germeval_2018_offensive_language method)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE.__init__"]], "__init__() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.__init__"]], "__init__() (flair.datasets.document_classification.go_emotions method)": [[2, "flair.datasets.document_classification.GO_EMOTIONS.__init__"]], "__init__() (flair.datasets.document_classification.imdb method)": [[2, "flair.datasets.document_classification.IMDB.__init__"]], "__init__() (flair.datasets.document_classification.newsgroups method)": [[2, "flair.datasets.document_classification.NEWSGROUPS.__init__"]], "__init__() (flair.datasets.document_classification.senteval_cr method)": [[2, "flair.datasets.document_classification.SENTEVAL_CR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mpqa method)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mr method)": [[2, "flair.datasets.document_classification.SENTEVAL_MR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_binary method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_granular method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_subj method)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ.__init__"]], "__init__() (flair.datasets.document_classification.sentiment_140 method)": [[2, "flair.datasets.document_classification.SENTIMENT_140.__init__"]], "__init__() (flair.datasets.document_classification.stackoverflow method)": [[2, "flair.datasets.document_classification.STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.document_classification.trec_50 method)": [[2, "flair.datasets.document_classification.TREC_50.__init__"]], "__init__() (flair.datasets.document_classification.trec_6 method)": [[2, "flair.datasets.document_classification.TREC_6.__init__"]], "__init__() (flair.datasets.document_classification.wassa_anger method)": [[2, "flair.datasets.document_classification.WASSA_ANGER.__init__"]], "__init__() (flair.datasets.document_classification.wassa_fear method)": [[2, "flair.datasets.document_classification.WASSA_FEAR.__init__"]], "__init__() (flair.datasets.document_classification.wassa_joy method)": [[2, "flair.datasets.document_classification.WASSA_JOY.__init__"]], "__init__() (flair.datasets.document_classification.wassa_sadness method)": [[2, "flair.datasets.document_classification.WASSA_SADNESS.__init__"]], "__init__() (flair.datasets.document_classification.yahoo_answers method)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS.__init__"]], "download_and_prepare_amazon_product_file() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "is_in_memory() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.is_in_memory"]], "is_in_memory() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.is_in_memory"]], "label_map (flair.datasets.document_classification.glue_sst2 attribute)": [[2, "flair.datasets.document_classification.GLUE_SST2.label_map"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_sst2 method)": [[2, "flair.datasets.document_classification.GLUE_SST2.tsv_from_eval_dataset"]], "bigbio_el_bc5cdr_chemical (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_BC5CDR_CHEMICAL"]], "bigbio_el_gnormplus (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_GNORMPLUS"]], "bigbio_el_ncbi_disease (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_NCBI_DISEASE"]], "bigbioentitylinkingcorpus (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BigBioEntityLinkingCorpus"]], "ctd_chemicals_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY"]], "ctd_diseases_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY"]], "entitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary"]], "hunerentitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.HunerEntityLinkingDictionary"]], "inmemoryentitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary"]], "ncbi_gene_human_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY"]], "ncbi_taxonomy_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY"]], "nel_english_aida (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA"]], "nel_english_aquaint (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT"]], "nel_english_iitb (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB"]], "nel_english_reddit (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT"]], "nel_english_tweeki (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI"]], "nel_german_hipe (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE"]], "wsd_masc (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_MASC"]], "wsd_omsti (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_OMSTI"]], "wsd_raganato_all (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL"]], "wsd_semcor (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR"]], "wsd_trainomatic (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC"]], "wsd_ufsac (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_UFSAC"]], "wsd_wordnet_gloss_tagged (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED"]], "zelda (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.ZELDA"]], "__init__() (flair.datasets.entity_linking.entitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_aida method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_aquaint method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_iitb method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_tweeki method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI.__init__"]], "__init__() (flair.datasets.entity_linking.nel_german_hipe method)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_masc method)": [[3, "flair.datasets.entity_linking.WSD_MASC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_omsti method)": [[3, "flair.datasets.entity_linking.WSD_OMSTI.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_raganato_all method)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_semcor method)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_trainomatic method)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_ufsac method)": [[3, "flair.datasets.entity_linking.WSD_UFSAC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_wordnet_gloss_tagged method)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED.__init__"]], "__init__() (flair.datasets.entity_linking.zelda method)": [[3, "flair.datasets.entity_linking.ZELDA.__init__"]], "_fill_annot_array() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_annot_array"]], "_fill_curr_comment() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_curr_comment"]], "_is_invalid_name() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY._is_invalid_name"]], "_text_to_cols() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._text_to_cols"]], "candidates (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.candidates"]], "database_name (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.database_name"]], "determine_tsv_file() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.determine_tsv_file"]], "download_dictionary() (flair.datasets.entity_linking.ctd_chemicals_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ctd_diseases_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ncbi_taxonomy_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY.download_dictionary"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "from_state() (flair.datasets.entity_linking.inmemoryentitylinkingdictionary class method)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary.from_state"]], "from_ufsac_to_tsv() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.from_ufsac_to_tsv"]], "parse_dictionary() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY.parse_dictionary"]], "parse_dictionary() (flair.datasets.entity_linking.ncbi_taxonomy_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY.parse_dictionary"]], "parse_file() (flair.datasets.entity_linking.ctd_chemicals_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY.parse_file"]], "parse_file() (flair.datasets.entity_linking.ctd_diseases_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY.parse_file"]], "text_to_index (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.text_to_index"]], "to_in_memory_dictionary() (flair.datasets.entity_linking.entitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.to_in_memory_dictionary"]], "to_state() (flair.datasets.entity_linking.inmemoryentitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary.to_state"]], "ocrcorpus (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrCorpus"]], "ocrjsondataset (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrJsonDataset"]], "sroie (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.SROIE"]], "__init__() (flair.datasets.ocr.ocrcorpus method)": [[4, "flair.datasets.ocr.OcrCorpus.__init__"]], "__init__() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.__init__"]], "__init__() (flair.datasets.ocr.sroie method)": [[4, "flair.datasets.ocr.SROIE.__init__"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "is_in_memory() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.is_in_memory"]], "re_english_conll04 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04"]], "re_english_drugprot (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT"]], "re_english_semeval2010 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010"]], "re_english_tacred (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED"]], "__init__() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.__init__"]], "char_spans_to_token_spans() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.char_spans_to_token_spans"]], "convert_ptb_token() (in module flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.convert_ptb_token"]], "convert_to_conllu() (flair.datasets.relation_extraction.re_english_conll04 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04.convert_to_conllu"]], "drugprot_document_to_tokenlists() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.drugprot_document_to_tokenlists"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "has_overlap() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.has_overlap"]], "bioscope (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.BIOSCOPE"]], "conll_03 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03"]], "conll_03_dutch (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH"]], "conll_03_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN"]], "conll_03_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH"]], "conll_2000 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_2000"]], "columncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus"]], "columndataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnDataset"]], "feats (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.FEATS"]], "fewnerd (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.FEWNERD"]], "head (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.HEAD"]], "jsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus"]], "jsonldataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlDataset"]], "keyphrase_inspec (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_INSPEC"]], "keyphrase_semeval2010 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2010"]], "keyphrase_semeval2017 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2017"]], "masakha_pos (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS"]], "multifilecolumncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus"]], "multifilejsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus"]], "ner_arabic_aner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER"]], "ner_arabic_aqmar (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR"]], "ner_basque (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_BASQUE"]], "ner_chinese_weibo (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO"]], "ner_danish_dane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_DANISH_DANE"]], "ner_english_movie_complex (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX"]], "ner_english_movie_simple (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE"]], "ner_english_person (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON"]], "ner_english_restaurant (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT"]], "ner_english_sec_fillings (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS"]], "ner_english_stackoverflow (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW"]], "ner_english_twitter (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER"]], "ner_english_webpages (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES"]], "ner_english_wikigold (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD"]], "ner_english_wnut_2020 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020"]], "ner_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_FINNISH"]], "ner_german_biofid (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_BIOFID"]], "ner_german_europarl (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL"]], "ner_german_germeval (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL"]], "ner_german_legal (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL"]], "ner_german_mobie (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE"]], "ner_german_politics (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS"]], "ner_hipe_2022 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022"]], "ner_hungarian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN"]], "ner_icdar_europeana (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA"]], "ner_icelandic (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC"]], "ner_japanese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE"]], "ner_masakhane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE"]], "ner_multi_coner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER"]], "ner_multi_coner_v2 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2"]], "ner_multi_wikiann (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN"]], "ner_multi_wikiner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKINER"]], "ner_multi_xtreme (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME"]], "ner_nermud (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD"]], "ner_swedish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH"]], "ner_turku (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_TURKU"]], "ner_ukrainian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN"]], "ontonotes (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ONTONOTES"]], "space_after_key (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.SPACE_AFTER_KEY"]], "up_chinese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE"]], "up_english (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH"]], "up_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH"]], "up_french (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH"]], "up_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN"]], "up_italian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN"]], "up_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH"]], "up_spanish_ancora (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA"]], "wnut_17 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.WNUT_17"]], "__init__() (flair.datasets.sequence_labeling.conll_03 method)": [[6, "flair.datasets.sequence_labeling.CONLL_03.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_dutch method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_german method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_spanish method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_2000 method)": [[6, "flair.datasets.sequence_labeling.CONLL_2000.__init__"]], "__init__() (flair.datasets.sequence_labeling.columncorpus method)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.masakha_pos method)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilecolumncorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilejsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aner method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aqmar method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_chinese_weibo method)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_complex method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_simple method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_person method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_restaurant method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_sec_fillings method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_stackoverflow method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_twitter method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_webpages method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wikigold method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wnut_2020 method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_germeval method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_legal method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_mobie method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_politics method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hipe_2022 method)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hungarian method)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icdar_europeana method)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icelandic method)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_japanese method)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_masakhane method)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner_v2 method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_wikiann method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_xtreme method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_nermud method)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_turku method)": [[6, "flair.datasets.sequence_labeling.NER_TURKU.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_ukrainian method)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_chinese method)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_english method)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_finnish method)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_french method)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_german method)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_italian method)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish_ancora method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA.__init__"]], "_add_iob2_tags() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH._add_IOB2_tags"]], "_add_iob_tags() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL._add_IOB_tags"]], "_add_label_to_sentence() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset._add_label_to_sentence"]], "_process_coref_span_annotations_for_word() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES._process_coref_span_annotations_for_word"]], "archive_url (flair.datasets.sequence_labeling.ontonotes attribute)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.archive_url"]], "dataset_document_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.dataset_document_iterator"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "get_available_domains() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.get_available_domains"]], "is_in_memory() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.is_in_memory"]], "is_in_memory() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.is_in_memory"]], "sentence_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.sentence_iterator"]], "feideggercorpus (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerCorpus"]], "feideggerdataset (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerDataset"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "is_in_memory() (flair.datasets.text_image.feideggerdataset method)": [[7, "flair.datasets.text_image.FeideggerDataset.is_in_memory"]], "datapaircorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairCorpus"]], "datapairdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairDataset"]], "datatriplecorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataTripleCorpus"]], "datatripledataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataTripleDataset"]], "glue_mnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MNLI"]], "glue_mrpc (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MRPC"]], "glue_qnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QNLI"]], "glue_qqp (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QQP"]], "glue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_RTE"]], "glue_stsb (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_STSB"]], "glue_wnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_WNLI"]], "opusparallelcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.OpusParallelCorpus"]], "paralleltextcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextCorpus"]], "paralleltextdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextDataset"]], "superglue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE"]], "__init__() (flair.datasets.text_text.datapaircorpus method)": [[8, "flair.datasets.text_text.DataPairCorpus.__init__"]], "__init__() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.__init__"]], "__init__() (flair.datasets.text_text.datatriplecorpus method)": [[8, "flair.datasets.text_text.DataTripleCorpus.__init__"]], "__init__() (flair.datasets.text_text.datatripledataset method)": [[8, "flair.datasets.text_text.DataTripleDataset.__init__"]], "__init__() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.__init__"]], "__init__() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.__init__"]], "__init__() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.__init__"]], "__init__() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.__init__"]], "__init__() (flair.datasets.text_text.opusparallelcorpus method)": [[8, "flair.datasets.text_text.OpusParallelCorpus.__init__"]], "__init__() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.__init__"]], "__init__() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.__init__"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "is_in_memory() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.datatripledataset method)": [[8, "flair.datasets.text_text.DataTripleDataset.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextdataset method)": [[8, "flair.datasets.text_text.ParallelTextDataset.is_in_memory"]], "jsonl_from_eval_dataset() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.jsonl_from_eval_dataset"]], "rte_jsonl_to_tsv() (in module flair.datasets.text_text)": [[8, "flair.datasets.text_text.rte_jsonl_to_tsv"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_stsb method)": [[8, "flair.datasets.text_text.GLUE_STSB.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.tsv_from_eval_dataset"]], "ud_afrikaans (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_AFRIKAANS"]], "ud_ancient_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ANCIENT_GREEK"]], "ud_arabic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARABIC"]], "ud_armenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARMENIAN"]], "ud_basque (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BASQUE"]], "ud_bavarian_maibaam (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BAVARIAN_MAIBAAM"]], "ud_belarusian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BELARUSIAN"]], "ud_bulgarian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BULGARIAN"]], "ud_buryat (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BURYAT"]], "ud_catalan (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CATALAN"]], "ud_chinese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE"]], "ud_chinese_kyoto (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE_KYOTO"]], "ud_coptic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_COPTIC"]], "ud_croatian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CROATIAN"]], "ud_czech (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CZECH"]], "ud_danish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DANISH"]], "ud_dutch (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DUTCH"]], "ud_english (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ENGLISH"]], "ud_estonian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ESTONIAN"]], "ud_faroese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FAROESE"]], "ud_finnish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FINNISH"]], "ud_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FRENCH"]], "ud_galician (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GALICIAN"]], "ud_german (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN"]], "ud_german_hdt (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN_HDT"]], "ud_gothic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GOTHIC"]], "ud_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GREEK"]], "ud_hebrew (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HEBREW"]], "ud_hindi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HINDI"]], "ud_indonesian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_INDONESIAN"]], "ud_irish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_IRISH"]], "ud_italian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ITALIAN"]], "ud_japanese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_JAPANESE"]], "ud_kazakh (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KAZAKH"]], "ud_korean (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KOREAN"]], "ud_latin (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATIN"]], "ud_latvian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATVIAN"]], "ud_lithuanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LITHUANIAN"]], "ud_livvi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LIVVI"]], "ud_maltese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MALTESE"]], "ud_marathi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MARATHI"]], "ud_naija (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NAIJA"]], "ud_north_sami (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORTH_SAMI"]], "ud_norwegian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORWEGIAN"]], "ud_old_church_slavonic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_CHURCH_SLAVONIC"]], "ud_old_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_FRENCH"]], "ud_persian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PERSIAN"]], "ud_polish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_POLISH"]], "ud_portuguese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PORTUGUESE"]], "ud_romanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ROMANIAN"]], "ud_russian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_RUSSIAN"]], "ud_serbian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SERBIAN"]], "ud_slovak (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVAK"]], "ud_slovenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVENIAN"]], "ud_spanish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SPANISH"]], "ud_swedish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SWEDISH"]], "ud_turkish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_TURKISH"]], "ud_ukrainian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_UKRAINIAN"]], "ud_wolof (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_WOLOF"]], "universaldependenciescorpus (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus"]], "universaldependenciesdataset (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset"]], "__init__() (flair.datasets.treebanks.universaldependenciescorpus method)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus.__init__"]], "__init__() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.__init__"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "is_in_memory() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.is_in_memory"]], "documentembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.DocumentEmbeddings"]], "embeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.Embeddings"]], "scalarmix (class in flair.embeddings.base)": [[10, "flair.embeddings.base.ScalarMix"]], "tokenembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.TokenEmbeddings"]], "__init__() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.__init__"]], "__init__() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.__init__"]], "_add_embeddings_internal() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings._add_embeddings_internal"]], "embed() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.embed"]], "embedding_length (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_length"]], "embedding_type (flair.embeddings.base.documentembeddings property)": [[10, "flair.embeddings.base.DocumentEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_type"]], "embedding_type (flair.embeddings.base.tokenembeddings property)": [[10, "flair.embeddings.base.TokenEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.embeddings attribute)": [[10, "flair.embeddings.base.Embeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.embeddings_name"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "forward() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.forward"]], "from_params() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.from_params"]], "get_instance_parameters() (flair.embeddings.base.embeddings static method)": [[10, "flair.embeddings.base.Embeddings.get_instance_parameters"]], "get_named_embeddings_dict() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_names"]], "load_embedding() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.load_embedding"]], "load_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.load_embeddings"]], "name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.name"]], "name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.name"]], "register_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.register_embeddings"]], "save_embeddings() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.save_embeddings"]], "to_params() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.to_params"]], "training (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.training"]], "training (flair.embeddings.base.scalarmix attribute)": [[10, "flair.embeddings.base.ScalarMix.training"]], "training (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.training"]], "documentcnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings"]], "documentlmembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentLMEmbeddings"]], "documentpoolembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings"]], "documentrnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings"]], "documenttfidfembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings"]], "sentencetransformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings"]], "transformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings"]], "__init__() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.__init__"]], "__init__() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.__init__"]], "__init__() (flair.embeddings.document.transformerdocumentembeddings method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.__init__"]], "_add_embeddings_internal() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings._add_embeddings_internal"]], "_add_embeddings_internal() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings._add_embeddings_internal"]], "create_from_state() (flair.embeddings.document.transformerdocumentembeddings class method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.create_from_state"]], "embed() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embed"]], "embed() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embed"]], "embedding_length (flair.embeddings.document.documentcnnembeddings property)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentlmembeddings property)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentpoolembeddings property)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentrnnembeddings property)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documenttfidfembeddings property)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.sentencetransformerdocumentembeddings property)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.extra_repr"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "from_params() (flair.embeddings.document.documentcnnembeddings class method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentlmembeddings class method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentpoolembeddings class method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentrnnembeddings class method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documenttfidfembeddings class method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.from_params"]], "from_params() (flair.embeddings.document.sentencetransformerdocumentembeddings class method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.from_params"]], "get_names() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.get_names"]], "name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.name"]], "name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.name"]], "name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.name"]], "name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.name"]], "name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.name"]], "name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.name"]], "name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.name"]], "onnx_cls (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.onnx_cls"]], "to_params() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.to_params"]], "to_params() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.to_params"]], "training (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.training"]], "training (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.training"]], "training (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.training"]], "training (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.training"]], "training (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.training"]], "training (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.training"]], "training (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.training"]], "convtransformnetworkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings"]], "identityimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.IdentityImageEmbeddings"]], "imageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ImageEmbeddings"]], "networkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.NetworkImageEmbeddings"]], "precomputedimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings"]], "embedding_length (flair.embeddings.image.convtransformnetworkimageembeddings property)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.identityimageembeddings property)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.networkimageembeddings property)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.precomputedimageembeddings property)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.image.imageembeddings property)": [[12, "flair.embeddings.image.ImageEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embeddings_name"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "forward() (flair.embeddings.image.convtransformnetworkimageembeddings method)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.forward"]], "from_params() (flair.embeddings.image.imageembeddings class method)": [[12, "flair.embeddings.image.ImageEmbeddings.from_params"]], "name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.name"]], "name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.name"]], "name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.name"]], "name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.name"]], "name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.name"]], "to_params() (flair.embeddings.image.imageembeddings method)": [[12, "flair.embeddings.image.ImageEmbeddings.to_params"]], "training (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.training"]], "training (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.training"]], "training (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.training"]], "training (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.training"]], "training (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.training"]], "charlmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.CharLMEmbeddings"]], "documentlstmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings"]], "documentmeanembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings"]], "elmoembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.ELMoEmbeddings"]], "__init__() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.__init__"]], "embed() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embed"]], "embed() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embed"]], "embedding_length (flair.embeddings.legacy.charlmembeddings property)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentlstmembeddings property)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentmeanembeddings property)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.elmoembeddings property)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.extra_repr"]], "flair.embeddings.legacy": [[13, "module-flair.embeddings.legacy"]], "name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.name"]], "name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.name"]], "name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.name"]], "name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.name"]], "train() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.train"]], "training (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.training"]], "training (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.training"]], "training (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.training"]], "training (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.training"]], "use_layers_all() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_all"]], "use_layers_average() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_average"]], "use_layers_top() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_top"]], "bytepairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.BytePairEmbeddings"]], "characterembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.CharacterEmbeddings"]], "fasttextembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FastTextEmbeddings"]], "flairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FlairEmbeddings"]], "hashembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.HashEmbeddings"]], "musecrosslingualembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings"]], "nilcembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.NILCEmbeddings"]], "onehotembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.OneHotEmbeddings"]], "pooledflairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.PooledFlairEmbeddings"]], "stackedembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.StackedEmbeddings"]], "transformerwordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.TransformerWordEmbeddings"]], "wordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.WordEmbeddings"]], "__init__() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.__init__"]], "__init__() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.__init__"]], "__init__() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.nilcembeddings method)": [[14, "flair.embeddings.token.NILCEmbeddings.__init__"]], "__init__() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.__init__"]], "__init__() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.__init__"]], "__init__() (flair.embeddings.token.transformerwordembeddings method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.__init__"]], "__init__() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.__init__"]], "create_from_state() (flair.embeddings.token.transformerwordembeddings class method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.create_from_state"]], "embed() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.embed"]], "embedding_length (flair.embeddings.token.bytepairembeddings property)": [[14, "flair.embeddings.token.BytePairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.characterembeddings property)": [[14, "flair.embeddings.token.CharacterEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.fasttextembeddings property)": [[14, "flair.embeddings.token.FastTextEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.flairembeddings property)": [[14, "flair.embeddings.token.FlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.musecrosslingualembeddings property)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.onehotembeddings property)": [[14, "flair.embeddings.token.OneHotEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.pooledflairembeddings property)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.wordembeddings property)": [[14, "flair.embeddings.token.WordEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.extra_repr"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "from_corpus() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_corpus"]], "from_params() (flair.embeddings.token.bytepairembeddings class method)": [[14, "flair.embeddings.token.BytePairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.characterembeddings class method)": [[14, "flair.embeddings.token.CharacterEmbeddings.from_params"]], "from_params() (flair.embeddings.token.fasttextembeddings class method)": [[14, "flair.embeddings.token.FastTextEmbeddings.from_params"]], "from_params() (flair.embeddings.token.flairembeddings class method)": [[14, "flair.embeddings.token.FlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.hashembeddings class method)": [[14, "flair.embeddings.token.HashEmbeddings.from_params"]], "from_params() (flair.embeddings.token.musecrosslingualembeddings class method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.from_params"]], "from_params() (flair.embeddings.token.nilcembeddings class method)": [[14, "flair.embeddings.token.NILCEmbeddings.from_params"]], "from_params() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_params"]], "from_params() (flair.embeddings.token.pooledflairembeddings class method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.stackedembeddings class method)": [[14, "flair.embeddings.token.StackedEmbeddings.from_params"]], "from_params() (flair.embeddings.token.wordembeddings class method)": [[14, "flair.embeddings.token.WordEmbeddings.from_params"]], "get_cached_token_index() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_cached_token_index"]], "get_cached_vec() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.get_cached_vec"]], "get_cached_vec() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.get_cached_vec"]], "get_named_embeddings_dict() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.get_names"]], "get_names() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_names"]], "get_vec() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_vec"]], "layer_norm (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.layer_norm"]], "name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.name"]], "name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.name"]], "name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.name"]], "name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.name"]], "name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.name"]], "name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.name"]], "name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.name"]], "name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.name"]], "name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.name"]], "name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.name"]], "name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.name"]], "name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.name"]], "num_embeddings (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.num_embeddings"]], "onnx_cls (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.onnx_cls"]], "resolve_precomputed_path() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.resolve_precomputed_path"]], "state_dict() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.state_dict"]], "to() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to"]], "to_params() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.to_params"]], "to_params() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.to_params"]], "to_params() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.hashembeddings method)": [[14, "flair.embeddings.token.HashEmbeddings.to_params"]], "to_params() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.to_params"]], "to_params() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.to_params"]], "to_params() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.to_params"]], "to_params() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to_params"]], "train() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.train"]], "train() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.train"]], "train() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.train"]], "training (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.training"]], "training (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.training"]], "training (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.training"]], "training (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.training"]], "training (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.training"]], "training (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.training"]], "training (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.training"]], "training (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.training"]], "training (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.training"]], "training (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.training"]], "training (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.training"]], "training (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.training"]], "transformerbaseembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings"]], "transformerembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerEmbeddings"]], "transformerjitdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings"]], "transformerjitembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings"]], "transformerjitwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings"]], "transformeronnxdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings"]], "transformeronnxembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings"]], "transformeronnxwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings"]], "__init__() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.__init__"]], "collect_dynamic_axes() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.collect_dynamic_axes"]], "combine_strided_tensors() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.combine_strided_tensors"]], "create_from_embedding() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.create_from_embedding"]], "create_from_state() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.create_from_state"]], "create_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.create_session"]], "document_max_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_max_pooling"]], "document_mean_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_mean_pooling"]], "embedding_length (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.embeddings_name"]], "export_from_embedding() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.export_from_embedding"]], "export_onnx() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.export_onnx"]], "fill_masked_elements() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_masked_elements"]], "fill_mean_token_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_mean_token_embeddings"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "forward() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.forward"]], "from_params() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerembeddings class method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.from_params"]], "insert_missing_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.insert_missing_embeddings"]], "name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.name"]], "onnx_cls (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.onnx_cls"]], "optimize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.optimize_model"]], "pad_sequence_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.pad_sequence_embeddings"]], "parameter_to_list() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.parameter_to_list"]], "prepare_tensors() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.prepare_tensors"]], "quantize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.quantize_model"]], "remove_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.remove_session"]], "remove_special_markup() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.remove_special_markup"]], "to_args() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_args"]], "to_params() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerjitembeddings method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.to_params"]], "tokenizer (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.tokenizer"]], "tokenizer (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.tokenizer"]], "training (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.training"]], "truncate_hidden_states() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.truncate_hidden_states"]], "cache_root (in module flair)": [[16, "flair.cache_root"]], "device (in module flair)": [[16, "flair.device"]], "flair": [[16, "module-flair"]], "logger (in module flair)": [[16, "flair.logger"]], "set_proxies() (in module flair)": [[16, "flair.set_proxies"]], "set_seed() (in module flair)": [[16, "flair.set_seed"]], "boundingbox (class in flair.data)": [[17, "flair.data.BoundingBox"]], "concatflairdataset (class in flair.data)": [[17, "flair.data.ConcatFlairDataset"]], "corpus (class in flair.data)": [[17, "flair.data.Corpus"]], "datapair (class in flair.data)": [[17, "flair.data.DataPair"]], "datapoint (class in flair.data)": [[17, "flair.data.DataPoint"]], "datatriple (class in flair.data)": [[17, "flair.data.DataTriple"]], "dictionary (class in flair.data)": [[17, "flair.data.Dictionary"]], "entitycandidate (class in flair.data)": [[17, "flair.data.EntityCandidate"]], "flairdataset (class in flair.data)": [[17, "flair.data.FlairDataset"]], "image (class in flair.data)": [[17, "flair.data.Image"]], "label (class in flair.data)": [[17, "flair.data.Label"]], "multicorpus (class in flair.data)": [[17, "flair.data.MultiCorpus"]], "relation (class in flair.data)": [[17, "flair.data.Relation"]], "sentence (class in flair.data)": [[17, "flair.data.Sentence"]], "span (class in flair.data)": [[17, "flair.data.Span"]], "token (class in flair.data)": [[17, "flair.data.Token"]], "__init__() (flair.data.entitycandidate method)": [[17, "flair.data.EntityCandidate.__init__"]], "__init__() (flair.data.sentence method)": [[17, "flair.data.Sentence.__init__"]], "add_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.add_item"]], "add_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_label"]], "add_label() (flair.data.token method)": [[17, "flair.data.Token.add_label"]], "add_label_noise() (flair.data.corpus method)": [[17, "flair.data.Corpus.add_label_noise"]], "add_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_metadata"]], "add_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.add_tags_proba_dist"]], "bottom (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.bottom"]], "clear_embeddings() (flair.data.datapair method)": [[17, "flair.data.DataPair.clear_embeddings"]], "clear_embeddings() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.clear_embeddings"]], "clear_embeddings() (flair.data.datatriple method)": [[17, "flair.data.DataTriple.clear_embeddings"]], "clear_embeddings() (flair.data.sentence method)": [[17, "flair.data.Sentence.clear_embeddings"]], "copy_context_from_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.copy_context_from_sentence"]], "cummulative_sizes (flair.data.concatflairdataset property)": [[17, "flair.data.ConcatFlairDataset.cummulative_sizes"]], "cumsum() (flair.data.concatflairdataset static method)": [[17, "flair.data.ConcatFlairDataset.cumsum"]], "cumulative_sizes (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.cumulative_sizes"]], "datasets (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.datasets"]], "dev (flair.data.corpus property)": [[17, "flair.data.Corpus.dev"]], "downsample() (flair.data.corpus method)": [[17, "flair.data.Corpus.downsample"]], "embedding (flair.data.datapair property)": [[17, "flair.data.DataPair.embedding"]], "embedding (flair.data.datapoint property)": [[17, "flair.data.DataPoint.embedding"]], "embedding (flair.data.datatriple property)": [[17, "flair.data.DataTriple.embedding"]], "embedding (flair.data.image property)": [[17, "flair.data.Image.embedding"]], "embedding (flair.data.relation property)": [[17, "flair.data.Relation.embedding"]], "embedding (flair.data.sentence property)": [[17, "flair.data.Sentence.embedding"]], "embedding (flair.data.span property)": [[17, "flair.data.Span.embedding"]], "embedding (flair.data.token property)": [[17, "flair.data.Token.embedding"]], "end_position (flair.data.datapair property)": [[17, "flair.data.DataPair.end_position"]], "end_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.end_position"]], "end_position (flair.data.datatriple property)": [[17, "flair.data.DataTriple.end_position"]], "end_position (flair.data.image property)": [[17, "flair.data.Image.end_position"]], "end_position (flair.data.relation property)": [[17, "flair.data.Relation.end_position"]], "end_position (flair.data.sentence property)": [[17, "flair.data.Sentence.end_position"]], "end_position (flair.data.span property)": [[17, "flair.data.Span.end_position"]], "end_position (flair.data.token property)": [[17, "flair.data.Token.end_position"]], "filter_empty_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_empty_sentences"]], "filter_long_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_long_sentences"]], "flair.data": [[17, "module-flair.data"]], "get_all_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_all_sentences"]], "get_each_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_each_embedding"]], "get_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_embedding"]], "get_head() (flair.data.token method)": [[17, "flair.data.Token.get_head"]], "get_idx_for_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_item"]], "get_idx_for_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_items"]], "get_item_for_index() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_item_for_index"]], "get_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_items"]], "get_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_label"]], "get_label_distribution() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_label_distribution"]], "get_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_labels"]], "get_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_labels"]], "get_language_code() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_language_code"]], "get_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_metadata"]], "get_relations() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_relations"]], "get_span() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_span"]], "get_spans() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_spans"]], "get_spans_from_bio() (in module flair.data)": [[17, "flair.data.get_spans_from_bio"]], "get_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.get_tags_proba_dist"]], "get_token() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_token"]], "has_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_label"]], "has_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_metadata"]], "idx (flair.data.token property)": [[17, "flair.data.Token.idx"]], "infer_space_after() (flair.data.sentence method)": [[17, "flair.data.Sentence.infer_space_after"]], "iob2() (in module flair.data)": [[17, "flair.data.iob2"]], "is_context_set() (flair.data.sentence method)": [[17, "flair.data.Sentence.is_context_set"]], "is_in_memory() (flair.data.flairdataset method)": [[17, "flair.data.FlairDataset.is_in_memory"]], "is_span_prediction_problem() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.is_span_prediction_problem"]], "labeled_identifier (flair.data.label property)": [[17, "flair.data.Label.labeled_identifier"]], "labels (flair.data.datapoint property)": [[17, "flair.data.DataPoint.labels"]], "left (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.left"]], "left_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.left_context"]], "load() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load"]], "load_from_file() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load_from_file"]], "make_label_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_label_dictionary"]], "make_tag_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_tag_dictionary"]], "make_vocab_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_vocab_dictionary"]], "metadata_str (flair.data.label property)": [[17, "flair.data.Label.metadata_str"]], "next_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.next_sentence"]], "obtain_statistics() (flair.data.corpus method)": [[17, "flair.data.Corpus.obtain_statistics"]], "previous_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.previous_sentence"]], "randomly_split_into_two_datasets() (in module flair.data)": [[17, "flair.data.randomly_split_into_two_datasets"]], "remove_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.remove_item"]], "remove_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.remove_labels"]], "remove_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.remove_labels"]], "right (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.right"]], "right_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.right_context"]], "save() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.save"]], "score (flair.data.datapoint property)": [[17, "flair.data.DataPoint.score"]], "score (flair.data.label property)": [[17, "flair.data.Label.score"]], "set_context_for_sentences() (flair.data.sentence class method)": [[17, "flair.data.Sentence.set_context_for_sentences"]], "set_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_embedding"]], "set_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_label"]], "set_label() (flair.data.token method)": [[17, "flair.data.Token.set_label"]], "set_start_stop_tags() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.set_start_stop_tags"]], "set_value() (flair.data.label method)": [[17, "flair.data.Label.set_value"]], "shortstring (flair.data.label property)": [[17, "flair.data.Label.shortstring"]], "start_position (flair.data.datapair property)": [[17, "flair.data.DataPair.start_position"]], "start_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.start_position"]], "start_position (flair.data.datatriple property)": [[17, "flair.data.DataTriple.start_position"]], "start_position (flair.data.image property)": [[17, "flair.data.Image.start_position"]], "start_position (flair.data.relation property)": [[17, "flair.data.Relation.start_position"]], "start_position (flair.data.sentence property)": [[17, "flair.data.Sentence.start_position"]], "start_position (flair.data.span property)": [[17, "flair.data.Span.start_position"]], "start_position (flair.data.token property)": [[17, "flair.data.Token.start_position"]], "start_stop_tags_are_set() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.start_stop_tags_are_set"]], "tag (flair.data.datapoint property)": [[17, "flair.data.DataPoint.tag"]], "tag (flair.data.relation property)": [[17, "flair.data.Relation.tag"]], "test (flair.data.corpus property)": [[17, "flair.data.Corpus.test"]], "text (flair.data.datapair property)": [[17, "flair.data.DataPair.text"]], "text (flair.data.datapoint property)": [[17, "flair.data.DataPoint.text"]], "text (flair.data.datatriple property)": [[17, "flair.data.DataTriple.text"]], "text (flair.data.image property)": [[17, "flair.data.Image.text"]], "text (flair.data.relation property)": [[17, "flair.data.Relation.text"]], "text (flair.data.sentence property)": [[17, "flair.data.Sentence.text"]], "text (flair.data.span property)": [[17, "flair.data.Span.text"]], "text (flair.data.token property)": [[17, "flair.data.Token.text"]], "to() (flair.data.datapair method)": [[17, "flair.data.DataPair.to"]], "to() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.to"]], "to() (flair.data.datatriple method)": [[17, "flair.data.DataTriple.to"]], "to() (flair.data.sentence method)": [[17, "flair.data.Sentence.to"]], "to_dict() (flair.data.entitycandidate method)": [[17, "flair.data.EntityCandidate.to_dict"]], "to_dict() (flair.data.label method)": [[17, "flair.data.Label.to_dict"]], "to_dict() (flair.data.relation method)": [[17, "flair.data.Relation.to_dict"]], "to_dict() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_dict"]], "to_dict() (flair.data.span method)": [[17, "flair.data.Span.to_dict"]], "to_dict() (flair.data.token method)": [[17, "flair.data.Token.to_dict"]], "to_original_text() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_original_text"]], "to_plain_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_plain_string"]], "to_tagged_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tagged_string"]], "to_tokenized_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tokenized_string"]], "top (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.top"]], "train (flair.data.corpus property)": [[17, "flair.data.Corpus.train"]], "unlabeled_identifier (flair.data.datapair property)": [[17, "flair.data.DataPair.unlabeled_identifier"]], "unlabeled_identifier (flair.data.datapoint property)": [[17, "flair.data.DataPoint.unlabeled_identifier"]], "unlabeled_identifier (flair.data.datatriple property)": [[17, "flair.data.DataTriple.unlabeled_identifier"]], "unlabeled_identifier (flair.data.image property)": [[17, "flair.data.Image.unlabeled_identifier"]], "unlabeled_identifier (flair.data.label property)": [[17, "flair.data.Label.unlabeled_identifier"]], "unlabeled_identifier (flair.data.relation property)": [[17, "flair.data.Relation.unlabeled_identifier"]], "unlabeled_identifier (flair.data.sentence property)": [[17, "flair.data.Sentence.unlabeled_identifier"]], "unlabeled_identifier (flair.data.span property)": [[17, "flair.data.Span.unlabeled_identifier"]], "unlabeled_identifier (flair.data.token property)": [[17, "flair.data.Token.unlabeled_identifier"]], "value (flair.data.label property)": [[17, "flair.data.Label.value"]], "clusteringmodel (class in flair.models)": [[20, "flair.models.ClusteringModel"]], "entitymentionlinker (class in flair.models)": [[20, "flair.models.EntityMentionLinker"]], "fewshotclassifier (class in flair.models)": [[20, "flair.models.FewshotClassifier"]], "label_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_MATCH"]], "label_no_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_NO_MATCH"]], "languagemodel (class in flair.models)": [[20, "flair.models.LanguageModel"]], "lemmatizer (class in flair.models)": [[20, "flair.models.Lemmatizer"]], "multitaskmodel (class in flair.models)": [[20, "flair.models.MultitaskModel"]], "prefixedsequencetagger (class in flair.models)": [[20, "flair.models.PrefixedSequenceTagger"]], "rnn() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger.RNN"]], "regexptagger (class in flair.models)": [[20, "flair.models.RegexpTagger"]], "relationclassifier (class in flair.models)": [[20, "flair.models.RelationClassifier"]], "relationextractor (class in flair.models)": [[20, "flair.models.RelationExtractor"]], "sequencetagger (class in flair.models)": [[20, "flair.models.SequenceTagger"]], "spanclassifier (class in flair.models)": [[20, "flair.models.SpanClassifier"]], "tarsclassifier (class in flair.models)": [[20, "flair.models.TARSClassifier"]], "tarstagger (class in flair.models)": [[20, "flair.models.TARSTagger"]], "textclassifier (class in flair.models)": [[20, "flair.models.TextClassifier"]], "textpairclassifier (class in flair.models)": [[20, "flair.models.TextPairClassifier"]], "textpairregressor (class in flair.models)": [[20, "flair.models.TextPairRegressor"]], "textregressor (class in flair.models)": [[20, "flair.models.TextRegressor"]], "texttripleclassifier (class in flair.models)": [[20, "flair.models.TextTripleClassifier"]], "tokenclassifier (class in flair.models)": [[20, "flair.models.TokenClassifier"]], "wordtagger (class in flair.models)": [[20, "flair.models.WordTagger"]], "__init__() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.__init__"]], "__init__() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.__init__"]], "__init__() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.__init__"]], "__init__() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.__init__"]], "__init__() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.__init__"]], "__init__() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.__init__"]], "__init__() (flair.models.relationextractor method)": [[20, "flair.models.RelationExtractor.__init__"]], "__init__() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.__init__"]], "__init__() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.__init__"]], "__init__() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.__init__"]], "__init__() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.__init__"]], "__init__() (flair.models.textclassifier method)": [[20, "flair.models.TextClassifier.__init__"]], "__init__() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.__init__"]], "__init__() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.__init__"]], "__init__() (flair.models.texttripleclassifier method)": [[20, "flair.models.TextTripleClassifier.__init__"]], "__init__() (flair.models.tokenclassifier method)": [[20, "flair.models.TokenClassifier.__init__"]], "_all_scores_for_token() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._all_scores_for_token"]], "_compute_label_similarity_for_current_epoch() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier._compute_label_similarity_for_current_epoch"]], "_convert_dataset() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel._convert_dataset"]], "_encode_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence"]], "_encode_sentence_for_inference() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_inference"]], "_encode_sentence_for_training() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_training"]], "_entity_pair_permutations() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._entity_pair_permutations"]], "_get_data_points_from_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._get_data_points_from_sentence"]], "_get_gold_labels() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_gold_labels"]], "_get_scores_from_features() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger._get_scores_from_features"]], "_get_state_dict() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker._get_state_dict"]], "_get_state_dict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel._get_state_dict"]], "_get_state_dict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_state_dict"]], "_init_initial_hidden_state() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_initial_hidden_state"]], "_init_loss_weights() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_loss_weights"]], "_init_model_with_state_dict() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel._init_model_with_state_dict"]], "_label() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger._label"]], "_standard_inference() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._standard_inference"]], "_valid_entities() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._valid_entities"]], "add_and_switch_to_new_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.add_and_switch_to_new_task"]], "allow_unk_tag (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.allow_unk_tag"]], "augment_sentences() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.augment_sentences"]], "build() (flair.models.entitymentionlinker class method)": [[20, "flair.models.EntityMentionLinker.build"]], "calculate_perplexity() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.calculate_perplexity"]], "decode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.decode"]], "dictionary (flair.models.entitymentionlinker property)": [[20, "flair.models.EntityMentionLinker.dictionary"]], "emb_first() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_first"]], "emb_firstandlast() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_firstAndLast"]], "emb_last() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_last"]], "emb_mean() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_mean"]], "encode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode"]], "encode_token() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode_token"]], "evaluate() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.evaluate"]], "evaluate() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.evaluate"]], "evaluate() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.evaluate"]], "evaluate() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.evaluate"]], "evaluate() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.evaluate"]], "evaluate() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.evaluate"]], "extract_entities_mentions() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.extract_entities_mentions"]], "fit() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.fit"]], "flair.models": [[20, "module-flair.models"]], "forward() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.forward"]], "forward() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward"]], "forward() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward"]], "forward() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward"]], "forward() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward"]], "forward_labels_and_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_labels_and_loss"]], "forward_loss() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.forward_loss"]], "forward_loss() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.forward_loss"]], "forward_loss() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_loss"]], "forward_loss() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward_loss"]], "forward_loss() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.forward_loss"]], "forward_loss() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward_loss"]], "forward_loss() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.forward_loss"]], "forward_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_loss"]], "forward_pass() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_pass"]], "generate_text() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.generate_text"]], "get_current_label_dictionary() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_dictionary"]], "get_current_label_type() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_type"]], "get_entity_label_types() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.get_entity_label_types"]], "get_output() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_output"]], "get_representation() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_representation"]], "get_used_tokens() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.get_used_tokens"]], "get_used_tokens() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.get_used_tokens"]], "get_used_tokens() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.get_used_tokens"]], "get_used_tokens() (flair.models.texttripleclassifier method)": [[20, "flair.models.TextTripleClassifier.get_used_tokens"]], "init_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_hidden"]], "init_weights() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_weights"]], "initialize() (flair.models.languagemodel static method)": [[20, "flair.models.LanguageModel.initialize"]], "is_current_task_multi_label() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.is_current_task_multi_label"]], "label_type (flair.models.entitymentionlinker property)": [[20, "flair.models.EntityMentionLinker.label_type"]], "label_type (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.label_type"]], "label_type (flair.models.lemmatizer property)": [[20, "flair.models.Lemmatizer.label_type"]], "label_type (flair.models.multitaskmodel property)": [[20, "flair.models.MultitaskModel.label_type"]], "label_type (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.label_type"]], "label_type (flair.models.relationextractor property)": [[20, "flair.models.RelationExtractor.label_type"]], "label_type (flair.models.sequencetagger property)": [[20, "flair.models.SequenceTagger.label_type"]], "label_type (flair.models.spanclassifier property)": [[20, "flair.models.SpanClassifier.label_type"]], "label_type (flair.models.textclassifier property)": [[20, "flair.models.TextClassifier.label_type"]], "label_type (flair.models.textpairclassifier property)": [[20, "flair.models.TextPairClassifier.label_type"]], "label_type (flair.models.textpairregressor property)": [[20, "flair.models.TextPairRegressor.label_type"]], "label_type (flair.models.textregressor property)": [[20, "flair.models.TextRegressor.label_type"]], "label_type (flair.models.texttripleclassifier property)": [[20, "flair.models.TextTripleClassifier.label_type"]], "label_type (flair.models.tokenclassifier property)": [[20, "flair.models.TokenClassifier.label_type"]], "list_existing_tasks() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.list_existing_tasks"]], "load() (flair.models.clusteringmodel static method)": [[20, "flair.models.ClusteringModel.load"]], "load() (flair.models.entitymentionlinker class method)": [[20, "flair.models.EntityMentionLinker.load"]], "load() (flair.models.fewshotclassifier class method)": [[20, "flair.models.FewshotClassifier.load"]], "load() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel.load"]], "load() (flair.models.prefixedsequencetagger class method)": [[20, "flair.models.PrefixedSequenceTagger.load"]], "load() (flair.models.relationclassifier class method)": [[20, "flair.models.RelationClassifier.load"]], "load() (flair.models.relationextractor class method)": [[20, "flair.models.RelationExtractor.load"]], "load() (flair.models.sequencetagger class method)": [[20, "flair.models.SequenceTagger.load"]], "load() (flair.models.spanclassifier class method)": [[20, "flair.models.SpanClassifier.load"]], "load() (flair.models.tarsclassifier class method)": [[20, "flair.models.TARSClassifier.load"]], "load() (flair.models.tarstagger class method)": [[20, "flair.models.TARSTagger.load"]], "load() (flair.models.textclassifier class method)": [[20, "flair.models.TextClassifier.load"]], "load() (flair.models.textregressor class method)": [[20, "flair.models.TextRegressor.load"]], "load() (flair.models.tokenclassifier class method)": [[20, "flair.models.TokenClassifier.load"]], "load_checkpoint() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_checkpoint"]], "load_language_model() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_language_model"]], "predict() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.predict"]], "predict() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.predict"]], "predict() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.predict"]], "predict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.predict"]], "predict() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.predict"]], "predict() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.predict"]], "predict() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.predict"]], "predict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.predict"]], "predict() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.predict"]], "predict() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.predict"]], "predict() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.predict"]], "predict() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.predict"]], "predict_zero_shot() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.predict_zero_shot"]], "push_to_hub() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.push_to_hub"]], "register_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.register_labels"]], "registered_labels (flair.models.regexptagger property)": [[20, "flair.models.RegexpTagger.registered_labels"]], "remove_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.remove_labels"]], "repackage_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.repackage_hidden"]], "save() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.save"]], "save() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save"]], "save_checkpoint() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save_checkpoint"]], "set_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.set_hidden"]], "split_batch_to_task_ids() (flair.models.multitaskmodel static method)": [[20, "flair.models.MultitaskModel.split_batch_to_task_ids"]], "static_label_type (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.static_label_type"]], "static_label_type (flair.models.tarstagger attribute)": [[20, "flair.models.TARSTagger.static_label_type"]], "switch_to_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.switch_to_task"]], "tars_embeddings (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarsclassifier property)": [[20, "flair.models.TARSClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarstagger property)": [[20, "flair.models.TARSTagger.tars_embeddings"]], "train() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.train"]], "training (flair.models.languagemodel attribute)": [[20, "flair.models.LanguageModel.training"]], "transform_corpus() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_corpus"]], "transform_dataset() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_dataset"]], "transform_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_sentence"]], "words_to_char_indices() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.words_to_char_indices"]], "zero_tag_value (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.zero_tag_value"]], "classifier (class in flair.nn)": [[21, "flair.nn.Classifier"]], "defaultclassifier (class in flair.nn)": [[21, "flair.nn.DefaultClassifier"]], "labelverbalizerdecoder (class in flair.nn)": [[21, "flair.nn.LabelVerbalizerDecoder"]], "lockeddropout (class in flair.nn)": [[21, "flair.nn.LockedDropout"]], "model (class in flair.nn)": [[21, "flair.nn.Model"]], "prototypicaldecoder (class in flair.nn)": [[21, "flair.nn.PrototypicalDecoder"]], "worddropout (class in flair.nn)": [[21, "flair.nn.WordDropout"]], "_filter_data_point() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._filter_data_point"]], "_get_data_points_for_batch() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_for_batch"]], "_get_data_points_from_sentence() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_from_sentence"]], "_get_label_of_datapoint() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_label_of_datapoint"]], "_get_state_dict() (flair.nn.model method)": [[21, "flair.nn.Model._get_state_dict"]], "_init_model_with_state_dict() (flair.nn.model class method)": [[21, "flair.nn.Model._init_model_with_state_dict"]], "evaluate() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.evaluate"]], "evaluate() (flair.nn.model method)": [[21, "flair.nn.Model.evaluate"]], "extra_repr() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.extra_repr"]], "extra_repr() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.extra_repr"]], "flair.nn": [[21, "module-flair.nn"]], "forward() (flair.nn.labelverbalizerdecoder method)": [[21, "flair.nn.LabelVerbalizerDecoder.forward"]], "forward() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.forward"]], "forward() (flair.nn.prototypicaldecoder method)": [[21, "flair.nn.PrototypicalDecoder.forward"]], "forward() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.forward"]], "forward_loss() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.forward_loss"]], "forward_loss() (flair.nn.model method)": [[21, "flair.nn.Model.forward_loss"]], "get_used_tokens() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.get_used_tokens"]], "label_dictionary (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_dictionary"]], "label_encoder (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_encoder"]], "label_type (flair.nn.model property)": [[21, "flair.nn.Model.label_type"]], "load() (flair.nn.classifier class method)": [[21, "flair.nn.Classifier.load"]], "load() (flair.nn.defaultclassifier class method)": [[21, "flair.nn.DefaultClassifier.load"]], "load() (flair.nn.model class method)": [[21, "flair.nn.Model.load"]], "model_card (flair.nn.model attribute)": [[21, "flair.nn.Model.model_card"]], "multi_label_threshold (flair.nn.defaultclassifier property)": [[21, "flair.nn.DefaultClassifier.multi_label_threshold"]], "num_prototypes (flair.nn.prototypicaldecoder property)": [[21, "flair.nn.PrototypicalDecoder.num_prototypes"]], "predict() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.predict"]], "predict() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.predict"]], "print_model_card() (flair.nn.model method)": [[21, "flair.nn.Model.print_model_card"]], "save() (flair.nn.model method)": [[21, "flair.nn.Model.save"]], "training (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.training"]], "training (flair.nn.lockeddropout attribute)": [[21, "flair.nn.LockedDropout.training"]], "training (flair.nn.prototypicaldecoder attribute)": [[21, "flair.nn.PrototypicalDecoder.training"]], "training (flair.nn.worddropout attribute)": [[21, "flair.nn.WordDropout.training"]], "verbalize_labels() (flair.nn.labelverbalizerdecoder static method)": [[21, "flair.nn.LabelVerbalizerDecoder.verbalize_labels"]], "newlinesentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NewlineSentenceSplitter"]], "nosentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NoSentenceSplitter"]], "scispacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SciSpacySentenceSplitter"]], "segtoksentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SegtokSentenceSplitter"]], "sentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SentenceSplitter"]], "spacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SpacySentenceSplitter"]], "tagsentencesplitter (class in flair.splitter)": [[22, "flair.splitter.TagSentenceSplitter"]], "flair.splitter": [[22, "module-flair.splitter"]], "name (flair.splitter.newlinesentencesplitter property)": [[22, "flair.splitter.NewlineSentenceSplitter.name"]], "name (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.name"]], "name (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.name"]], "name (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.name"]], "name (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.name"]], "name (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.name"]], "split() (flair.splitter.sentencesplitter method)": [[22, "flair.splitter.SentenceSplitter.split"]], "tokenizer (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.tokenizer"]], "japanesetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.JapaneseTokenizer"]], "scispacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SciSpacyTokenizer"]], "segtoktokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SegtokTokenizer"]], "spacetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpaceTokenizer"]], "spacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpacyTokenizer"]], "tokenizer (class in flair.tokenization)": [[23, "flair.tokenization.Tokenizer"]], "tokenizerwrapper (class in flair.tokenization)": [[23, "flair.tokenization.TokenizerWrapper"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "name (flair.tokenization.japanesetokenizer property)": [[23, "flair.tokenization.JapaneseTokenizer.name"]], "name (flair.tokenization.scispacytokenizer property)": [[23, "flair.tokenization.SciSpacyTokenizer.name"]], "name (flair.tokenization.spacytokenizer property)": [[23, "flair.tokenization.SpacyTokenizer.name"]], "name (flair.tokenization.tokenizer property)": [[23, "flair.tokenization.Tokenizer.name"]], "name (flair.tokenization.tokenizerwrapper property)": [[23, "flair.tokenization.TokenizerWrapper.name"]], "run_tokenize() (flair.tokenization.segtoktokenizer static method)": [[23, "flair.tokenization.SegtokTokenizer.run_tokenize"]], "run_tokenize() (flair.tokenization.spacetokenizer static method)": [[23, "flair.tokenization.SpaceTokenizer.run_tokenize"]], "tokenize() (flair.tokenization.japanesetokenizer method)": [[23, "flair.tokenization.JapaneseTokenizer.tokenize"]], "tokenize() (flair.tokenization.scispacytokenizer method)": [[23, "flair.tokenization.SciSpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.segtoktokenizer method)": [[23, "flair.tokenization.SegtokTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacetokenizer method)": [[23, "flair.tokenization.SpaceTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacytokenizer method)": [[23, "flair.tokenization.SpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizer method)": [[23, "flair.tokenization.Tokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizerwrapper method)": [[23, "flair.tokenization.TokenizerWrapper.tokenize"]], "languagemodeltrainer (class in flair.trainers)": [[24, "flair.trainers.LanguageModelTrainer"]], "modeltrainer (class in flair.trainers)": [[24, "flair.trainers.ModelTrainer"]], "textcorpus (class in flair.trainers)": [[24, "flair.trainers.TextCorpus"]], "__init__() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.__init__"]], "_backward() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._backward"]], "_initialize_model_card() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._initialize_model_card"]], "_repackage_hidden() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer._repackage_hidden"]], "check_for_and_delete_previous_best_models() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.check_for_and_delete_previous_best_models"]], "evaluate() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.evaluate"]], "fine_tune() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.fine_tune"]], "flair.trainers": [[24, "module-flair.trainers"]], "get_batch_steps() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.get_batch_steps"]], "load_checkpoint() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer.load_checkpoint"]], "reset_training_attributes() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.reset_training_attributes"]], "train() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.train"]], "train() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train"]], "train_custom() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train_custom"]], "valid_events (flair.trainers.modeltrainer attribute)": [[24, "flair.trainers.ModelTrainer.valid_events"]], "annealingplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.AnnealingPlugin"]], "baseplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.BasePlugin"]], "checkpointplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.CheckpointPlugin"]], "clearmlloggerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin"]], "linearschedulerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin"]], "logfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LogFilePlugin"]], "lossfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LossFilePlugin"]], "metrichistoryplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricHistoryPlugin"]], "metricname (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricName"]], "metricrecord (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricRecord"]], "pluggable (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.Pluggable"]], "reducetransformervocabplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin"]], "tensorboardlogger (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TensorboardLogger"]], "trainerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TrainerPlugin"]], "traininginterrupt": [[25, "flair.trainers.plugins.TrainingInterrupt"]], "weightextractorplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.WeightExtractorPlugin"]], "__init__() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.__init__"]], "__init__() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.__init__"]], "__init__() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.__init__"]], "__init__() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.__init__"]], "_training_finally() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger._training_finally"]], "after_evaluation() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_evaluation"]], "after_evaluation() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.after_evaluation"]], "after_setup() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_setup"]], "after_setup() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_setup"]], "after_training() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.after_training"]], "after_training_batch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_training_batch"]], "after_training_batch() (flair.trainers.plugins.weightextractorplugin method)": [[25, "flair.trainers.plugins.WeightExtractorPlugin.after_training_batch"]], "after_training_epoch() (flair.trainers.plugins.checkpointplugin method)": [[25, "flair.trainers.plugins.CheckpointPlugin.after_training_epoch"]], "append_plugin() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.append_plugin"]], "attach_to() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.attach_to"]], "before_training_epoch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.before_training_epoch"]], "before_training_epoch() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.before_training_epoch"]], "close_file_handler() (flair.trainers.plugins.logfileplugin method)": [[25, "flair.trainers.plugins.LogFilePlugin.close_file_handler"]], "corpus (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.corpus"]], "detach() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.detach"]], "dispatch() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.dispatch"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "get_state() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.get_state"]], "get_state() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.get_state"]], "get_state() (flair.trainers.plugins.checkpointplugin method)": [[25, "flair.trainers.plugins.CheckpointPlugin.get_state"]], "get_state() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.get_state"]], "get_state() (flair.trainers.plugins.logfileplugin method)": [[25, "flair.trainers.plugins.LogFilePlugin.get_state"]], "get_state() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.get_state"]], "get_state() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.get_state"]], "get_state() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.get_state"]], "get_state() (flair.trainers.plugins.weightextractorplugin method)": [[25, "flair.trainers.plugins.WeightExtractorPlugin.get_state"]], "histogram() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.histogram"]], "hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.hook"]], "is_histogram (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_histogram"]], "is_scalar (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar"]], "is_scalar_list (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar_list"]], "is_string (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_string"]], "is_type() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.is_type"]], "joined_name (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.joined_name"]], "logger (flair.trainers.plugins.clearmlloggerplugin property)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin.logger"]], "mark_func_as_hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.mark_func_as_hook"]], "metric_recorded() (flair.trainers.plugins.clearmlloggerplugin method)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.metric_recorded"]], "model (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.model"]], "pluggable (flair.trainers.plugins.baseplugin property)": [[25, "flair.trainers.plugins.BasePlugin.pluggable"]], "plugins (flair.trainers.plugins.pluggable property)": [[25, "flair.trainers.plugins.Pluggable.plugins"]], "register_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.register_hook"]], "register_transformer_smaller_training_vocab() (flair.trainers.plugins.reducetransformervocabplugin method)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin.register_transformer_smaller_training_vocab"]], "remove_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.remove_hook"]], "save_model_at_the_end() (flair.trainers.plugins.reducetransformervocabplugin method)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin.save_model_at_the_end"]], "scalar() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar"]], "scalar_list() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar_list"]], "store_learning_rate() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.store_learning_rate"]], "store_learning_rate() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.store_learning_rate"]], "string() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.string"]], "trainer (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.trainer"]], "valid_events (flair.trainers.plugins.pluggable attribute)": [[25, "flair.trainers.plugins.Pluggable.valid_events"]], "validate_event() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.validate_event"]], "sentence": [[32, "term-Sentence"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["api/datasets/base", "api/datasets/biomedical", "api/datasets/document_classification", "api/datasets/entity_linking", "api/datasets/ocr", "api/datasets/relation_extraction", "api/datasets/sequence_labeling", "api/datasets/text_image", "api/datasets/text_text", "api/datasets/treebanks", "api/embeddings/base", "api/embeddings/document", "api/embeddings/image", "api/embeddings/legacy", "api/embeddings/token", "api/embeddings/transformer", "api/flair", "api/flair.data", "api/flair.datasets", "api/flair.embeddings", "api/flair.models", "api/flair.nn", "api/flair.splitter", "api/flair.tokenization", "api/flair.trainers", "api/flair.trainers.plugins", "api/index", "contributing/index", "contributing/local_development", "contributing/making_a_pull_request", "contributing/updating_documentation", "contributing/writing_a_good_issue", "glossary/index", "index", "tutorial/index", "tutorial/intro", "tutorial/tutorial-basics/basic-types", "tutorial/tutorial-basics/entity-linking", "tutorial/tutorial-basics/entity-mention-linking", "tutorial/tutorial-basics/how-predictions-work", "tutorial/tutorial-basics/how-to-tag-corpus", "tutorial/tutorial-basics/index", "tutorial/tutorial-basics/other-models", "tutorial/tutorial-basics/part-of-speech-tagging", "tutorial/tutorial-basics/tagging-entities", "tutorial/tutorial-basics/tagging-sentiment", "tutorial/tutorial-embeddings/classic-word-embeddings", "tutorial/tutorial-embeddings/embeddings", "tutorial/tutorial-embeddings/flair-embeddings", "tutorial/tutorial-embeddings/index", "tutorial/tutorial-embeddings/other-embeddings", "tutorial/tutorial-embeddings/transformer-embeddings", "tutorial/tutorial-hunflair2/customize-linking", "tutorial/tutorial-hunflair2/index", "tutorial/tutorial-hunflair2/linking", "tutorial/tutorial-hunflair2/overview", "tutorial/tutorial-hunflair2/tagging", "tutorial/tutorial-hunflair2/training-ner-models", "tutorial/tutorial-training/how-model-training-works", "tutorial/tutorial-training/how-to-load-custom-dataset", "tutorial/tutorial-training/how-to-load-prepared-dataset", "tutorial/tutorial-training/how-to-train-sequence-tagger", "tutorial/tutorial-training/how-to-train-span-classifier", "tutorial/tutorial-training/how-to-train-text-classifier", "tutorial/tutorial-training/index", "tutorial/tutorial-training/train-vs-fine-tune"], "filenames": ["api/datasets/base.rst", "api/datasets/biomedical.rst", "api/datasets/document_classification.rst", "api/datasets/entity_linking.rst", "api/datasets/ocr.rst", "api/datasets/relation_extraction.rst", "api/datasets/sequence_labeling.rst", "api/datasets/text_image.rst", "api/datasets/text_text.rst", "api/datasets/treebanks.rst", "api/embeddings/base.rst", "api/embeddings/document.rst", "api/embeddings/image.rst", "api/embeddings/legacy.rst", "api/embeddings/token.rst", "api/embeddings/transformer.rst", "api/flair.rst", "api/flair.data.rst", "api/flair.datasets.rst", "api/flair.embeddings.rst", "api/flair.models.rst", "api/flair.nn.rst", "api/flair.splitter.rst", "api/flair.tokenization.rst", "api/flair.trainers.rst", "api/flair.trainers.plugins.rst", "api/index.rst", "contributing/index.rst", "contributing/local_development.md", "contributing/making_a_pull_request.md", "contributing/updating_documentation.md", "contributing/writing_a_good_issue.md", "glossary/index.rst", "index.rst", "tutorial/index.rst", "tutorial/intro.md", "tutorial/tutorial-basics/basic-types.md", "tutorial/tutorial-basics/entity-linking.md", "tutorial/tutorial-basics/entity-mention-linking.md", "tutorial/tutorial-basics/how-predictions-work.md", "tutorial/tutorial-basics/how-to-tag-corpus.md", "tutorial/tutorial-basics/index.rst", "tutorial/tutorial-basics/other-models.md", "tutorial/tutorial-basics/part-of-speech-tagging.md", "tutorial/tutorial-basics/tagging-entities.md", "tutorial/tutorial-basics/tagging-sentiment.md", "tutorial/tutorial-embeddings/classic-word-embeddings.md", "tutorial/tutorial-embeddings/embeddings.md", "tutorial/tutorial-embeddings/flair-embeddings.md", "tutorial/tutorial-embeddings/index.rst", "tutorial/tutorial-embeddings/other-embeddings.md", "tutorial/tutorial-embeddings/transformer-embeddings.md", "tutorial/tutorial-hunflair2/customize-linking.md", "tutorial/tutorial-hunflair2/index.rst", "tutorial/tutorial-hunflair2/linking.md", "tutorial/tutorial-hunflair2/overview.md", "tutorial/tutorial-hunflair2/tagging.md", "tutorial/tutorial-hunflair2/training-ner-models.md", "tutorial/tutorial-training/how-model-training-works.md", "tutorial/tutorial-training/how-to-load-custom-dataset.md", "tutorial/tutorial-training/how-to-load-prepared-dataset.md", "tutorial/tutorial-training/how-to-train-sequence-tagger.md", "tutorial/tutorial-training/how-to-train-span-classifier.md", "tutorial/tutorial-training/how-to-train-text-classifier.md", "tutorial/tutorial-training/index.rst", "tutorial/tutorial-training/train-vs-fine-tune.md"], "titles": ["flair.datasets.base", "flair.datasets.biomedical", "flair.datasets.document_classification", "flair.datasets.entity_linking", "flair.datasets.ocr", "flair.datasets.relation_extraction", "flair.datasets.sequence_labeling", "flair.datasets.text_image", "flair.datasets.text_text", "flair.datasets.treebanks", "flair.embeddings.base", "flair.embeddings.document", "flair.embeddings.image", "flair.embeddings.legacy", "flair.embeddings.token", "flair.embeddings.transformer", "flair", "flair.data", "flair.datasets", "flair.embeddings", "flair.models", "flair.nn", "flair.splitter", "flair.tokenization", "flair.trainers", "flair.trainers.plugins", "API Docs", "Contributing", "Local Development", "Making a pull request", "Updating documentation", "Writing a good issue", "Glossary", "flair", "Tutorials", "Quick Start", "Basics", "Tagging and linking entities", "Using and creating entity mention linker", "How predictions work", "How to tag a whole corpus", "Tutorial 1: Basic Tagging", "Tagging other things", "Tagging parts-of-speech", "Tagging entities", "Tagging sentiment", "Classic Word Embeddings", "Embeddings", "Flair embeddings", "Tutorial 3: Embeddings", "Other embeddings in Flair", "Transformer embeddings", "HunFlair2 Tutorial 4: Customizing linking models", "Tutorial: HunFlair2", "HunFlair2 - Tutorial 2: Entity Linking", "HunFlair2 - Overview", "HunFlair2 - Tutorial 1: Tagging", "HunFlair2 Tutorial 3: Training NER models", "How model training works in Flair", "How to load a custom dataset", "How to load a prepared dataset", "Train a sequence tagger", "Train a span classifier", "Train a text classifier", "Tutorial 2: Training models", "Training vs fine-tuning"], "terms": {"class": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 33, 36, 39, 46, 47, 48, 50, 51, 52, 57, 58, 63], "dataload": [0, 17, 18], "batch_siz": [0, 11, 20, 21], "1": [0, 1, 2, 3, 5, 6, 8, 11, 13, 14, 15, 17, 20, 24, 30, 33, 34, 42, 43, 44, 45, 48, 51, 52, 53, 54, 57, 59, 60, 61, 62, 63], "shuffl": [0, 17, 24, 57], "fals": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 24, 46, 51, 52, 57, 61, 62], "sampler": [0, 24], "none": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 38, 50], "batch_sampl": 0, "drop_last": 0, "timeout": 0, "0": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 24, 33, 35, 36, 37, 38, 39, 42, 45, 47, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62], "worker_init_fn": 0, "view": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 30], "github": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 48], "typevar": [0, 10, 21], "t_co": [0, 17], "covari": 0, "true": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 24, 51, 57, 59, 61, 62, 63], "option": [0, 1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 20, 21, 22, 24, 25, 46, 50, 51], "int": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25], "num_work": [0, 24], "pin_memori": [0, 17], "bool": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 24], "float": [0, 3, 11, 13, 14, 15, 17, 20, 24, 25], "union": [0, 1, 2, 3, 4, 6, 8, 9, 11, 15, 17, 20, 21, 22, 24, 25], "iter": [0, 3, 6, 20, 21, 25, 37, 39, 40, 42, 47, 56, 58], "pin_memory_devic": 0, "str": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25], "prefetch_factor": 0, "flairdatapointdataset": [0, 18, 20, 62], "datapoint": [0, 10, 17, 20, 21, 26, 62], "flairdataset": [0, 2, 4, 6, 7, 8, 9, 17, 26], "gener": [0, 6, 10, 14, 16, 17, 20, 21, 28, 30, 31, 46, 51, 56, 58, 60, 62], "dt": [0, 10, 17, 21, 43], "A": [0, 1, 2, 3, 6, 14, 16, 17, 20, 21, 23, 24, 30, 31, 36, 39, 43, 44, 58, 59, 60], "simpl": [0, 8, 20, 25, 30, 31, 32, 33, 50, 58], "object": [0, 1, 2, 3, 4, 5, 6, 8, 14, 17, 20, 21, 22, 24, 25, 30, 36, 37, 38, 40, 47, 48, 50, 56, 58, 59, 61, 62], "wrap": [0, 20, 23, 24], "list": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 37, 40, 46, 47, 50, 52, 56, 59, 60, 62], "exampl": [0, 14, 17, 21, 25, 28, 29, 31, 34, 40, 42, 44, 45, 46, 50, 52, 57, 59, 60, 61, 63], "sentenc": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 24, 26, 31, 32, 35, 38, 39, 40, 42, 43, 45, 46, 47, 48, 50, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63], "__init__": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 24, 25], "instanti": [0, 2, 4, 6, 8, 9, 11, 14, 15, 20, 22, 46, 47, 48, 50, 59, 60, 62], "paramet": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 36, 40, 42, 50, 52, 56, 58, 59, 61, 62], "bound": [0, 10, 15, 21], "make": [0, 11, 20, 27, 28, 31, 35, 36, 37, 39, 42, 43, 44, 45, 46, 50, 51, 55, 57, 58, 60, 61, 62, 63], "up": [0, 6, 10, 11, 14, 20, 30, 38, 50, 60, 61, 62], "is_in_memori": [0, 2, 4, 6, 7, 8, 9, 17], "return": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 42, 46, 60, 62], "type": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 30, 35, 36, 38, 44, 46, 52, 54, 55, 56, 61, 62], "sentencedataset": [0, 18], "deprec": [0, 1, 13, 14, 17, 20], "sinc": [0, 1, 2, 3, 6, 12, 13, 15, 17, 20, 21, 36, 38, 46, 48, 50, 51, 58, 59], "version": [0, 1, 3, 6, 13, 17, 20, 24, 28, 33, 42, 48], "11": [0, 38, 52, 54, 55], "The": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 31, 33, 35, 36, 37, 38, 39, 42, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 61, 62, 65], "wa": [0, 3, 6, 10, 20, 35, 37, 42, 44, 45, 56], "renam": [0, 20], "stringdataset": [0, 18], "text": [0, 1, 2, 3, 4, 6, 8, 14, 15, 17, 20, 21, 22, 23, 32, 34, 36, 38, 39, 40, 41, 42, 43, 48, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64], "use_token": [0, 8, 17, 38, 56], "token": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 26, 32, 38, 42, 46, 47, 48, 50, 51, 62], "spacetoken": [0, 2, 17, 23, 26], "take": [0, 6, 11, 12, 13, 14, 15, 17, 20, 21, 25, 28, 31, 50, 54, 55], "string": [0, 2, 3, 4, 6, 8, 11, 13, 14, 17, 20, 21, 25, 36, 43, 44, 46, 48, 51, 57], "input": [0, 10, 15, 20, 21, 50], "dure": [0, 2, 11, 14, 15, 20, 24, 50, 58, 60], "custom": [0, 1, 2, 3, 11, 13, 14, 17, 20, 21, 22, 31, 34, 46, 50, 53, 54, 62, 64], "us": [0, 1, 2, 3, 6, 8, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63], "If": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 24, 25, 28, 29, 36, 38, 44, 46, 50, 51, 52, 54, 57, 58, 59, 60, 61, 62], "instead": [0, 1, 2, 6, 12, 13, 14, 15, 17, 20, 21, 30, 31, 35, 36, 37, 38, 44, 45, 50, 51, 57, 58, 61, 62], "provid": [0, 1, 2, 3, 6, 11, 13, 14, 15, 17, 20, 21, 30, 31, 33, 42, 44, 46, 48, 50], "function": [0, 1, 2, 3, 6, 8, 12, 13, 14, 15, 17, 20, 21, 23, 25, 30, 33, 42, 46, 51, 56, 58, 62], "thi": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 29, 31, 32, 33, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "just": [0, 8, 10, 11, 14, 23, 30, 31, 35, 38, 44, 45, 47, 48, 51, 56, 57, 58, 60, 62, 63], "set": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 24, 25, 36, 40, 43, 50, 51, 54, 55, 56, 57, 58, 60, 61, 62], "segtoktoken": [0, 2, 17, 22, 23, 26], "abstract": [0, 1, 10, 17, 20, 21, 22, 23, 48, 55, 56], "mongodataset": [0, 18], "queri": [0, 20], "host": [0, 3, 14], "port": 0, "databas": [0, 1, 3], "collect": [0, 3, 6, 52, 55], "text_field": 0, "categories_field": 0, "max_tokens_per_doc": [0, 2, 8], "max_chars_per_doc": [0, 2, 8], "in_memori": [0, 1, 2, 3, 4, 5, 6, 8, 9], "tag_typ": [0, 1, 17, 20, 31, 57, 58, 61, 62], "read": [0, 1, 2, 3, 4, 6, 9, 14, 30, 31, 38, 60, 62], "mongo": 0, "each": [0, 1, 2, 3, 6, 8, 17, 20, 21, 24, 25, 37, 38, 43, 46, 47, 48, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62], "should": [0, 2, 3, 6, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 31, 35, 36, 37, 38, 39, 42, 43, 44, 45, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62], "contain": [0, 1, 2, 3, 4, 6, 8, 10, 11, 14, 17, 20, 21, 24, 33, 36, 38, 47, 50, 54, 58, 59, 60], "one": [0, 1, 2, 3, 6, 8, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 25, 29, 31, 36, 37, 38, 42, 46, 47, 50, 51, 55, 56, 57, 58, 59, 60, 62], "document": [0, 1, 2, 3, 6, 10, 13, 14, 15, 16, 17, 19, 20, 26, 27, 28, 32, 33, 49, 51, 54, 55, 59, 61, 62, 63], "per": [0, 2, 6, 14, 15, 20, 21, 39, 42, 44, 55, 59], "item": [0, 2, 10, 11, 14, 17, 52], "have": [0, 1, 2, 3, 8, 17, 20, 21, 30, 31, 35, 36, 38, 42, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 61, 62], "follow": [0, 1, 2, 3, 9, 29, 30, 35, 36, 37, 38, 46, 48, 50, 51, 52, 54, 55, 57, 60, 61, 62], "format": [0, 1, 2, 3, 4, 6, 8, 9, 14, 17, 20, 30, 46, 62], "beskrivn": 0, "abrahamsbi": 0, "g\u00e5rd": 0, "gottr\u00f6ra": 0, "sn": 0, "l\u00e5nghundra": 0, "hd": 0, "stockholm": 0, "l\u00e4n": 0, "n\u00e4ra": 0, "l\u00e5ngsj\u00f6n": 0, "h\u00e4rad": 0, "f\u00f6rsaml": 0, "plat": 0, "e": [0, 1, 2, 3, 6, 8, 13, 14, 15, 20, 25, 28, 30, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62], "g": [0, 1, 2, 3, 6, 8, 13, 14, 15, 20, 25, 30, 51, 52, 54, 55, 56, 57, 60, 61, 62], "localhost": 0, "27017": 0, "rosenberg": 0, "book": 0, "field": [0, 1, 4, 14, 17, 20, 50, 54, 59], "categori": [0, 2, 6, 52], "tingslag": 0, "most": [0, 2, 10, 11, 14, 17, 20, 21, 22, 28, 31, 36, 38, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 62], "amount": [0, 21, 54, 55], "all": [0, 1, 2, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 30, 35, 36, 38, 39, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61], "ar": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30, 31, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65], "taken": [0, 11, 13, 17, 20, 21, 50], "truncat": [0, 2, 15, 47], "maximum": [0, 2, 8, 15, 17, 20, 24], "number": [0, 1, 2, 6, 8, 10, 11, 13, 14, 17, 20, 24, 29, 50, 51, 58, 60, 61], "char": [0, 1, 2, 6, 14, 17, 20, 55], "default": [0, 1, 2, 3, 6, 8, 9, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 30, 46, 50, 51, 52, 57, 58, 59], "keep": [0, 1, 2, 3, 6, 8, 9, 20, 21, 48], "memori": [0, 1, 2, 3, 4, 6, 8, 9, 13, 14, 20, 21, 44, 48, 61], "otherwis": [0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 16, 17, 20, 51], "onli": [0, 1, 2, 3, 6, 10, 11, 13, 14, 17, 20, 21, 23, 28, 31, 36, 37, 38, 47, 50, 51, 54, 58, 60], "tag": [0, 3, 4, 6, 14, 17, 20, 22, 34, 36, 38, 39, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62], "assign": [0, 6, 17, 20, 25, 38], "label": [0, 2, 3, 4, 6, 8, 14, 17, 20, 21, 24, 26, 32, 37, 38, 39, 40, 42, 44, 56, 59, 61, 62, 63], "find_train_dev_test_fil": [0, 18], "data_fold": [0, 1, 2, 3, 5, 6, 8, 9, 59, 62], "dev_fil": [0, 1, 2, 6, 8, 9, 59], "test_fil": [0, 1, 2, 6, 8, 9, 59], "train_fil": [0, 1, 2, 6, 8, 9, 59], "autofind_split": [0, 1, 6, 8], "entiti": [1, 3, 5, 6, 17, 18, 20, 30, 34, 39, 41, 42, 50, 52, 53, 56, 60], "char_span": [1, 5], "entity_typ": [1, 20, 38, 52, 57], "base": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 45, 47, 48, 50, 51, 54, 55, 57, 58, 61, 62, 63], "intern": [1, 20, 62], "repres": [1, 3, 6, 15, 17, 20, 21, 22, 23, 25, 59, 60], "while": [1, 12, 15, 20, 21, 31, 42, 44, 48, 50, 58], "convert": [1, 3, 5, 6, 14, 17, 46, 52, 59], "ner": [1, 4, 6, 20, 21, 31, 34, 35, 36, 38, 39, 40, 42, 43, 45, 52, 53, 54, 56, 58, 59, 60, 62], "corpora": [1, 6, 9, 17, 20, 43, 45, 48, 50, 53, 55, 57, 58, 61], "standard": [1, 14, 20, 28, 39, 47, 48, 51, 54, 55, 58], "consist": [1, 3, 6, 17, 20, 32, 36, 50, 59, 60], "span": [1, 3, 6, 17, 20, 21, 26, 34, 37, 38, 39, 42, 52, 54, 55, 56, 64], "address": 1, "origin": [1, 2, 3, 6, 8, 13, 17, 20, 52, 55, 58, 60], "well": [1, 3, 11, 20, 56, 57, 58], "chemic": [1, 3, 5, 20, 38, 53, 54, 55, 56, 57], "gene": [1, 3, 20, 38, 44, 52, 53, 54, 55, 56, 57], "so": [1, 2, 6, 13, 14, 20, 28, 31, 36, 38, 43, 44, 46, 47, 48, 49, 50, 51, 56, 59, 60, 61], "is_befor": 1, "other_ent": 1, "check": [1, 3, 17, 28, 29, 33, 36, 42, 46, 47, 48, 50, 58, 59, 60], "whether": [1, 2, 3, 6, 8, 11, 13, 14, 17, 20, 35, 50, 51], "locat": [1, 6, 35, 39, 42, 44, 59], "befor": [1, 11, 13, 17, 20, 24, 28, 31, 50, 61], "given": [1, 3, 6, 8, 11, 13, 14, 17, 20, 21, 22, 23, 54, 56], "fulli": [1, 8, 58, 60], "overlap": [1, 20], "internalbionerdataset": [1, 18], "entities_per_docu": 1, "corpu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 17, 20, 21, 24, 25, 26, 34, 41, 45, 48, 50, 55, 57, 59, 61, 62, 63], "": [1, 2, 6, 10, 11, 14, 20, 22, 23, 33, 35, 36, 37, 38, 39, 42, 44, 45, 46, 47, 48, 50, 51, 52, 55, 56, 58, 59, 60, 62], "dpentri": [1, 18], "position_end": 1, "entity_count": 1, "entity_lengths_sum": 1, "last_ent": 1, "tupl": [1, 4, 6, 15, 17, 20, 21, 24, 25, 62], "alia": [1, 11, 14, 15, 17], "2": [1, 2, 3, 8, 10, 14, 15, 17, 20, 24, 34, 39, 42, 44, 48, 51, 53, 56, 57, 59, 60, 61, 62, 63], "3": [1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 24, 28, 31, 34, 35, 36, 37, 42, 47, 48, 50, 51, 53, 61, 62, 63], "merge_dataset": [1, 18], "data_set": 1, "filter_and_map_ent": [1, 18], "entity_type_to_canon": 1, "filter_nested_ent": [1, 18], "bioc_to_intern": [1, 18], "bioc_fil": 1, "helper": [1, 23, 58], "pars": [1, 3], "bioc": 1, "see": [1, 2, 3, 5, 6, 8, 11, 13, 14, 15, 16, 20, 22, 23, 36, 37, 38, 39, 42, 44, 45, 48, 50, 51, 52, 59, 60, 61, 62, 63], "http": [1, 2, 3, 5, 6, 8, 10, 11, 14, 16, 20, 52, 56], "sourceforg": 1, "net": 1, "detail": [1, 6, 13, 14, 22, 23, 30, 41, 48, 54, 55, 61, 62], "brat_to_intern": [1, 18], "corpus_dir": 1, "ann_file_suffix": 1, "annot": [1, 2, 3, 6, 8, 9, 17, 20, 35, 36, 39, 44, 50, 52, 54, 55, 56, 58, 59, 60, 62], "brat": 1, "nlplab": 1, "org": [1, 3, 5, 6, 10, 14, 20, 21, 52], "conllwrit": [1, 18], "sentence_splitt": [1, 3, 5], "util": 1, "write": [1, 13, 24, 27, 44], "conll": [1, 3, 6, 9, 17, 42, 44], "file": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 20, 21, 24, 25, 30, 50, 52, 62], "initi": [1, 2, 3, 5, 6, 13, 14, 17, 20, 21, 24, 25, 37, 40, 46, 50, 52, 56, 57, 59, 60, 61, 62, 63], "sentencesplitt": [1, 3, 22, 26, 40], "splitter": [1, 3, 5, 26, 37, 40, 56], "which": [1, 2, 3, 4, 6, 8, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 30, 31, 36, 38, 39, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62], "segment": [1, 3, 36], "process_dataset": 1, "out_dir": 1, "write_to_conl": 1, "output_fil": 1, "hunerdataset": [1, 18], "base_path": [1, 2, 3, 4, 5, 6, 8, 9, 24, 25, 57], "columncorpu": [1, 3, 5, 6, 18], "abc": [1, 3, 20, 21, 22, 23], "huner": [1, 3], "everi": [1, 3, 10, 11, 12, 13, 15, 20, 21, 25, 50], "subclass": [1, 12, 15, 20, 21, 22, 23], "ha": [1, 6, 8, 13, 14, 17, 20, 25, 31, 36, 38, 43, 48, 50, 51, 52, 55, 58, 59, 60], "implement": [1, 3, 10, 11, 13, 14, 15, 20, 21, 22, 23, 24, 38, 51, 57], "method": [1, 3, 6, 10, 11, 13, 14, 16, 17, 20, 21, 25, 28, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 60, 62, 63], "to_intern": 1, "complet": [1, 6, 22, 48, 50, 56], "data": [1, 2, 3, 4, 6, 8, 9, 14, 15, 16, 20, 21, 24, 26, 31, 35, 36, 37, 38, 39, 42, 43, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63], "incl": 1, "train": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 28, 31, 34, 35, 37, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 55, 59, 60], "dev": [1, 2, 4, 6, 8, 9, 17, 24, 25, 28, 58, 59, 60, 62], "test": [1, 2, 3, 4, 6, 8, 9, 17, 20, 24, 31, 58, 59, 60, 62], "split_url": 1, "url": [1, 3, 16, 20, 37], "without": [1, 2, 30, 31, 48, 61], "split": [1, 2, 3, 6, 9, 17, 20, 22, 23, 24, 37, 40, 50, 56, 58, 59, 60], "For": [1, 6, 8, 20, 22, 23, 28, 30, 31, 36, 39, 40, 42, 43, 44, 46, 47, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63], "further": [1, 3, 15, 22, 23, 38, 54, 55, 56], "inform": [1, 3, 4, 6, 11, 13, 14, 20, 21, 24, 33, 38, 39, 46, 48, 50, 52, 54, 56, 60], "weber": [1, 55], "et": [1, 3, 6, 10, 13, 14, 20, 48, 51, 61], "al": [1, 3, 6, 10, 13, 14, 20, 48, 61], "improv": [1, 33, 37, 54, 55, 58], "pretrain": [1, 12, 15, 53, 55, 57], "academ": [1, 3], "oup": [1, 3], "com": [1, 2, 3, 6, 8, 56], "bioinformat": [1, 3, 57], "articl": [1, 2, 3, 6, 55], "36": [1, 55, 56, 58], "295": 1, "5523847": 1, "redirectedfrom": 1, "fulltext": [1, 52], "repositori": [1, 6, 10, 20, 28, 33, 48], "hu": 1, "static": [1, 10, 11, 13, 14, 17, 20, 21, 23, 24, 46], "get_corpus_sentence_splitt": 1, "pre": [1, 17, 20, 35, 42, 43, 44, 46, 50, 55], "defin": [1, 6, 12, 15, 17, 20, 21, 24, 30, 51, 52, 57, 59, 62], "path": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 16, 20, 21, 24, 31, 46, 50, 58, 59, 62], "your": [1, 2, 3, 6, 10, 11, 13, 14, 16, 21, 28, 29, 30, 31, 35, 40, 41, 46, 47, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64], "machin": [1, 6, 58], "give": [1, 3, 6, 20, 30, 42, 43, 47, 48, 50, 58, 59, 61], "speedup": [1, 2, 3, 6], "scispacysentencesplitt": [1, 22, 26, 56], "get_subset": 1, "split_dir": 1, "bio_inf": [1, 18], "bioinfer": 1, "pyysalo": 1, "extract": [1, 5, 6, 15, 20, 21, 25, 30, 38, 42, 60, 62], "domain": [1, 6, 20, 45, 48, 53, 55, 56], "bmcbioinformat": 1, "biomedcentr": 1, "10": [1, 2, 3, 24, 50, 55, 58, 60, 63], "1186": 1, "1471": 1, "2105": 1, "8": [1, 2, 4, 5, 6, 8, 17, 28, 35, 42, 45], "50": [1, 2, 14, 20, 43, 50, 60], "classmethod": [1, 3, 6, 10, 11, 12, 14, 15, 17, 20, 21, 25], "download_dataset": 1, "data_dir": [1, 3], "parse_dataset": 1, "original_fil": [1, 3], "huner_gene_bio_inf": [1, 18], "arg": [1, 2, 10, 14, 17, 20, 21, 25], "kwarg": [1, 3, 7, 11, 14, 15, 20, 21, 24, 25], "protein": [1, 3, 5, 52, 53, 54, 55, 56], "get_entity_type_map": [1, 57], "dict": [1, 2, 3, 4, 6, 10, 11, 12, 14, 16, 17, 20, 21, 24, 25], "jnlpba": [1, 18], "share": [1, 17, 20, 21, 31, 48, 62], "task": [1, 2, 3, 4, 5, 6, 8, 9, 17, 21, 37, 42, 43, 44, 45, 48, 51, 58, 59, 60, 61, 62], "kim": 1, "introduct": [1, 33, 58], "bio": [1, 4, 6, 20, 59, 62], "recognit": [1, 3, 6, 20, 35, 44, 54, 55, 56, 57, 60, 62], "www": [1, 3, 6, 14], "aclweb": 1, "anthologi": 1, "w04": 1, "1213": 1, "pdf": [1, 3, 5], "13": [1, 6, 33, 38, 44, 52, 54], "pleas": [1, 6, 14, 29, 31, 50, 51, 54, 55], "from": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 30, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 60, 61, 62, 63], "bigbio": [1, 3], "bigbio_ner_corpu": [1, 18, 57], "hunerjnlpba": [1, 18], "download_and_prepare_train": 1, "sentence_tag": 1, "download_and_prepare_test": 1, "read_fil": 1, "input_iob_fil": 1, "huner_jnlpba": [1, 18], "entity_type_map": 1, "huner_gene_jnlpba": [1, 18], "huner_cell_line_jnlpba": [1, 18], "cell": [1, 20, 53, 55, 56, 57], "line": [1, 2, 3, 6, 8, 11, 13, 14, 21, 36, 43, 53, 55, 56, 57, 58, 59, 60, 62], "huner_all_jnlpba": [1, 18], "cell_find": [1, 18], "cellfind": 1, "speci": [1, 3, 20, 38, 44, 53, 54, 55, 56, 57], "futher": 1, "neve": 1, "evalu": [1, 2, 3, 8, 13, 14, 20, 21, 24, 55, 58], "stem": 1, "research": [1, 2, 3, 6, 8, 42], "semanticscholar": 1, "38e3": 1, "75aeeeb1937d03c3c80128a70d8e7a74441f": 1, "download_and_prepar": 1, "read_fold": 1, "huner_cell_line_cell_find": [1, 18], "huner_species_cell_find": [1, 18], "huner_gene_cell_find": [1, 18], "huner_all_cell_find": [1, 18], "mirna": [1, 18], "bagewadi": 1, "detect": [1, 3, 20, 34, 44, 45, 63], "mention": [1, 3, 20, 30, 34, 37, 41, 52, 54, 56, 59], "relat": [1, 5, 9, 17, 20, 26, 54, 60], "literatur": 1, "ncbi": [1, 3, 54, 57], "nlm": [1, 3], "nih": [1, 3], "gov": [1, 3], "pmc": 1, "pmc4602280": 1, "callabl": [1, 25], "word": [1, 3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 22, 23, 34, 36, 42, 48, 49, 50, 56, 57, 58, 59, 62], "scispaci": [1, 23, 55, 56], "sentence_separ": 1, "parse_fil": [1, 3], "input_fil": 1, "hunermirnahelp": [1, 18], "get_mirna_subset": 1, "huner_mirna": [1, 18], "huner_gene_mirna": [1, 18], "huner_species_mirna": [1, 18], "huner_disease_mirna": [1, 18], "diseas": [1, 3, 20, 38, 44, 52, 53, 54, 55, 56, 57], "huner_all_mirna": [1, 18], "kaewphancorpushelp": [1, 18], "kaewphan": 1, "cll": [1, 18], "gellu": [1, 18], "download_cll_dataset": 1, "prepare_and_save_dataset": 1, "nersuite_fold": 1, "download_gellus_dataset": 1, "read_dataset": 1, "name": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 30, 31, 35, 36, 38, 42, 44, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62], "support": [1, 6, 20, 23, 28, 46, 50, 51, 52, 58, 60], "identif": [1, 2], "synthet": 1, "lethal": 1, "cancer": [1, 57], "pmc4708107": 1, "huner_cell_line_cl": [1, 18], "huner_cell_line_gellu": [1, 18], "loctext": [1, 18], "cejuela": 1, "local": [1, 10, 27, 31], "assist": 1, "curat": [1, 44], "s12859": 1, "018": 1, "2021": [1, 6, 61], "9": [1, 42, 52, 54, 55, 56], "huner_loctext": [1, 18], "huner_species_loctext": [1, 18], "huner_gene_loctext": [1, 18], "huner_all_loctext": [1, 18], "chemdner": [1, 18], "kralling": 1, "drug": [1, 5], "its": [1, 3, 16, 17, 20, 30, 39, 45, 48, 50, 56, 57, 58], "principl": 1, "jcheminf": 1, "1758": 1, "2946": 1, "7": [1, 35, 37, 38, 42, 43, 52, 54, 55, 56, 61, 62, 63], "s1": 1, "s2": [1, 56], "segement": 1, "huner_chemical_chemdn": [1, 18], "iepa": [1, 18], "informatik": 1, "berlin": [1, 35, 40, 42, 58], "de": [1, 3, 6, 8, 42, 43, 44, 45, 46, 48], "ding": 1, "berleant": 1, "nettleton": 1, "wurtel": 1, "mine": [1, 56], "medlin": 1, "phrase": [1, 32, 42], "pubm": [1, 48], "11928487": 1, "huner_gene_iepa": [1, 18], "linneau": [1, 18], "gerner": 1, "linnaeu": 1, "system": [1, 3, 6, 61], "20149233": 1, "scispacytoken": [1, 22, 23, 26, 38, 56], "download_and_parse_dataset": 1, "huner_species_linneau": [1, 18, 57], "cdr": [1, 3, 18], "jhnlp": 1, "biocr": [1, 3, 5], "v": [1, 3, 34, 55, 59, 64], "li": 1, "resourc": [1, 40, 58, 59, 61, 62, 63], "pmc4860626": 1, "huner_disease_cdr": [1, 18], "huner_chemical_cdr": [1, 18], "huner_all_cdr": [1, 18, 57], "variom": [1, 18], "brat2bioc": 1, "hvp_bioc": 1, "xml": [1, 3], "zip": [1, 6], "verspoor": 1, "human": [1, 3, 6, 52, 54], "pmc3676157": 1, "parse_corpu": 1, "corpus_xml": 1, "huner_gene_variom": [1, 18], "huner_disease_variom": [1, 18], "huner_species_variom": [1, 18], "huner_all_variom": [1, 18], "ncbi_diseas": [1, 18, 57], "dogan": [1, 3], "concept": [1, 3, 17, 20, 33, 36, 47, 52, 54], "normal": [1, 5, 6, 20, 23, 24, 54, 55, 58, 60], "24393765": 1, "download_corpu": 1, "patch_training_fil": 1, "orig_train_fil": 1, "patched_fil": 1, "parse_input_fil": 1, "huner_disease_ncbi": [1, 18, 57], "scaicorpu": [1, 18], "scai": 1, "scau": 1, "scai_chem": [1, 18], "kol\u00e1\u0159ik": 1, "terminolog": 1, "pub": 1, "uni": 1, "bielefeld": 1, "record": [1, 5, 25, 52], "2603498": 1, "perform_corpus_download": 1, "scai_diseas": [1, 18], "gurulingappa": 1, "an": [1, 2, 3, 6, 8, 10, 11, 14, 15, 17, 20, 21, 22, 23, 24, 29, 31, 33, 36, 37, 38, 40, 42, 45, 46, 47, 50, 51, 55, 56, 58], "empir": [1, 3], "advers": 1, "effect": [1, 13, 14, 20, 25], "2603398": 1, "huner_chemical_scai": [1, 18], "huner_disease_scai": [1, 18], "huner_all_scai": [1, 18, 57], "osiri": [1, 18], "load_original_unfixed_annot": 1, "variat": [1, 15, 21], "furlong": 1, "v1": [1, 6, 48, 52], "sequenc": [1, 3, 15, 17, 20, 22, 25, 34, 36, 48, 51, 57, 58, 59, 60, 62, 64], "variant": [1, 20, 45, 48], "18251998": 1, "erron": 1, "two": [1, 2, 6, 8, 10, 14, 17, 20, 31, 36, 37, 39, 42, 44, 46, 47, 48, 51, 56, 58, 59, 65], "you": [1, 2, 3, 6, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 28, 29, 30, 31, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], "don": [1, 31, 59, 60, 62], "t": [1, 3, 6, 8, 15, 20, 21, 30, 31, 57, 59, 60, 62], "want": [1, 2, 3, 6, 16, 20, 23, 24, 31, 33, 36, 38, 40, 44, 46, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 62, 63], "fix": [1, 20, 28], "corpus_fold": 1, "fix_annot": 1, "huner_gene_osiri": [1, 18], "s800": [1, 18], "pafili": 1, "organ": [1, 3, 6, 20], "fast": [1, 13, 14, 42, 43, 44, 48, 58], "accur": [1, 45], "taxonom": 1, "ploson": 1, "info": [1, 16, 17, 47], "doi": [1, 3], "2f10": 1, "1371": 1, "2fjournal": 1, "pone": 1, "0065390": 1, "huner_species_s800": [1, 18, 57], "gpro": [1, 18], "udel": [1, 3], "edu": [1, 2, 3, 5, 6], "descript": [1, 3, 17, 50, 51], "download_train_corpu": 1, "download_dev_corpu": 1, "text_fil": 1, "ann_fil": 1, "huner_gene_gpro": [1, 18], "deca": [1, 18], "wang": [1, 55], "disambigu": [1, 3, 42], "natur": [1, 8, 33, 56], "languag": [1, 2, 3, 6, 8, 9, 13, 14, 17, 23, 33, 42, 44, 45, 46, 48, 50, 53, 55, 56, 58, 61, 63], "parser": [1, 30], "pmc2828111": 1, "biospacysentencespliit": 1, "text_dir": 1, "gold_fil": 1, "huner_gene_deca": [1, 18], "fsu": [1, 18], "deriv": [1, 6, 50], "hahn": 1, "propos": [1, 10, 13, 14, 48, 50], "configur": [1, 20, 22, 23, 28, 52], "silver": 1, "w10": 1, "1838": 1, "huner_gene_fsu": [1, 18], "craft": [1, 18], "corefer": [1, 6], "section": [1, 42, 43, 44, 45, 50, 51, 52, 58, 61, 62, 65], "typographi": 1, "bada": 1, "161": 1, "biosemant": [1, 18], "akhondi": 1, "patent": [1, 55], "gold": [1, 3, 20, 21, 55], "pmc4182036": 1, "bc2gm": [1, 18], "ii": [1, 6], "gm": 1, "smith": [1, 6], "overview": [1, 34, 53, 58], "pmc2559986": 1, "parse_train_dataset": 1, "parse_test_dataset": 1, "huner_gene_bc2gm": [1, 18], "cemp": [1, 18], "huner_chemical_cemp": [1, 18], "chebi": [1, 18], "shardlow": 1, "new": [1, 2, 3, 6, 10, 13, 14, 17, 20, 21, 24, 29, 30, 33, 35, 46, 47, 48, 50, 52, 57, 58, 61, 63], "metabolit": 1, "lrec": 1, "conf": [1, 30], "proceed": [1, 6], "lrec2018": 1, "229": 1, "been": [1, 6, 31, 42, 60], "can": [1, 2, 3, 6, 8, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 30, 31, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], "select": [1, 6, 51, 58], "choos": [1, 16, 20, 31, 43, 44, 46, 48, 50, 51], "both": [1, 11, 13, 14, 15, 20, 21, 35, 36, 42, 48, 52, 54, 58, 60, 61, 62], "get_ent": 1, "f": [1, 20, 36, 39, 57, 58, 62], "huner_chebi": [1, 18], "huner_chemical_chebi": [1, 18], "huner_gene_chebi": [1, 18], "huner_species_chebi": [1, 18], "huner_all_chebi": [1, 18], "bionlpcorpu": [1, 18], "bionlp": [1, 3], "event": [1, 24, 25], "2013": 1, "st": [1, 8], "intro": 1, "input_fold": 1, "bionlp2013_pc": [1, 18], "pathwai": 1, "ohta": 1, "pc": 1, "w13": 1, "2009": [1, 6], "download_fold": 1, "bionlp2013_cg": [1, 18], "genet": 1, "ananiad": 1, "cg": 1, "2008": 1, "anat_em": [1, 18], "anatom": 1, "scale": 1, "pmc3957068": 1, "nactem": 1, "ac": [1, 3], "uk": [1, 6, 44, 48], "anatomytagg": 1, "anatem": 1, "input_dir": 1, "bioberthelp": [1, 18], "column_format": [1, 3, 6, 62], "comment_symbol": [1, 6], "corpusarg": [1, 2, 3, 4, 5, 6, 8, 17], "respect": [1, 3, 4, 6, 8, 14, 20, 21, 30, 38, 50, 52, 60, 62], "biobert": 1, "lee": 1, "4": [1, 2, 11, 13, 15, 24, 34, 36, 38, 39, 42, 44, 47, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63], "1234": 1, "5566506": 1, "dmi": 1, "lab": [1, 6, 14], "download_corpora": 1, "download_dir": 1, "convert_and_writ": 1, "biobert_chemical_bc4chemd": [1, 18], "bc4chemd": 1, "regard": 1, "biobert_gene_bc2gm": [1, 18], "biobert_gene_jnlpba": [1, 18], "biobert_chemical_bc5cdr": [1, 18], "bc5cdr": [1, 3, 54], "biobert_disease_bc5cdr": [1, 18], "biobert_disease_ncbi": [1, 18], "biobert_species_linnaeu": [1, 18], "linneaeu": 1, "biobert_species_s800": [1, 18], "craft_v4": [1, 18], "co": [1, 11, 14, 20], "refer": [1, 3, 6, 14, 17, 20, 30, 37, 38, 54], "structur": [1, 4, 56, 59, 62], "ucdenv": 1, "ccp": 1, "filter_ent": 1, "prepare_split": 1, "huner_craft_v4": [1, 18], "huner_chemical_craft_v4": [1, 18], "huner_gene_craft_v4": [1, 18], "huner_species_craft_v4": [1, 18], "huner_all_craft_v4": [1, 18], "huner_bionlp2013_cg": [1, 18], "huner_chemical_bionlp2013_cg": [1, 18], "huner_disease_bionlp2013_cg": [1, 18], "huner_gene_bionlp2013_cg": [1, 18], "huner_species_bionlp2013_cg": [1, 18], "huner_all_bionlp2013_cg": [1, 18], "azdz": [1, 18], "arizona": 1, "informat": 1, "state": [1, 3, 11, 13, 14, 15, 20, 21, 24, 25, 33, 48, 50, 53, 55, 57, 58, 61, 62, 63, 64], "univers": [1, 6, 50, 58, 60, 61], "diego": 1, "asu": 1, "index": [1, 2, 6, 16, 20, 30, 36], "php": [1, 6], "pdr": [1, 18], "plant": 1, "journal": [1, 3, 55], "plo": 1, "id": [1, 3, 6, 17, 20, 28, 36, 38, 42, 43, 44, 45, 46, 48, 52, 60], "0221582": 1, "gcancer": 1, "huner_disease_pdr": [1, 18], "hunermulticorpu": [1, 18], "multicorpu": [1, 3, 6, 17, 26, 57, 61, 62], "build": [1, 20, 52, 53, 55], "consid": [1, 3, 6, 13, 17, 20, 21, 23, 29, 30], "particular": [1, 6, 13, 14, 24, 56, 58], "huner_cell_lin": [1, 18], "huner_chem": [1, 18], "huner_diseas": [1, 18], "huner_gen": [1, 18], "huner_speci": [1, 18], "dataset_nam": [1, 3, 6, 20, 52], "train_split_nam": 1, "dev_split_nam": [1, 6], "test_split_nam": 1, "adapt": [1, 3, 6], "framework": [1, 3, 33, 38], "bigscienc": [1, 3], "workshop": [1, 3, 6], "harmon": [1, 3], "over": [1, 3, 6, 14, 20, 30, 35, 37, 39, 42, 43, 44, 45, 46, 47, 48, 50, 51, 55, 56, 58, 59, 62], "120": [1, 3], "uniform": [1, 3, 17], "program": [1, 3], "api": [1, 3, 28, 30, 33, 50], "access": [1, 3, 17, 31, 39, 41, 50, 56, 59, 60], "them": [1, 3, 11, 12, 13, 15, 20, 21, 24, 28, 50, 56, 58, 59, 62], "allow": [1, 2, 3, 11, 13, 14, 15, 16, 20, 24, 25, 47, 55, 57], "bigbio_kb": [1, 3], "schema": [1, 2, 3, 4, 6, 8, 38], "huggingfac": [1, 11, 14, 15, 20, 51], "hub": [1, 15, 20, 43, 44, 51], "nlmchem": 1, "usual": [1, 10, 20, 30, 31, 60], "develop": [1, 6, 27, 48, 57, 58], "valid": [1, 17, 20, 54, 60], "map": [1, 2, 4, 6, 17, 20, 21, 52, 54, 57, 62], "canon": [1, 17], "note": [1, 3, 6, 20, 23, 42, 43, 44, 48, 50, 59], "present": [1, 6, 16, 50, 56], "discard": 1, "build_corpus_directory_nam": 1, "directori": [1, 6, 13, 16, 25], "to_internal_dataset": 1, "hug": [1, 20], "our": [1, 6, 28, 35, 36, 37, 39, 43, 48, 50, 52, 54, 55, 56, 58, 59, 61, 62], "represent": [1, 10, 11, 13, 14, 20, 21, 47, 48, 49, 51], "bin_search_passag": 1, "passag": 1, "low": 1, "high": [1, 38, 52, 54, 61], "find": [1, 20, 28, 33, 35, 44, 50, 51, 52, 55, 60], "offset": [1, 17, 55, 56], "binari": [1, 20, 46, 50], "search": [1, 59], "order": [1, 6, 14, 20, 36, 38, 50, 58], "huner_gene_nlm_gen": [1, 18, 57], "huner_gene_drugprot": [1, 18], "huner_chemical_drugprot": [1, 18], "huner_all_drugprot": [1, 18], "huner_gene_bior": [1, 18], "huner_chemical_bior": [1, 18], "huner_disease_bior": [1, 18], "huner_species_bior": [1, 18], "huner_cell_line_bior": [1, 18], "huner_all_bior": [1, 18, 57], "huner_gene_cpi": [1, 18], "huner_chemical_cpi": [1, 18], "huner_all_cpi": [1, 18], "huner_gene_bionlp_st_2013_pc": [1, 18], "huner_chemical_bionlp_st_2013_pc": [1, 18], "huner_all_bionlp_st_2013_pc": [1, 18], "huner_gene_bionlp_st_2013_g": [1, 18], "huner_gene_bionlp_st_2011_g": [1, 18], "huner_gene_bionlp_st_2011_id": [1, 18], "huner_chemical_bionlp_st_2011_id": [1, 18], "huner_species_bionlp_st_2011_id": [1, 18], "huner_all_bionlp_st_2011_id": [1, 18], "huner_gene_bionlp_st_2011_rel": [1, 18], "huner_gene_bionlp_st_2011_epi": [1, 18], "huner_species_bionlp_st_2019_bb": [1, 18], "huner_gene_bioid": [1, 18], "huner_chemical_bioid": [1, 18], "huner_species_bioid": [1, 18], "huner_cell_line_bioid": [1, 18], "huner_all_bioid": [1, 18], "huner_gene_gnormplu": [1, 18, 57], "huner_gene_progen": [1, 18], "huner_chemical_nlm_chem": [1, 18, 57], "huner_gene_seth_corpu": [1, 18], "huner_gene_tmvar_v3": [1, 18], "classificationcorpu": [2, 18, 59], "label_typ": [2, 3, 4, 6, 8, 17, 20, 21, 38, 57, 58, 59, 60, 61, 62, 63], "truncate_to_max_token": 2, "truncate_to_max_char": 2, "filter_if_longer_than": 2, "memory_mod": 2, "partial": [2, 6, 55], "label_name_map": [2, 3, 4, 6], "skip_label": 2, "allow_examples_without_label": 2, "sample_missing_split": [2, 3, 6, 8, 17], "encod": [2, 3, 4, 6, 8, 14, 17, 20, 21, 50, 62], "utf": [2, 4, 6, 8], "classif": [2, 5, 6, 8, 20, 21, 58, 60, 62], "fasttext": [2, 14, 46], "folder": [2, 3, 4, 6, 8, 9, 16, 28, 30, 59, 62], "sampl": [2, 3, 6, 8, 9, 17, 20, 24, 58], "filter": [2, 20, 31], "longer": [2, 31, 47, 51], "specifi": [2, 3, 6, 15, 17, 20, 21, 25, 30, 50, 52, 57, 58, 59, 62], "what": [2, 20, 29, 31, 33, 37, 39, 42, 43, 58, 60, 61, 62, 63], "degre": [2, 60], "full": [2, 9, 22, 31, 32, 36, 43, 44, 55, 56, 58, 61, 62], "disk": [2, 4, 6, 9, 13, 20], "embed": [2, 17, 20, 21, 24, 26, 29, 34, 44, 45, 57, 62, 63], "fit": [2, 13, 20], "even": [2, 6, 20, 39, 48, 57, 58], "too": [2, 11, 14, 15, 20, 58, 60], "much": [2, 31, 44, 47, 48, 54, 55, 58], "differ": [2, 3, 4, 6, 10, 11, 13, 14, 17, 20, 25, 36, 42, 43, 44, 47, 48, 50, 51, 54, 55, 56, 57, 58, 59, 62, 65], "some": [2, 3, 6, 10, 11, 14, 15, 17, 20, 23, 24, 30, 31, 46, 48, 51, 58, 59, 62], "latin": 2, "classificationdataset": [2, 18], "path_to_fil": 2, "singl": [2, 3, 6, 9, 11, 13, 14, 16, 20, 21, 22, 31, 47, 48, 50, 51, 55, 56, 61, 62], "__label__": [2, 59], "class_nam": 2, "multi": [2, 3, 5, 6, 8, 11, 13, 14, 20, 21, 43, 48, 50, 60], "mani": [2, 20, 24, 36, 37, 40, 43, 48, 50, 58, 59, 60, 63], "begin": [2, 6, 21, 59], "class_name_1": 2, "class_name_2": 2, "param": [2, 4, 6, 8, 10, 11, 12, 14, 15], "csvclassificationcorpu": [2, 18, 59], "column_name_map": [2, 6, 59], "csv_corpu": 2, "skip_head": [2, 59], "no_class_label": 2, "fmtparam": 2, "csv": [2, 8], "column": [2, 3, 6, 8, 9, 59, 62], "indic": [2, 3, 6, 8, 11, 13, 15, 20, 21, 36, 39, 42, 45, 56, 59], "skip": [2, 3, 14, 59], "first": [2, 3, 6, 8, 14, 15, 16, 17, 20, 24, 36, 37, 38, 47, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62], "becaus": [2, 3, 31, 58, 59, 61], "header": [2, 6, 59], "addit": [2, 3, 6, 14, 15, 17, 23, 24, 25, 30, 56, 59], "reader": [2, 14], "csvclassificationdataset": [2, 18], "amazon_review": [2, 18], "split_max": 2, "30000": [2, 43], "neg": [2, 20, 35, 45], "posit": [2, 3, 14, 20, 35, 36, 45, 56], "5": [2, 3, 11, 13, 15, 20, 21, 24, 35, 36, 37, 38, 39, 42, 44, 48, 52, 54, 55, 56, 57, 60, 61, 62, 63], "fraction_of_5_star_review": 2, "veri": [2, 33, 44, 45, 48, 50, 58, 61], "larg": [2, 14, 44, 50, 56, 61], "amazon": [2, 45], "review": [2, 45], "rate": [2, 24, 38, 58, 61], "download": [2, 3, 5, 6, 14, 16, 52, 56, 60], "nijianmo": 2, "io": [2, 3, 6, 16], "html": [2, 11, 14, 20, 30], "we": [2, 3, 6, 8, 13, 20, 28, 29, 30, 31, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63], "core": [2, 38], "subset": [2, 6, 17, 57], "still": [2, 13, 47], "ten": [2, 6], "million": [2, 3, 48], "construct": [2, 11, 13, 20, 50], "how": [2, 15, 20, 28, 30, 31, 34, 35, 36, 37, 41, 43, 44, 45, 48, 49, 52, 54, 56, 57, 61, 62, 63, 64], "point": [2, 3, 6, 14, 17, 20, 21, 24, 36, 39, 48, 59], "28": [2, 6, 55, 58], "higher": [2, 14, 24, 28, 50, 58], "lower": [2, 3, 14, 48, 50], "increas": [2, 6, 46, 51], "decreas": 2, "size": [2, 10, 11, 14, 17, 20, 21, 24, 32, 40, 51, 58], "By": [2, 17, 46, 50, 51, 52, 58, 59], "star": [2, 37], "onto": [2, 20, 60], "neutral": [2, 8], "argument": [2, 6, 11, 14, 20, 21, 24, 25, 50], "download_and_prepare_amazon_product_fil": 2, "part_nam": 2, "max_data_point": 2, "imdb": [2, 18, 59], "rebalance_corpu": 2, "movi": [2, 6, 45], "sentiment": [2, 20, 34, 36, 41, 63], "ai": 2, "stanford": [2, 5], "amaa": 2, "move": [2, 13, 14], "store": [2, 4, 14, 15, 20, 21, 24, 30, 43], "specif": [2, 3, 6, 14, 16, 20, 36, 50, 53, 54, 55, 58], "weather": [2, 10, 14, 20, 21], "80": [2, 42], "huge": 2, "also": [2, 3, 6, 14, 17, 20, 21, 25, 28, 31, 36, 37, 38, 42, 44, 45, 46, 48, 50, 51, 56, 57, 59, 60, 61, 62], "faster": [2, 14, 45, 54, 55, 61], "process": [2, 6, 11, 20, 24, 29, 33, 38, 54, 55, 56], "less": [2, 3, 8, 14, 35, 45, 61], "other": [2, 8, 20, 21, 31, 34, 39, 41, 43, 44, 46, 47, 48, 49, 53, 58, 59, 61], "newsgroup": [2, 18], "20": [2, 6, 20, 24, 57, 58], "classifi": [2, 6, 8, 20, 21, 26, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 50, 54, 55, 56, 64], "qwone": 2, "jason": 2, "20newsgroup": 2, "mai": [2, 17, 20, 22, 23, 36, 40, 48, 51, 54, 59, 61], "long": [2, 14, 15, 47], "big": [2, 61, 62], "agnew": [2, 18], "ag": 2, "topic": [2, 55, 59], "coars": [2, 6, 59], "grain": [2, 6, 43, 62], "world": [2, 51], "sport": 2, "busi": [2, 6], "sci": 2, "tech": 2, "stackoverflow": [2, 18], "question": [2, 8, 39, 63], "jacoxu": 2, "sentiment_140": [2, 18], "twitter": [2, 3, 46], "help": [2, 20, 33, 39], "sentiment140": 2, "student": 2, "three": [2, 6, 47, 48, 58, 59, 60], "numer": 2, "valu": [2, 6, 11, 13, 15, 16, 17, 20, 21, 24, 25, 30, 36, 38, 50, 51, 56, 57, 58], "senteval_cr": [2, 18], "sentev": 2, "facebookresearch": 2, "small": [2, 9, 28, 31, 46, 50, 55, 58, 61, 62], "senteval_mr": [2, 18], "senteval_subj": [2, 18], "subject": 2, "senteval_mpqa": [2, 18], "opinion": 2, "polar": 2, "senteval_sst_binari": [2, 18], "treebank": [2, 18, 26, 43, 58, 60], "senteval_sst_granular": [2, 18], "glue_cola": [2, 18], "accept": [2, 11, 13, 14, 21, 29], "linguist": [2, 10, 32, 59, 62], "glue": [2, 8, 60], "benchmark": [2, 3, 8, 20, 60], "gluebenchmark": [2, 8], "predict": [2, 8, 15, 17, 20, 21, 31, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 48, 54, 55, 56, 57, 60, 61, 62, 63], "english": [2, 6, 42, 45, 46, 48, 50, 58, 60, 61], "grammat": 2, "correct": [2, 20, 37], "additionali": [2, 8], "eval_dataset": [2, 8], "unlabel": [2, 8], "cola": 2, "tsv_from_eval_dataset": [2, 8], "folder_path": [2, 8], "creat": [2, 3, 6, 8, 14, 17, 20, 24, 25, 28, 31, 34, 36, 41, 46, 47, 48, 50, 51, 57, 59, 61, 62, 63], "eval": 2, "tsv": [2, 3, 8, 25], "after": [2, 6, 8, 14, 17, 31, 38, 48, 54, 58], "call": [2, 3, 6, 8, 12, 14, 15, 17, 20, 21, 24, 25, 28, 30, 36, 46, 47, 48, 50, 54, 55, 56, 57, 58, 60, 63], "label_nam": [2, 8, 20, 21, 52], "result": [2, 6, 10, 13, 20, 21, 38, 47, 48, 50, 51, 55, 57, 58], "requir": [2, 5, 6, 11, 14, 20, 28, 30, 31, 34, 38, 48, 50, 54, 55, 58, 61], "submiss": [2, 8], "glue_sst2": [2, 18], "datasetarg": 2, "label_map": 2, "go_emot": [2, 18], "goemot": 2, "58k": 2, "reddit": [2, 3], "comment": [2, 3, 6, 25], "27": [2, 44, 55, 56, 58], "emot": 2, "googl": [2, 6, 20, 30, 60], "trec_50": [2, 18], "trec": 2, "fine": [2, 6, 11, 14, 20, 34, 43, 47, 52, 58, 61, 62, 63, 64], "answer": [2, 8], "6": [2, 37, 42, 43, 45, 48, 55, 56, 61, 62, 63], "trec_6": [2, 18, 60, 63], "yahoo_answ": [2, 18], "yahoo": 2, "rather": [2, 30, 55], "germeval_2018_offensive_languag": [2, 18], "fine_grained_class": 2, "germev": [2, 6, 44, 45], "2018": [2, 13, 14, 45, 50, 61], "offens": [2, 45, 63], "german": [2, 3, 6, 13, 14, 42, 45, 46, 48, 60, 61], "tweet": [2, 3, 43], "abus": 2, "insult": 2, "profatinti": 2, "load": [2, 3, 4, 6, 14, 15, 17, 20, 21, 22, 23, 25, 31, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 61, 63, 64], "communicative_funct": [2, 18], "commun": [2, 42, 43, 44, 56], "scientif": [2, 55, 56], "paper": [2, 3, 6, 10, 20, 42, 48, 54, 55, 61, 62], "39": [2, 43, 57, 58], "date": [2, 3, 44], "wassa_ang": [2, 18], "wassa": 2, "2017": 2, "anger": 2, "intens": 2, "saifmohammad": 2, "webpag": 2, "emotionintens": 2, "sharedtask": 2, "wassa_fear": [2, 18], "fear": 2, "wassa_joi": [2, 18], "joi": 2, "wassa_sad": [2, 18], "sad": 2, "entitylinkingdictionari": [3, 18, 20], "candid": [3, 20, 38, 52, 62], "dictionari": [3, 6, 14, 16, 17, 20, 21, 24, 26, 38, 50, 54, 57, 59, 61, 62, 63], "link": [3, 6, 9, 20, 30, 33, 34, 41, 53, 55, 56, 60, 62], "knowledg": [3, 6, 10, 50, 54, 55], "associ": 3, "entitycandid": [3, 17, 26, 38, 52], "prefix": [3, 14, 20, 57, 59], "To": [3, 11, 13, 14, 20, 21, 28, 29, 33, 35, 36, 37, 38, 43, 44, 50, 51, 52, 56, 58, 59, 60, 61, 62], "properti": [3, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 31], "database_nam": [3, 17, 52], "text_to_index": 3, "to_in_memory_dictionari": 3, "inmemoryentitylinkingdictionari": [3, 18, 52], "to_stat": 3, "ani": [3, 6, 10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 24, 25, 31, 38, 46, 47, 48, 50, 51, 55, 60], "from_stat": 3, "hunerentitylinkingdictionari": [3, 18], "alreadi": [3, 10, 11, 13, 14, 17, 20, 21, 29, 62], "must": [3, 6, 8, 10, 17, 20, 21, 30, 42, 59], "concept_id": [3, 17, 52], "concept_nam": [3, 17, 52], "multipl": [3, 6, 15, 17, 20, 21, 23, 38, 54, 55, 56, 59, 60], "thei": [3, 13, 14, 15, 24, 43, 48, 50, 55, 57, 58, 60], "separ": [3, 6, 8, 11, 13, 15, 20, 23, 24, 36, 52, 56, 59], "7157": [3, 54], "tp53": [3, 54], "tumor": [3, 54], "p53": [3, 54], "ctd_diseases_dictionari": [3, 18], "compar": [3, 20, 54], "toxicogenom": 3, "ctd": [3, 52, 54], "fur": 3, "found": [3, 10, 17, 20, 38, 42, 48, 50, 55], "ctdbase": 3, "download_dictionari": 3, "ctd_chemicals_dictionari": [3, 18], "ncbi_gene_human_dictionari": [3, 18], "ontologi": [3, 17, 52, 54, 55], "aren": 3, "includ": [3, 6, 8, 9, 14, 17, 20, 21, 25, 36, 42, 46, 51, 56, 58], "_is_invalid_nam": 3, "determin": [3, 6, 8, 17, 20, 24, 35, 58], "parse_dictionari": 3, "ncbi_taxonomy_dictionari": [3, 18], "taxonomi": 3, "about": [3, 6, 17, 36, 38, 58, 59], "zelda": [3, 18, 37, 62], "nel": [3, 20, 38], "multifilecolumncorpu": [3, 6, 18], "introduc": [3, 6, 50], "comprehens": 3, "supervis": [3, 6], "milich": 3, "akbik": [3, 13, 14, 48, 55, 61], "2023": [3, 6, 57, 58], "when": [3, 6, 8, 14, 15, 17, 20, 25, 30, 31, 36, 37, 47, 51, 55, 56], "constructor": [3, 6, 11, 13, 14, 20, 46, 48, 50, 51, 60], "time": [3, 6, 8, 17, 20, 25, 28, 31, 48, 50, 54, 55, 57, 58, 60, 62], "get": [3, 6, 17, 20, 24, 25, 28, 31, 33, 36, 38, 42, 46, 47, 48, 50, 52, 56, 57, 58, 59, 60, 61, 62, 63], "automat": [3, 6, 8, 16, 24, 36, 50, 59, 60], "mean": [3, 6, 11, 14, 15, 20, 21, 24, 33, 36, 42, 43, 46, 47, 48, 50, 58, 60, 62], "auto": [3, 6, 20], "overrid": [3, 6], "typic": [3, 6, 24, 37, 46, 55, 61], "necessari": [3, 6, 20, 58], "correspond": [3, 14, 20, 36, 37, 50, 59, 60], "nel_english_aquaint": [3, 18], "agreement_threshold": 3, "segtoksentencesplitt": [3, 5, 22, 26, 37, 40], "aquaint": 3, "d": [3, 37], "miln": 3, "h": [3, 20, 24, 57], "witten": 3, "learn": [3, 6, 10, 11, 20, 24, 36, 57, 58, 60, 61], "wikipedia": [3, 6, 37, 46, 48], "cm": 3, "waikato": 3, "nz": 3, "ihw": 3, "08": 3, "dnm": 3, "learningtolinkwithwikipedia": 3, "transform": [3, 6, 11, 12, 14, 19, 20, 26, 34, 44, 45, 49, 50, 57, 58], "tab": [3, 6, 59], "txt": [3, 6, 24, 28, 30, 46, 50, 59], "come": [3, 6, 52, 53, 54, 55], "agreement_scor": 3, "agreement": 3, "score": [3, 17, 20, 21, 24, 25, 36, 38, 39, 54, 55, 56, 58, 63], "rang": [3, 4, 6], "lowest": 3, "highest": 3, "import": [3, 20, 28, 31, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "fewer": 3, "thought": 3, "worth": 3, "major": 3, "annotet": 3, "nel_german_hip": [3, 18], "wiki_languag": 3, "dewiki": 3, "hipe": [3, 6, 48], "histor": [3, 6, 42, 48], "impresso": [3, 48], "clef": [3, 6, 48], "2020": 3, "stefan": [3, 6, 43, 48], "page": [3, 20, 30, 50], "nel_english_aida": [3, 18], "use_ids_and_check_exist": 3, "aida": 3, "yago": [3, 6], "got": 3, "here": [3, 6, 14, 20, 21, 24, 31, 36, 38, 42, 46, 50, 52, 57, 58, 62], "mpi": 3, "inf": 3, "mpg": 3, "depart": 3, "ambivers": 3, "nlu": 3, "licens": [3, 6, 10, 48], "creativecommon": 3, "sa": [3, 48], "deed": 3, "en_u": 3, "exist": [3, 6, 17, 20, 37, 43, 50], "pagenam": 3, "non": [3, 10, 11, 13, 14, 20], "ignor": [3, 6, 8, 12, 15, 17, 20, 21], "work": [3, 6, 11, 13, 15, 17, 29, 31, 34, 36, 37, 38, 41, 43, 44, 47, 48, 49, 57, 64], "current": [3, 6, 14, 20, 21, 25, 42, 43, 44, 45, 46, 48, 58, 59], "arcticl": 3, "possibli": [3, 32], "alter": [3, 56], "out": [3, 20, 21, 24, 28, 33, 36, 39, 46, 47, 48, 50, 58, 59, 60], "ones": [3, 14, 61], "nel_english_iitb": [3, 18], "ignore_disagr": 3, "ittb": 3, "web": [3, 46, 48, 50], "sayali": 3, "kulkarni": 3, "amit": 3, "singh": 3, "ganesh": 3, "ramakrishnan": 3, "soumen": 3, "chakrabarti": 3, "disagr": 3, "nel_english_tweeki": [3, 18], "tweeki": 3, "graph": [3, 52], "harandizadeh": 3, "consit": 3, "manual": [3, 5, 6, 15, 20, 28, 36, 59, 62], "nel_english_reddit": [3, 18], "arxiv": [3, 10, 14, 20, 55], "ab": [3, 10, 14, 20], "2101": 3, "01228v2": 3, "document_as_sequ": [3, 6], "_text_to_col": 3, "outfil": 3, "post": 3, "titl": [3, 55, 59], "thread": 3, "arrai": [3, 17], "start": [3, 6, 17, 20, 24, 29, 31, 33, 34, 36, 38, 42, 58, 59, 61, 62], "end": [3, 6, 14, 20, 21, 24, 36, 38, 42, 43, 44, 45, 55, 58, 61, 62], "wiki": 3, "output": [3, 11, 13, 16, 20, 21, 24, 25, 35, 36, 47, 50, 52, 54, 56, 58], "written": [3, 13, 24, 25], "_fill_annot_arrai": 3, "annot_arrai": 3, "kei": [3, 14, 17, 20, 24, 48], "post_flag": 3, "fill": [3, 6, 20], "match": [3, 4, 20, 37, 55], "flag": 3, "_fill_curr_com": 3, "fix_flag": 3, "extend": [3, 15, 23], "pass": [3, 6, 10, 12, 14, 15, 20, 21, 22, 24, 36, 37, 40, 43, 44, 46, 47, 48, 50, 51, 56, 58, 59, 60], "incorrectli": 3, "row": [3, 25, 59], "regular": [3, 48, 58, 60], "from_ufsac_to_tsv": [3, 18], "xml_file": 3, "conll_fil": 3, "datasetnam": 3, "utf8": [3, 6], "cut_multisens": 3, "ufsac": 3, "need": [3, 8, 12, 14, 15, 17, 20, 21, 29, 30, 31, 35, 36, 38, 40, 46, 52, 55, 56, 58, 59, 60, 61, 62, 65], "handl": [3, 15, 20, 25, 45, 57], "open": [3, 6, 29, 30, 51, 52], "boolean": [3, 11, 13], "wn30_kei": 3, "cut": 3, "possibl": [3, 6, 14, 31, 38, 60], "sens": [3, 20, 42, 50], "whole": [3, 14, 34, 37, 41, 47, 51], "determine_tsv_fil": [3, 18], "filenam": [3, 17], "resid": [3, 6, 59, 62], "wsd_ufsac": [3, 18], "masc": 3, "semcor": 3, "banned_sent": [3, 6], "sample_missing_splits_in_multicorpu": 3, "sample_missing_splits_in_each_corpu": 3, "use_raganato_all_as_test_data": 3, "wsd": 3, "getalp": 3, "wordnet": 3, "avail": [3, 6, 8, 16, 50, 63], "were": [3, 31, 35, 38, 43, 50, 54], "omsti": 3, "raganato_al": 3, "raganato_semeval2007": 3, "raganato_semeval2013": 3, "raganato_semeval2015": 3, "raganato_senseval2": 3, "raganato_senseval3": 3, "semeval2007task17": 3, "semeval2007task7": 3, "semeval2013task12": 3, "semeval2015task13": 3, "senseval2": 3, "senseval2_lexical_sample_test": 3, "senseval2_lexical_sample_train": 3, "senseval3task1": 3, "senseval3task6_test": 3, "senseval3task6_train": 3, "trainomat": 3, "wngt": 3, "suffix": [3, 25], "_cut": 3, "ad": [3, 4, 10, 11, 13, 14, 17, 20, 21, 24, 29, 30, 36, 38, 42, 43, 48, 54], "add": [3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 24, 25, 30, 31, 33, 36, 38, 56, 57], "lemma": [3, 6, 20, 60], "po": [3, 6, 14, 50, 58, 59, 60, 61], "remov": [3, 6, 8, 20, 21, 25, 61, 62], "miss": [3, 8], "redund": 3, "raganato": 3, "unifi": [3, 21], "compariso": 3, "only_dev": 3, "case": [3, 10, 11, 14, 17, 20, 21, 22, 31, 36, 37, 40, 47, 48, 50, 51, 58, 59, 60, 62], "wsd_raganato_al": [3, 18], "ragnato_al": 3, "concaten": [3, 13, 15, 17, 20, 47, 48, 51], "sensev": 3, "semev": [3, 5], "wsd_semcor": [3, 18], "wsd_wordnet_gloss_tag": [3, 18], "princeton": 3, "gloss": 3, "wsd_masc": [3, 18], "sub": [3, 6, 15, 46, 54, 62], "wsd_omsti": [3, 18], "One": [3, 14, 20, 21, 24], "instanc": [3, 6, 12, 15, 17, 20, 21, 24, 25, 36, 40, 42, 43, 44, 47, 50, 51, 52, 54, 56, 58, 59, 60, 62, 63], "wsd_trainomat": [3, 18], "o": [3, 6, 17, 20, 59, 62], "matic": 3, "bigbioentitylinkingcorpu": [3, 18], "el": 3, "norm_kei": 3, "db_name": 3, "db_id": 3, "biomed": [3, 18, 20, 26, 38, 53, 54, 60], "bigbio_el_ncbi_diseas": [3, 18], "implent": 3, "sciencedirect": 3, "scienc": 3, "pii": 3, "s1532046413001974": 3, "cbbresearch": 3, "bigbio_el_bc5cdr_chem": [3, 18], "1093": 3, "baw068": 3, "2630414": 3, "track": [3, 5], "bigbio_el_gnormplu": [3, 18], "gnormplu": 3, "hindawi": 3, "bmri": 3, "2015": [3, 6, 48], "918710": 3, "tool": [3, 53], "ocrjsondataset": [4, 18], "path_to_split_directori": 4, "load_imag": 4, "normalize_coords_to_thousand": 4, "json": [4, 52, 62], "imag": [4, 17, 19, 25, 26], "those": [4, 20, 30, 31, 38, 46, 54], "jpg": 4, "bbox": [4, 15], "equal": [4, 20], "length": [4, 10, 11, 12, 13, 14, 15, 17, 20, 21, 51, 60], "left": [4, 17, 44], "top": [4, 13, 17, 20, 47, 49, 51, 61], "right": [4, 17, 44, 58], "bottom": [4, 17], "coordin": 4, "1000": [4, 14, 20, 24], "pillow": 4, "metadata": [4, 6, 17, 32, 59], "kept": [4, 6, 9, 21], "doe": [4, 6, 9, 20, 37, 59, 61], "ocrcorpu": [4, 18], "train_path": 4, "dev_path": 4, "test_path": 4, "sroie": [4, 18], "perfect": 4, "box": [4, 15, 60], "convert_ptb_token": [5, 18], "ptb": 5, "re_english_semeval2010": [5, 18], "augment_train": 5, "2010": 5, "wai": [5, 13, 15, 20, 21, 28, 30, 31, 56, 62, 65], "semant": [5, 8, 20, 48], "between": [5, 8, 15, 17, 20, 21, 42, 44, 46], "pair": [5, 8, 20, 52], "nomin": 5, "aclanthologi": [5, 6], "s10": 5, "1006": 5, "extract_and_convert_to_conllu": 5, "data_fil": [5, 6], "re_english_tacr": [5, 18], "tac": 5, "41": [5, 43, 55, 56, 58], "nlp": [5, 6, 17, 33, 59, 62, 64], "project": [5, 6, 30, 42], "tacr": [5, 42], "re_english_conll04": [5, 18], "convert_to_conllu": 5, "source_data_fold": 5, "re_english_drugprot": [5, 18], "drugprot": 5, "vii": 5, "zenodo": 5, "5119892": 5, "ysdsavuxu5k": 5, "interact": [5, 56], "char_spans_to_token_span": 5, "token_offset": 5, "has_overlap": 5, "b": [5, 6, 8, 57, 59, 62], "drugprot_document_to_tokenlist": 5, "pmid": 5, "title_sent": 5, "abstract_sent": 5, "abstract_offset": 5, "tokenlist": 5, "multifilejsonlcorpu": [6, 18], "text_column_nam": 6, "label_column_nam": 6, "metadata_column_nam": 6, "jsonl": 6, "mulifilejsonlcorpu": 6, "doccano": 6, "export": [6, 15], "least": [6, 10, 17, 20, 24, 50], "fail": [6, 20, 28], "empti": [6, 11, 21, 59], "insid": [6, 21], "rais": [6, 20, 21], "runtimeerror": [6, 21], "jsonlcorpu": [6, 18], "jsonldataset": [6, 18], "path_to_jsonl_fil": 6, "iob": [6, 17], "scheme": [6, 57], "expect": [6, 8, 15, 20, 31], "start_char_index": 6, "end_char_index": 6, "metadata_kei": 6, "metadata_valu": 6, "_add_label_to_sent": 6, "ne": 6, "raw": 6, "whitespac": [6, 14, 17], "etc": [6, 8, 13, 14, 17, 20, 25], "charact": [6, 8, 13, 14, 20, 21, 23, 48, 55, 59], "noth": [6, 20], "chang": [6, 16, 20, 21, 29, 30, 50, 52], "inout": 6, "column_delimit": 6, "document_separator_token": 6, "skip_first_lin": [6, 8], "default_whitespace_aft": 6, "conll03": 6, "conll2000": 6, "separat": 6, "overwrit": [6, 10, 16, 20, 22, 23, 24], "symbol": [6, 20, 30], "treat": [6, 22], "boundari": [6, 15, 22], "mark": [6, 20, 22, 25], "columndataset": [6, 18], "path_to_column_fil": 6, "space_after_kei": 6, "space": [6, 8, 13, 20, 21, 23], "feat": 6, "misc": 6, "head": [6, 14, 17, 20, 21], "head_id": [6, 17], "ontonot": [6, 18, 43, 44], "v4": 6, "archive_url": 6, "mendelei": 6, "public": [6, 31, 33], "zmycy7t9h9": 6, "b078e1c4": 6, "f7a4": 6, "4427": 6, "be7f": 6, "9389967831ef": 6, "file_download": 6, "get_available_domain": 6, "_process_coref_span_annotations_for_word": 6, "word_index": 6, "cluster": [6, 20], "coref_stack": 6, "coref": 6, "outsid": [6, 51], "mutat": [6, 38, 52, 54, 56], "defaultdict": [6, 52], "inclus": 6, "stack": [6, 10, 11, 14, 20, 31, 61], "hold": [6, 15, 17, 32, 36, 42, 58, 59], "same": [6, 10, 11, 13, 14, 20, 31, 35, 36, 44, 45, 48, 50, 51, 52, 54, 61, 62], "nest": [6, 20], "why": [6, 30, 31, 58], "greg": 6, "baker": 6, "who": [6, 50, 57, 63], "himself": 6, "_id1": 6, "bread": 6, "man": 6, "dataset_document_iter": 6, "file_path": [6, 8], "yield": [6, 20], "regardless": 6, "preprocess": [6, 20], "place": [6, 14, 37], "2012": 6, "resolut": 6, "sentence_iter": 6, "individu": [6, 20, 22, 23, 47, 58], "conll_03": [6, 18, 61], "03": [6, 17, 44], "ve": 6, "obtain": [6, 9, 20, 50], "clip": [6, 24], "uantwerpen": 6, "conll2003": 6, "put": [6, 11, 13, 20, 50], "eng": 6, "testa": 6, "testb": 6, "Then": [6, 10, 11, 14, 20, 30, 52, 56, 62], "parent": [6, 17], "where": [6, 8, 10, 15, 20, 31, 62], "dateset": 6, "reduc": [6, 17, 20, 24], "part": [6, 17, 34, 41, 48, 50, 54, 56, 57, 59, 60], "chunk": [6, 24], "conll_03_german": [6, 18], "conll_03_dutch": [6, 18], "dutch": [6, 44, 46, 48, 60], "conll_03_spanish": [6, 18], "spanish": [6, 44, 46, 48], "conll_2000": [6, 18], "2000": [6, 17, 42], "wnut_17": [6, 18], "fewnerd": [6, 18], "bioscop": [6, 18, 42], "ner_arabic_an": [6, 18], "arab": [6, 46, 48], "anercorp": [6, 44], "curti": 6, "ml": [6, 43], "cmu": 6, "w": [6, 10], "cours": 6, "swap": 6, "ner_arabic_aqmar": [6, 18], "modifi": [6, 10, 14, 42], "american": 6, "qatari": 6, "model": [6, 8, 11, 13, 14, 15, 21, 22, 23, 24, 25, 26, 28, 30, 31, 34, 35, 36, 37, 38, 39, 41, 46, 47, 48, 49, 50, 53, 55, 59, 60, 65], "aqmar": [6, 44], "c": [6, 48, 57], "ark": 6, "modif": 6, "miscellan": 6, "mis0": 6, "mis1": 6, "mis2": 6, "mis3": 6, "merg": 6, "deviat": 6, "across": [6, 43], "alphabet": 6, "under": [6, 10, 20, 23, 46, 48], "creativ": 6, "common": [6, 20, 31, 39, 56], "attribut": [6, 10, 20, 39], "sharealik": 6, "unport": 6, "cite": 6, "behrang": 6, "mohit": 6, "nathan": 6, "schneider": 6, "rishav": 6, "bhowmick": 6, "kemal": 6, "oflaz": 6, "noah": 6, "recal": [6, 58], "orient": 6, "eacl": 6, "ner_basqu": [6, 18], "ner_chinese_weibo": [6, 18], "weibo_n": 6, "ner_danish_dan": [6, 18], "ner_english_movie_simpl": [6, 18], "mit": 6, "ner_english_movie_complex": [6, 18], "trivia10k13": 6, "ner_english_sec_fil": [6, 18], "sec": [6, 58], "credit": 6, "risk": 6, "assess": 6, "alvarado": 6, "u15": 6, "1010": 6, "ner_english_restaur": [6, 18], "restaur": 6, "group": 6, "csail": 6, "sl": [6, 46, 48], "ner_english_stackoverflow": [6, 18], "stackoverflow_n": 6, "ner_english_twitt": [6, 18], "twitter_n": 6, "downoad": 6, "githubusercont": 6, "aritt": 6, "twitter_nlp": 6, "master": [6, 9, 30], "ner_english_person": [6, 18], "person_n": 6, "person": [6, 21, 39, 44, 60], "ner_english_webpag": [6, 18], "webpages_n": 6, "design": [6, 14, 33, 56], "challeng": [6, 8], "misconcept": 6, "ratinov": 6, "roth": 6, "w09": 6, "1119": 6, "ner_english_wnut_2020": [6, 18], "wnut_2020_ner": 6, "ner_english_wikigold": [6, 18], "wikigold": 6, "ner_finnish": [6, 18], "ner_german_biofid": [6, 18], "ner_german_europarl": [6, 18], "europarl_ner_german": 6, "Not": [6, 33, 37], "recommend": [6, 13, 15, 28, 46], "due": 6, "heavi": 6, "ram": [6, 20, 24], "usag": [6, 24], "_add_iob_tag": 6, "ner_column": 6, "replac": [6, 48, 52], "letter": [6, 14, 20, 46], "addition": [6, 8, 20, 21], "second": [6, 8, 17, 36, 37, 59, 60, 62], "ner_german_leg": [6, 18], "ler_german": 6, "legal": [6, 44], "ner_german_germev": [6, 18], "site": 6, "germeval2014n": 6, "ner_german_polit": [6, 18], "polit": 6, "nemgp": 6, "thoma": 6, "zastrow": 6, "ner_hungarian": [6, 18], "hungarian": 6, "ner_iceland": [6, 18], "icelandic_n": 6, "ner_japanes": [6, 18], "hironsan": 6, "iob2": [6, 17, 26], "japanes": [6, 23, 46, 48], "ner_masakhan": [6, 18], "luo": [6, 57], "v2": [6, 22, 23], "masakhan": 6, "It": [6, 10, 14, 15, 17, 21, 31, 33, 36, 44, 53, 55, 58, 60], "african": 6, "code": [6, 8, 14, 17, 29, 30, 31, 35, 44, 45, 46, 50, 54, 56, 57, 58], "ner_multi_con": [6, 18], "multicon": 6, "either": [6, 15, 20, 29, 32, 48, 50], "switch": [6, 20], "mono": 6, "ner_multi_coner_v2": [6, 18], "use_dev_as_test": 6, "semeval2023": 6, "appli": [6, 20, 37, 50, 52, 55, 56], "unpack": 6, "content": 6, "flair_cache_root": [6, 16], "leav": [6, 20], "random": [6, 16, 20, 60], "ner_multi_wikiann": [6, 18], "en": [6, 8, 16, 46, 48, 50], "wkiann": 6, "cross": [6, 20, 30, 55], "lingual": 6, "282": 6, "elisa": 6, "ie": 6, "wikiann": 6, "abbrev": 6, "opendatacommon": 6, "abbrevi": 6, "save": [6, 8, 13, 14, 15, 17, 20, 21, 24, 25, 31, 46, 59, 62], "though": [6, 20], "aa": 6, "cho": 6, "ho": 6, "hz": 6, "jam": 6, "kj": 6, "kr": 6, "mu": [6, 54, 55], "olo": 6, "tcy": 6, "bioe": [6, 20, 57], "dont": 6, "speed": [6, 14, 40, 44, 46, 61, 62], "significantli": 6, "ner_multi_xtrem": [6, 18], "xtreme": 6, "total": [6, 20], "40": [6, 55, 58], "ner_multi_wikin": [6, 18, 62], "ner_swedish": [6, 18], "swedish": [6, 46, 48], "_add_iob2_tag": 6, "ner_turku": [6, 18], "finnish": [6, 46, 48], "turkun": 6, "ner_ukrainian": [6, 18], "ukrainian": [6, 44, 48], "lang": [6, 15], "keyphrase_semeval2017": [6, 18], "keyphrase_inspec": [6, 18], "keyphrase_semeval2010": [6, 18], "up_chines": [6, 18], "chines": [6, 46], "proposit": [6, 60], "bank": [6, 60], "universalproposit": 6, "up_english": [6, 18], "up_french": [6, 18], "french": [6, 44, 46, 48], "up_finnish": [6, 18], "up_german": [6, 18], "up_italian": [6, 18], "italian": [6, 46, 48], "up_spanish": [6, 18], "up_spanish_ancora": [6, 18], "ancora": 6, "ner_hipe_2022": [6, 18], "branch_nam": 6, "main": [6, 24, 33, 58], "add_document_separ": 6, "preproc_fn": 6, "2022": 6, "ajmc": 6, "hipe2020": 6, "letemp": 6, "newsey": 6, "sonar": 6, "topres19th": 6, "git": 6, "branch": [6, 30], "dev2": 6, "special": [6, 20, 22, 23, 24, 55, 56, 57], "seper": [6, 8], "highli": 6, "flert": [6, 61, 62], "approach": [6, 38, 65], "certain": [6, 13, 14, 20, 21, 25, 33, 51, 54, 55], "perform": [6, 12, 14, 15, 20, 21, 54, 55, 56], "ner_icdar_europeana": [6, 18], "icdar": 6, "europeana": 6, "newspap": [6, 48], "kb": [6, 17], "nl": [6, 44, 46, 48], "step": [6, 24, 25, 52], "being": [6, 14], "punctuat": [6, 36], "releas": [6, 14, 56], "centric": 6, "ocr": [6, 18, 26, 60], "error": [6, 10, 20, 31], "luisa": 6, "m\u00e4rz": 6, "schweter": [6, 61], "nina": 6, "poerner": 6, "benjamin": 6, "hinrich": 6, "sch\u00fctze": 6, "fr": [6, 44, 46, 48], "ner_nermud": [6, 18], "initil": 6, "nermud": 6, "evalita": 6, "agnost": 6, "dac": 6, "particip": [6, 20], "ask": [6, 39, 58], "among": 6, "fiction": 6, "speech": [6, 34, 41, 42, 50, 60], "dsc": 6, "deploi": 6, "abov": [6, 20, 35, 36, 45, 46, 51, 52, 57, 58, 59, 60], "try": [6, 44, 46, 50, 61], "accuraci": [6, 20, 24, 37, 42, 43, 44, 45, 48, 50, 51, 58, 61], "wn": 6, "wikinew": 6, "fic": 6, "adg": 6, "gasperi": 6, "ner_german_mobi": [6, 18], "mobi": 6, "konven": 6, "22": [6, 42, 58], "geograph": 6, "linkabl": 6, "compris": 6, "232": 6, "social": [6, 56], "media": 6, "traffic": 6, "report": [6, 42, 58, 61], "91k": 6, "5k": 6, "1k": 6, "In": [6, 10, 11, 14, 20, 22, 28, 30, 31, 35, 37, 40, 47, 48, 50, 51, 52, 58, 59, 61, 62], "masakha_po": [6, 18], "bam": 6, "masakhapo": 6, "feideggercorpu": [7, 18], "feideggerdataset": [7, 18], "dataset_info": 7, "paralleltextcorpu": [8, 18], "source_fil": 8, "target_fil": 8, "opusparallelcorpu": [8, 18], "l1": 8, "l2": 8, "parallel": [8, 20], "opu": [8, 48], "nlpl": 8, "eu": [8, 46, 48], "tatoeba": 8, "built": [8, 63], "shorten": 8, "paralleltextdataset": [8, 18], "path_to_sourc": 8, "path_to_target": 8, "datapaircorpu": [8, 18], "involv": [8, 31, 56], "paragraph": [8, 32], "entri": [8, 17, 20], "last": [8, 14, 15, 20, 37, 50, 51], "datapair": [8, 17, 20, 26], "wise": [8, 48], "identifi": [8, 17, 20, 22, 23, 35, 46, 51, 52, 54, 55, 59], "datapairdataset": [8, 18], "path_to_data": 8, "like": [8, 15, 16, 31, 36, 42, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 60, 62], "rte": 8, "integ": [8, 15, 20], "third": [8, 17, 23, 59], "datatriplecorpu": [8, 18], "tripl": [8, 20], "datatripl": [8, 17, 20, 26], "datatripledataset": [8, 18], "fourth": 8, "glue_rt": [8, 18], "entail": [8, 20], "recogn": [8, 20, 44, 56], "textual": [8, 17, 20], "glue_mnli": [8, 18], "evaluate_on_match": 8, "genr": [8, 55], "infer": [8, 17, 20], "mnli": 8, "contradict": 8, "mathc": 8, "mismatch": 8, "eval_dataset_match": 8, "eval_dataset_mismatch": 8, "glue_mrpc": [8, 18], "paraphras": 8, "microsoft": 8, "mrpc": 8, "glue_qnli": [8, 18], "qnli": 8, "glue_qqp": [8, 18], "quora": 8, "qqp": 8, "equival": 8, "glue_wnli": [8, 18], "winograd": 8, "wnli": 8, "pronoun": 8, "substitut": 8, "glue_stsb": [8, 18], "similar": [8, 14, 20, 54, 61], "produc": [8, 47, 49, 51, 58], "suitabl": 8, "superglue_rt": [8, 18], "superglu": 8, "super": 8, "jsonl_from_eval_dataset": 8, "rte_jsonl_to_tsv": [8, 18], "universaldependenciescorpu": [9, 18], "split_multiword": 9, "u": [9, 36, 39, 42, 43, 44, 45, 50, 56, 58, 60, 61], "ud": [9, 43, 50, 58, 60, 61], "multiword": 9, "universaldependenciesdataset": [9, 18], "path_to_conll_fil": 9, "ud_english": [9, 18, 50, 58, 60, 61], "revis": 9, "ud_galician": [9, 18], "ud_ancient_greek": [9, 18], "ud_kazakh": [9, 18], "ud_old_church_slavon": [9, 18], "ud_armenian": [9, 18], "ud_estonian": [9, 18], "ud_german": [9, 18, 60, 61], "ud_german_hdt": [9, 18], "ud_dutch": [9, 18, 60], "ud_faroes": [9, 18], "faroes": 9, "universaldepend": 9, "farpahc": 9, "farones": 9, "western": 9, "scandinavian": 9, "60": 9, "000": 9, "100": [9, 11, 14, 15, 20, 24, 31, 46, 48, 50], "iceland": 9, "old": [9, 17], "nors": 9, "ud_french": [9, 18], "ud_italian": [9, 18], "ud_latin": [9, 18], "ud_spanish": [9, 18], "ud_portugues": [9, 18], "ud_romanian": [9, 18], "ud_catalan": [9, 18], "ud_polish": [9, 18], "ud_czech": [9, 18], "ud_slovak": [9, 18], "ud_swedish": [9, 18], "ud_danish": [9, 18], "ud_norwegian": [9, 18], "ud_finnish": [9, 18], "ud_slovenian": [9, 18], "ud_croatian": [9, 18], "ud_serbian": [9, 18], "ud_bulgarian": [9, 18], "ud_arab": [9, 18], "ud_hebrew": [9, 18], "ud_turkish": [9, 18], "ud_ukrainian": [9, 18], "ud_persian": [9, 18], "ud_russian": [9, 18], "ud_hindi": [9, 18], "ud_indonesian": [9, 18], "ud_japanes": [9, 18], "ud_chines": [9, 18], "ud_korean": [9, 18], "ud_basqu": [9, 18], "ud_chinese_kyoto": [9, 18], "ud_greek": [9, 18], "ud_naija": [9, 18], "ud_livvi": [9, 18], "ud_buryat": [9, 18], "ud_north_sami": [9, 18], "ud_marathi": [9, 18], "ud_maltes": [9, 18], "ud_afrikaan": [9, 18], "ud_goth": [9, 18], "ud_old_french": [9, 18], "ud_wolof": [9, 18], "ud_belarusian": [9, 18], "ud_copt": [9, 18], "ud_irish": [9, 18], "ud_latvian": [9, 18], "ud_lithuanian": [9, 18], "ud_bavarian_maibaam": [9, 18], "modul": [10, 11, 12, 13, 14, 15, 20, 21, 60], "embeddings_nam": [10, 11, 12, 13, 14, 15], "would": [10, 20, 29, 31, 38, 47, 48], "embedding_length": [10, 11, 12, 13, 14, 15, 50, 62], "vector": [10, 11, 12, 13, 14, 15, 17, 20, 46, 47, 49, 50, 51], "embedding_typ": [10, 12, 14, 15, 61], "emb": [10, 11, 13, 14, 20, 36, 46, 47, 48, 50, 51], "data_point": [10, 17, 20, 21, 36, 39], "updat": [10, 11, 13, 14, 15, 27, 57], "_add_embeddings_intern": [10, 11], "privat": [10, 20], "get_nam": [10, 11, 14], "But": [10, 11, 14, 58], "made": [10, 11, 14], "stackedembed": [10, 11, 14, 19, 47, 48, 61], "get_named_embeddings_dict": [10, 14], "get_instance_paramet": 10, "from_param": [10, 11, 12, 14, 15], "to_param": [10, 11, 12, 14, 15], "load_embed": [10, 19], "save_embed": 10, "use_state_dict": 10, "scalarmix": [10, 19], "mixture_s": 10, "trainabl": [10, 11, 14, 20], "mix": [10, 11, 13, 14, 24, 43, 45, 48], "sever": [10, 14, 17, 20, 38, 43, 51, 55, 56], "tensor": [10, 14, 15, 17, 20, 21, 24, 25, 47, 51], "weight": [10, 14, 15, 20, 24, 25, 58], "comput": [10, 12, 13, 15, 20, 21, 46, 50, 52, 58, 61, 62], "parameteris": 10, "scalar": [10, 11, 25], "mixtur": 10, "n": [10, 20, 22, 24, 39, 52, 59], "liu": 10, "2019": [10, 48], "transfer": 10, "contextu": [10, 13, 14, 48], "1903": 10, "08855": 10, "copi": [10, 14], "slightli": 10, "allennlp": 10, "apach": 10, "allenai": 10, "init": [10, 46, 47, 48, 50, 51, 59, 62], "gamma": 10, "sum": [10, 20], "s_k": 10, "tensor_k": 10, "softmax": [10, 20], "layer": [10, 11, 13, 14, 15, 17, 20, 48, 50, 57, 58, 59, 60, 61, 62], "learnabl": 10, "forward": [10, 12, 13, 14, 15, 16, 20, 21, 24, 47, 48, 61], "averag": [10, 14, 15, 20, 24, 43, 55], "shape": [10, 20], "dimens": [10, 11, 13, 20, 50], "documentembed": [10, 11, 13, 14, 15, 19, 20, 29, 47, 50], "level": [10, 11, 13, 14, 38, 46, 50, 52, 54, 59, 62], "tokenembed": [10, 11, 13, 14, 15, 19, 20, 21, 50], "ever": 10, "register_embed": [10, 19], "transformerdocumentembed": [11, 19, 20, 47, 51, 63], "bert": [11, 14, 15, 20, 21, 47, 51, 62], "uncas": [11, 14, 15, 20, 47, 51, 62, 63], "layer_mean": [11, 15, 51], "is_token_embed": [11, 15], "transformerembed": [11, 14, 15, 19, 50], "onnx_cl": [11, 14, 15], "transformeronnxdocumentembed": [11, 15, 19], "bidirect": [11, 13, 14, 20, 50], "variou": [11, 14, 41, 44, 48, 51], "architectur": [11, 14, 51], "pretrained_model": [11, 14, 52], "topmost": [11, 51], "cls_pool": [11, 15], "pool": [11, 14, 44], "strategi": [11, 20], "combin": [11, 13, 14, 15, 20, 43, 47, 48, 57, 60, 61], "cl": [11, 15], "max": [11, 14, 15, 50, 55], "fine_tun": [11, 14, 15, 24, 51, 57, 58, 61, 62, 63], "tune": [11, 14, 20, 34, 47, 51, 52, 58, 61, 62, 63, 64], "propag": [11, 13, 14, 20], "create_from_st": [11, 14, 15], "documentpoolembed": [11, 13, 19, 50], "fine_tune_mod": [11, 50], "linear": [11, 13, 14, 20, 25, 50, 58], "nonlinear": [11, 50], "min": [11, 14, 50], "extra_repr": [11, 13, 14, 21], "extra": [11, 13, 14, 21], "print": [11, 13, 14, 17, 20, 21, 25, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], "re": [11, 13, 14, 20, 21, 36, 57], "own": [11, 13, 14, 21, 47, 49, 57, 59, 63, 64], "documenttfidfembed": [11, 19], "train_dataset": 11, "vectorizer_param": 11, "dataset": [11, 17, 20, 21, 24, 26, 31, 34, 37, 42, 43, 44, 45, 50, 52, 57, 58, 63, 64], "tfidfvector": 11, "precalcul": 11, "scikit": [11, 20], "documentrnnembed": [11, 13, 19, 50], "hidden_s": [11, 13, 20, 57, 58, 61], "128": [11, 13, 20, 58], "rnn_layer": [11, 13, 20], "reproject_word": [11, 13], "reproject_words_dimens": [11, 13], "dropout": [11, 13, 14, 20, 21], "word_dropout": [11, 13, 20, 21], "locked_dropout": [11, 13, 20, 21], "rnn_type": [11, 20, 50], "gru": [11, 20, 50], "rnn": [11, 14, 20, 44, 45, 61, 62], "upon": [11, 20], "hidden": [11, 13, 14, 20, 24, 48, 50], "reproject": [11, 13, 61, 62], "lock": [11, 13, 20, 21], "lstm": [11, 13, 14, 20, 50, 61], "finetun": 11, "documentlmembed": [11, 19], "flair_embed": 11, "sentencetransformerdocumentembed": [11, 19], "nli": 11, "sentencetransform": 11, "sentencestransform": 11, "batch": [11, 20, 21, 24, 40, 46], "documentcnnembed": [11, 19], "kernel": 11, "cnn": 11, "imageembed": [12, 19], "identityimageembed": [12, 19], "precomputedimageembed": [12, 19], "url2tensor_dict": 12, "networkimageembed": [12, 19], "convtransformnetworkimageembed": [12, 19], "feats_in": 12, "convnet_parm": 12, "posnet_parm": 12, "transformer_parm": 12, "x": [12, 13, 20, 21, 28, 38, 44, 48, 52, 54, 55, 56, 58, 60], "overridden": [12, 15, 20, 21], "although": [12, 15, 20, 21], "recip": [12, 15, 20, 21], "within": [12, 15, 20, 21, 22, 62], "afterward": [12, 14, 15, 20, 21, 50, 60], "former": [12, 15, 20, 21], "care": [12, 15, 20, 21, 25], "run": [12, 14, 15, 20, 21, 28, 30, 35, 38, 44, 54, 55, 58, 61, 62, 63], "regist": [12, 15, 20, 21, 25], "hook": [12, 15, 20, 21, 25], "latter": [12, 15, 20, 21, 23, 58, 60], "silent": [12, 15, 20, 21], "guarante": [13, 16], "elmoembed": [13, 19], "options_fil": 13, "weight_fil": 13, "embedding_mod": 13, "lm": [13, 14, 48], "peter": 13, "elmo": 13, "use_layers_al": 13, "use_layers_top": 13, "use_layers_averag": 13, "charlmembed": [13, 19], "detach": [13, 14, 20, 24, 25], "use_cach": 13, "cache_directori": 13, "backward": [13, 14, 24, 47, 48, 61], "polish": [13, 14, 46, 48], "depend": [13, 14, 17, 20, 30, 38, 40, 43, 48, 50, 58, 60, 61, 62], "desir": [13, 14, 17, 60], "gradient": [13, 14, 24, 51], "dramat": [13, 14], "slow": [13, 14, 20, 51], "down": [13, 14, 20, 24, 31, 51], "often": [13, 14, 15, 24, 36, 40, 47, 48, 50, 55, 56, 58, 59, 62], "lead": [13, 14, 55], "wors": 13, "later": 13, "retriev": [13, 17], "onc": [13, 15, 50, 57, 58, 60, 62, 63], "do": [13, 20, 21, 25, 30, 35, 36, 39, 42, 43, 44, 45, 50, 51, 55, 56, 58, 59, 61, 62, 63, 65], "cach": [13, 14, 16], "flairembed": [13, 14, 19, 47, 48, 50, 61], "mode": [13, 14, 20, 58], "behavior": [13, 14, 44, 55, 56], "affect": [13, 14, 51], "batchnorm": [13, 14], "self": [13, 14, 20, 21], "documentmeanembed": [13, 19], "token_embed": [13, 15, 20], "documentlstmembed": [13, 19], "transformerwordembed": [14, 19, 20, 21, 47, 51, 57, 61, 62], "is_document_embed": [14, 15], "allow_long_sent": [14, 15, 51], "transformeronnxwordembed": [14, 15, 19], "patch": [14, 15], "stride": [14, 15], "overwrite_nam": 14, "static_embed": 14, "wordembed": [14, 19, 46, 47, 48, 50, 58, 61], "force_cpu": 14, "stabl": [14, 20], "no_head": 14, "vocab": [14, 24], "glove": [14, 46, 47, 48, 50, 58, 61], "classic": [14, 34, 47, 49, 58, 61, 65], "extvec": [14, 46], "crawl": [14, 46, 48], "plain": [14, 22, 23, 50], "matrix": [14, 20], "gpu": [14, 16, 20, 21, 24, 61, 62], "describ": [14, 17, 29, 57], "2110": 14, "02861": 14, "word2vec": [14, 50], "assum": [14, 20, 22, 57, 59, 62], "resolve_precomputed_path": 14, "get_cached_token_index": 14, "get_vec": 14, "devic": [14, 15, 16, 17, 26, 47, 51, 58], "cast": 14, "buffer": 14, "dtype": 14, "non_block": 14, "memory_format": 14, "torch": [14, 20, 21, 24, 51], "channels_last": 14, "Its": 14, "signatur": [14, 30], "complex": 14, "integr": [14, 28, 54, 55, 56], "unchang": 14, "tri": [14, 31], "asynchron": 14, "cpu": [14, 16, 20, 21, 24, 48, 58], "pin": 14, "cuda": [14, 47, 51, 58], "below": [14, 29, 52, 58, 63], "whose": [14, 31], "4d": 14, "keyword": 14, "xdoctest": 14, "ignore_w": 14, "determinist": 14, "nn": [14, 20, 24, 26, 35, 37, 38, 39, 40, 42, 43, 44, 45, 54, 55, 56, 62], "1913": 14, "3420": 14, "5113": 14, "2325": 14, "doubl": 14, "in_featur": 14, "out_featur": 14, "bia": 14, "float64": 14, "env": 14, "torch_doctest_cuda1": 14, "gpu1": 14, "half": 14, "1914": 14, "5112": 14, "2324": 14, "float16": 14, "cdoubl": 14, "3741": 14, "j": 14, "2382": 14, "5593": 14, "4443": 14, "complex128": 14, "6122": 14, "1150": [14, 48], "state_dict": 14, "persist": 14, "shallow": 14, "destin": 14, "keep_var": 14, "howev": [14, 15, 37, 38, 43, 46, 50, 54, 55, 60], "enforc": 14, "futur": [14, 30], "avoid": [14, 29], "user": [14, 16, 20, 31], "ordereddict": 14, "compos": 14, "autograd": 14, "undefin": 14, "var": 14, "characterembed": [14, 19], "path_to_char_dict": 14, "char_embedding_dim": 14, "25": [14, 24, 44, 54], "hidden_size_char": 14, "lampl": 14, "2016": 14, "toi": 14, "chars_per_chunk": [14, 20], "512": [14, 20, 57], "with_whitespac": 14, "tokenized_lm": 14, "is_low": 14, "has_decod": [14, 20], "overfit": 14, "caution": 14, "control": [14, 20, 22, 51], "tradeoff": [14, 44], "more": [14, 17, 20, 28, 29, 30, 36, 38, 41, 44, 46, 47, 48, 50, 51, 52, 57, 58, 61, 62], "slower": 14, "unprocess": 14, "might": [14, 21, 31, 38, 40, 42, 50, 54, 55, 58, 62], "better": [14, 20, 29, 31, 38, 43, 50, 58, 60], "decod": [14, 20, 21, 24, 62], "languagemodel": [14, 20, 26], "intend": 14, "pooledflairembed": [14, 19, 48], "contextual_embed": 14, "only_capit": 14, "fasttextembed": [14, 19, 46], "use_loc": 14, "oov": 14, "bin": 14, "remot": 14, "sourc": [14, 33, 48, 51, 62], "get_cached_vec": 14, "onehotembed": [14, 19, 50], "vocab_dictionari": [14, 50], "300": [14, 48, 50], "hot": [14, 17, 20], "vocabulari": [14, 46], "dimension": [14, 46, 51], "from_corpu": [14, 50], "min_freq": [14, 17, 50], "hashembed": [14, 19], "num_embed": 14, "hash_method": 14, "md5": 14, "hash": 14, "trick": 14, "musecrosslingualembed": [14, 19], "language_cod": [14, 17], "bytepairembed": [14, 19, 50], "dim": 14, "syllabl": [14, 50], "100000": [14, 58], "cache_dir": 14, "model_file_path": [14, 50], "embedding_file_path": [14, 50], "bp": 14, "nilcembed": [14, 19], "layer_norm": 14, "layernorm": 14, "portugues": [14, 43, 46, 48], "nilc": 14, "icmc": 14, "usp": 14, "br": 14, "wang2vec": 14, "cbow": 14, "applic": 14, "600": 14, "pad_sequence_embed": [15, 19], "all_hidden_st": 15, "truncate_hidden_st": [15, 19], "hidden_st": 15, "input_id": 15, "combine_strided_tensor": [15, 19], "overflow_to_sample_map": 15, "half_strid": 15, "max_length": 15, "default_valu": 15, "fill_masked_el": [15, 19], "all_token_embed": 15, "sentence_hidden_st": 15, "mask": [15, 20], "word_id": 15, "insert_missing_embed": [15, 19], "fill_mean_token_embed": [15, 19], "token_length": 15, "document_mean_pool": [15, 19], "sentence_length": 15, "document_max_pool": [15, 19], "remove_special_markup": [15, 19], "transformerbaseembed": [15, 19], "context_length": [15, 17, 20, 21], "context_dropout": 15, "respect_document_boundari": [15, 17, 20, 21], "use_lang_emb": 15, "force_devic": 15, "force_max_length": 15, "feature_extractor": 15, "needs_manual_ocr": 15, "use_context_separ": 15, "prepar": [15, 34, 64], "won": [15, 20, 21, 30, 31, 44], "actual": [15, 20, 31, 47, 59], "pytorch": [15, 20, 46, 47, 58], "jit": 15, "onnx": 15, "to_arg": 15, "prepare_tensor": 15, "transformeronnxembed": [15, 19], "onnx_model": 15, "session_opt": 15, "create_sess": 15, "remove_sess": 15, "optimize_model": 15, "optimize_model_path": 15, "use_external_data_format": 15, "wrapper": [15, 20], "onnxruntim": 15, "optim": [15, 20, 24, 25, 40, 58], "quantize_model": 15, "quantize_model_path": 15, "collect_dynamic_ax": 15, "export_from_embed": 15, "example_sent": 15, "opset_vers": 15, "14": [15, 38, 43, 55, 58], "pretrainedtoken": 15, "transformerjitembed": [15, 19], "jit_model": 15, "param_nam": 15, "create_from_embed": 15, "parameter_to_list": 15, "transformerjitwordembed": [15, 19], "transformerjitdocumentembed": [15, 19], "subtoken_pool": [15, 51, 57, 61, 62], "use_context": [15, 51, 57, 61, 62], "saved_config": 15, "tokenizer_data": 15, "feature_extractor_data": 15, "comma": 15, "liter": 15, "first_last": [15, 20, 51, 62], "aggreg": [15, 54, 55], "previou": [15, 17, 20, 36], "next": [15, 17, 25, 36, 50], "context": [15, 17, 21, 31, 51, 61, 62], "calcul": [15, 20, 21, 50, 51, 62], "stop": [15, 17, 25, 36, 58], "percentag": [15, 17, 24], "pretrainedconfig": 15, "config": 15, "alwai": [15, 20, 21, 28, 30, 38, 46, 51, 62], "bytesio": 15, "featur": [15, 20, 21], "extractor": [15, 42], "pad": [15, 20], "layoutlm": 15, "doesn": [15, 20, 30, 31], "itself": [15, 20, 32, 36, 59, 62], "distingulish": 15, "sub_token_length": 15, "attention_mask": 15, "pixel_valu": 15, "export_onnx": 15, "onnxformat": 15, "notic": [15, 31, 32], "extern": 15, "henc": [15, 17, 32, 57], "matter": 15, "absolu": 15, "rel": 15, "trace": [15, 31], "cache_root": [16, 26], "posixpath": 16, "home": [16, 59, 62], "runner": 16, "environ": [16, 28, 35], "variabl": [16, 20, 50], "everyth": [16, 30], "flair_devic": 16, "chosen": [16, 17, 20, 62], "logger": [16, 25, 26], "reconfigur": 16, "log": [16, 20, 24, 25], "set_se": [16, 26, 30], "seed": 16, "reproduc": [16, 31], "experi": [16, 61], "set_proxi": [16, 26], "proxi": 16, "request": [16, 17, 27, 57], "readthedoc": 16, "latest": 16, "advanc": 16, "accord": [16, 20, 52], "boundingbox": [17, 26], "add_unk": [17, 57, 61, 62], "remove_item": 17, "add_item": 17, "get_idx_for_item": 17, "get_item": 17, "get_item_for_index": 17, "idx": 17, "set_start_stop_tag": 17, "is_span_prediction_problem": 17, "start_stop_tags_are_set": 17, "savefil": 17, "load_from_fil": 17, "confid": [17, 20, 36, 39, 56], "set_valu": 17, "to_dict": [17, 31, 56], "shortstr": 17, "metadata_str": 17, "labeled_identifi": 17, "unlabeled_identifi": 17, "embedd": 17, "clear_embed": [17, 51], "add_label": [17, 36, 62], "get_label": [17, 36, 37, 38, 39, 42, 52, 54, 55, 56], "set_embed": 17, "get_embed": [17, 50], "get_each_embed": 17, "embedding_nam": [17, 20], "has_label": 17, "add_metadata": 17, "get_metadata": 17, "has_metadata": 17, "typenam": 17, "set_label": 17, "remove_label": [17, 20], "zero_tag_valu": [17, 20], "start_posit": [17, 38], "end_posit": [17, 38], "additional_id": [17, 52], "synonym": [17, 52], "knowledgebas": 17, "whitespace_aft": 17, "_partofsent": 17, "tree": 17, "add_tags_proba_dist": 17, "get_tags_proba_dist": 17, "get_head": 17, "fragment": 17, "pretoken": 17, "langdetect": 17, "superordin": 17, "get_rel": 17, "get_span": [17, 38], "get_token": [17, 36], "token_id": 17, "left_context": 17, "right_context": 17, "to_tagged_str": [17, 56, 57, 58, 59, 60], "main_label": 17, "to_tokenized_str": 17, "to_plain_str": 17, "infer_space_aft": 17, "heurist": [17, 23], "wish": [17, 20, 21, 46, 47, 50, 51, 54], "to_original_text": 17, "get_language_cod": 17, "next_sent": 17, "through": [17, 20, 28, 33, 36, 37, 40, 42, 47], "elsewher": 17, "previous_sent": 17, "is_context_set": 17, "rtype": [17, 20], "els": [17, 20, 38], "copy_context_from_sent": 17, "set_context_for_sent": 17, "dt2": [17, 21], "dt3": 17, "imageurl": 17, "random_se": 17, "downsampl": [17, 58, 60, 61], "downsample_train": 17, "downsample_dev": 17, "downsample_test": 17, "proportion": 17, "filter_empty_sent": 17, "filter_long_sent": 17, "max_charlength": 17, "make_vocab_dictionari": 17, "max_token": 17, "than": [17, 20, 24, 35, 38, 44, 50, 51, 58], "frequent": 17, "greater": 17, "occur": [17, 31, 48, 50], "limit": [17, 24, 32, 62], "obtain_statist": 17, "pretty_print": 17, "statist": [17, 58, 60], "distribut": [17, 55, 59], "account": [17, 20], "make_label_dictionari": [17, 21, 57, 58, 60, 61, 62, 63], "min_count": 17, "add_dev_test": 17, "add_label_nois": 17, "noise_shar": 17, "noise_transition_matrix": 17, "nois": 17, "simul": 17, "uniqu": [17, 22, 23, 50], "said": 17, "probabl": [17, 20, 21, 38, 50], "flip": 17, "relev": [17, 25, 38, 62], "get_label_distribut": 17, "get_all_sent": 17, "concatdataset": 17, "make_tag_dictionari": 17, "gather": 17, "task_id": [17, 20], "kwd": 17, "concatflairdataset": [17, 26], "assembl": 17, "cumsum": 17, "cumulative_s": 17, "cummulative_s": 17, "iob1": 17, "randomly_split_into_two_dataset": [17, 26], "length_of_first": 17, "remain": [17, 20], "go": [17, 20, 42, 59], "get_spans_from_bio": [17, 26], "bioes_tag": 17, "bioes_scor": 17, "document_classif": [18, 26, 60], "entity_link": [18, 26, 52, 60], "relation_extract": [18, 26, 60], "sequence_label": [18, 26, 60], "text_imag": [18, 26], "text_text": [18, 26, 60], "legaci": [19, 26], "entitymentionlink": [20, 26, 38, 52, 54, 55], "candidate_gener": 20, "preprocessor": 20, "entity_label_typ": [20, 52], "1024": 20, "linker": [20, 34, 37, 41, 52, 53, 54, 55], "candidatesearchindex": 20, "entitypreprocessor": 20, "clean": 20, "tagger": [20, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 52, 53, 55, 56, 57, 62, 63, 64], "get_entity_label_typ": 20, "extract_entities_ment": 20, "top_k": [20, 38], "pred_label_typ": [20, 52], "best": [20, 21, 24, 37, 38, 47, 48, 51, 57], "k": [20, 24, 25, 38], "input_entity_annotation_lay": 20, "_get_state_dict": [20, 21], "model_name_or_path": 20, "dictionary_name_or_path": 20, "hybrid_search": [20, 52], "similarity_metr": 20, "similaritymetr": 20, "inner_product": 20, "sparse_weight": 20, "exact": [20, 33, 38, 54], "asign": 20, "ngram": 20, "tfidf": 20, "metric": [20, 21, 24, 25], "ad3p": 20, "processor": 20, "spars": 20, "overwritten": 20, "forward_loss": [20, 21], "loss": [20, 21, 24, 25, 58], "backpropag": [20, 21], "enabl": [20, 21, 25, 61, 62], "model_path": [20, 21], "gold_label_typ": [20, 21], "out_path": [20, 21], "embedding_storage_mod": [20, 21], "mini_batch_s": [20, 21, 24, 25, 40, 57, 58, 61, 62, 63], "32": [20, 21, 24, 38, 56, 58, 61], "main_evaluation_metr": [20, 21, 24], "f1": [20, 21, 24, 25, 42, 43, 44, 45, 55, 58], "exclude_label": [20, 21, 24], "gold_label_dictionari": [20, 21], "return_loss": [20, 21], "delet": [20, 21, 24], "freshli": [20, 21, 24], "recomput": [20, 21, 24], "highlight": [20, 21, 55], "main_scor": [20, 21, 25], "unk": [20, 21, 50, 58], "spanclassifi": [20, 26, 62], "label_dictionari": [20, 21, 62, 63], "pooling_oper": 20, "span_label_typ": [20, 62], "classifierarg": 20, "defaultclassifi": [20, 21, 26], "goe": [20, 48], "abl": [20, 50, 52], "known": 20, "candidategener": [20, 62], "emb_first": 20, "emb_last": 20, "emb_firstandlast": 20, "emb_mean": 20, "is_forward_lm": 20, "nlayer": 20, "embedding_s": 20, "nout": 20, "document_delimit": [20, 24], "recurrent_typ": 20, "recurr": 20, "init_weight": 20, "set_hidden": 20, "ordered_sequence_length": 20, "init_hidden": 20, "bsz": 20, "get_represent": 20, "start_mark": 20, "end_mark": 20, "get_output": 20, "repackage_hidden": 20, "histori": [20, 24, 25], "load_language_model": 20, "model_fil": [20, 21], "load_checkpoint": [20, 24], "save_checkpoint": 20, "epoch": [20, 24, 25, 31, 58], "generate_text": 20, "number_of_charact": 20, "temperatur": 20, "break_on_suffix": 20, "calculate_perplex": 20, "lemmat": [20, 26], "rnn_input_s": 20, "rnn_hidden_s": 20, "256": [20, 57, 58, 61], "encode_charact": 20, "char_dict": 20, "max_sequence_length_dependent_on_input": 20, "max_sequence_length": 20, "use_attent": 20, "beam_siz": 20, "start_symbol_for_encod": 20, "end_symbol_for_encod": 20, "bidirectional_encod": 20, "hand": [20, 50, 62], "mayb": [20, 31], "input_s": 20, "hypothesi": 20, "unknown": [20, 21, 58], "precis": [20, 24, 25, 58], "longest": 20, "plu": [20, 50, 58], "max_sequence_length_dependend_on_input": 20, "attent": 20, "sensibl": 20, "via": [20, 28, 30, 36, 38, 54], "words_to_char_indic": 20, "end_symbol": 20, "start_symbol": 20, "padding_in_front": 20, "seq_length": 20, "sequence_length": [20, 24], "toeken": 20, "end_index": 20, "start_index": 20, "front": [20, 57], "dummy_index": 20, "back": [20, 36, 42], "forward_pass": 20, "decoder_input_indic": 20, "initial_hidden_st": 20, "all_encoder_output": 20, "encoder_input_indic": 20, "token_embedding_hidden": 20, "encode_token": 20, "16": [20, 24, 57, 58], "return_probabilities_for_all_class": [20, 21], "verbos": [20, 21], "send": 20, "simultan": 20, "batching_in_rnn": 20, "consol": 20, "unus": [20, 21], "textpairclassifi": [20, 21, 26], "embed_separ": 20, "textclassifi": [20, 21, 26, 58, 63], "newli": 20, "multi_label": [20, 21], "forc": [20, 24], "multi_label_threshold": [20, 21], "threshold": [20, 58], "loss_weight": [20, 21], "unspecifi": 20, "get_used_token": [20, 21], "texttripleclassifi": [20, 26], "textpairregressor": [20, 26], "reducetransformervocabmixin": [20, 21], "regress": [20, 60], "micro": [20, 21, 24, 58], "avg": [20, 21, 24, 25, 58], "relationclassifi": [20, 26], "entity_pair_label": 20, "entity_threshold": 20, "cross_augment": 20, "encoding_strategi": 20, "relation_classifier_model": 20, "typedentitymark": 20, "allow_unk_tag": 20, "encodedsent": 20, "rc": 20, "contrast": 20, "founded_bi": 20, "tail": 20, "larri": 20, "sergei": 20, "brin": 20, "product": [20, 45], "docstr": 20, "zhou": 20, "2102": 20, "01373": 20, "born_in": [20, 42], "loc": [20, 35, 39, 42, 44, 59], "meaning": [20, 29, 50], "advis": [20, 58], "disabl": 20, "ineffici": [20, 44], "augment": 20, "encodedsentenec": 20, "transform_corpu": 20, "encodingstrategi": 20, "conform": 20, "protocol": 20, "underli": 20, "_valid_ent": 20, "_entiti": 20, "_entity_pair_permut": 20, "permut": 20, "along": [20, 52], "py": [20, 30, 31], "meth": 20, "gold_label": 20, "_encode_sent": 20, "induc": 20, "_encode_sentence_for_infer": 20, "exactli": [20, 46], "therefor": [20, 21, 28, 36, 38, 43, 54], "_encode_sentence_for_train": 20, "transform_sent": 20, "procedur": [20, 58], "transform_dataset": 20, "_get_data_points_from_sent": [20, 21], "directli": [20, 21, 39, 50, 56, 60, 62], "mini": [20, 21, 24, 40], "displai": [20, 21], "progress": [20, 21], "bar": [20, 21], "relationextractor": [20, 21, 26], "entity_pair_filt": 20, "train_on_gold_pairs_onli": [20, 21], "regexptagg": [20, 26], "capabl": [20, 50, 57], "regexp": 20, "r": [20, 28, 30, 57], "quot": [20, 59], "multilabel": 20, "compil": 20, "violat": 20, "except": [20, 25, 51, 62], "registered_label": 20, "register_label": 20, "_label": 20, "complex_label": 20, "registered_map": 20, "sequencetagg": [20, 21, 26, 30, 52, 57, 58, 61, 62], "tag_dictionari": [20, 57, 58, 61, 62], "use_rnn": [20, 57, 61, 62], "tag_format": [20, 57], "use_crf": [20, 57, 61, 62], "reproject_embed": [20, 57, 61, 62], "05": [20, 21, 24, 44], "train_initial_hidden_st": 20, "init_from_state_dict": 20, "allow_unk_predict": 20, "parameter": 20, "multitask": 20, "becom": 20, "condit": 20, "imit": 20, "crf": [20, 61, 62], "_init_loss_weight": 20, "_init_initial_hidden_st": 20, "num_direct": 20, "direct": [20, 42], "rnn_input_dim": 20, "sentence_tensor": 20, "network": [20, 21, 62], "longtensor": 20, "inttensor": 20, "_get_scores_from_featur": 20, "smaller": [20, 46], "trim": 20, "tagset": 20, "_get_gold_label": 20, "force_token_predict": 20, "predict_span": 20, "_standard_infer": 20, "probabilities_for_all_class": 20, "emiss": 20, "_all_scores_for_token": 20, "push_to_hub": 20, "repo_id": 20, "commit_messag": 20, "upload": 20, "face": 20, "namespac": 20, "repo": 20, "authent": 20, "messag": [20, 29], "commit": [20, 30], "push": 20, "prefixedsequencetagg": [20, 26, 57], "augmentation_strategi": [20, 57], "prefixedsent": 20, "augment_sent": 20, "annotation_lay": 20, "tokenclassifi": [20, 21, 26], "span_encod": 20, "wordtagg": [20, 26], "12": [20, 37, 43, 55, 56, 58], "fewshotclassifi": [20, 26], "tars_embed": 20, "popul": [20, 38, 52, 54], "cosin": 20, "num_negative_labels_to_sampl": 20, "measur": 20, "distanc": 20, "_compute_label_similarity_for_current_epoch": 20, "get_current_label_dictionari": 20, "get_current_label_typ": 20, "is_current_task_multi_label": 20, "add_and_switch_to_new_task": 20, "task_nam": 20, "force_switch": 20, "tar": [20, 56], "final": [20, 24, 51, 57, 58, 63], "choic": [20, 50], "depict": 20, "problem": [20, 31, 61, 62], "list_existing_task": 20, "switch_to_task": 20, "previous": [20, 59], "predict_zero_shot": 20, "candidate_label_set": 20, "zero": [20, 21], "shot": [20, 62], "tarsclassifi": [20, 26], "tagger_arg": 20, "backend": 20, "inflat": 20, "static_label_typ": 20, "tars_label": 20, "label_match": 20, "ye": 20, "label_no_match": 20, "NO": 20, "against": [20, 37, 58], "That": [20, 21, 31, 47, 48], "consider": 20, "beta": [20, 42], "anneal": [20, 25, 58], "label_threshold": 20, "force_label": 20, "activ": 20, "minibatch": 20, "bigger": 20, "rapid": 20, "consum": 20, "all_tag_prob": 20, "tarstagg": [20, 26], "belong": 20, "most_probable_first": 20, "textregressor": [20, 26], "document_embed": [20, 50, 63], "forward_labels_and_loss": 20, "clusteringmodel": [20, 26], "sklearn": 20, "clustermixin": 20, "baseestim": 20, "algorithm": [20, 22, 23, 52, 54], "_convert_dataset": 20, "return_label_dict": 20, "compat": 20, "turn": [20, 22], "y": 20, "ref": 20, "multitaskmodel": [20, 26, 62], "loss_factor": 20, "use_all_task": [20, 62], "act": 20, "done": [20, 55, 58], "hard": [20, 37, 60], "child": 20, "task_0": [20, 62], "task_1": [20, 62], "teh": 20, "factor": 20, "count": 20, "predictarg": 20, "noqa": [20, 21, 24], "e501": [20, 21, 24], "split_batch_to_task_id": 20, "all_task": 20, "randomli": [20, 21, 50], "deactiv": [20, 61], "evaluate_al": 20, "evalarg": 20, "underneath": 20, "_init_model_with_state_dict": [20, 21], "lockeddropout": [21, 26], "dropout_r": 21, "batch_first": 21, "inplac": 21, "drop": [21, 55], "entir": [21, 36, 40, 47], "worddropout": [21, 26], "inherit": [21, 24, 60], "ensur": [21, 28, 30, 31], "fair": 21, "comparison": [21, 50], "final_embedding_s": 21, "inverse_model": 21, "should_embed_sent": 21, "thu": [21, 44, 45, 48, 50, 59], "_filter_data_point": 21, "_get_data_points_for_batch": 21, "_get_label_of_datapoint": 21, "downstream": [21, 50], "model_card": 21, "checkpoint": [21, 24], "print_model_card": 21, "prototypicaldecod": [21, 26, 62], "num_prototyp": [21, 62], "embeddings_s": [21, 62], "prototype_s": 21, "distance_funct": [21, 62], "euclidean": 21, "use_radiu": 21, "min_radiu": 21, "unlabeled_dist": 21, "unlabeled_idx": 21, "learning_mod": 21, "joint": 21, "normal_distributed_initial_prototyp": 21, "labelverbalizerdecod": [21, 26], "label_embed": 21, "idea": [21, 31, 58], "siames": 21, "bi": 21, "label_encod": 21, "context_embed": 21, "ucnas": 21, "label_verbalizer_decod": 21, "verbalize_label": 21, "verbal": 21, "verbalized_label": 21, "subdivid": 22, "moreov": [22, 23, 52, 54], "link_sent": 22, "segtok": [22, 23, 36], "librari": [22, 23, 24, 31, 36, 56, 59], "fnl": [22, 23], "spacysentencesplitt": [22, 26], "spaci": [22, 23], "spacytoken": [22, 23, 26], "en_core_sci_sm": [22, 23, 56], "conveni": 22, "tagsentencesplitt": [22, 26], "newlinesentencesplitt": [22, 26], "newlin": 22, "marker": 22, "sentencetagsplitt": 22, "nosentencesplitt": [22, 26], "hood": 23, "parti": 23, "dedic": [23, 47, 54, 58], "rule": 23, "indo": 23, "european": [23, 43], "run_token": 23, "japanesetoken": [23, 26], "sudachi_mod": 23, "konoha": 23, "popular": [23, 46], "mecab": 23, "janom": 23, "sudachipi": 23, "himkt": 23, "tokenizerwrapp": [23, 26], "tokenizer_func": 23, "interfac": [23, 24], "distinguish": [23, 44], "modeltrain": [24, 26, 57, 58, 61, 62, 63], "pluggabl": [24, 25, 26], "valid_ev": [24, 25], "_training_except": 24, "_training_fin": [24, 25], "after_evalu": [24, 25], "after_setup": [24, 25], "after_train": [24, 25], "after_training_batch": [24, 25], "after_training_epoch": [24, 25], "after_training_loop": 24, "before_training_batch": 24, "before_training_epoch": [24, 25], "before_training_optimizer_step": 24, "metric_record": [24, 25], "training_interrupt": 24, "reset_training_attribut": 24, "check_for_and_delete_previous_best_model": 24, "get_batch_step": 24, "mini_batch_chunk_s": [24, 61, 62], "_backward": 24, "plugin": [24, 26], "anneal_factor": [24, 25], "patienc": [24, 25], "min_learning_r": [24, 25], "0001": 24, "initial_extra_pati": [24, 25], "anneal_with_restart": [24, 25], "learning_r": [24, 57, 58, 61, 62, 63], "decoder_learning_r": 24, "eval_batch_s": 24, "64": 24, "max_epoch": [24, 25, 57, 58, 61, 63], "sgd": [24, 58], "train_with_dev": [24, 25, 57], "train_with_test": 24, "reduce_transformer_vocab": 24, "monitor_test": 24, "monitor_train_sampl": 24, "use_final_model_for_ev": 24, "gold_label_dictionary_for_ev": 24, "shuffle_first_epoch": 24, "embeddings_storage_mod": 24, "save_final_model": 24, "save_optimizer_st": [24, 25], "save_model_each_k_epoch": [24, 25], "create_file_log": 24, "create_loss_fil": 24, "write_weight": 24, "attach_default_schedul": 24, "warmup_fract": [24, 25], "5e": 24, "adamw": [24, 58], "use_amp": 24, "train_custom": 24, "max_grad_norm": 24, "larger": [24, 38, 55], "broken": 24, "purpos": [24, 50], "termin": 24, "surpass": 24, "adam": 24, "temporari": 24, "macro": [24, 25, 45, 58], "exclud": 24, "flairsampl": 24, "could": [24, 25, 31, 32, 38, 51, 59, 63], "continu": 24, "alongsid": 24, "trainerplugin": [24, 25, 26], "test_scor": 24, "metrichistoryplugin": [24, 25, 26], "_initialize_model_card": 24, "training_paramet": 24, "card": 24, "languagemodeltrain": [24, 26], "test_mod": 24, "10000": 24, "optimizer_st": 24, "scaler_st": 24, "grow_to_sequence_length": 24, "data_sourc": 24, "_repackage_hidden": 24, "checkpoint_fil": 24, "textcorpu": [24, 26], "character_level": 24, "random_case_flip": 24, "annealingplugin": [25, 26], "logic": 25, "store_learning_r": 25, "kw": 25, "schedul": [25, 58], "target": 25, "annealonplateau": 25, "batch_growth_ann": 25, "current_model_is_best": 25, "validation_scor": 25, "get_stat": 25, "checkpointplugin": [25, 26], "clearmlloggerplugin": [25, 26], "task_id_or_task": 25, "linearschedulerplugin": [25, 26], "linearschedulerwithwarmup": 25, "dataset_s": 25, "earli": [25, 58], "optimizer_was_run": 25, "cycl": 25, "decai": 25, "weightextractorplugin": [25, 26], "batch_no": 25, "total_number_of_batch": 25, "logfileplugin": [25, 26], "close_file_handl": 25, "lossfileplugin": [25, 26], "metrics_to_collect": 25, "manag": [25, 48], "dev_loss_histori": 25, "dev_score_histori": 25, "train_loss_histori": 25, "tensorboardlogg": [25, 26], "log_dir": 25, "tracked_metr": 25, "tensorboard": 25, "append": [25, 38, 52, 57], "shall": 25, "plot": 25, "close": [25, 29], "writer": 25, "baseplugin": [25, 26], "attach_to": 25, "attach": [25, 36, 39], "mark_func_as_hook": 25, "func": 25, "trigger": [25, 60], "first_arg": 25, "other_arg": 25, "convienc": 25, "syntax": [25, 30, 43], "some_ev": 25, "another_ev": 25, "dispatch": 25, "react": 25, "append_plugin": 25, "validate_ev": 25, "register_hook": 25, "emit": 25, "remove_hook": 25, "traininginterrupt": [25, 26], "interrupt": 25, "loop": 25, "reducetransformervocabplugin": [25, 26], "register_transformer_smaller_training_vocab": 25, "save_model_at_the_end": 25, "metricnam": [25, 26], "metricrecord": [25, 26], "global_step": 25, "typ": 25, "walltim": 25, "recordtyp": 25, "anyth": 25, "time_step": 25, "increment": 25, "again": [25, 47, 59], "joined_nam": 25, "scalar_list": 25, "histogram": 25, "is_typ": 25, "is_scalar": 25, "is_scalar_list": 25, "is_str": 25, "is_histogram": 25, "flair": [26, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 54, 55, 56, 57, 59, 62, 63, 64], "trainer": [26, 57, 61, 62, 63], "good": [27, 44, 48, 58], "issu": [27, 29, 33, 56], "pull": 27, "contributor": [28, 33, 42, 43, 44], "look": [28, 38, 50, 51, 58, 59, 60, 62], "deeper": 28, "suggest": 28, "clone": 28, "unit": [28, 32, 36, 42, 43], "around": [28, 40], "hopefulli": 28, "easi": [28, 30, 37, 63], "python": [28, 35, 52, 59], "sure": [28, 31, 33, 46], "oldest": 28, "prefer": 28, "pip": [28, 30, 35, 38, 56], "instal": [28, 30, 34, 38, 56], "typecheck": 28, "execut": [28, 54, 55, 59], "pytest": 28, "basic": [28, 30, 34, 38], "runintegr": 28, "style": [28, 60], "formatt": 28, "black": 28, "ruff": 28, "properli": 28, "root": 28, "happi": 29, "contribut": [29, 33, 43, 44], "awesom": [29, 51], "unnecessari": 29, "side": 29, "stick": 29, "concern": [29, 54, 56], "discuss": [29, 55, 58], "hate": 29, "finish": 29, "pr": 29, "decid": [29, 58], "ticket": 29, "did": 29, "gh": 29, "42": [29, 58], "endus": 30, "someth": [30, 31, 42, 50], "lie": 30, "ate": 30, "whenev": 30, "accordingli": 30, "reflect": 30, "realiti": 30, "usabl": 30, "anoth": [30, 40], "markdown": 30, "rst": 30, "myst": 30, "understand": [30, 31, 39, 43, 47, 49], "md": 30, "liner": 30, "explan": 30, "temporarili": 30, "smv_branch_whitelist": 30, "pattern": 30, "sphinx": 30, "multivers": 30, "doc_build": 30, "great": [31, 50], "feedback": 31, "guidelin": [31, 33], "insight": 31, "There": [31, 51, 58, 65], "unrel": 31, "potenti": 31, "didn": 31, "ran": 31, "collect_env": 31, "minim": [31, 43, 58], "sai": [31, 36], "realli": 31, "encount": 31, "ok": [31, 37], "recreat": 31, "manni": 31, "quicker": 31, "spend": 31, "debug": 31, "show": [31, 35, 36, 39, 41, 43, 44, 45, 47, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63], "verifi": 31, "enough": [31, 59], "easier": 31, "judg": 31, "know": [31, 35, 37, 57, 58, 60], "lack": 31, "wrong": 31, "multitagg": 31, "cannot": 31, "clearli": 31, "resolv": [31, 37, 38], "tracker": 33, "art": [33, 43, 44, 48, 53, 55, 57, 58, 61, 62, 63, 64], "tutori": [33, 36, 38, 39, 42, 43, 44, 45, 47, 58, 59, 60, 61, 62, 63], "doc": [33, 50], "depth": 33, "guid": 33, "codebas": 33, "glossari": 33, "term": [33, 54], "definit": [33, 60], "quick": [34, 42], "summari": 34, "thing": [34, 41, 58, 65], "hunflair2": [34, 38], "let": [35, 36, 37, 38, 39, 42, 44, 45, 47, 55, 56, 58, 59, 60, 61, 62], "discov": 35, "minut": 35, "favorit": 35, "virtual": 35, "simpli": [35, 46, 47, 48, 50, 51, 58, 60, 61], "love": [35, 40, 58], "york": 35, "goal": 35, "analysi": [35, 36, 45, 63], "essenti": 35, "now": [35, 36, 46, 47, 48, 50, 51, 52, 55, 58, 59, 61], "9982": 35, "congrat": [35, 58], "explain": [36, 51, 58, 65], "familiar": [36, 57], "grass": [36, 46, 47, 48, 50, 51], "green": [36, 46, 47, 48, 50, 51], "tell": [36, 42, 43, 44], "atom": 36, "printout": [36, 43, 44], "lexic": [36, 50], "illustr": [36, 37, 38, 39, 64], "color": 36, "mandatori": 36, "sometim": [36, 47, 50], "importantli": 36, "bring": 36, "togeth": [36, 39, 42, 50], "overal": [36, 45, 58], "pointer": 36, "As": [37, 38, 39, 42, 44, 45, 52, 58, 59, 61, 62], "ship": [37, 38, 41, 42, 43, 44, 45], "experiment": [37, 42], "attempt": 37, "kirk": 37, "spock": 37, "met": 37, "enterpris": 37, "james_t": 37, "_kirk": 37, "9969": 37, "9971": [37, 42], "uss_enterprise_": 37, "ncc": 37, "1701": 37, "975": [37, 58], "barcelona": 37, "bad": [37, 45, 58], "eh": 37, "quit": [37, 61], "trek": 37, "fan": 37, "short": 37, "bayern": 37, "plai": [37, 40], "took": 37, "fc_bayern_munich": 37, "fc_barcelona": 37, "soccer": 37, "club": 37, "fc": 37, "munich": 37, "citi": 37, "behind": 38, "hunflair": [38, 44, 52, 55, 56], "bionen": 38, "abcd1": [38, 52, 54], "caus": [38, 47, 52, 54, 56], "adrenoleukodystrophi": [38, 52, 54], "neurodegen": [38, 52, 54], "exacerb": [38, 52, 54], "exposur": [38, 52, 54], "mercuri": [38, 52, 54], "dolphin": 38, "ner_tagg": [38, 54], "nen_tagg": 38, "ab3p": 38, "simplest": 38, "pyab3p": 38, "analog": 38, "9509": 38, "9872": 38, "mesh": [38, 52, 54, 55], "d000326": [38, 52, 54], "195": [38, 52, 54], "30780029296875": [38, 52, 54], "15": [38, 58], "8988": 38, "d019636": [38, 52, 54], "201": [38, 52, 54, 60], "1804962158203": [38, 52, 54], "29": 38, "30": [38, 58], "9484": 38, "31": [38, 42, 44, 55, 60], "8071": 38, "huflair": 38, "referenc": 38, "ascend": 38, "descend": 38, "result_ment": 38, "span_data": 38, "ner_label": [38, 62], "mentions_found": 38, "nen": [38, 52], "nen_id": 38, "explor": 38, "mention_candid": 38, "georg": [39, 42, 43, 44, 59, 62], "washington": [39, 42, 43, 44, 59, 62], "went": [39, 43, 44, 59, 62], "9989": 39, "9942": 39, "bracket": 39, "998886227607727": 39, "9942097663879395": 39, "showcas": [41, 43, 44], "tour": 42, "crazi": 42, "These": [42, 48, 50], "propbank": 42, "sort": [42, 57, 59, 62], "evok": 42, "curiou": 42, "hi": [42, 46, 48], "hat": 42, "01": 42, "9951": 42, "02": [42, 55, 58], "6361": 42, "detector": 42, "distinct": [42, 46, 48, 54], "verb": [42, 43, 58, 60], "noun": [42, 43, 58, 60], "brown": 42, "fox": 42, "jump": 42, "lazi": 42, "dog": 42, "np": 42, "9914": 42, "vp": 42, "pp": 42, "9967": 42, "9991": 42, "form": 42, "born": 42, "express": 42, "relationship": 42, "9847": 42, "96": [42, 43, 44, 45, 55], "47": [42, 43, 55], "97": [42, 43], "54": [42, 44, 55], "negat": 42, "specul": 42, "scholarli": 42, "indirect": 42, "redewiedergab": [42, 48], "87": [42, 43, 44, 45], "94": [42, 44, 55], "free": 42, "univer": 43, "fundament": [43, 48], "offer": [43, 44, 45, 50], "dirk": 43, "nnp": [43, 60], "vbd": [43, 60], "IN": [43, 60], "proper": 43, "past": [43, 48], "tens": [43, 60], "consult": 43, "penn": 43, "dort": 43, "hatt": 43, "er": [43, 51], "einen": 43, "hut": 43, "gekauft": 43, "adv": [43, 58, 60], "vafin": 43, "pper": 43, "vvpp": 43, "\u0441\u044c\u043e\u0433\u043e\u0434\u043d\u0456": 43, "\u0432": 43, "\u0437\u043d\u0430\u043c": 43, "\u044f\u043d\u0446\u0456": 43, "\u043f\u0440\u043e\u0436\u0438\u0432\u0430\u044e\u0442\u044c": 43, "\u043d\u0430\u0449\u0430\u0434\u043a\u0438": 43, "\u043f\u043e\u0435\u0442\u0430": 43, "\u0440\u043e\u0434\u0438\u043d\u0430": 43, "\u0448\u043a\u043e\u0434\u0438": 43, "\u0639\u0645\u0631\u0648": 43, "\u0639\u0627\u062f\u0644\u064a": 43, "\u0623\u0633\u062a\u0627\u0630": 43, "\u0644\u0644\u0627\u0642\u062a\u0635\u0627\u062f": 43, "\u0627\u0644\u0633\u064a\u0627\u0633\u064a": 43, "\u0627\u0644\u0645\u0633\u0627\u0639\u062f": 43, "\u0641\u064a": 43, "\u0627\u0644\u062c\u0627\u0645\u0639\u0629": 43, "\u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a\u0629": 43, "\u0628\u0627\u0644\u0642\u0627\u0647\u0631\u0629": 43, "syntact": [43, 48, 60], "langag": 43, "multilingu": [43, 44, 50, 61], "kauft": 43, "break": 43, "readabl": [43, 47, 60], "propn": [43, 58, 60], "adp": [43, 58, 60], "punct": [43, 58, 60], "pron": [43, 58, 60], "det": [43, 58, 60], "98": [43, 45, 58, 60], "19": 43, "acc": 43, "92": [43, 44], "88": [43, 58], "dialect": 43, "hdt": 43, "93": [43, 44, 58], "06": [43, 44], "da": [43, 44, 46], "danish": [43, 44, 46], "amaliepauli": [43, 44], "malayalam": 43, "83": [43, 45], "sabiqueqb": 43, "pt": [43, 46, 48, 57, 58, 63], "clinic": [43, 48], "pucpr": 43, "lucasferrohailab": 43, "dchaplinski": [43, 44, 48], "appropri": [43, 44, 46, 48, 58, 59, 63], "brows": [43, 44], "fastest": 44, "ging": 44, "nach": 44, "\u0627\u062d\u0628": 44, "\u0628\u0631\u0644\u064a\u0646": 44, "On": 44, "septemb": 44, "1st": 44, "dollar": 44, "watch": 44, "game": 44, "throne": 44, "monei": 44, "work_of_art": 44, "abnorm": [44, 55, 56], "fmr1": [44, 55, 56], "ko2": [44, 55, 56], "mous": [44, 52, 54, 55, 56], "fragil": [44, 55, 56], "syndrom": [44, 55, 56], "bioner": 44, "75": [44, 45, 55], "09": [44, 58], "24": [44, 54, 55, 56, 58], "89": 44, "90": [44, 55], "86": [44, 55], "66": [44, 55], "84": [44, 58], "ler": 44, "35": [44, 55, 56], "wikin": 44, "aij": 44, "wp3": 44, "95": [44, 55, 58], "57": [44, 55], "mhham": [44, 48], "2002": [44, 60], "58": [44, 55], "79": [44, 55], "distilbert": [45, 62, 63], "notabl": 45, "varieti": [45, 47, 49], "9929": 45, "9999": 45, "71": 45, "fall": [46, 58], "komnino": 46, "glove_embed": [46, 47, 50], "few": [46, 62], "turian": 46, "ro": 46, "romanian": 46, "ca": 46, "catalan": 46, "sv": [46, 48], "norwegian": [46, 48], "fi": [46, 48], "pl": [46, 48], "cz": 46, "czech": [46, 48], "sk": 46, "slovak": 46, "slovenian": [46, 48], "sr": 46, "serbian": 46, "hr": [46, 48], "croatian": [46, 48], "bg": [46, 48], "bulgarian": [46, 48], "ru": 46, "russian": 46, "he": [46, 48], "hebrew": [46, 48], "tr": 46, "turkish": 46, "fa": [46, 48], "persian": [46, 48], "ja": [46, 48], "ko": 46, "korean": 46, "zh": 46, "hindi": [46, 48], "indonesian": [46, 48], "basqu": [46, 48], "german_embed": 46, "altern": [46, 51, 61], "custom_embed": 46, "gensim": [46, 50], "correctli": [46, 57, 58], "snippet": [46, 60], "word_vector": 46, "keyedvector": 46, "load_word2vec_format": 46, "reason": [47, 49], "0323": [47, 51], "3904": [47, 51], "1946": [47, 51], "1296": 47, "5806": 47, "3973": 47, "2652": 47, "1337": 47, "4473": 47, "1641": 47, "1374": 47, "3688": 47, "8292": 47, "4068": 47, "7717": 47, "7722": 47, "1152": 47, "3661": 47, "3570": 47, "6573": 47, "1441": 47, "1772": 47, "5911": 47, "2236": 47, "0497": 47, "chapter": [47, 58], "flair_embedding_forward": [47, 48], "flair_embedding_backward": 47, "stacked_embed": [47, 48], "power": [48, 61], "captur": 48, "latent": 48, "beyond": 48, "explicit": 48, "notion": 48, "surround": 48, "With": [48, 60], "jw300": 48, "agi\u0107": 48, "vuli\u0107": 48, "cc": 48, "BY": 48, "nc": 48, "subtitl": 48, "friendli": 48, "billion": 48, "europarl": 48, "setim": 48, "v0": [48, 56], "earlier": 48, "hamburg": 48, "anzeig": 48, "wz": 48, "wiener": 48, "zeitung": 48, "rw": 48, "iamyihwa": 48, "matirojasg": 48, "frtacoa": 48, "439m": 48, "2048": 48, "borchmann": 48, "commoncrawl": 48, "ericlief": 48, "opensubtitles2018": 48, "ta": 48, "tamil": 48, "jessepeng": 48, "until": 48, "swiss": 48, "luxembourgish": 48, "chronicl": 48, "america": 48, "materi": 48, "am": 48, "amhar": 48, "5m": 48, "offici": [48, 54], "ubertext": 48, "flair_de_forward": 48, "And": [48, 50, 58, 62], "flair_bg_backward": 48, "constantli": 48, "evolv": 48, "global": 48, "oper": 48, "ineffect": 48, "nearli": [48, 50], "mostli": 50, "prior": 50, "Such": 50, "rare": 50, "unless": 50, "upo": [50, 58, 60, 61], "18": [50, 58], "precomput": 50, "subword": [50, 51], "heinzerl": 50, "strube": 50, "fraction": 50, "275": 50, "200": [50, 58], "sentencepiec": 50, "m": 50, "w2v": 50, "sky": 50, "blue": 50, "off": 50, "besid": 50, "document_lstm_embed": 50, "immedi": 50, "happen": [50, 58], "hyperparamet": 50, "xlnet": 51, "roberta": [51, 61], "maxim": 51, "greatli": 51, "768": 51, "1536": 51, "9984": 51, "xl": 51, "puppet": 51, "pupp": 51, "subtoken": 51, "oktoberfest": 51, "largest": 51, "volksfest": 51, "setup": [51, 52, 54, 61], "routin": 51, "1305": 51, "1365": 51, "4323": 51, "grad_fn": 51, "catbackward": 51, "ll": [52, 58], "phenotyp": 52, "hp": 52, "fp": 52, "node": 52, "hpo": 52, "purl": 52, "obolibrari": 52, "obo": 52, "lbl": 52, "val": 52, "cambridgeltl": 52, "sapbert": [52, 54], "pubmedbert": 52, "omit": 52, "gene_link": [52, 54, 55], "my": 52, "disease_link": [52, 54, 55], "disease_tag": [52, 57], "ngene": 52, "gene_tag": [52, 57], "215": [52, 54], "210": [52, 54], "89810180664062": [52, 54], "hunflair1_tagg": 52, "granular": 52, "outperform": [53, 55], "unseen": [53, 55], "suppressor": 54, "trp53": 54, "chemical_link": 54, "species_link": [54, 55], "normalis": [54, 55], "inspect": 54, "23": [54, 56], "d008628": 54, "220": 54, "39199829101562": 54, "26": 54, "10090": [54, 55], "musculu": [54, 55], "213": [54, 55], "6201934814453": [54, 55], "bc2gn": 54, "taxonmi": 54, "uml": 54, "d001523": 55, "mental": 55, "disord": [55, 56], "197": 55, "9467010498047": 55, "108684022": 55, "fraxa": 55, "219": 55, "9510040283203": 55, "d005600": 55, "193": 55, "7115020751953": 55, "wild": 55, "vari": 55, "neither": 55, "nor": 55, "competitor": 55, "bent": 55, "bern2": 55, "pubtat": 55, "central": 55, "medment": 55, "34": 55, "51": 55, "17": [55, 58, 60], "45": [55, 58], "33": [55, 58], "78": 55, "tmvar": 55, "v3": 55, "43": 55, "76": [55, 58], "bioid": 55, "37": 55, "49": 55, "61": 55, "shift": 55, "sanger2024hunflair2": 55, "author": 55, "nger": 55, "mario": 55, "garda": 55, "samuel": 55, "xing": 55, "david": 55, "genzel": 55, "leon": 55, "droop": 55, "pia": 55, "fuch": 55, "benedikt": 55, "alan": 55, "leser": 55, "ulf": 55, "preprint": 55, "2402": 55, "12372": 55, "year": 55, "2024": 55, "four": [56, 57], "start_po": 56, "end_po": 56, "9999860525131226": 56, "9999895095825195": 56, "46": 56, "9999873638153076": 56, "56": [56, 58], "74": 56, "9999928871790568": 56, "far": 56, "unfavour": 56, "s3": 56, "west": 56, "amazonaw": 56, "ai2": 56, "gz": 56, "fx": 56, "development": 56, "fmrp": 56, "synapt": 56, "patient": 56, "hyperact": 56, "anxieti": 56, "sensori": 56, "hyper": 56, "respons": 56, "cognit": 56, "deficit": 56, "autist": 56, "symptom": 56, "observ": 56, "inde": 56, "monogen": 56, "autism": 56, "transformers_word": 57, "michiyasunaga": 57, "biolinkbert": 57, "model_max_length": 57, "0e": [57, 61, 62, 63], "women": 57, "smoke": 57, "cigarett": 57, "dai": 57, "breast": 57, "deal": 57, "opt": 57, "achiev": 57, "prompt": 57, "especi": 57, "cover": 57, "prepend": 57, "prefixed_tagg": 57, "entitytypetaskpromptaugmentationstrategi": 57, "cell_line_tag": 57, "chemical_tag": 57, "species_tag": 57, "prefixed_corpora": 57, "all_entity_typ": 57, "augment_corpu": 57, "seen": 57, "cdr_nlm_chem": 57, "l": 57, "wei": 57, "lai": 57, "p": [57, 59], "leaman": 57, "chen": 57, "q": 57, "lu": 57, "z": 57, "aioner": 57, "deep": 57, "btad310": 57, "decis": 58, "label_dict": [58, 61, 62, 63], "script": [58, 61, 62, 63], "07": 58, "38": 58, "014": 58, "016": 58, "017": 58, "020": 58, "022": 58, "023": 58, "storag": 58, "025": 58, "28409882": 58, "2611": 58, "lr": 58, "474": 58, "13510367": 58, "3143": 58, "21": 58, "910": 58, "02619775": 58, "3434": 58, "167": 58, "95288554": 58, "3783": 58, "504": 58, "86820018": 58, "48": 58, "4171": 58, "843": 58, "80507526": 58, "82": 58, "4557": 58, "72": 58, "118": 58, "74217397": 58, "4878": 58, "00": 58, "420": 58, "69161746": 58, "5072": 58, "705": 58, "63837577": 58, "68": 58, "5260": 58, "972": 58, "58915523": 58, "5394": 58, "977": 58, "5892": 58, "567": 58, "009714126586914": 58, "579": 58, "monitor": 58, "At": 58, "7732": 58, "6329": 58, "7199": 58, "407": 58, "9263": 58, "9843": 58, "9544": 58, "319": 58, "7521": 58, "6938": 58, "7218": 58, "258": 58, "7782": 58, "9300": 58, "8474": 58, "8559": 58, "9515": 58, "9011": 58, "206": 58, "6585": 58, "6398": 58, "6490": 58, "211": 58, "adj": [58, 60], "5654": 58, "6914": 58, "6221": 58, "175": 58, "9572": 58, "8995": 58, "9275": 58, "199": 58, "aux": [58, 60], "8609": 58, "8784": 58, "8696": 58, "148": 58, "5052": 58, "5000": 58, "5026": 58, "cconj": [58, 60], "9833": 58, "9077": 58, "9440": 58, "65": 58, "num": [58, 60], "5435": 58, "3289": 58, "4098": 58, "9091": 58, "7143": 58, "8000": 58, "sconj": [58, 60], "7083": 58, "5667": 58, "6296": 58, "sym": [58, 60], "3333": 58, "2143": 58, "2609": 58, "0000": 58, "intj": [58, 60], "2491": 58, "6504": 58, "6247": 58, "7635": 58, "7655": 58, "breakdown": 58, "1254": 58, "208": [58, 60], "handi": 58, "manipul": 58, "crucial": 58, "launch": 58, "fo": 58, "halv": 58, "150": [58, 61], "mechan": 58, "workflow": 58, "invok": 58, "gave": 58, "sam": [59, 62], "houston": [59, 62], "stai": [59, 62], "len": [59, 60, 62], "command": 59, "excel": 59, "delimit": 59, "label_top": 59, "label_subtop": 59, "practic": 59, "label_1": 59, "label_2": 59, "therebi": 59, "yourself": 59, "chose": 59, "denot": 59, "drive": 60, "morpholog": 60, "morph": 60, "Into": 60, "googleo": 60, "wp": 60, "readi": 60, "bunch": 60, "ratio": 60, "downsampled_corpu": 60, "12543": 60, "2077": 60, "1255": 60, "upos_dictionari": 60, "abcd": 60, "12036": 60, "verbform": 60, "10122": 60, "prontyp": 60, "9744": 60, "9381": 60, "mood": 60, "8911": 60, "8747": 60, "7148": 60, "6851": 60, "6486": 60, "gender": 60, "2824": 60, "numtyp": 60, "2771": 60, "poss": 60, "2516": 60, "voic": 60, "1085": 60, "typo": 60, "399": 60, "extpo": 60, "185": 60, "abbr": 60, "168": 60, "reflex": 60, "foreign": 60, "pos_dictionari": 60, "tense_dictionari": 60, "singular": 60, "plural": 60, "question_class": [60, 63], "english_corpu": 60, "german_corpu": 60, "dutch_corpu": 60, "multi_corpu": 60, "layout": 60, "tuneabl": [61, 62], "WITH": [61, 62], "xlm": 61, "bare": [61, 62], "bone": [61, 62], "sota": 61, "compon": 61, "frozen": 61, "exchang": 61, "rest": 61, "sytem": 62, "entity_linker_model": 62, "dot_product": 62, "prototyp": 62, "bettwer": 62, "george_washington": 62, "washington_d_c": 62, "sam_houston": 62, "pipelin": 62, "create_datapoint": 62, "somewhat": 62, "def": 62, "create_sent": 62, "panda": 62, "datafram": 62, "start_token": 62, "end_token": 62, "construct_corpu": 62, "alon": 62, "make_multitask_model_and_corpu": 62, "ner_corpu": 62, "nel_corpu": 62, "shared_embed": 62, "ner_label_dict": 62, "ner_model": 62, "nel_label_dict": 62, "nel_model": 62, "multitask_model": 62, "zelda_with_ment": 62, "multitask_id": 62, "nel_label": 62, "jointli": 62, "lot": 62, "twice": 62, "reach": 63, "eiffel": 63, "tower": 63, "broad": 65}, "objects": {"": [[16, 0, 0, "-", "flair"]], "flair": [[16, 1, 1, "", "cache_root"], [17, 0, 0, "-", "data"], [16, 1, 1, "", "device"], [16, 1, 1, "", "logger"], [20, 0, 0, "-", "models"], [21, 0, 0, "-", "nn"], [16, 6, 1, "", "set_proxies"], [16, 6, 1, "", "set_seed"], [22, 0, 0, "-", "splitter"], [23, 0, 0, "-", "tokenization"], [24, 0, 0, "-", "trainers"]], "flair.data": [[17, 2, 1, "", "BoundingBox"], [17, 2, 1, "", "ConcatFlairDataset"], [17, 2, 1, "", "Corpus"], [17, 2, 1, "", "DataPair"], [17, 2, 1, "", "DataPoint"], [17, 2, 1, "", "DataTriple"], [17, 2, 1, "", "Dictionary"], [17, 2, 1, "", "EntityCandidate"], [17, 2, 1, "", "FlairDataset"], [17, 2, 1, "", "Image"], [17, 2, 1, "", "Label"], [17, 2, 1, "", "MultiCorpus"], [17, 2, 1, "", "Relation"], [17, 2, 1, "", "Sentence"], [17, 2, 1, "", "Span"], [17, 2, 1, "", "Token"], [17, 6, 1, "", "get_spans_from_bio"], [17, 6, 1, "", "iob2"], [17, 6, 1, "", "randomly_split_into_two_datasets"]], "flair.data.BoundingBox": [[17, 3, 1, "", "bottom"], [17, 3, 1, "", "left"], [17, 3, 1, "", "right"], [17, 3, 1, "", "top"]], "flair.data.ConcatFlairDataset": [[17, 4, 1, "", "cummulative_sizes"], [17, 5, 1, "", "cumsum"], [17, 3, 1, "", "cumulative_sizes"], [17, 3, 1, "", "datasets"]], "flair.data.Corpus": [[17, 5, 1, "", "add_label_noise"], [17, 4, 1, "", "dev"], [17, 5, 1, "", "downsample"], [17, 5, 1, "", "filter_empty_sentences"], [17, 5, 1, "", "filter_long_sentences"], [17, 5, 1, "", "get_all_sentences"], [17, 5, 1, "", "get_label_distribution"], [17, 5, 1, "", "make_label_dictionary"], [17, 5, 1, "", "make_tag_dictionary"], [17, 5, 1, "", "make_vocab_dictionary"], [17, 5, 1, "", "obtain_statistics"], [17, 4, 1, "", "test"], [17, 4, 1, "", "train"]], "flair.data.DataPair": [[17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.DataPoint": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_metadata"], [17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_each_embedding"], [17, 5, 1, "", "get_embedding"], [17, 5, 1, "", "get_label"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_metadata"], [17, 5, 1, "", "has_label"], [17, 5, 1, "", "has_metadata"], [17, 4, 1, "", "labels"], [17, 5, 1, "", "remove_labels"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_embedding"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.DataTriple": [[17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Dictionary": [[17, 5, 1, "", "add_item"], [17, 5, 1, "", "get_idx_for_item"], [17, 5, 1, "", "get_idx_for_items"], [17, 5, 1, "", "get_item_for_index"], [17, 5, 1, "", "get_items"], [17, 5, 1, "", "is_span_prediction_problem"], [17, 5, 1, "", "load"], [17, 5, 1, "", "load_from_file"], [17, 5, 1, "", "remove_item"], [17, 5, 1, "", "save"], [17, 5, 1, "", "set_start_stop_tags"], [17, 5, 1, "", "start_stop_tags_are_set"]], "flair.data.EntityCandidate": [[17, 5, 1, "", "__init__"], [17, 5, 1, "", "to_dict"]], "flair.data.FlairDataset": [[17, 5, 1, "", "is_in_memory"]], "flair.data.Image": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Label": [[17, 4, 1, "", "labeled_identifier"], [17, 4, 1, "", "metadata_str"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_value"], [17, 4, 1, "", "shortstring"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"], [17, 4, 1, "", "value"]], "flair.data.Relation": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Sentence": [[17, 5, 1, "", "__init__"], [17, 5, 1, "", "clear_embeddings"], [17, 5, 1, "", "copy_context_from_sentence"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_language_code"], [17, 5, 1, "", "get_relations"], [17, 5, 1, "", "get_span"], [17, 5, 1, "", "get_spans"], [17, 5, 1, "", "get_token"], [17, 5, 1, "", "infer_space_after"], [17, 5, 1, "", "is_context_set"], [17, 5, 1, "", "left_context"], [17, 5, 1, "", "next_sentence"], [17, 5, 1, "", "previous_sentence"], [17, 5, 1, "", "remove_labels"], [17, 5, 1, "", "right_context"], [17, 5, 1, "", "set_context_for_sentences"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 5, 1, "", "to_dict"], [17, 5, 1, "", "to_original_text"], [17, 5, 1, "", "to_plain_string"], [17, 5, 1, "", "to_tagged_string"], [17, 5, 1, "", "to_tokenized_string"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Span": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Token": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_tags_proba_dist"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_head"], [17, 5, 1, "", "get_tags_proba_dist"], [17, 4, 1, "", "idx"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.datasets": [[0, 0, 0, "-", "base"], [1, 0, 0, "-", "biomedical"], [2, 0, 0, "-", "document_classification"], [3, 0, 0, "-", "entity_linking"], [4, 0, 0, "-", "ocr"], [5, 0, 0, "-", "relation_extraction"], [6, 0, 0, "-", "sequence_labeling"], [7, 0, 0, "-", "text_image"], [8, 0, 0, "-", "text_text"], [9, 0, 0, "-", "treebanks"]], "flair.datasets.base": [[0, 2, 1, "", "DataLoader"], [0, 2, 1, "", "FlairDatapointDataset"], [0, 2, 1, "", "MongoDataset"], [0, 2, 1, "", "SentenceDataset"], [0, 2, 1, "", "StringDataset"], [0, 6, 1, "", "find_train_dev_test_files"]], "flair.datasets.base.DataLoader": [[0, 3, 1, "", "batch_size"], [0, 3, 1, "", "dataset"], [0, 3, 1, "", "drop_last"], [0, 3, 1, "", "num_workers"], [0, 3, 1, "", "pin_memory"], [0, 3, 1, "", "pin_memory_device"], [0, 3, 1, "", "prefetch_factor"], [0, 3, 1, "", "sampler"], [0, 3, 1, "", "timeout"]], "flair.datasets.base.FlairDatapointDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.MongoDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.SentenceDataset": [[0, 5, 1, "", "__init__"]], "flair.datasets.base.StringDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.biomedical": [[1, 2, 1, "", "ANAT_EM"], [1, 2, 1, "", "AZDZ"], [1, 2, 1, "", "BC2GM"], [1, 2, 1, "", "BIGBIO_NER_CORPUS"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC4CHEMD"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_NCBI"], [1, 2, 1, "", "BIOBERT_GENE_BC2GM"], [1, 2, 1, "", "BIOBERT_GENE_JNLPBA"], [1, 2, 1, "", "BIOBERT_SPECIES_LINNAEUS"], [1, 2, 1, "", "BIOBERT_SPECIES_S800"], [1, 2, 1, "", "BIONLP2013_CG"], [1, 2, 1, "", "BIONLP2013_PC"], [1, 2, 1, "", "BIOSEMANTICS"], [1, 2, 1, "", "BIO_INFER"], [1, 2, 1, "", "BioBertHelper"], [1, 2, 1, "", "BioNLPCorpus"], [1, 2, 1, "", "CDR"], [1, 2, 1, "", "CELL_FINDER"], [1, 2, 1, "", "CEMP"], [1, 2, 1, "", "CHEBI"], [1, 2, 1, "", "CHEMDNER"], [1, 2, 1, "", "CLL"], [1, 2, 1, "", "CRAFT"], [1, 2, 1, "", "CRAFT_V4"], [1, 2, 1, "", "CoNLLWriter"], [1, 2, 1, "", "DECA"], [1, 2, 1, "", "DpEntry"], [1, 2, 1, "", "Entity"], [1, 2, 1, "", "FSU"], [1, 2, 1, "", "GELLUS"], [1, 2, 1, "", "GPRO"], [1, 2, 1, "", "HUNER_ALL_BIOID"], [1, 2, 1, "", "HUNER_ALL_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_ALL_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_ALL_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_ALL_BIORED"], [1, 2, 1, "", "HUNER_ALL_CDR"], [1, 2, 1, "", "HUNER_ALL_CELL_FINDER"], [1, 2, 1, "", "HUNER_ALL_CHEBI"], [1, 2, 1, "", "HUNER_ALL_CPI"], [1, 2, 1, "", "HUNER_ALL_CRAFT_V4"], [1, 2, 1, "", "HUNER_ALL_DRUGPROT"], [1, 2, 1, "", "HUNER_ALL_JNLPBA"], [1, 2, 1, "", "HUNER_ALL_LOCTEXT"], [1, 2, 1, "", "HUNER_ALL_MIRNA"], [1, 2, 1, "", "HUNER_ALL_SCAI"], [1, 2, 1, "", "HUNER_ALL_VARIOME"], [1, 2, 1, "", "HUNER_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_CELL_LINE"], [1, 2, 1, "", "HUNER_CELL_LINE_BIOID"], [1, 2, 1, "", "HUNER_CELL_LINE_BIORED"], [1, 2, 1, "", "HUNER_CELL_LINE_CELL_FINDER"], [1, 2, 1, "", "HUNER_CELL_LINE_CLL"], [1, 2, 1, "", "HUNER_CELL_LINE_GELLUS"], [1, 2, 1, "", "HUNER_CELL_LINE_JNLPBA"], [1, 2, 1, "", "HUNER_CHEBI"], [1, 2, 1, "", "HUNER_CHEMICAL"], [1, 2, 1, "", "HUNER_CHEMICAL_BIOID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_CHEMICAL_BIORED"], [1, 2, 1, "", "HUNER_CHEMICAL_CDR"], [1, 2, 1, "", "HUNER_CHEMICAL_CEMP"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEBI"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEMDNER"], [1, 2, 1, "", "HUNER_CHEMICAL_CPI"], [1, 2, 1, "", "HUNER_CHEMICAL_CRAFT_V4"], [1, 2, 1, "", "HUNER_CHEMICAL_DRUGPROT"], [1, 2, 1, "", "HUNER_CHEMICAL_NLM_CHEM"], [1, 2, 1, "", "HUNER_CHEMICAL_SCAI"], [1, 2, 1, "", "HUNER_CRAFT_V4"], [1, 2, 1, "", "HUNER_DISEASE"], [1, 2, 1, "", "HUNER_DISEASE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_DISEASE_BIORED"], [1, 2, 1, "", "HUNER_DISEASE_CDR"], [1, 2, 1, "", "HUNER_DISEASE_MIRNA"], [1, 2, 1, "", "HUNER_DISEASE_NCBI"], [1, 2, 1, "", "HUNER_DISEASE_PDR"], [1, 2, 1, "", "HUNER_DISEASE_SCAI"], [1, 2, 1, "", "HUNER_DISEASE_VARIOME"], [1, 2, 1, "", "HUNER_GENE"], [1, 2, 1, "", "HUNER_GENE_BC2GM"], [1, 2, 1, "", "HUNER_GENE_BIOID"], [1, 2, 1, "", "HUNER_GENE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_EPI"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_REL"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_GENE_BIORED"], [1, 2, 1, "", "HUNER_GENE_BIO_INFER"], [1, 2, 1, "", "HUNER_GENE_CELL_FINDER"], [1, 2, 1, "", "HUNER_GENE_CHEBI"], [1, 2, 1, "", "HUNER_GENE_CPI"], [1, 2, 1, "", "HUNER_GENE_CRAFT_V4"], [1, 2, 1, "", "HUNER_GENE_DECA"], [1, 2, 1, "", "HUNER_GENE_DRUGPROT"], [1, 2, 1, "", "HUNER_GENE_FSU"], [1, 2, 1, "", "HUNER_GENE_GNORMPLUS"], [1, 2, 1, "", "HUNER_GENE_GPRO"], [1, 2, 1, "", "HUNER_GENE_IEPA"], [1, 2, 1, "", "HUNER_GENE_JNLPBA"], [1, 2, 1, "", "HUNER_GENE_LOCTEXT"], [1, 2, 1, "", "HUNER_GENE_MIRNA"], [1, 2, 1, "", "HUNER_GENE_NLM_GENE"], [1, 2, 1, "", "HUNER_GENE_OSIRIS"], [1, 2, 1, "", "HUNER_GENE_PROGENE"], [1, 2, 1, "", "HUNER_GENE_SETH_CORPUS"], [1, 2, 1, "", "HUNER_GENE_TMVAR_V3"], [1, 2, 1, "", "HUNER_GENE_VARIOME"], [1, 2, 1, "", "HUNER_JNLPBA"], [1, 2, 1, "", "HUNER_LOCTEXT"], [1, 2, 1, "", "HUNER_MIRNA"], [1, 2, 1, "", "HUNER_SPECIES"], [1, 2, 1, "", "HUNER_SPECIES_BIOID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2019_BB"], [1, 2, 1, "", "HUNER_SPECIES_BIORED"], [1, 2, 1, "", "HUNER_SPECIES_CELL_FINDER"], [1, 2, 1, "", "HUNER_SPECIES_CHEBI"], [1, 2, 1, "", "HUNER_SPECIES_CRAFT_V4"], [1, 2, 1, "", "HUNER_SPECIES_LINNEAUS"], [1, 2, 1, "", "HUNER_SPECIES_LOCTEXT"], [1, 2, 1, "", "HUNER_SPECIES_MIRNA"], [1, 2, 1, "", "HUNER_SPECIES_S800"], [1, 2, 1, "", "HUNER_SPECIES_VARIOME"], [1, 2, 1, "", "HunerDataset"], [1, 2, 1, "", "HunerJNLPBA"], [1, 2, 1, "", "HunerMiRNAHelper"], [1, 2, 1, "", "HunerMultiCorpus"], [1, 2, 1, "", "IEPA"], [1, 2, 1, "", "InternalBioNerDataset"], [1, 2, 1, "", "JNLPBA"], [1, 2, 1, "", "KaewphanCorpusHelper"], [1, 2, 1, "", "LINNEAUS"], [1, 2, 1, "", "LOCTEXT"], [1, 2, 1, "", "MIRNA"], [1, 2, 1, "", "NCBI_DISEASE"], [1, 2, 1, "", "OSIRIS"], [1, 2, 1, "", "PDR"], [1, 2, 1, "", "S800"], [1, 2, 1, "", "SCAI_CHEMICALS"], [1, 2, 1, "", "SCAI_DISEASE"], [1, 2, 1, "", "ScaiCorpus"], [1, 2, 1, "", "VARIOME"], [1, 6, 1, "", "bioc_to_internal"], [1, 6, 1, "", "brat_to_internal"], [1, 6, 1, "", "filter_and_map_entities"], [1, 6, 1, "", "filter_nested_entities"], [1, 6, 1, "", "merge_datasets"]], "flair.datasets.biomedical.ANAT_EM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.AZDZ": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.BC2GM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"], [1, 5, 1, "", "parse_test_dataset"], [1, 5, 1, "", "parse_train_dataset"]], "flair.datasets.biomedical.BIGBIO_NER_CORPUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "bin_search_passage"], [1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "to_internal_dataset"]], "flair.datasets.biomedical.BIONLP2013_CG": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIONLP2013_PC": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIOSEMANTICS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BIO_INFER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BioBertHelper": [[1, 5, 1, "", "convert_and_write"], [1, 5, 1, "", "download_corpora"]], "flair.datasets.biomedical.BioNLPCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.CDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CELL_FINDER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare"], [1, 5, 1, "", "read_folder"]], "flair.datasets.biomedical.CEMP": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.CHEBI": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "get_entities"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.CHEMDNER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CLL": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.CRAFT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.CRAFT_V4": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "filter_entities"], [1, 5, 1, "", "parse_corpus"], [1, 5, 1, "", "prepare_splits"]], "flair.datasets.biomedical.CoNLLWriter": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "process_dataset"], [1, 5, 1, "", "write_to_conll"]], "flair.datasets.biomedical.DECA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.DpEntry": [[1, 3, 1, "", "entity_count"], [1, 3, 1, "", "entity_lengths_sum"], [1, 3, 1, "", "last_entity"], [1, 3, 1, "", "position_end"]], "flair.datasets.biomedical.Entity": [[1, 5, 1, "", "contains"], [1, 5, 1, "", "is_before"], [1, 5, 1, "", "overlaps"]], "flair.datasets.biomedical.FSU": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.GELLUS": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.GPRO": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.HUNER_ALL_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_ALL_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_ALL_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_BIONLP2013_CG": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CLL": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEBI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CRAFT_V4": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_DISEASE_CDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_NCBI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_PDR": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_SCAI": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BC2GM": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIO_INFER": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_DECA": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_FSU": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_GPRO": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_IEPA": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_NLM_GENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_OSIRIS": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_PROGENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_JNLPBA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_LOCTEXT": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_MIRNA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_S800": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_VARIOME": [[1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerDataset": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerJNLPBA": [[1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "read_file"]], "flair.datasets.biomedical.HunerMiRNAHelper": [[1, 5, 1, "", "get_mirna_subset"]], "flair.datasets.biomedical.IEPA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.JNLPBA": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.KaewphanCorpusHelper": [[1, 5, 1, "", "download_cll_dataset"], [1, 5, 1, "", "download_gellus_dataset"], [1, 5, 1, "", "prepare_and_save_dataset"], [1, 5, 1, "", "read_dataset"]], "flair.datasets.biomedical.LINNEAUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_parse_dataset"]], "flair.datasets.biomedical.LOCTEXT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.MIRNA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "parse_file"]], "flair.datasets.biomedical.NCBI_DISEASE": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"], [1, 5, 1, "", "patch_training_file"]], "flair.datasets.biomedical.OSIRIS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.PDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.S800": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.SCAI_CHEMICALS": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.SCAI_DISEASE": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.ScaiCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.VARIOME": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.document_classification": [[2, 2, 1, "", "AGNEWS"], [2, 2, 1, "", "AMAZON_REVIEWS"], [2, 2, 1, "", "COMMUNICATIVE_FUNCTIONS"], [2, 2, 1, "", "CSVClassificationCorpus"], [2, 2, 1, "", "CSVClassificationDataset"], [2, 2, 1, "", "ClassificationCorpus"], [2, 2, 1, "", "ClassificationDataset"], [2, 2, 1, "", "GERMEVAL_2018_OFFENSIVE_LANGUAGE"], [2, 2, 1, "", "GLUE_COLA"], [2, 2, 1, "", "GLUE_SST2"], [2, 2, 1, "", "GO_EMOTIONS"], [2, 2, 1, "", "IMDB"], [2, 2, 1, "", "NEWSGROUPS"], [2, 2, 1, "", "SENTEVAL_CR"], [2, 2, 1, "", "SENTEVAL_MPQA"], [2, 2, 1, "", "SENTEVAL_MR"], [2, 2, 1, "", "SENTEVAL_SST_BINARY"], [2, 2, 1, "", "SENTEVAL_SST_GRANULAR"], [2, 2, 1, "", "SENTEVAL_SUBJ"], [2, 2, 1, "", "SENTIMENT_140"], [2, 2, 1, "", "STACKOVERFLOW"], [2, 2, 1, "", "TREC_50"], [2, 2, 1, "", "TREC_6"], [2, 2, 1, "", "WASSA_ANGER"], [2, 2, 1, "", "WASSA_FEAR"], [2, 2, 1, "", "WASSA_JOY"], [2, 2, 1, "", "WASSA_SADNESS"], [2, 2, 1, "", "YAHOO_ANSWERS"]], "flair.datasets.document_classification.AGNEWS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.AMAZON_REVIEWS": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.ClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.ClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.GLUE_COLA": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GLUE_SST2": [[2, 3, 1, "", "label_map"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GO_EMOTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.IMDB": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.NEWSGROUPS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_CR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MPQA": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_BINARY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SUBJ": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTIMENT_140": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.STACKOVERFLOW": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_50": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_6": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_ANGER": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_FEAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_JOY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_SADNESS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.YAHOO_ANSWERS": [[2, 5, 1, "", "__init__"]], "flair.datasets.entity_linking": [[3, 2, 1, "", "BIGBIO_EL_BC5CDR_CHEMICAL"], [3, 2, 1, "", "BIGBIO_EL_GNORMPLUS"], [3, 2, 1, "", "BIGBIO_EL_NCBI_DISEASE"], [3, 2, 1, "", "BigBioEntityLinkingCorpus"], [3, 2, 1, "", "CTD_CHEMICALS_DICTIONARY"], [3, 2, 1, "", "CTD_DISEASES_DICTIONARY"], [3, 2, 1, "", "EntityLinkingDictionary"], [3, 2, 1, "", "HunerEntityLinkingDictionary"], [3, 2, 1, "", "InMemoryEntityLinkingDictionary"], [3, 2, 1, "", "NCBI_GENE_HUMAN_DICTIONARY"], [3, 2, 1, "", "NCBI_TAXONOMY_DICTIONARY"], [3, 2, 1, "", "NEL_ENGLISH_AIDA"], [3, 2, 1, "", "NEL_ENGLISH_AQUAINT"], [3, 2, 1, "", "NEL_ENGLISH_IITB"], [3, 2, 1, "", "NEL_ENGLISH_REDDIT"], [3, 2, 1, "", "NEL_ENGLISH_TWEEKI"], [3, 2, 1, "", "NEL_GERMAN_HIPE"], [3, 2, 1, "", "WSD_MASC"], [3, 2, 1, "", "WSD_OMSTI"], [3, 2, 1, "", "WSD_RAGANATO_ALL"], [3, 2, 1, "", "WSD_SEMCOR"], [3, 2, 1, "", "WSD_TRAINOMATIC"], [3, 2, 1, "", "WSD_UFSAC"], [3, 2, 1, "", "WSD_WORDNET_GLOSS_TAGGED"], [3, 2, 1, "", "ZELDA"], [3, 6, 1, "", "determine_tsv_file"], [3, 6, 1, "", "from_ufsac_to_tsv"]], "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_file"]], "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_file"]], "flair.datasets.entity_linking.EntityLinkingDictionary": [[3, 5, 1, "", "__init__"], [3, 4, 1, "", "candidates"], [3, 4, 1, "", "database_name"], [3, 4, 1, "", "text_to_index"], [3, 5, 1, "", "to_in_memory_dictionary"]], "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary": [[3, 5, 1, "", "from_state"], [3, 5, 1, "", "to_state"]], "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY": [[3, 5, 1, "", "_is_invalid_name"], [3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_dictionary"]], "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY": [[3, 5, 1, "", "download_dictionary"], [3, 5, 1, "", "parse_dictionary"]], "flair.datasets.entity_linking.NEL_ENGLISH_AIDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_IITB": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT": [[3, 5, 1, "", "__init__"], [3, 5, 1, "", "_fill_annot_array"], [3, 5, 1, "", "_fill_curr_comment"], [3, 5, 1, "", "_text_to_cols"]], "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_GERMAN_HIPE": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_MASC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_OMSTI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_RAGANATO_ALL": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_SEMCOR": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_TRAINOMATIC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_UFSAC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.ZELDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.ocr": [[4, 2, 1, "", "OcrCorpus"], [4, 2, 1, "", "OcrJsonDataset"], [4, 2, 1, "", "SROIE"]], "flair.datasets.ocr.OcrCorpus": [[4, 5, 1, "", "__init__"]], "flair.datasets.ocr.OcrJsonDataset": [[4, 5, 1, "", "__init__"], [4, 5, 1, "", "is_in_memory"]], "flair.datasets.ocr.SROIE": [[4, 5, 1, "", "__init__"]], "flair.datasets.relation_extraction": [[5, 2, 1, "", "RE_ENGLISH_CONLL04"], [5, 2, 1, "", "RE_ENGLISH_DRUGPROT"], [5, 2, 1, "", "RE_ENGLISH_SEMEVAL2010"], [5, 2, 1, "", "RE_ENGLISH_TACRED"], [5, 6, 1, "", "convert_ptb_token"]], "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04": [[5, 5, 1, "", "convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "char_spans_to_token_spans"], [5, 5, 1, "", "drugprot_document_to_tokenlists"], [5, 5, 1, "", "extract_and_convert_to_conllu"], [5, 5, 1, "", "has_overlap"]], "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_TACRED": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.sequence_labeling": [[6, 2, 1, "", "BIOSCOPE"], [6, 2, 1, "", "CONLL_03"], [6, 2, 1, "", "CONLL_03_DUTCH"], [6, 2, 1, "", "CONLL_03_GERMAN"], [6, 2, 1, "", "CONLL_03_SPANISH"], [6, 2, 1, "", "CONLL_2000"], [6, 2, 1, "", "ColumnCorpus"], [6, 2, 1, "", "ColumnDataset"], [6, 2, 1, "", "FEWNERD"], [6, 2, 1, "", "JsonlCorpus"], [6, 2, 1, "", "JsonlDataset"], [6, 2, 1, "", "KEYPHRASE_INSPEC"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2010"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2017"], [6, 2, 1, "", "MASAKHA_POS"], [6, 2, 1, "", "MultiFileColumnCorpus"], [6, 2, 1, "", "MultiFileJsonlCorpus"], [6, 2, 1, "", "NER_ARABIC_ANER"], [6, 2, 1, "", "NER_ARABIC_AQMAR"], [6, 2, 1, "", "NER_BASQUE"], [6, 2, 1, "", "NER_CHINESE_WEIBO"], [6, 2, 1, "", "NER_DANISH_DANE"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_COMPLEX"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_SIMPLE"], [6, 2, 1, "", "NER_ENGLISH_PERSON"], [6, 2, 1, "", "NER_ENGLISH_RESTAURANT"], [6, 2, 1, "", "NER_ENGLISH_SEC_FILLINGS"], [6, 2, 1, "", "NER_ENGLISH_STACKOVERFLOW"], [6, 2, 1, "", "NER_ENGLISH_TWITTER"], [6, 2, 1, "", "NER_ENGLISH_WEBPAGES"], [6, 2, 1, "", "NER_ENGLISH_WIKIGOLD"], [6, 2, 1, "", "NER_ENGLISH_WNUT_2020"], [6, 2, 1, "", "NER_FINNISH"], [6, 2, 1, "", "NER_GERMAN_BIOFID"], [6, 2, 1, "", "NER_GERMAN_EUROPARL"], [6, 2, 1, "", "NER_GERMAN_GERMEVAL"], [6, 2, 1, "", "NER_GERMAN_LEGAL"], [6, 2, 1, "", "NER_GERMAN_MOBIE"], [6, 2, 1, "", "NER_GERMAN_POLITICS"], [6, 2, 1, "", "NER_HIPE_2022"], [6, 2, 1, "", "NER_HUNGARIAN"], [6, 2, 1, "", "NER_ICDAR_EUROPEANA"], [6, 2, 1, "", "NER_ICELANDIC"], [6, 2, 1, "", "NER_JAPANESE"], [6, 2, 1, "", "NER_MASAKHANE"], [6, 2, 1, "", "NER_MULTI_CONER"], [6, 2, 1, "", "NER_MULTI_CONER_V2"], [6, 2, 1, "", "NER_MULTI_WIKIANN"], [6, 2, 1, "", "NER_MULTI_WIKINER"], [6, 2, 1, "", "NER_MULTI_XTREME"], [6, 2, 1, "", "NER_NERMUD"], [6, 2, 1, "", "NER_SWEDISH"], [6, 2, 1, "", "NER_TURKU"], [6, 2, 1, "", "NER_UKRAINIAN"], [6, 2, 1, "", "ONTONOTES"], [6, 2, 1, "", "UP_CHINESE"], [6, 2, 1, "", "UP_ENGLISH"], [6, 2, 1, "", "UP_FINNISH"], [6, 2, 1, "", "UP_FRENCH"], [6, 2, 1, "", "UP_GERMAN"], [6, 2, 1, "", "UP_ITALIAN"], [6, 2, 1, "", "UP_SPANISH"], [6, 2, 1, "", "UP_SPANISH_ANCORA"], [6, 2, 1, "", "WNUT_17"]], "flair.datasets.sequence_labeling.CONLL_03": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_DUTCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_2000": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnDataset": [[6, 3, 1, "", "FEATS"], [6, 3, 1, "", "HEAD"], [6, 3, 1, "", "SPACE_AFTER_KEY"], [6, 5, 1, "", "__init__"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.JsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.JsonlDataset": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_label_to_sentence"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.MASAKHA_POS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileJsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_ANER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB_tags"]], "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HIPE_2022": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HUNGARIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICELANDIC": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_JAPANESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MASAKHANE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_XTREME": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_NERMUD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_SWEDISH": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB2_tags"]], "flair.datasets.sequence_labeling.NER_TURKU": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_UKRAINIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ONTONOTES": [[6, 5, 1, "", "_process_coref_span_annotations_for_word"], [6, 3, 1, "", "archive_url"], [6, 5, 1, "", "dataset_document_iterator"], [6, 5, 1, "", "get_available_domains"], [6, 5, 1, "", "sentence_iterator"]], "flair.datasets.sequence_labeling.UP_CHINESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ENGLISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FINNISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FRENCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ITALIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA": [[6, 5, 1, "", "__init__"]], "flair.datasets.text_image": [[7, 2, 1, "", "FeideggerCorpus"], [7, 2, 1, "", "FeideggerDataset"]], "flair.datasets.text_image.FeideggerDataset": [[7, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text": [[8, 2, 1, "", "DataPairCorpus"], [8, 2, 1, "", "DataPairDataset"], [8, 2, 1, "", "DataTripleCorpus"], [8, 2, 1, "", "DataTripleDataset"], [8, 2, 1, "", "GLUE_MNLI"], [8, 2, 1, "", "GLUE_MRPC"], [8, 2, 1, "", "GLUE_QNLI"], [8, 2, 1, "", "GLUE_QQP"], [8, 2, 1, "", "GLUE_RTE"], [8, 2, 1, "", "GLUE_STSB"], [8, 2, 1, "", "GLUE_WNLI"], [8, 2, 1, "", "OpusParallelCorpus"], [8, 2, 1, "", "ParallelTextCorpus"], [8, 2, 1, "", "ParallelTextDataset"], [8, 2, 1, "", "SUPERGLUE_RTE"], [8, 6, 1, "", "rte_jsonl_to_tsv"]], "flair.datasets.text_text.DataPairCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.DataPairDataset": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.DataTripleCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.DataTripleDataset": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.GLUE_MNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_MRPC": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QQP": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_STSB": [[8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_WNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.OpusParallelCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.ParallelTextCorpus": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.ParallelTextDataset": [[8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.SUPERGLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "jsonl_from_eval_dataset"]], "flair.datasets.treebanks": [[9, 2, 1, "", "UD_AFRIKAANS"], [9, 2, 1, "", "UD_ANCIENT_GREEK"], [9, 2, 1, "", "UD_ARABIC"], [9, 2, 1, "", "UD_ARMENIAN"], [9, 2, 1, "", "UD_BASQUE"], [9, 2, 1, "", "UD_BAVARIAN_MAIBAAM"], [9, 2, 1, "", "UD_BELARUSIAN"], [9, 2, 1, "", "UD_BULGARIAN"], [9, 2, 1, "", "UD_BURYAT"], [9, 2, 1, "", "UD_CATALAN"], [9, 2, 1, "", "UD_CHINESE"], [9, 2, 1, "", "UD_CHINESE_KYOTO"], [9, 2, 1, "", "UD_COPTIC"], [9, 2, 1, "", "UD_CROATIAN"], [9, 2, 1, "", "UD_CZECH"], [9, 2, 1, "", "UD_DANISH"], [9, 2, 1, "", "UD_DUTCH"], [9, 2, 1, "", "UD_ENGLISH"], [9, 2, 1, "", "UD_ESTONIAN"], [9, 2, 1, "", "UD_FAROESE"], [9, 2, 1, "", "UD_FINNISH"], [9, 2, 1, "", "UD_FRENCH"], [9, 2, 1, "", "UD_GALICIAN"], [9, 2, 1, "", "UD_GERMAN"], [9, 2, 1, "", "UD_GERMAN_HDT"], [9, 2, 1, "", "UD_GOTHIC"], [9, 2, 1, "", "UD_GREEK"], [9, 2, 1, "", "UD_HEBREW"], [9, 2, 1, "", "UD_HINDI"], [9, 2, 1, "", "UD_INDONESIAN"], [9, 2, 1, "", "UD_IRISH"], [9, 2, 1, "", "UD_ITALIAN"], [9, 2, 1, "", "UD_JAPANESE"], [9, 2, 1, "", "UD_KAZAKH"], [9, 2, 1, "", "UD_KOREAN"], [9, 2, 1, "", "UD_LATIN"], [9, 2, 1, "", "UD_LATVIAN"], [9, 2, 1, "", "UD_LITHUANIAN"], [9, 2, 1, "", "UD_LIVVI"], [9, 2, 1, "", "UD_MALTESE"], [9, 2, 1, "", "UD_MARATHI"], [9, 2, 1, "", "UD_NAIJA"], [9, 2, 1, "", "UD_NORTH_SAMI"], [9, 2, 1, "", "UD_NORWEGIAN"], [9, 2, 1, "", "UD_OLD_CHURCH_SLAVONIC"], [9, 2, 1, "", "UD_OLD_FRENCH"], [9, 2, 1, "", "UD_PERSIAN"], [9, 2, 1, "", "UD_POLISH"], [9, 2, 1, "", "UD_PORTUGUESE"], [9, 2, 1, "", "UD_ROMANIAN"], [9, 2, 1, "", "UD_RUSSIAN"], [9, 2, 1, "", "UD_SERBIAN"], [9, 2, 1, "", "UD_SLOVAK"], [9, 2, 1, "", "UD_SLOVENIAN"], [9, 2, 1, "", "UD_SPANISH"], [9, 2, 1, "", "UD_SWEDISH"], [9, 2, 1, "", "UD_TURKISH"], [9, 2, 1, "", "UD_UKRAINIAN"], [9, 2, 1, "", "UD_WOLOF"], [9, 2, 1, "", "UniversalDependenciesCorpus"], [9, 2, 1, "", "UniversalDependenciesDataset"]], "flair.datasets.treebanks.UniversalDependenciesCorpus": [[9, 5, 1, "", "__init__"]], "flair.datasets.treebanks.UniversalDependenciesDataset": [[9, 5, 1, "", "__init__"], [9, 5, 1, "", "is_in_memory"]], "flair.embeddings": [[10, 0, 0, "-", "base"], [11, 0, 0, "-", "document"], [12, 0, 0, "-", "image"], [13, 0, 0, "-", "legacy"], [14, 0, 0, "-", "token"], [15, 0, 0, "-", "transformer"]], "flair.embeddings.base": [[10, 2, 1, "", "DocumentEmbeddings"], [10, 2, 1, "", "Embeddings"], [10, 2, 1, "", "ScalarMix"], [10, 2, 1, "", "TokenEmbeddings"], [10, 6, 1, "", "load_embeddings"], [10, 6, 1, "", "register_embeddings"]], "flair.embeddings.base.DocumentEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.base.Embeddings": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "_add_embeddings_internal"], [10, 5, 1, "", "embed"], [10, 4, 1, "", "embedding_length"], [10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 5, 1, "", "from_params"], [10, 5, 1, "", "get_instance_parameters"], [10, 5, 1, "", "get_named_embeddings_dict"], [10, 5, 1, "", "get_names"], [10, 5, 1, "", "load_embedding"], [10, 5, 1, "", "save_embeddings"], [10, 5, 1, "", "to_params"]], "flair.embeddings.base.ScalarMix": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "forward"], [10, 3, 1, "", "training"]], "flair.embeddings.base.TokenEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.document": [[11, 2, 1, "", "DocumentCNNEmbeddings"], [11, 2, 1, "", "DocumentLMEmbeddings"], [11, 2, 1, "", "DocumentPoolEmbeddings"], [11, 2, 1, "", "DocumentRNNEmbeddings"], [11, 2, 1, "", "DocumentTFIDFEmbeddings"], [11, 2, 1, "", "SentenceTransformerDocumentEmbeddings"], [11, 2, 1, "", "TransformerDocumentEmbeddings"]], "flair.embeddings.document.DocumentCNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentLMEmbeddings": [[11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 5, 1, "", "get_names"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentPoolEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "extra_repr"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentRNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentTFIDFEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.SentenceTransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.TransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "create_from_state"], [11, 3, 1, "", "embeddings_name"], [11, 3, 1, "", "name"], [11, 3, 1, "", "onnx_cls"], [11, 3, 1, "", "training"]], "flair.embeddings.image": [[12, 2, 1, "", "ConvTransformNetworkImageEmbeddings"], [12, 2, 1, "", "IdentityImageEmbeddings"], [12, 2, 1, "", "ImageEmbeddings"], [12, 2, 1, "", "NetworkImageEmbeddings"], [12, 2, 1, "", "PrecomputedImageEmbeddings"]], "flair.embeddings.image.ConvTransformNetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "forward"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.IdentityImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.ImageEmbeddings": [[12, 4, 1, "", "embedding_type"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "from_params"], [12, 3, 1, "", "name"], [12, 5, 1, "", "to_params"], [12, 3, 1, "", "training"]], "flair.embeddings.image.NetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.PrecomputedImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.legacy": [[13, 2, 1, "", "CharLMEmbeddings"], [13, 2, 1, "", "DocumentLSTMEmbeddings"], [13, 2, 1, "", "DocumentMeanEmbeddings"], [13, 2, 1, "", "ELMoEmbeddings"]], "flair.embeddings.legacy.CharLMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 5, 1, "", "train"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentLSTMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentMeanEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.ELMoEmbeddings": [[13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 5, 1, "", "extra_repr"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"], [13, 5, 1, "", "use_layers_all"], [13, 5, 1, "", "use_layers_average"], [13, 5, 1, "", "use_layers_top"]], "flair.embeddings.token": [[14, 2, 1, "", "BytePairEmbeddings"], [14, 2, 1, "", "CharacterEmbeddings"], [14, 2, 1, "", "FastTextEmbeddings"], [14, 2, 1, "", "FlairEmbeddings"], [14, 2, 1, "", "HashEmbeddings"], [14, 2, 1, "", "MuseCrosslingualEmbeddings"], [14, 2, 1, "", "NILCEmbeddings"], [14, 2, 1, "", "OneHotEmbeddings"], [14, 2, 1, "", "PooledFlairEmbeddings"], [14, 2, 1, "", "StackedEmbeddings"], [14, 2, 1, "", "TransformerWordEmbeddings"], [14, 2, 1, "", "WordEmbeddings"]], "flair.embeddings.token.BytePairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.CharacterEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FastTextEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FlairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.HashEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 4, 1, "", "num_embeddings"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.MuseCrosslingualEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.NILCEmbeddings": [[14, 5, 1, "", "__init__"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "layer_norm"], [14, 3, 1, "", "name"], [14, 3, 1, "", "training"]], "flair.embeddings.token.OneHotEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_corpus"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.PooledFlairEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.StackedEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "embed"], [14, 4, 1, "", "embedding_length"], [14, 4, 1, "", "embedding_type"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_named_embeddings_dict"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.TransformerWordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "create_from_state"], [14, 3, 1, "", "embeddings_name"], [14, 3, 1, "", "name"], [14, 3, 1, "", "onnx_cls"], [14, 3, 1, "", "training"]], "flair.embeddings.token.WordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_token_index"], [14, 5, 1, "", "get_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "resolve_precomputed_path"], [14, 5, 1, "", "state_dict"], [14, 5, 1, "", "to"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.transformer": [[15, 2, 1, "", "TransformerBaseEmbeddings"], [15, 2, 1, "", "TransformerEmbeddings"], [15, 2, 1, "", "TransformerJitDocumentEmbeddings"], [15, 2, 1, "", "TransformerJitEmbeddings"], [15, 2, 1, "", "TransformerJitWordEmbeddings"], [15, 2, 1, "", "TransformerOnnxDocumentEmbeddings"], [15, 2, 1, "", "TransformerOnnxEmbeddings"], [15, 2, 1, "", "TransformerOnnxWordEmbeddings"], [15, 6, 1, "", "combine_strided_tensors"], [15, 6, 1, "", "document_max_pooling"], [15, 6, 1, "", "document_mean_pooling"], [15, 6, 1, "", "fill_masked_elements"], [15, 6, 1, "", "fill_mean_token_embeddings"], [15, 6, 1, "", "insert_missing_embeddings"], [15, 6, 1, "", "pad_sequence_embeddings"], [15, 6, 1, "", "remove_special_markup"], [15, 6, 1, "", "truncate_hidden_states"]], "flair.embeddings.transformer.TransformerBaseEmbeddings": [[15, 5, 1, "", "create_from_state"], [15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "prepare_tensors"], [15, 5, 1, "", "to_args"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerEmbeddings": [[15, 5, 1, "", "__init__"], [15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_onnx"], [15, 5, 1, "", "forward"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "onnx_cls"], [15, 5, 1, "", "to_params"]], "flair.embeddings.transformer.TransformerJitDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitEmbeddings": [[15, 5, 1, "", "create_from_embedding"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "parameter_to_list"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxEmbeddings": [[15, 5, 1, "", "collect_dynamic_axes"], [15, 5, 1, "", "create_session"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_from_embedding"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "optimize_model"], [15, 5, 1, "", "quantize_model"], [15, 5, 1, "", "remove_session"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.models": [[20, 2, 1, "", "ClusteringModel"], [20, 2, 1, "", "EntityMentionLinker"], [20, 2, 1, "", "FewshotClassifier"], [20, 2, 1, "", "LanguageModel"], [20, 2, 1, "", "Lemmatizer"], [20, 2, 1, "", "MultitaskModel"], [20, 2, 1, "", "PrefixedSequenceTagger"], [20, 2, 1, "", "RegexpTagger"], [20, 2, 1, "", "RelationClassifier"], [20, 2, 1, "", "RelationExtractor"], [20, 2, 1, "", "SequenceTagger"], [20, 2, 1, "", "SpanClassifier"], [20, 2, 1, "", "TARSClassifier"], [20, 2, 1, "", "TARSTagger"], [20, 2, 1, "", "TextClassifier"], [20, 2, 1, "", "TextPairClassifier"], [20, 2, 1, "", "TextPairRegressor"], [20, 2, 1, "", "TextRegressor"], [20, 2, 1, "", "TextTripleClassifier"], [20, 2, 1, "", "TokenClassifier"], [20, 2, 1, "", "WordTagger"]], "flair.models.ClusteringModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_convert_dataset"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "fit"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "save"]], "flair.models.EntityMentionLinker": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "build"], [20, 4, 1, "", "dictionary"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "extract_entities_mentions"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_entity_label_types"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.FewshotClassifier": [[20, 5, 1, "", "_compute_label_similarity_for_current_epoch"], [20, 5, 1, "", "add_and_switch_to_new_task"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_current_label_dictionary"], [20, 5, 1, "", "get_current_label_type"], [20, 5, 1, "", "get_used_tokens"], [20, 5, 1, "", "is_current_task_multi_label"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "list_existing_tasks"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict_zero_shot"], [20, 5, 1, "", "switch_to_task"], [20, 4, 1, "", "tars_embeddings"], [20, 5, 1, "", "train"]], "flair.models.LanguageModel": [[20, 5, 1, "", "calculate_perplexity"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "generate_text"], [20, 5, 1, "", "get_output"], [20, 5, 1, "", "get_representation"], [20, 5, 1, "", "init_hidden"], [20, 5, 1, "", "init_weights"], [20, 5, 1, "", "initialize"], [20, 5, 1, "", "load_checkpoint"], [20, 5, 1, "", "load_language_model"], [20, 5, 1, "", "repackage_hidden"], [20, 5, 1, "", "save"], [20, 5, 1, "", "save_checkpoint"], [20, 5, 1, "", "set_hidden"], [20, 3, 1, "", "training"]], "flair.models.Lemmatizer": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "decode"], [20, 5, 1, "", "encode"], [20, 5, 1, "", "encode_token"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "forward_pass"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "words_to_char_indices"]], "flair.models.MultitaskModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_model_with_state_dict"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "split_batch_to_task_ids"]], "flair.models.PrefixedSequenceTagger": [[20, 5, 1, "", "augment_sentences"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.RegexpTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_label"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "register_labels"], [20, 4, 1, "", "registered_labels"], [20, 5, 1, "", "remove_labels"]], "flair.models.RelationClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_encode_sentence"], [20, 5, 1, "", "_encode_sentence_for_inference"], [20, 5, 1, "", "_encode_sentence_for_training"], [20, 5, 1, "", "_entity_pair_permutations"], [20, 5, 1, "", "_get_data_points_from_sentence"], [20, 5, 1, "", "_valid_entities"], [20, 4, 1, "", "allow_unk_tag"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "transform_corpus"], [20, 5, 1, "", "transform_dataset"], [20, 5, 1, "", "transform_sentence"], [20, 4, 1, "", "zero_tag_value"]], "flair.models.RelationExtractor": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.SequenceTagger": [[20, 5, 1, "", "RNN"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "_all_scores_for_token"], [20, 5, 1, "", "_get_gold_labels"], [20, 5, 1, "", "_get_scores_from_features"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_initial_hidden_state"], [20, 5, 1, "", "_init_loss_weights"], [20, 5, 1, "", "_standard_inference"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "push_to_hub"]], "flair.models.SpanClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "emb_first"], [20, 5, 1, "", "emb_firstAndLast"], [20, 5, 1, "", "emb_last"], [20, 5, 1, "", "emb_mean"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TARSClassifier": [[20, 3, 1, "", "LABEL_MATCH"], [20, 3, 1, "", "LABEL_NO_MATCH"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TARSTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TextClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TextPairClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"]], "flair.models.TextPairRegressor": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"]], "flair.models.TextRegressor": [[20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_labels_and_loss"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.TextTripleClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"]], "flair.models.TokenClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.nn": [[21, 2, 1, "", "Classifier"], [21, 2, 1, "", "DefaultClassifier"], [21, 2, 1, "", "LabelVerbalizerDecoder"], [21, 2, 1, "", "LockedDropout"], [21, 2, 1, "", "Model"], [21, 2, 1, "", "PrototypicalDecoder"], [21, 2, 1, "", "WordDropout"]], "flair.nn.Classifier": [[21, 5, 1, "", "evaluate"], [21, 5, 1, "", "get_used_tokens"], [21, 5, 1, "", "load"], [21, 5, 1, "", "predict"]], "flair.nn.DefaultClassifier": [[21, 5, 1, "", "_filter_data_point"], [21, 5, 1, "", "_get_data_points_for_batch"], [21, 5, 1, "", "_get_data_points_from_sentence"], [21, 5, 1, "", "_get_label_of_datapoint"], [21, 5, 1, "", "forward_loss"], [21, 5, 1, "", "load"], [21, 4, 1, "", "multi_label_threshold"], [21, 5, 1, "", "predict"]], "flair.nn.LabelVerbalizerDecoder": [[21, 5, 1, "", "forward"], [21, 3, 1, "", "label_dictionary"], [21, 3, 1, "", "label_encoder"], [21, 3, 1, "", "training"], [21, 5, 1, "", "verbalize_labels"]], "flair.nn.LockedDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.nn.Model": [[21, 5, 1, "", "_get_state_dict"], [21, 5, 1, "", "_init_model_with_state_dict"], [21, 5, 1, "", "evaluate"], [21, 5, 1, "", "forward_loss"], [21, 4, 1, "", "label_type"], [21, 5, 1, "", "load"], [21, 3, 1, "", "model_card"], [21, 5, 1, "", "print_model_card"], [21, 5, 1, "", "save"]], "flair.nn.PrototypicalDecoder": [[21, 5, 1, "", "forward"], [21, 4, 1, "", "num_prototypes"], [21, 3, 1, "", "training"]], "flair.nn.WordDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.splitter": [[22, 2, 1, "", "NewlineSentenceSplitter"], [22, 2, 1, "", "NoSentenceSplitter"], [22, 2, 1, "", "SciSpacySentenceSplitter"], [22, 2, 1, "", "SegtokSentenceSplitter"], [22, 2, 1, "", "SentenceSplitter"], [22, 2, 1, "", "SpacySentenceSplitter"], [22, 2, 1, "", "TagSentenceSplitter"]], "flair.splitter.NewlineSentenceSplitter": [[22, 4, 1, "", "name"]], "flair.splitter.NoSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SegtokSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SpacySentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.TagSentenceSplitter": [[22, 4, 1, "", "name"], [22, 4, 1, "", "tokenizer"]], "flair.tokenization": [[23, 2, 1, "", "JapaneseTokenizer"], [23, 2, 1, "", "SciSpacyTokenizer"], [23, 2, 1, "", "SegtokTokenizer"], [23, 2, 1, "", "SpaceTokenizer"], [23, 2, 1, "", "SpacyTokenizer"], [23, 2, 1, "", "Tokenizer"], [23, 2, 1, "", "TokenizerWrapper"]], "flair.tokenization.JapaneseTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SciSpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SegtokTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpaceTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.Tokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.TokenizerWrapper": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.trainers": [[24, 2, 1, "", "LanguageModelTrainer"], [24, 2, 1, "", "ModelTrainer"], [24, 2, 1, "", "TextCorpus"], [25, 0, 0, "-", "plugins"]], "flair.trainers.LanguageModelTrainer": [[24, 5, 1, "", "_repackage_hidden"], [24, 5, 1, "", "evaluate"], [24, 5, 1, "", "load_checkpoint"], [24, 5, 1, "", "train"]], "flair.trainers.ModelTrainer": [[24, 5, 1, "", "__init__"], [24, 5, 1, "", "_backward"], [24, 5, 1, "", "_initialize_model_card"], [24, 5, 1, "", "check_for_and_delete_previous_best_models"], [24, 5, 1, "", "fine_tune"], [24, 5, 1, "", "get_batch_steps"], [24, 5, 1, "", "reset_training_attributes"], [24, 5, 1, "", "train"], [24, 5, 1, "", "train_custom"], [24, 3, 1, "", "valid_events"]], "flair.trainers.plugins": [[25, 2, 1, "", "AnnealingPlugin"], [25, 2, 1, "", "BasePlugin"], [25, 2, 1, "", "CheckpointPlugin"], [25, 2, 1, "", "ClearmlLoggerPlugin"], [25, 2, 1, "", "LinearSchedulerPlugin"], [25, 2, 1, "", "LogFilePlugin"], [25, 2, 1, "", "LossFilePlugin"], [25, 2, 1, "", "MetricHistoryPlugin"], [25, 2, 1, "", "MetricName"], [25, 2, 1, "", "MetricRecord"], [25, 2, 1, "", "Pluggable"], [25, 2, 1, "", "ReduceTransformerVocabPlugin"], [25, 2, 1, "", "TensorboardLogger"], [25, 2, 1, "", "TrainerPlugin"], [25, 7, 1, "", "TrainingInterrupt"], [25, 2, 1, "", "WeightExtractorPlugin"]], "flair.trainers.plugins.AnnealingPlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "after_setup"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.BasePlugin": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "attach_to"], [25, 5, 1, "", "detach"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "hook"], [25, 5, 1, "", "mark_func_as_hook"], [25, 4, 1, "", "pluggable"]], "flair.trainers.plugins.CheckpointPlugin": [[25, 5, 1, "", "after_training_epoch"], [25, 5, 1, "", "get_state"]], "flair.trainers.plugins.ClearmlLoggerPlugin": [[25, 4, 1, "", "logger"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.LinearSchedulerPlugin": [[25, 5, 1, "", "after_setup"], [25, 5, 1, "", "after_training_batch"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.LogFilePlugin": [[25, 5, 1, "", "close_file_handler"], [25, 5, 1, "", "get_state"]], "flair.trainers.plugins.LossFilePlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricHistoryPlugin": [[25, 5, 1, "", "after_training"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricRecord": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "histogram"], [25, 4, 1, "", "is_histogram"], [25, 4, 1, "", "is_scalar"], [25, 4, 1, "", "is_scalar_list"], [25, 4, 1, "", "is_string"], [25, 5, 1, "", "is_type"], [25, 4, 1, "", "joined_name"], [25, 5, 1, "", "scalar"], [25, 5, 1, "", "scalar_list"], [25, 5, 1, "", "string"]], "flair.trainers.plugins.Pluggable": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "append_plugin"], [25, 5, 1, "", "dispatch"], [25, 4, 1, "", "plugins"], [25, 5, 1, "", "register_hook"], [25, 5, 1, "", "remove_hook"], [25, 3, 1, "", "valid_events"], [25, 5, 1, "", "validate_event"]], "flair.trainers.plugins.ReduceTransformerVocabPlugin": [[25, 5, 1, "", "register_transformer_smaller_training_vocab"], [25, 5, 1, "", "save_model_at_the_end"]], "flair.trainers.plugins.TensorboardLogger": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "_training_finally"], [25, 5, 1, "", "get_state"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.TrainerPlugin": [[25, 4, 1, "", "corpus"], [25, 4, 1, "", "model"], [25, 4, 1, "", "trainer"]], "flair.trainers.plugins.WeightExtractorPlugin": [[25, 5, 1, "", "after_training_batch"], [25, 5, 1, "", "get_state"]]}, "objtypes": {"0": "py:module", "1": "py:data", "2": "py:class", "3": "py:attribute", "4": "py:property", "5": "py:method", "6": "py:function", "7": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "data", "Python data"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "property", "Python property"], "5": ["py", "method", "Python method"], "6": ["py", "function", "Python function"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"flair": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 33, 48, 50, 58, 60, 61], "dataset": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 59, 60, 61, 62], "base": [0, 10], "biomed": [1, 44, 55, 56, 57], "document_classif": 2, "entity_link": 3, "ocr": 4, "relation_extract": 5, "sequence_label": 6, "text_imag": 7, "text_text": 8, "treebank": 9, "embed": [10, 11, 12, 13, 14, 15, 19, 46, 47, 48, 49, 50, 51, 58, 61], "document": [11, 30, 37, 47, 50], "imag": 12, "legaci": 13, "token": [14, 23, 36, 56], "transform": [15, 47, 51, 61, 62, 63], "data": [17, 44, 62], "model": [20, 42, 43, 44, 45, 51, 52, 54, 56, 57, 58, 61, 62, 63, 64], "task": [20, 50], "exampl": [20, 35, 36, 37, 38, 39, 47, 55, 58], "architectur": 20, "nn": 21, "splitter": 22, "trainer": [24, 25, 58], "plugin": 25, "api": 26, "doc": [26, 30], "contribut": 27, "local": [28, 30], "develop": 28, "setup": 28, "test": 28, "code": 28, "format": [28, 59], "make": 29, "pull": 29, "request": [29, 31], "git": 29, "commit": 29, "guidelin": 29, "updat": 30, "what": [30, 36], "i": [30, 36], "good": [30, 31], "tutori": [30, 34, 41, 49, 52, 53, 54, 56, 57, 64], "docstr": 30, "build": 30, "write": 31, "issu": 31, "type": [31, 50, 57, 58, 60], "bug": 31, "report": 31, "featur": 31, "enhanc": 31, "question": 31, "glossari": 32, "quick": [35, 55], "start": [35, 55], "requir": 35, "instal": 35, "1": [35, 36, 37, 38, 41, 47, 55, 56, 58], "tag": [35, 37, 40, 41, 42, 43, 44, 45, 50, 56], "entiti": [35, 37, 38, 44, 54, 55, 57, 61, 62], "text": [35, 37, 44, 56, 59, 63], "2": [35, 36, 37, 38, 47, 54, 55, 58, 64], "detect": [35, 42, 62], "sentiment": [35, 45], "summari": [35, 58], "basic": [36, 41], "sentenc": [36, 37, 44, 51], "iter": 36, "over": 36, "directli": 36, "access": 36, "label": [36, 52, 58, 60], "whole": [36, 40], "multipl": [36, 37, 57], "inform": 36, "each": [36, 39], "link": [37, 38, 52, 54], "singl": [37, 57], "us": [38, 56], "creat": [38, 58, 60], "mention": [38, 62], "linker": [38, 62], "print": 38, "output": 38, "consol": 38, "structur": 38, "handl": 38, "predict": [38, 39, 52, 58], "how": [39, 40, 47, 58, 59, 60], "work": [39, 56, 58], "run": 39, "get": 39, "valu": 39, "corpu": [40, 58, 60], "other": [42, 50, 55, 60], "thing": 42, "semant": 42, "frame": 42, "syntact": 42, "chunk": 42, "relat": 42, "list": [42, 43, 44, 45], "part": [43, 58, 61], "speech": [43, 58, 61], "languag": 43, "specif": 43, "po": 43, "english": [43, 44], "german": [43, 44], "ukrainian": 43, "arab": [43, 44], "univers": 43, "upo": 43, "our": [44, 45], "standard": [44, 45], "best": 44, "non": 44, "an": [44, 62], "18": 44, "class": 44, "ner": [44, 55, 57, 61], "fast": 45, "classic": 46, "word": [46, 47, 51], "stack": 47, "recommend": 48, "usag": 48, "pool": [48, 50, 51], "3": [49, 57, 58], "One": 50, "hot": 50, "vocabulari": 50, "size": 50, "dimension": 50, "byte": 50, "pair": 50, "oper": [50, 51], "fine": [50, 51, 65], "tune": [50, 65], "mode": 50, "rnn": 50, "need": 50, "train": [50, 52, 54, 56, 57, 58, 61, 62, 63, 64, 65], "argument": 51, "layer": 51, "mean": 51, "tuneabl": 51, "hunflair2": [52, 53, 54, 55, 56, 57], "4": [52, 58], "custom": [52, 59], "dictionari": [52, 58, 60], "pre": [52, 54, 56], "overview": [54, 55], "nen": 55, "comparison": 55, "extract": 55, "tool": 55, "cite": 55, "longer": 56, "from": [57, 59], "scratch": 57, "refer": 57, "tagger": [58, 61], "step": 58, "walkthrough": 58, "load": [58, 59, 60, 62], "choos": 58, "initi": 58, "5": 58, "6": 58, "7": 58, "8": 58, "columncorpu": [59, 62], "read": 59, "classif": [59, 63], "simpl": 59, "csv": 59, "file": 59, "fasttext": 59, "prepar": 60, "The": 60, "object": 60, "helper": 60, "function": 60, "corpora": 60, "multicorpu": 60, "includ": 60, "sequenc": 61, "name": 61, "recognit": 61, "multi": 61, "span": 62, "classifi": [62, 63], "nel": 62, "construct": 62, "memori": 62, "combin": 62, "multitask": 62, "align": 62, "v": 65}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 58}, "alltitles": {"flair.datasets.base": [[0, "module-flair.datasets.base"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "flair.embeddings.legacy": [[13, "flair-embeddings-legacy"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "flair": [[16, "module-flair"], [33, "flair"]], "flair.data": [[17, "module-flair.data"]], "flair.datasets": [[18, "flair-datasets"]], "flair.embeddings": [[19, "flair-embeddings"]], "flair.models": [[20, "module-flair.models"]], "Task": [[20, "task"]], "Example:": [[20, "example"]], "Architecture": [[20, "architecture"]], "flair.nn": [[21, "module-flair.nn"]], "flair.splitter": [[22, "module-flair.splitter"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "flair.trainers": [[24, "module-flair.trainers"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "API Docs": [[26, "api-docs"]], "Contributing": [[27, "contributing"]], "Local Development": [[28, "local-development"]], "Setup": [[28, "setup"]], "Tests": [[28, "tests"]], "Code Formatting": [[28, "code-formatting"]], "Making a pull request": [[29, "making-a-pull-request"]], "Git Commit Guidelines": [[29, "git-commit-guidelines"]], "Updating documentation": [[30, "updating-documentation"]], "What is good documentation?": [[30, "what-is-good-documentation"]], "Tutorials": [[30, "tutorials"], [34, "tutorials"]], "Docstrings": [[30, "docstrings"]], "Building the local docs": [[30, "building-the-local-docs"]], "Writing a good issue": [[31, "writing-a-good-issue"]], "Issue types": [[31, "issue-types"]], "Bug Report": [[31, "bug-report"]], "Feature/Enhancement request": [[31, "feature-enhancement-request"]], "Question": [[31, "question"]], "Glossary": [[32, "glossary"]], "Quick Start": [[35, "quick-start"], [55, "quick-start"]], "Requirements and Installation": [[35, "requirements-and-installation"]], "Example 1: Tag Entities in Text": [[35, "example-1-tag-entities-in-text"]], "Example 2: Detect Sentiment": [[35, "example-2-detect-sentiment"]], "Summary": [[35, "summary"], [58, "summary"]], "Basics": [[36, "basics"]], "What is a Sentence": [[36, "what-is-a-sentence"]], "Iterating over the tokens in a Sentence": [[36, "iterating-over-the-tokens-in-a-sentence"]], "Directly accessing a token": [[36, "directly-accessing-a-token"]], "Tokenization": [[36, "tokenization"]], "What is a Label": [[36, "what-is-a-label"]], "Example 1: Labeling a token in a sentence": [[36, "example-1-labeling-a-token-in-a-sentence"]], "Example 2: Labeling a whole sentence": [[36, "example-2-labeling-a-whole-sentence"]], "Multiple labels": [[36, "multiple-labels"]], "Accessing labels": [[36, "accessing-labels"]], "Information for each label": [[36, "information-for-each-label"]], "Tagging and linking entities": [[37, "tagging-and-linking-entities"]], "Example 1: Entity linking on a single sentence\u200b": [[37, "example-1-entity-linking-on-a-single-sentence"]], "Example 2: Entity linking on a text document (multiple sentences)": [[37, "example-2-entity-linking-on-a-text-document-multiple-sentences"]], "Using and creating entity mention linker": [[38, "using-and-creating-entity-mention-linker"]], "Example 1: Printing Entity linking outputs to console": [[38, "example-1-printing-entity-linking-outputs-to-console"]], "Example 2: Structured handling of predictions": [[38, "example-2-structured-handling-of-predictions"]], "How predictions work": [[39, "how-predictions-work"]], "Running example": [[39, "running-example"]], "Getting the predictions": [[39, "getting-the-predictions"]], "Values for each prediction": [[39, "values-for-each-prediction"]], "How to tag a whole corpus": [[40, "how-to-tag-a-whole-corpus"]], "Tutorial 1: Basic Tagging": [[41, "tutorial-1-basic-tagging"]], "Tagging other things": [[42, "tagging-other-things"]], "Semantic Frame Detection": [[42, "semantic-frame-detection"]], "Syntactic Chunking": [[42, "syntactic-chunking"]], "Tagging Relations": [[42, "tagging-relations"]], "List of Other Models": [[42, "list-of-other-models"]], "Tagging parts-of-speech": [[43, "tagging-parts-of-speech"]], "Language-specific parts-of-speech (PoS)": [[43, "language-specific-parts-of-speech-pos"]], "\u2026 in English": [[43, "in-english"]], "\u2026 in German": [[43, "in-german"]], "\u2026 in Ukrainian": [[43, "in-ukrainian"]], "\u2026 in Arabic": [[43, "in-arabic"]], "Tagging universal parts-of-speech (uPoS)\u200b": [[43, "tagging-universal-parts-of-speech-upos"]], "List of POS Models": [[43, "list-of-pos-models"]], "Tagging entities": [[44, "tagging-entities"]], "Tagging entities with our standard model\u200b": [[44, "tagging-entities-with-our-standard-model"]], "Tagging entities with our best model\u200b": [[44, "tagging-entities-with-our-best-model"]], "Tagging entities in non-English text": [[44, "tagging-entities-in-non-english-text"]], "Tagging a German sentence": [[44, "tagging-a-german-sentence"]], "Tagging an Arabic sentence": [[44, "tagging-an-arabic-sentence"]], "Tagging Entities with 18 Classes": [[44, "tagging-entities-with-18-classes"]], "Biomedical Data": [[44, "biomedical-data"]], "List of NER Models": [[44, "list-of-ner-models"]], "Tagging sentiment": [[45, "tagging-sentiment"]], "Tagging sentiment with our standard model\u200b": [[45, "tagging-sentiment-with-our-standard-model"]], "Tagging sentiment with our fast model": [[45, "tagging-sentiment-with-our-fast-model"]], "List of Sentiment Models": [[45, "list-of-sentiment-models"]], "Classic Word Embeddings": [[46, "classic-word-embeddings"]], "Embeddings": [[47, "embeddings"]], "Example 1: Embeddings Words with Transformers": [[47, "example-1-embeddings-words-with-transformers"]], "Example 2: Embeddings Documents with Transformers": [[47, "example-2-embeddings-documents-with-transformers"]], "How to Stack Embeddings": [[47, "how-to-stack-embeddings"]], "Flair embeddings": [[48, "flair-embeddings"]], "Recommended Flair usage": [[48, "recommended-flair-usage"]], "Pooled Flair embeddings": [[48, "pooled-flair-embeddings"]], "Tutorial 3: Embeddings": [[49, "tutorial-3-embeddings"]], "Other embeddings in Flair": [[50, "other-embeddings-in-flair"]], "One-Hot Embeddings": [[50, "one-hot-embeddings"]], "Vocabulary size": [[50, "vocabulary-size"]], "Embedding dimensionality": [[50, "embedding-dimensionality"]], "Embedding other tags": [[50, "embedding-other-tags"]], "Byte Pair Embeddings": [[50, "byte-pair-embeddings"]], "Document Pool Embeddings": [[50, "document-pool-embeddings"]], "Pooling operation": [[50, "pooling-operation"], [51, "pooling-operation"]], "Fine-tune mode": [[50, "fine-tune-mode"]], "Document RNN Embeddings": [[50, "document-rnn-embeddings"]], "RNN type": [[50, "rnn-type"]], "Need to be trained on a task": [[50, "need-to-be-trained-on-a-task"]], "Transformer embeddings": [[51, "transformer-embeddings"]], "Embeddings words": [[51, "embeddings-words"]], "Embeddings sentences": [[51, "embeddings-sentences"]], "Arguments": [[51, "arguments"]], "Layers": [[51, "layers"]], "Layer mean": [[51, "layer-mean"]], "Fine-tuneable or not": [[51, "fine-tuneable-or-not"]], "Models": [[51, "models"]], "HunFlair2 Tutorial 4: Customizing linking models": [[52, "hunflair2-tutorial-4-customizing-linking-models"]], "Customize dictionary": [[52, "customize-dictionary"]], "Custom pre-trained model": [[52, "custom-pre-trained-model"]], "Customizing Prediction Labels": [[52, "customizing-prediction-labels"]], "Tutorial: HunFlair2": [[53, "tutorial-hunflair2"]], "HunFlair2 - Tutorial 2: Entity Linking": [[54, "hunflair2-tutorial-2-entity-linking"]], "Linking with pre-trained HunFlair2 Models": [[54, "linking-with-pre-trained-hunflair2-models"]], "Overview of pre-trained Entity Linking Models": [[54, "overview-of-pre-trained-entity-linking-models"]], "HunFlair2 - Overview": [[55, "hunflair2-overview"]], "Example 1: Biomedical NER": [[55, "example-1-biomedical-ner"]], "Example 2: Biomedical NEN": [[55, "example-2-biomedical-nen"]], "Comparison to other biomedical entity extraction tools": [[55, "comparison-to-other-biomedical-entity-extraction-tools"]], "Citing HunFlair2": [[55, "citing-hunflair2"]], "HunFlair2 - Tutorial 1: Tagging": [[56, "hunflair2-tutorial-1-tagging"]], "Tagging with Pre-trained HunFlair2-Models": [[56, "tagging-with-pre-trained-hunflair2-models"]], "Using a Biomedical Tokenizer": [[56, "using-a-biomedical-tokenizer"]], "Working with longer Texts": [[56, "working-with-longer-texts"]], "HunFlair2 Tutorial 3: Training NER models": [[57, "hunflair2-tutorial-3-training-ner-models"]], "Train a biomedical NER model from scratch: single entity type": [[57, "train-a-biomedical-ner-model-from-scratch-single-entity-type"]], "Train a biomedical NER model: multiple entity types": [[57, "train-a-biomedical-ner-model-multiple-entity-types"]], "Training HunFlair2 from scratch": [[57, "training-hunflair2-from-scratch"]], "References": [[57, "references"]], "How model training works in Flair": [[58, "how-model-training-works-in-flair"]], "Example: Training a Part-of-Speech Tagger": [[58, "example-training-a-part-of-speech-tagger"]], "Step-by-step walkthrough": [[58, "step-by-step-walkthrough"]], "Step 1: Load a Corpus": [[58, "step-1-load-a-corpus"]], "Step 2: Choose the label type": [[58, "step-2-choose-the-label-type"]], "Step 3: Creating a label dictionary": [[58, "step-3-creating-a-label-dictionary"]], "Step 4: Initialize embeddings": [[58, "step-4-initialize-embeddings"]], "Step 5: Initialize the Model": [[58, "step-5-initialize-the-model"]], "Step 6: Initialize the Trainer": [[58, "step-6-initialize-the-trainer"]], "Step 7: Train": [[58, "step-7-train"]], "Step 8: Predict": [[58, "step-8-predict"]], "How to load a custom dataset": [[59, "how-to-load-a-custom-dataset"]], "loading a ColumnCorpus": [[59, "loading-a-columncorpus"]], "Reading a text classification dataset": [[59, "reading-a-text-classification-dataset"]], "Load from simple CSV file": [[59, "load-from-simple-csv-file"]], "FastText format": [[59, "fasttext-format"]], "How to load a prepared dataset": [[60, "how-to-load-a-prepared-dataset"]], "The Corpus Object": [[60, "the-corpus-object"]], "Helper functions": [[60, "helper-functions"]], "Creating label dictionaries": [[60, "creating-label-dictionaries"]], "Dictionaries for other label types": [[60, "dictionaries-for-other-label-types"]], "Dictionaries for other corpora types": [[60, "dictionaries-for-other-corpora-types"]], "The MultiCorpus Object": [[60, "the-multicorpus-object"]], "Datasets included in Flair": [[60, "datasets-included-in-flair"]], "Train a sequence tagger": [[61, "train-a-sequence-tagger"]], "Training a named entity recognition (NER) model with transformers": [[61, "training-a-named-entity-recognition-ner-model-with-transformers"]], "Training a named entity recognition (NER) model with Flair embeddings": [[61, "training-a-named-entity-recognition-ner-model-with-flair-embeddings"]], "Training a part-of-speech tagger": [[61, "training-a-part-of-speech-tagger"]], "Multi-dataset training": [[61, "multi-dataset-training"]], "Train a span classifier": [[62, "train-a-span-classifier"]], "Training an entity linker (NEL) model with transformers": [[62, "training-an-entity-linker-nel-model-with-transformers"]], "Loading a ColumnCorpus": [[62, "loading-a-columncorpus"]], "constructing a dataset in memory": [[62, "constructing-a-dataset-in-memory"]], "Combining NEL with Mention Detection": [[62, "combining-nel-with-mention-detection"]], "Multitask with aligned training data": [[62, "multitask-with-aligned-training-data"]], "Train a text classifier": [[63, "train-a-text-classifier"]], "Training a text classification model with transformers": [[63, "training-a-text-classification-model-with-transformers"]], "Tutorial 2: Training models": [[64, "tutorial-2-training-models"]], "Training vs fine-tuning": [[65, "training-vs-fine-tuning"]], "Fine-Tuning": [[65, "fine-tuning"]], "Training": [[65, "training"]]}, "indexentries": {"dataloader (class in flair.datasets.base)": [[0, "flair.datasets.base.DataLoader"]], "flairdatapointdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.FlairDatapointDataset"]], "mongodataset (class in flair.datasets.base)": [[0, "flair.datasets.base.MongoDataset"]], "sentencedataset (class in flair.datasets.base)": [[0, "flair.datasets.base.SentenceDataset"]], "stringdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.StringDataset"]], "__init__() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.__init__"]], "__init__() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.__init__"]], "__init__() (flair.datasets.base.sentencedataset method)": [[0, "flair.datasets.base.SentenceDataset.__init__"]], "__init__() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.__init__"]], "batch_size (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.batch_size"]], "dataset (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.dataset"]], "drop_last (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.drop_last"]], "find_train_dev_test_files() (in module flair.datasets.base)": [[0, "flair.datasets.base.find_train_dev_test_files"]], "flair.datasets.base": [[0, "module-flair.datasets.base"]], "is_in_memory() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.is_in_memory"]], "module": [[0, "module-flair.datasets.base"], [1, "module-flair.datasets.biomedical"], [2, "module-flair.datasets.document_classification"], [3, "module-flair.datasets.entity_linking"], [4, "module-flair.datasets.ocr"], [5, "module-flair.datasets.relation_extraction"], [6, "module-flair.datasets.sequence_labeling"], [7, "module-flair.datasets.text_image"], [8, "module-flair.datasets.text_text"], [9, "module-flair.datasets.treebanks"], [10, "module-flair.embeddings.base"], [11, "module-flair.embeddings.document"], [12, "module-flair.embeddings.image"], [13, "module-flair.embeddings.legacy"], [14, "module-flair.embeddings.token"], [15, "module-flair.embeddings.transformer"], [16, "module-flair"], [17, "module-flair.data"], [20, "module-flair.models"], [21, "module-flair.nn"], [22, "module-flair.splitter"], [23, "module-flair.tokenization"], [24, "module-flair.trainers"], [25, "module-flair.trainers.plugins"]], "num_workers (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.num_workers"]], "pin_memory (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory"]], "pin_memory_device (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory_device"]], "prefetch_factor (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.prefetch_factor"]], "sampler (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.sampler"]], "timeout (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.timeout"]], "anat_em (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ANAT_EM"]], "azdz (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.AZDZ"]], "bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BC2GM"]], "bigbio_ner_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS"]], "biobert_chemical_bc4chemd (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC4CHEMD"]], "biobert_chemical_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC5CDR"]], "biobert_disease_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_BC5CDR"]], "biobert_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_NCBI"]], "biobert_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_BC2GM"]], "biobert_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_JNLPBA"]], "biobert_species_linnaeus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_LINNAEUS"]], "biobert_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_S800"]], "bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_CG"]], "bionlp2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_PC"]], "biosemantics (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOSEMANTICS"]], "bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIO_INFER"]], "bioberthelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioBertHelper"]], "bionlpcorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioNLPCorpus"]], "cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CDR"]], "cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CELL_FINDER"]], "cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CEMP"]], "chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEBI"]], "chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEMDNER"]], "cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CLL"]], "craft (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT"]], "craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT_V4"]], "conllwriter (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CoNLLWriter"]], "deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DECA"]], "dpentry (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DpEntry"]], "entity (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.Entity"]], "fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.FSU"]], "gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GELLUS"]], "gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GPRO"]], "huner_all_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID"]], "huner_all_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP2013_CG"]], "huner_all_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID"]], "huner_all_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC"]], "huner_all_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED"]], "huner_all_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR"]], "huner_all_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER"]], "huner_all_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CHEBI"]], "huner_all_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI"]], "huner_all_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_CRAFT_V4"]], "huner_all_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT"]], "huner_all_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_JNLPBA"]], "huner_all_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_LOCTEXT"]], "huner_all_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_MIRNA"]], "huner_all_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI"]], "huner_all_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME"]], "huner_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG"]], "huner_cell_line (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE"]], "huner_cell_line_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID"]], "huner_cell_line_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED"]], "huner_cell_line_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER"]], "huner_cell_line_cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL"]], "huner_cell_line_gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS"]], "huner_cell_line_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA"]], "huner_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEBI"]], "huner_chemical (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL"]], "huner_chemical_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID"]], "huner_chemical_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG"]], "huner_chemical_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID"]], "huner_chemical_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC"]], "huner_chemical_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED"]], "huner_chemical_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR"]], "huner_chemical_cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP"]], "huner_chemical_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI"]], "huner_chemical_chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER"]], "huner_chemical_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI"]], "huner_chemical_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4"]], "huner_chemical_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT"]], "huner_chemical_nlm_chem (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM"]], "huner_chemical_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI"]], "huner_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4"]], "huner_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE"]], "huner_disease_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG"]], "huner_disease_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED"]], "huner_disease_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR"]], "huner_disease_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA"]], "huner_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI"]], "huner_disease_pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR"]], "huner_disease_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI"]], "huner_disease_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME"]], "huner_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE"]], "huner_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM"]], "huner_gene_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID"]], "huner_gene_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG"]], "huner_gene_bionlp_st_2011_epi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI"]], "huner_gene_bionlp_st_2011_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE"]], "huner_gene_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID"]], "huner_gene_bionlp_st_2011_rel (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL"]], "huner_gene_bionlp_st_2013_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE"]], "huner_gene_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC"]], "huner_gene_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED"]], "huner_gene_bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER"]], "huner_gene_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER"]], "huner_gene_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CHEBI"]], "huner_gene_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI"]], "huner_gene_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4"]], "huner_gene_deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA"]], "huner_gene_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT"]], "huner_gene_fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU"]], "huner_gene_gnormplus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS"]], "huner_gene_gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO"]], "huner_gene_iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA"]], "huner_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA"]], "huner_gene_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_LOCTEXT"]], "huner_gene_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA"]], "huner_gene_nlm_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE"]], "huner_gene_osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS"]], "huner_gene_progene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE"]], "huner_gene_seth_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS"]], "huner_gene_tmvar_v3 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3"]], "huner_gene_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME"]], "huner_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA"]], "huner_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT"]], "huner_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_MIRNA"]], "huner_species (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES"]], "huner_species_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID"]], "huner_species_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG"]], "huner_species_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID"]], "huner_species_bionlp_st_2019_bb (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB"]], "huner_species_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED"]], "huner_species_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER"]], "huner_species_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CHEBI"]], "huner_species_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4"]], "huner_species_linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS"]], "huner_species_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT"]], "huner_species_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA"]], "huner_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800"]], "huner_species_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME"]], "hunerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerDataset"]], "hunerjnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerJNLPBA"]], "hunermirnahelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper"]], "hunermulticorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMultiCorpus"]], "iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.IEPA"]], "internalbionerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.InternalBioNerDataset"]], "jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.JNLPBA"]], "kaewphancorpushelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper"]], "linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LINNEAUS"]], "loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LOCTEXT"]], "mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.MIRNA"]], "ncbi_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.NCBI_DISEASE"]], "osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.OSIRIS"]], "pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.PDR"]], "s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.S800"]], "scai_chemicals (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS"]], "scai_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_DISEASE"]], "scaicorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ScaiCorpus"]], "variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.VARIOME"]], "__init__() (flair.datasets.biomedical.anat_em method)": [[1, "flair.datasets.biomedical.ANAT_EM.__init__"]], "__init__() (flair.datasets.biomedical.azdz method)": [[1, "flair.datasets.biomedical.AZDZ.__init__"]], "__init__() (flair.datasets.biomedical.bc2gm method)": [[1, "flair.datasets.biomedical.BC2GM.__init__"]], "__init__() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.__init__"]], "__init__() (flair.datasets.biomedical.biosemantics method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.__init__"]], "__init__() (flair.datasets.biomedical.bio_infer method)": [[1, "flair.datasets.biomedical.BIO_INFER.__init__"]], "__init__() (flair.datasets.biomedical.bionlpcorpus method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.__init__"]], "__init__() (flair.datasets.biomedical.cdr method)": [[1, "flair.datasets.biomedical.CDR.__init__"]], "__init__() (flair.datasets.biomedical.cell_finder method)": [[1, "flair.datasets.biomedical.CELL_FINDER.__init__"]], "__init__() (flair.datasets.biomedical.cemp method)": [[1, "flair.datasets.biomedical.CEMP.__init__"]], "__init__() (flair.datasets.biomedical.chebi method)": [[1, "flair.datasets.biomedical.CHEBI.__init__"]], "__init__() (flair.datasets.biomedical.chemdner method)": [[1, "flair.datasets.biomedical.CHEMDNER.__init__"]], "__init__() (flair.datasets.biomedical.cll method)": [[1, "flair.datasets.biomedical.CLL.__init__"]], "__init__() (flair.datasets.biomedical.craft method)": [[1, "flair.datasets.biomedical.CRAFT.__init__"]], "__init__() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.__init__"]], "__init__() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.__init__"]], "__init__() (flair.datasets.biomedical.deca method)": [[1, "flair.datasets.biomedical.DECA.__init__"]], "__init__() (flair.datasets.biomedical.fsu method)": [[1, "flair.datasets.biomedical.FSU.__init__"]], "__init__() (flair.datasets.biomedical.gellus method)": [[1, "flair.datasets.biomedical.GELLUS.__init__"]], "__init__() (flair.datasets.biomedical.gpro method)": [[1, "flair.datasets.biomedical.GPRO.__init__"]], "__init__() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.__init__"]], "__init__() (flair.datasets.biomedical.iepa method)": [[1, "flair.datasets.biomedical.IEPA.__init__"]], "__init__() (flair.datasets.biomedical.jnlpba method)": [[1, "flair.datasets.biomedical.JNLPBA.__init__"]], "__init__() (flair.datasets.biomedical.linneaus method)": [[1, "flair.datasets.biomedical.LINNEAUS.__init__"]], "__init__() (flair.datasets.biomedical.loctext method)": [[1, "flair.datasets.biomedical.LOCTEXT.__init__"]], "__init__() (flair.datasets.biomedical.mirna method)": [[1, "flair.datasets.biomedical.MIRNA.__init__"]], "__init__() (flair.datasets.biomedical.ncbi_disease method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.__init__"]], "__init__() (flair.datasets.biomedical.osiris method)": [[1, "flair.datasets.biomedical.OSIRIS.__init__"]], "__init__() (flair.datasets.biomedical.pdr method)": [[1, "flair.datasets.biomedical.PDR.__init__"]], "__init__() (flair.datasets.biomedical.s800 method)": [[1, "flair.datasets.biomedical.S800.__init__"]], "__init__() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.__init__"]], "__init__() (flair.datasets.biomedical.variome method)": [[1, "flair.datasets.biomedical.VARIOME.__init__"]], "bin_search_passage() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.bin_search_passage"]], "bioc_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.bioc_to_internal"]], "brat_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.brat_to_internal"]], "build_corpus_directory_name() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bioid method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_biored method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_cpi method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_all_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.build_corpus_directory_name"]], "contains() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.contains"]], "convert_and_write() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.convert_and_write"]], "download_and_parse_dataset() (flair.datasets.biomedical.linneaus static method)": [[1, "flair.datasets.biomedical.LINNEAUS.download_and_parse_dataset"]], "download_and_prepare() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.download_and_prepare"]], "download_and_prepare_test() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_test"]], "download_and_prepare_test() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_test"]], "download_and_prepare_train() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_train"]], "download_and_prepare_train() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_train"]], "download_cll_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_cll_dataset"]], "download_corpora() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.download_corpora"]], "download_corpus() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.download_corpus"]], "download_corpus() (flair.datasets.biomedical.azdz class method)": [[1, "flair.datasets.biomedical.AZDZ.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.BIONLP2013_CG.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_pc static method)": [[1, "flair.datasets.biomedical.BIONLP2013_PC.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft class method)": [[1, "flair.datasets.biomedical.CRAFT.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft_v4 class method)": [[1, "flair.datasets.biomedical.CRAFT_V4.download_corpus"]], "download_corpus() (flair.datasets.biomedical.deca class method)": [[1, "flair.datasets.biomedical.DECA.download_corpus"]], "download_corpus() (flair.datasets.biomedical.fsu class method)": [[1, "flair.datasets.biomedical.FSU.download_corpus"]], "download_corpus() (flair.datasets.biomedical.ncbi_disease class method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.pdr class method)": [[1, "flair.datasets.biomedical.PDR.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_chemicals method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_disease method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.download_corpus"]], "download_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.download_dataset"]], "download_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.cdr static method)": [[1, "flair.datasets.biomedical.CDR.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chemdner static method)": [[1, "flair.datasets.biomedical.CHEMDNER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.iepa static method)": [[1, "flair.datasets.biomedical.IEPA.download_dataset"]], "download_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.download_dataset"]], "download_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.download_dataset"]], "download_dataset() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.download_dataset"]], "download_dev_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_dev_corpus"]], "download_dev_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_dev_corpus"]], "download_gellus_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_gellus_dataset"]], "download_train_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_train_corpus"]], "download_train_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_train_corpus"]], "entity_count (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_count"]], "entity_lengths_sum (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_lengths_sum"]], "filter_and_map_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_and_map_entities"]], "filter_entities() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.filter_entities"]], "filter_nested_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_nested_entities"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_corpus_sentence_splitter"]], "get_entities() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.get_entities"]], "get_entity_type_mapping() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bioid method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_biored method)": [[1, "flair.datasets.biomedical.HUNER_ALL_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cdr method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_cpi method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_ALL_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_scai method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_all_variome method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chebi method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cdr method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cemp method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_scai method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_cdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_ncbi method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_pdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_scai method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_variome method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bio_infer method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_deca method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_gpro method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_osiris method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_variome method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_loctext method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_linneaus method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_s800 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_variome method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.get_entity_type_mapping"]], "get_mirna_subset() (flair.datasets.biomedical.hunermirnahelper static method)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper.get_mirna_subset"]], "get_subset() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.get_subset"]], "get_subset() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_subset"]], "is_before() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.is_before"]], "last_entity (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.last_entity"]], "merge_datasets() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.merge_datasets"]], "overlaps() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.overlaps"]], "parse_corpus() (flair.datasets.biomedical.azdz static method)": [[1, "flair.datasets.biomedical.AZDZ.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft static method)": [[1, "flair.datasets.biomedical.CRAFT.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.deca static method)": [[1, "flair.datasets.biomedical.DECA.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.fsu static method)": [[1, "flair.datasets.biomedical.FSU.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.parse_corpus"]], "parse_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.iepa class method)": [[1, "flair.datasets.biomedical.IEPA.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.parse_dataset"]], "parse_file() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.parse_file"]], "parse_input_file() (flair.datasets.biomedical.cemp static method)": [[1, "flair.datasets.biomedical.CEMP.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.gpro static method)": [[1, "flair.datasets.biomedical.GPRO.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.scaicorpus static method)": [[1, "flair.datasets.biomedical.ScaiCorpus.parse_input_file"]], "parse_input_files() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.parse_input_files"]], "parse_input_files() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.parse_input_files"]], "parse_test_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_test_dataset"]], "parse_train_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_train_dataset"]], "patch_training_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.patch_training_file"]], "perform_corpus_download() (flair.datasets.biomedical.scai_chemicals static method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.perform_corpus_download"]], "perform_corpus_download() (flair.datasets.biomedical.scai_disease static method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.perform_corpus_download"]], "position_end (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.position_end"]], "prepare_and_save_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.prepare_and_save_dataset"]], "prepare_splits() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.prepare_splits"]], "process_dataset() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.process_dataset"]], "read_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.read_dataset"]], "read_file() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.read_file"]], "read_folder() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.read_folder"]], "split_url() (flair.datasets.biomedical.huner_all_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_scai static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_all_variome static method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cll static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_gellus static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_chebi static method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cemp static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_chemdner static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_scai static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_craft_v4 static method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_ncbi static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_pdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_scai static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_variome static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bc2gm static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bio_infer static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_deca static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_fsu static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_gpro static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_iepa static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_osiris static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_variome static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_jnlpba static method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.split_url"]], "split_url() (flair.datasets.biomedical.huner_loctext static method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.split_url"]], "split_url() (flair.datasets.biomedical.huner_mirna static method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_linneaus static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_s800 static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_variome static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.hunerdataset static method)": [[1, "flair.datasets.biomedical.HunerDataset.split_url"]], "to_internal() (flair.datasets.biomedical.huner_all_cdr method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_ALL_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_scai method)": [[1, "flair.datasets.biomedical.HUNER_ALL_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_all_variome method)": [[1, "flair.datasets.biomedical.HUNER_ALL_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chebi method)": [[1, "flair.datasets.biomedical.HUNER_CHEBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cdr method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cemp method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_chemdner method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_scai method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_CRAFT_V4.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_cdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_ncbi method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_pdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_scai method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_variome method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bc2gm method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bio_infer method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_deca method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_gpro method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_iepa method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_osiris method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_variome method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_JNLPBA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_loctext method)": [[1, "flair.datasets.biomedical.HUNER_LOCTEXT.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_mirna method)": [[1, "flair.datasets.biomedical.HUNER_MIRNA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_linneaus method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_s800 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_variome method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.to_internal"]], "to_internal_dataset() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.to_internal_dataset"]], "write_to_conll() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.write_to_conll"]], "agnews (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.AGNEWS"]], "amazon_reviews (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS"]], "communicative_functions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS"]], "csvclassificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus"]], "csvclassificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationDataset"]], "classificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationCorpus"]], "classificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationDataset"]], "germeval_2018_offensive_language (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE"]], "glue_cola (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_COLA"]], "glue_sst2 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_SST2"]], "go_emotions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GO_EMOTIONS"]], "imdb (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.IMDB"]], "newsgroups (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.NEWSGROUPS"]], "senteval_cr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_CR"]], "senteval_mpqa (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA"]], "senteval_mr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MR"]], "senteval_sst_binary (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY"]], "senteval_sst_granular (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR"]], "senteval_subj (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ"]], "sentiment_140 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTIMENT_140"]], "stackoverflow (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.STACKOVERFLOW"]], "trec_50 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_50"]], "trec_6 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_6"]], "wassa_anger (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_ANGER"]], "wassa_fear (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_FEAR"]], "wassa_joy (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_JOY"]], "wassa_sadness (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_SADNESS"]], "yahoo_answers (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS"]], "__init__() (flair.datasets.document_classification.agnews method)": [[2, "flair.datasets.document_classification.AGNEWS.__init__"]], "__init__() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.__init__"]], "__init__() (flair.datasets.document_classification.communicative_functions method)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationcorpus method)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.classificationcorpus method)": [[2, "flair.datasets.document_classification.ClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.germeval_2018_offensive_language method)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE.__init__"]], "__init__() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.__init__"]], "__init__() (flair.datasets.document_classification.go_emotions method)": [[2, "flair.datasets.document_classification.GO_EMOTIONS.__init__"]], "__init__() (flair.datasets.document_classification.imdb method)": [[2, "flair.datasets.document_classification.IMDB.__init__"]], "__init__() (flair.datasets.document_classification.newsgroups method)": [[2, "flair.datasets.document_classification.NEWSGROUPS.__init__"]], "__init__() (flair.datasets.document_classification.senteval_cr method)": [[2, "flair.datasets.document_classification.SENTEVAL_CR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mpqa method)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mr method)": [[2, "flair.datasets.document_classification.SENTEVAL_MR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_binary method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_granular method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_subj method)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ.__init__"]], "__init__() (flair.datasets.document_classification.sentiment_140 method)": [[2, "flair.datasets.document_classification.SENTIMENT_140.__init__"]], "__init__() (flair.datasets.document_classification.stackoverflow method)": [[2, "flair.datasets.document_classification.STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.document_classification.trec_50 method)": [[2, "flair.datasets.document_classification.TREC_50.__init__"]], "__init__() (flair.datasets.document_classification.trec_6 method)": [[2, "flair.datasets.document_classification.TREC_6.__init__"]], "__init__() (flair.datasets.document_classification.wassa_anger method)": [[2, "flair.datasets.document_classification.WASSA_ANGER.__init__"]], "__init__() (flair.datasets.document_classification.wassa_fear method)": [[2, "flair.datasets.document_classification.WASSA_FEAR.__init__"]], "__init__() (flair.datasets.document_classification.wassa_joy method)": [[2, "flair.datasets.document_classification.WASSA_JOY.__init__"]], "__init__() (flair.datasets.document_classification.wassa_sadness method)": [[2, "flair.datasets.document_classification.WASSA_SADNESS.__init__"]], "__init__() (flair.datasets.document_classification.yahoo_answers method)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS.__init__"]], "download_and_prepare_amazon_product_file() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "is_in_memory() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.is_in_memory"]], "is_in_memory() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.is_in_memory"]], "label_map (flair.datasets.document_classification.glue_sst2 attribute)": [[2, "flair.datasets.document_classification.GLUE_SST2.label_map"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_sst2 method)": [[2, "flair.datasets.document_classification.GLUE_SST2.tsv_from_eval_dataset"]], "bigbio_el_bc5cdr_chemical (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_BC5CDR_CHEMICAL"]], "bigbio_el_gnormplus (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_GNORMPLUS"]], "bigbio_el_ncbi_disease (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BIGBIO_EL_NCBI_DISEASE"]], "bigbioentitylinkingcorpus (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.BigBioEntityLinkingCorpus"]], "ctd_chemicals_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY"]], "ctd_diseases_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY"]], "entitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary"]], "hunerentitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.HunerEntityLinkingDictionary"]], "inmemoryentitylinkingdictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary"]], "ncbi_gene_human_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY"]], "ncbi_taxonomy_dictionary (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY"]], "nel_english_aida (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA"]], "nel_english_aquaint (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT"]], "nel_english_iitb (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB"]], "nel_english_reddit (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT"]], "nel_english_tweeki (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI"]], "nel_german_hipe (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE"]], "wsd_masc (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_MASC"]], "wsd_omsti (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_OMSTI"]], "wsd_raganato_all (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL"]], "wsd_semcor (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR"]], "wsd_trainomatic (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC"]], "wsd_ufsac (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_UFSAC"]], "wsd_wordnet_gloss_tagged (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED"]], "zelda (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.ZELDA"]], "__init__() (flair.datasets.entity_linking.entitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_aida method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_aquaint method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_iitb method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_tweeki method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI.__init__"]], "__init__() (flair.datasets.entity_linking.nel_german_hipe method)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_masc method)": [[3, "flair.datasets.entity_linking.WSD_MASC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_omsti method)": [[3, "flair.datasets.entity_linking.WSD_OMSTI.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_raganato_all method)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_semcor method)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_trainomatic method)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_ufsac method)": [[3, "flair.datasets.entity_linking.WSD_UFSAC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_wordnet_gloss_tagged method)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED.__init__"]], "__init__() (flair.datasets.entity_linking.zelda method)": [[3, "flair.datasets.entity_linking.ZELDA.__init__"]], "_fill_annot_array() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_annot_array"]], "_fill_curr_comment() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_curr_comment"]], "_is_invalid_name() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY._is_invalid_name"]], "_text_to_cols() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._text_to_cols"]], "candidates (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.candidates"]], "database_name (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.database_name"]], "determine_tsv_file() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.determine_tsv_file"]], "download_dictionary() (flair.datasets.entity_linking.ctd_chemicals_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ctd_diseases_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY.download_dictionary"]], "download_dictionary() (flair.datasets.entity_linking.ncbi_taxonomy_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY.download_dictionary"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "from_state() (flair.datasets.entity_linking.inmemoryentitylinkingdictionary class method)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary.from_state"]], "from_ufsac_to_tsv() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.from_ufsac_to_tsv"]], "parse_dictionary() (flair.datasets.entity_linking.ncbi_gene_human_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_GENE_HUMAN_DICTIONARY.parse_dictionary"]], "parse_dictionary() (flair.datasets.entity_linking.ncbi_taxonomy_dictionary method)": [[3, "flair.datasets.entity_linking.NCBI_TAXONOMY_DICTIONARY.parse_dictionary"]], "parse_file() (flair.datasets.entity_linking.ctd_chemicals_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_CHEMICALS_DICTIONARY.parse_file"]], "parse_file() (flair.datasets.entity_linking.ctd_diseases_dictionary method)": [[3, "flair.datasets.entity_linking.CTD_DISEASES_DICTIONARY.parse_file"]], "text_to_index (flair.datasets.entity_linking.entitylinkingdictionary property)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.text_to_index"]], "to_in_memory_dictionary() (flair.datasets.entity_linking.entitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.EntityLinkingDictionary.to_in_memory_dictionary"]], "to_state() (flair.datasets.entity_linking.inmemoryentitylinkingdictionary method)": [[3, "flair.datasets.entity_linking.InMemoryEntityLinkingDictionary.to_state"]], "ocrcorpus (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrCorpus"]], "ocrjsondataset (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrJsonDataset"]], "sroie (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.SROIE"]], "__init__() (flair.datasets.ocr.ocrcorpus method)": [[4, "flair.datasets.ocr.OcrCorpus.__init__"]], "__init__() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.__init__"]], "__init__() (flair.datasets.ocr.sroie method)": [[4, "flair.datasets.ocr.SROIE.__init__"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "is_in_memory() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.is_in_memory"]], "re_english_conll04 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04"]], "re_english_drugprot (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT"]], "re_english_semeval2010 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010"]], "re_english_tacred (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED"]], "__init__() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.__init__"]], "char_spans_to_token_spans() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.char_spans_to_token_spans"]], "convert_ptb_token() (in module flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.convert_ptb_token"]], "convert_to_conllu() (flair.datasets.relation_extraction.re_english_conll04 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04.convert_to_conllu"]], "drugprot_document_to_tokenlists() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.drugprot_document_to_tokenlists"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "has_overlap() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.has_overlap"]], "bioscope (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.BIOSCOPE"]], "conll_03 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03"]], "conll_03_dutch (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH"]], "conll_03_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN"]], "conll_03_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH"]], "conll_2000 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_2000"]], "columncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus"]], "columndataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnDataset"]], "feats (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.FEATS"]], "fewnerd (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.FEWNERD"]], "head (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.HEAD"]], "jsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus"]], "jsonldataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlDataset"]], "keyphrase_inspec (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_INSPEC"]], "keyphrase_semeval2010 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2010"]], "keyphrase_semeval2017 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2017"]], "masakha_pos (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS"]], "multifilecolumncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus"]], "multifilejsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus"]], "ner_arabic_aner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER"]], "ner_arabic_aqmar (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR"]], "ner_basque (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_BASQUE"]], "ner_chinese_weibo (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO"]], "ner_danish_dane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_DANISH_DANE"]], "ner_english_movie_complex (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX"]], "ner_english_movie_simple (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE"]], "ner_english_person (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON"]], "ner_english_restaurant (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT"]], "ner_english_sec_fillings (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS"]], "ner_english_stackoverflow (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW"]], "ner_english_twitter (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER"]], "ner_english_webpages (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES"]], "ner_english_wikigold (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD"]], "ner_english_wnut_2020 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020"]], "ner_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_FINNISH"]], "ner_german_biofid (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_BIOFID"]], "ner_german_europarl (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL"]], "ner_german_germeval (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL"]], "ner_german_legal (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL"]], "ner_german_mobie (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE"]], "ner_german_politics (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS"]], "ner_hipe_2022 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022"]], "ner_hungarian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN"]], "ner_icdar_europeana (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA"]], "ner_icelandic (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC"]], "ner_japanese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE"]], "ner_masakhane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE"]], "ner_multi_coner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER"]], "ner_multi_coner_v2 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2"]], "ner_multi_wikiann (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN"]], "ner_multi_wikiner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKINER"]], "ner_multi_xtreme (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME"]], "ner_nermud (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD"]], "ner_swedish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH"]], "ner_turku (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_TURKU"]], "ner_ukrainian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN"]], "ontonotes (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ONTONOTES"]], "space_after_key (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.SPACE_AFTER_KEY"]], "up_chinese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE"]], "up_english (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH"]], "up_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH"]], "up_french (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH"]], "up_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN"]], "up_italian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN"]], "up_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH"]], "up_spanish_ancora (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA"]], "wnut_17 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.WNUT_17"]], "__init__() (flair.datasets.sequence_labeling.conll_03 method)": [[6, "flair.datasets.sequence_labeling.CONLL_03.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_dutch method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_german method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_spanish method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_2000 method)": [[6, "flair.datasets.sequence_labeling.CONLL_2000.__init__"]], "__init__() (flair.datasets.sequence_labeling.columncorpus method)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.masakha_pos method)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilecolumncorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilejsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aner method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aqmar method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_chinese_weibo method)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_complex method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_simple method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_person method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_restaurant method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_sec_fillings method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_stackoverflow method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_twitter method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_webpages method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wikigold method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wnut_2020 method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_germeval method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_legal method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_mobie method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_MOBIE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_politics method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hipe_2022 method)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hungarian method)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icdar_europeana method)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icelandic method)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_japanese method)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_masakhane method)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner_v2 method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_wikiann method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_xtreme method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_nermud method)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_turku method)": [[6, "flair.datasets.sequence_labeling.NER_TURKU.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_ukrainian method)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_chinese method)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_english method)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_finnish method)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_french method)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_german method)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_italian method)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish_ancora method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA.__init__"]], "_add_iob2_tags() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH._add_IOB2_tags"]], "_add_iob_tags() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL._add_IOB_tags"]], "_add_label_to_sentence() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset._add_label_to_sentence"]], "_process_coref_span_annotations_for_word() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES._process_coref_span_annotations_for_word"]], "archive_url (flair.datasets.sequence_labeling.ontonotes attribute)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.archive_url"]], "dataset_document_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.dataset_document_iterator"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "get_available_domains() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.get_available_domains"]], "is_in_memory() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.is_in_memory"]], "is_in_memory() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.is_in_memory"]], "sentence_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.sentence_iterator"]], "feideggercorpus (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerCorpus"]], "feideggerdataset (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerDataset"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "is_in_memory() (flair.datasets.text_image.feideggerdataset method)": [[7, "flair.datasets.text_image.FeideggerDataset.is_in_memory"]], "datapaircorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairCorpus"]], "datapairdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairDataset"]], "datatriplecorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataTripleCorpus"]], "datatripledataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataTripleDataset"]], "glue_mnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MNLI"]], "glue_mrpc (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MRPC"]], "glue_qnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QNLI"]], "glue_qqp (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QQP"]], "glue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_RTE"]], "glue_stsb (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_STSB"]], "glue_wnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_WNLI"]], "opusparallelcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.OpusParallelCorpus"]], "paralleltextcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextCorpus"]], "paralleltextdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextDataset"]], "superglue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE"]], "__init__() (flair.datasets.text_text.datapaircorpus method)": [[8, "flair.datasets.text_text.DataPairCorpus.__init__"]], "__init__() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.__init__"]], "__init__() (flair.datasets.text_text.datatriplecorpus method)": [[8, "flair.datasets.text_text.DataTripleCorpus.__init__"]], "__init__() (flair.datasets.text_text.datatripledataset method)": [[8, "flair.datasets.text_text.DataTripleDataset.__init__"]], "__init__() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.__init__"]], "__init__() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.__init__"]], "__init__() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.__init__"]], "__init__() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.__init__"]], "__init__() (flair.datasets.text_text.opusparallelcorpus method)": [[8, "flair.datasets.text_text.OpusParallelCorpus.__init__"]], "__init__() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.__init__"]], "__init__() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.__init__"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "is_in_memory() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.datatripledataset method)": [[8, "flair.datasets.text_text.DataTripleDataset.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextdataset method)": [[8, "flair.datasets.text_text.ParallelTextDataset.is_in_memory"]], "jsonl_from_eval_dataset() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.jsonl_from_eval_dataset"]], "rte_jsonl_to_tsv() (in module flair.datasets.text_text)": [[8, "flair.datasets.text_text.rte_jsonl_to_tsv"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_stsb method)": [[8, "flair.datasets.text_text.GLUE_STSB.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.tsv_from_eval_dataset"]], "ud_afrikaans (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_AFRIKAANS"]], "ud_ancient_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ANCIENT_GREEK"]], "ud_arabic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARABIC"]], "ud_armenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARMENIAN"]], "ud_basque (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BASQUE"]], "ud_bavarian_maibaam (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BAVARIAN_MAIBAAM"]], "ud_belarusian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BELARUSIAN"]], "ud_bulgarian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BULGARIAN"]], "ud_buryat (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BURYAT"]], "ud_catalan (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CATALAN"]], "ud_chinese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE"]], "ud_chinese_kyoto (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE_KYOTO"]], "ud_coptic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_COPTIC"]], "ud_croatian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CROATIAN"]], "ud_czech (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CZECH"]], "ud_danish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DANISH"]], "ud_dutch (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DUTCH"]], "ud_english (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ENGLISH"]], "ud_estonian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ESTONIAN"]], "ud_faroese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FAROESE"]], "ud_finnish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FINNISH"]], "ud_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FRENCH"]], "ud_galician (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GALICIAN"]], "ud_german (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN"]], "ud_german_hdt (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN_HDT"]], "ud_gothic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GOTHIC"]], "ud_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GREEK"]], "ud_hebrew (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HEBREW"]], "ud_hindi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HINDI"]], "ud_indonesian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_INDONESIAN"]], "ud_irish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_IRISH"]], "ud_italian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ITALIAN"]], "ud_japanese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_JAPANESE"]], "ud_kazakh (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KAZAKH"]], "ud_korean (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KOREAN"]], "ud_latin (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATIN"]], "ud_latvian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATVIAN"]], "ud_lithuanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LITHUANIAN"]], "ud_livvi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LIVVI"]], "ud_maltese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MALTESE"]], "ud_marathi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MARATHI"]], "ud_naija (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NAIJA"]], "ud_north_sami (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORTH_SAMI"]], "ud_norwegian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORWEGIAN"]], "ud_old_church_slavonic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_CHURCH_SLAVONIC"]], "ud_old_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_FRENCH"]], "ud_persian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PERSIAN"]], "ud_polish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_POLISH"]], "ud_portuguese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PORTUGUESE"]], "ud_romanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ROMANIAN"]], "ud_russian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_RUSSIAN"]], "ud_serbian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SERBIAN"]], "ud_slovak (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVAK"]], "ud_slovenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVENIAN"]], "ud_spanish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SPANISH"]], "ud_swedish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SWEDISH"]], "ud_turkish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_TURKISH"]], "ud_ukrainian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_UKRAINIAN"]], "ud_wolof (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_WOLOF"]], "universaldependenciescorpus (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus"]], "universaldependenciesdataset (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset"]], "__init__() (flair.datasets.treebanks.universaldependenciescorpus method)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus.__init__"]], "__init__() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.__init__"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "is_in_memory() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.is_in_memory"]], "documentembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.DocumentEmbeddings"]], "embeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.Embeddings"]], "scalarmix (class in flair.embeddings.base)": [[10, "flair.embeddings.base.ScalarMix"]], "tokenembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.TokenEmbeddings"]], "__init__() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.__init__"]], "__init__() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.__init__"]], "_add_embeddings_internal() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings._add_embeddings_internal"]], "embed() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.embed"]], "embedding_length (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_length"]], "embedding_type (flair.embeddings.base.documentembeddings property)": [[10, "flair.embeddings.base.DocumentEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_type"]], "embedding_type (flair.embeddings.base.tokenembeddings property)": [[10, "flair.embeddings.base.TokenEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.embeddings attribute)": [[10, "flair.embeddings.base.Embeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.embeddings_name"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "forward() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.forward"]], "from_params() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.from_params"]], "get_instance_parameters() (flair.embeddings.base.embeddings static method)": [[10, "flair.embeddings.base.Embeddings.get_instance_parameters"]], "get_named_embeddings_dict() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_names"]], "load_embedding() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.load_embedding"]], "load_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.load_embeddings"]], "name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.name"]], "name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.name"]], "register_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.register_embeddings"]], "save_embeddings() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.save_embeddings"]], "to_params() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.to_params"]], "training (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.training"]], "training (flair.embeddings.base.scalarmix attribute)": [[10, "flair.embeddings.base.ScalarMix.training"]], "training (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.training"]], "documentcnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings"]], "documentlmembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentLMEmbeddings"]], "documentpoolembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings"]], "documentrnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings"]], "documenttfidfembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings"]], "sentencetransformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings"]], "transformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings"]], "__init__() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.__init__"]], "__init__() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.__init__"]], "__init__() (flair.embeddings.document.transformerdocumentembeddings method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.__init__"]], "_add_embeddings_internal() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings._add_embeddings_internal"]], "_add_embeddings_internal() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings._add_embeddings_internal"]], "create_from_state() (flair.embeddings.document.transformerdocumentembeddings class method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.create_from_state"]], "embed() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embed"]], "embed() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embed"]], "embedding_length (flair.embeddings.document.documentcnnembeddings property)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentlmembeddings property)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentpoolembeddings property)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentrnnembeddings property)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documenttfidfembeddings property)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.sentencetransformerdocumentembeddings property)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.extra_repr"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "from_params() (flair.embeddings.document.documentcnnembeddings class method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentlmembeddings class method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentpoolembeddings class method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentrnnembeddings class method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documenttfidfembeddings class method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.from_params"]], "from_params() (flair.embeddings.document.sentencetransformerdocumentembeddings class method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.from_params"]], "get_names() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.get_names"]], "name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.name"]], "name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.name"]], "name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.name"]], "name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.name"]], "name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.name"]], "name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.name"]], "name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.name"]], "onnx_cls (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.onnx_cls"]], "to_params() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.to_params"]], "to_params() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.to_params"]], "training (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.training"]], "training (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.training"]], "training (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.training"]], "training (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.training"]], "training (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.training"]], "training (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.training"]], "training (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.training"]], "convtransformnetworkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings"]], "identityimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.IdentityImageEmbeddings"]], "imageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ImageEmbeddings"]], "networkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.NetworkImageEmbeddings"]], "precomputedimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings"]], "embedding_length (flair.embeddings.image.convtransformnetworkimageembeddings property)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.identityimageembeddings property)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.networkimageembeddings property)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.precomputedimageembeddings property)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.image.imageembeddings property)": [[12, "flair.embeddings.image.ImageEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embeddings_name"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "forward() (flair.embeddings.image.convtransformnetworkimageembeddings method)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.forward"]], "from_params() (flair.embeddings.image.imageembeddings class method)": [[12, "flair.embeddings.image.ImageEmbeddings.from_params"]], "name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.name"]], "name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.name"]], "name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.name"]], "name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.name"]], "name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.name"]], "to_params() (flair.embeddings.image.imageembeddings method)": [[12, "flair.embeddings.image.ImageEmbeddings.to_params"]], "training (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.training"]], "training (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.training"]], "training (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.training"]], "training (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.training"]], "training (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.training"]], "charlmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.CharLMEmbeddings"]], "documentlstmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings"]], "documentmeanembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings"]], "elmoembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.ELMoEmbeddings"]], "__init__() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.__init__"]], "embed() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embed"]], "embed() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embed"]], "embedding_length (flair.embeddings.legacy.charlmembeddings property)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentlstmembeddings property)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentmeanembeddings property)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.elmoembeddings property)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.extra_repr"]], "flair.embeddings.legacy": [[13, "module-flair.embeddings.legacy"]], "name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.name"]], "name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.name"]], "name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.name"]], "name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.name"]], "train() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.train"]], "training (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.training"]], "training (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.training"]], "training (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.training"]], "training (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.training"]], "use_layers_all() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_all"]], "use_layers_average() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_average"]], "use_layers_top() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_top"]], "bytepairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.BytePairEmbeddings"]], "characterembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.CharacterEmbeddings"]], "fasttextembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FastTextEmbeddings"]], "flairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FlairEmbeddings"]], "hashembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.HashEmbeddings"]], "musecrosslingualembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings"]], "nilcembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.NILCEmbeddings"]], "onehotembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.OneHotEmbeddings"]], "pooledflairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.PooledFlairEmbeddings"]], "stackedembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.StackedEmbeddings"]], "transformerwordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.TransformerWordEmbeddings"]], "wordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.WordEmbeddings"]], "__init__() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.__init__"]], "__init__() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.__init__"]], "__init__() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.nilcembeddings method)": [[14, "flair.embeddings.token.NILCEmbeddings.__init__"]], "__init__() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.__init__"]], "__init__() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.__init__"]], "__init__() (flair.embeddings.token.transformerwordembeddings method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.__init__"]], "__init__() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.__init__"]], "create_from_state() (flair.embeddings.token.transformerwordembeddings class method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.create_from_state"]], "embed() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.embed"]], "embedding_length (flair.embeddings.token.bytepairembeddings property)": [[14, "flair.embeddings.token.BytePairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.characterembeddings property)": [[14, "flair.embeddings.token.CharacterEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.fasttextembeddings property)": [[14, "flair.embeddings.token.FastTextEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.flairembeddings property)": [[14, "flair.embeddings.token.FlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.musecrosslingualembeddings property)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.onehotembeddings property)": [[14, "flair.embeddings.token.OneHotEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.pooledflairembeddings property)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.wordembeddings property)": [[14, "flair.embeddings.token.WordEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.extra_repr"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "from_corpus() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_corpus"]], "from_params() (flair.embeddings.token.bytepairembeddings class method)": [[14, "flair.embeddings.token.BytePairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.characterembeddings class method)": [[14, "flair.embeddings.token.CharacterEmbeddings.from_params"]], "from_params() (flair.embeddings.token.fasttextembeddings class method)": [[14, "flair.embeddings.token.FastTextEmbeddings.from_params"]], "from_params() (flair.embeddings.token.flairembeddings class method)": [[14, "flair.embeddings.token.FlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.hashembeddings class method)": [[14, "flair.embeddings.token.HashEmbeddings.from_params"]], "from_params() (flair.embeddings.token.musecrosslingualembeddings class method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.from_params"]], "from_params() (flair.embeddings.token.nilcembeddings class method)": [[14, "flair.embeddings.token.NILCEmbeddings.from_params"]], "from_params() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_params"]], "from_params() (flair.embeddings.token.pooledflairembeddings class method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.stackedembeddings class method)": [[14, "flair.embeddings.token.StackedEmbeddings.from_params"]], "from_params() (flair.embeddings.token.wordembeddings class method)": [[14, "flair.embeddings.token.WordEmbeddings.from_params"]], "get_cached_token_index() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_cached_token_index"]], "get_cached_vec() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.get_cached_vec"]], "get_cached_vec() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.get_cached_vec"]], "get_named_embeddings_dict() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.get_names"]], "get_names() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_names"]], "get_vec() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_vec"]], "layer_norm (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.layer_norm"]], "name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.name"]], "name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.name"]], "name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.name"]], "name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.name"]], "name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.name"]], "name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.name"]], "name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.name"]], "name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.name"]], "name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.name"]], "name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.name"]], "name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.name"]], "name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.name"]], "num_embeddings (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.num_embeddings"]], "onnx_cls (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.onnx_cls"]], "resolve_precomputed_path() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.resolve_precomputed_path"]], "state_dict() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.state_dict"]], "to() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to"]], "to_params() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.to_params"]], "to_params() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.to_params"]], "to_params() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.hashembeddings method)": [[14, "flair.embeddings.token.HashEmbeddings.to_params"]], "to_params() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.to_params"]], "to_params() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.to_params"]], "to_params() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.to_params"]], "to_params() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to_params"]], "train() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.train"]], "train() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.train"]], "train() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.train"]], "training (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.training"]], "training (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.training"]], "training (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.training"]], "training (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.training"]], "training (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.training"]], "training (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.training"]], "training (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.training"]], "training (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.training"]], "training (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.training"]], "training (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.training"]], "training (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.training"]], "training (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.training"]], "transformerbaseembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings"]], "transformerembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerEmbeddings"]], "transformerjitdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings"]], "transformerjitembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings"]], "transformerjitwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings"]], "transformeronnxdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings"]], "transformeronnxembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings"]], "transformeronnxwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings"]], "__init__() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.__init__"]], "collect_dynamic_axes() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.collect_dynamic_axes"]], "combine_strided_tensors() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.combine_strided_tensors"]], "create_from_embedding() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.create_from_embedding"]], "create_from_state() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.create_from_state"]], "create_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.create_session"]], "document_max_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_max_pooling"]], "document_mean_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_mean_pooling"]], "embedding_length (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.embeddings_name"]], "export_from_embedding() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.export_from_embedding"]], "export_onnx() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.export_onnx"]], "fill_masked_elements() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_masked_elements"]], "fill_mean_token_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_mean_token_embeddings"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "forward() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.forward"]], "from_params() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerembeddings class method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.from_params"]], "insert_missing_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.insert_missing_embeddings"]], "name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.name"]], "onnx_cls (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.onnx_cls"]], "optimize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.optimize_model"]], "pad_sequence_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.pad_sequence_embeddings"]], "parameter_to_list() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.parameter_to_list"]], "prepare_tensors() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.prepare_tensors"]], "quantize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.quantize_model"]], "remove_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.remove_session"]], "remove_special_markup() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.remove_special_markup"]], "to_args() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_args"]], "to_params() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerjitembeddings method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.to_params"]], "tokenizer (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.tokenizer"]], "tokenizer (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.tokenizer"]], "training (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.training"]], "truncate_hidden_states() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.truncate_hidden_states"]], "cache_root (in module flair)": [[16, "flair.cache_root"]], "device (in module flair)": [[16, "flair.device"]], "flair": [[16, "module-flair"]], "logger (in module flair)": [[16, "flair.logger"]], "set_proxies() (in module flair)": [[16, "flair.set_proxies"]], "set_seed() (in module flair)": [[16, "flair.set_seed"]], "boundingbox (class in flair.data)": [[17, "flair.data.BoundingBox"]], "concatflairdataset (class in flair.data)": [[17, "flair.data.ConcatFlairDataset"]], "corpus (class in flair.data)": [[17, "flair.data.Corpus"]], "datapair (class in flair.data)": [[17, "flair.data.DataPair"]], "datapoint (class in flair.data)": [[17, "flair.data.DataPoint"]], "datatriple (class in flair.data)": [[17, "flair.data.DataTriple"]], "dictionary (class in flair.data)": [[17, "flair.data.Dictionary"]], "entitycandidate (class in flair.data)": [[17, "flair.data.EntityCandidate"]], "flairdataset (class in flair.data)": [[17, "flair.data.FlairDataset"]], "image (class in flair.data)": [[17, "flair.data.Image"]], "label (class in flair.data)": [[17, "flair.data.Label"]], "multicorpus (class in flair.data)": [[17, "flair.data.MultiCorpus"]], "relation (class in flair.data)": [[17, "flair.data.Relation"]], "sentence (class in flair.data)": [[17, "flair.data.Sentence"]], "span (class in flair.data)": [[17, "flair.data.Span"]], "token (class in flair.data)": [[17, "flair.data.Token"]], "__init__() (flair.data.entitycandidate method)": [[17, "flair.data.EntityCandidate.__init__"]], "__init__() (flair.data.sentence method)": [[17, "flair.data.Sentence.__init__"]], "add_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.add_item"]], "add_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_label"]], "add_label() (flair.data.token method)": [[17, "flair.data.Token.add_label"]], "add_label_noise() (flair.data.corpus method)": [[17, "flair.data.Corpus.add_label_noise"]], "add_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_metadata"]], "add_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.add_tags_proba_dist"]], "bottom (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.bottom"]], "clear_embeddings() (flair.data.datapair method)": [[17, "flair.data.DataPair.clear_embeddings"]], "clear_embeddings() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.clear_embeddings"]], "clear_embeddings() (flair.data.datatriple method)": [[17, "flair.data.DataTriple.clear_embeddings"]], "clear_embeddings() (flair.data.sentence method)": [[17, "flair.data.Sentence.clear_embeddings"]], "copy_context_from_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.copy_context_from_sentence"]], "cummulative_sizes (flair.data.concatflairdataset property)": [[17, "flair.data.ConcatFlairDataset.cummulative_sizes"]], "cumsum() (flair.data.concatflairdataset static method)": [[17, "flair.data.ConcatFlairDataset.cumsum"]], "cumulative_sizes (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.cumulative_sizes"]], "datasets (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.datasets"]], "dev (flair.data.corpus property)": [[17, "flair.data.Corpus.dev"]], "downsample() (flair.data.corpus method)": [[17, "flair.data.Corpus.downsample"]], "embedding (flair.data.datapair property)": [[17, "flair.data.DataPair.embedding"]], "embedding (flair.data.datapoint property)": [[17, "flair.data.DataPoint.embedding"]], "embedding (flair.data.datatriple property)": [[17, "flair.data.DataTriple.embedding"]], "embedding (flair.data.image property)": [[17, "flair.data.Image.embedding"]], "embedding (flair.data.relation property)": [[17, "flair.data.Relation.embedding"]], "embedding (flair.data.sentence property)": [[17, "flair.data.Sentence.embedding"]], "embedding (flair.data.span property)": [[17, "flair.data.Span.embedding"]], "embedding (flair.data.token property)": [[17, "flair.data.Token.embedding"]], "end_position (flair.data.datapair property)": [[17, "flair.data.DataPair.end_position"]], "end_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.end_position"]], "end_position (flair.data.datatriple property)": [[17, "flair.data.DataTriple.end_position"]], "end_position (flair.data.image property)": [[17, "flair.data.Image.end_position"]], "end_position (flair.data.relation property)": [[17, "flair.data.Relation.end_position"]], "end_position (flair.data.sentence property)": [[17, "flair.data.Sentence.end_position"]], "end_position (flair.data.span property)": [[17, "flair.data.Span.end_position"]], "end_position (flair.data.token property)": [[17, "flair.data.Token.end_position"]], "filter_empty_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_empty_sentences"]], "filter_long_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_long_sentences"]], "flair.data": [[17, "module-flair.data"]], "get_all_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_all_sentences"]], "get_each_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_each_embedding"]], "get_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_embedding"]], "get_head() (flair.data.token method)": [[17, "flair.data.Token.get_head"]], "get_idx_for_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_item"]], "get_idx_for_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_items"]], "get_item_for_index() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_item_for_index"]], "get_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_items"]], "get_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_label"]], "get_label_distribution() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_label_distribution"]], "get_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_labels"]], "get_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_labels"]], "get_language_code() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_language_code"]], "get_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_metadata"]], "get_relations() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_relations"]], "get_span() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_span"]], "get_spans() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_spans"]], "get_spans_from_bio() (in module flair.data)": [[17, "flair.data.get_spans_from_bio"]], "get_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.get_tags_proba_dist"]], "get_token() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_token"]], "has_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_label"]], "has_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_metadata"]], "idx (flair.data.token property)": [[17, "flair.data.Token.idx"]], "infer_space_after() (flair.data.sentence method)": [[17, "flair.data.Sentence.infer_space_after"]], "iob2() (in module flair.data)": [[17, "flair.data.iob2"]], "is_context_set() (flair.data.sentence method)": [[17, "flair.data.Sentence.is_context_set"]], "is_in_memory() (flair.data.flairdataset method)": [[17, "flair.data.FlairDataset.is_in_memory"]], "is_span_prediction_problem() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.is_span_prediction_problem"]], "labeled_identifier (flair.data.label property)": [[17, "flair.data.Label.labeled_identifier"]], "labels (flair.data.datapoint property)": [[17, "flair.data.DataPoint.labels"]], "left (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.left"]], "left_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.left_context"]], "load() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load"]], "load_from_file() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load_from_file"]], "make_label_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_label_dictionary"]], "make_tag_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_tag_dictionary"]], "make_vocab_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_vocab_dictionary"]], "metadata_str (flair.data.label property)": [[17, "flair.data.Label.metadata_str"]], "next_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.next_sentence"]], "obtain_statistics() (flair.data.corpus method)": [[17, "flair.data.Corpus.obtain_statistics"]], "previous_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.previous_sentence"]], "randomly_split_into_two_datasets() (in module flair.data)": [[17, "flair.data.randomly_split_into_two_datasets"]], "remove_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.remove_item"]], "remove_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.remove_labels"]], "remove_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.remove_labels"]], "right (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.right"]], "right_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.right_context"]], "save() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.save"]], "score (flair.data.datapoint property)": [[17, "flair.data.DataPoint.score"]], "score (flair.data.label property)": [[17, "flair.data.Label.score"]], "set_context_for_sentences() (flair.data.sentence class method)": [[17, "flair.data.Sentence.set_context_for_sentences"]], "set_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_embedding"]], "set_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_label"]], "set_label() (flair.data.token method)": [[17, "flair.data.Token.set_label"]], "set_start_stop_tags() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.set_start_stop_tags"]], "set_value() (flair.data.label method)": [[17, "flair.data.Label.set_value"]], "shortstring (flair.data.label property)": [[17, "flair.data.Label.shortstring"]], "start_position (flair.data.datapair property)": [[17, "flair.data.DataPair.start_position"]], "start_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.start_position"]], "start_position (flair.data.datatriple property)": [[17, "flair.data.DataTriple.start_position"]], "start_position (flair.data.image property)": [[17, "flair.data.Image.start_position"]], "start_position (flair.data.relation property)": [[17, "flair.data.Relation.start_position"]], "start_position (flair.data.sentence property)": [[17, "flair.data.Sentence.start_position"]], "start_position (flair.data.span property)": [[17, "flair.data.Span.start_position"]], "start_position (flair.data.token property)": [[17, "flair.data.Token.start_position"]], "start_stop_tags_are_set() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.start_stop_tags_are_set"]], "tag (flair.data.datapoint property)": [[17, "flair.data.DataPoint.tag"]], "tag (flair.data.relation property)": [[17, "flair.data.Relation.tag"]], "test (flair.data.corpus property)": [[17, "flair.data.Corpus.test"]], "text (flair.data.datapair property)": [[17, "flair.data.DataPair.text"]], "text (flair.data.datapoint property)": [[17, "flair.data.DataPoint.text"]], "text (flair.data.datatriple property)": [[17, "flair.data.DataTriple.text"]], "text (flair.data.image property)": [[17, "flair.data.Image.text"]], "text (flair.data.relation property)": [[17, "flair.data.Relation.text"]], "text (flair.data.sentence property)": [[17, "flair.data.Sentence.text"]], "text (flair.data.span property)": [[17, "flair.data.Span.text"]], "text (flair.data.token property)": [[17, "flair.data.Token.text"]], "to() (flair.data.datapair method)": [[17, "flair.data.DataPair.to"]], "to() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.to"]], "to() (flair.data.datatriple method)": [[17, "flair.data.DataTriple.to"]], "to() (flair.data.sentence method)": [[17, "flair.data.Sentence.to"]], "to_dict() (flair.data.entitycandidate method)": [[17, "flair.data.EntityCandidate.to_dict"]], "to_dict() (flair.data.label method)": [[17, "flair.data.Label.to_dict"]], "to_dict() (flair.data.relation method)": [[17, "flair.data.Relation.to_dict"]], "to_dict() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_dict"]], "to_dict() (flair.data.span method)": [[17, "flair.data.Span.to_dict"]], "to_dict() (flair.data.token method)": [[17, "flair.data.Token.to_dict"]], "to_original_text() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_original_text"]], "to_plain_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_plain_string"]], "to_tagged_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tagged_string"]], "to_tokenized_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tokenized_string"]], "top (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.top"]], "train (flair.data.corpus property)": [[17, "flair.data.Corpus.train"]], "unlabeled_identifier (flair.data.datapair property)": [[17, "flair.data.DataPair.unlabeled_identifier"]], "unlabeled_identifier (flair.data.datapoint property)": [[17, "flair.data.DataPoint.unlabeled_identifier"]], "unlabeled_identifier (flair.data.datatriple property)": [[17, "flair.data.DataTriple.unlabeled_identifier"]], "unlabeled_identifier (flair.data.image property)": [[17, "flair.data.Image.unlabeled_identifier"]], "unlabeled_identifier (flair.data.label property)": [[17, "flair.data.Label.unlabeled_identifier"]], "unlabeled_identifier (flair.data.relation property)": [[17, "flair.data.Relation.unlabeled_identifier"]], "unlabeled_identifier (flair.data.sentence property)": [[17, "flair.data.Sentence.unlabeled_identifier"]], "unlabeled_identifier (flair.data.span property)": [[17, "flair.data.Span.unlabeled_identifier"]], "unlabeled_identifier (flair.data.token property)": [[17, "flair.data.Token.unlabeled_identifier"]], "value (flair.data.label property)": [[17, "flair.data.Label.value"]], "clusteringmodel (class in flair.models)": [[20, "flair.models.ClusteringModel"]], "entitymentionlinker (class in flair.models)": [[20, "flair.models.EntityMentionLinker"]], "fewshotclassifier (class in flair.models)": [[20, "flair.models.FewshotClassifier"]], "label_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_MATCH"]], "label_no_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_NO_MATCH"]], "languagemodel (class in flair.models)": [[20, "flair.models.LanguageModel"]], "lemmatizer (class in flair.models)": [[20, "flair.models.Lemmatizer"]], "multitaskmodel (class in flair.models)": [[20, "flair.models.MultitaskModel"]], "prefixedsequencetagger (class in flair.models)": [[20, "flair.models.PrefixedSequenceTagger"]], "rnn() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger.RNN"]], "regexptagger (class in flair.models)": [[20, "flair.models.RegexpTagger"]], "relationclassifier (class in flair.models)": [[20, "flair.models.RelationClassifier"]], "relationextractor (class in flair.models)": [[20, "flair.models.RelationExtractor"]], "sequencetagger (class in flair.models)": [[20, "flair.models.SequenceTagger"]], "spanclassifier (class in flair.models)": [[20, "flair.models.SpanClassifier"]], "tarsclassifier (class in flair.models)": [[20, "flair.models.TARSClassifier"]], "tarstagger (class in flair.models)": [[20, "flair.models.TARSTagger"]], "textclassifier (class in flair.models)": [[20, "flair.models.TextClassifier"]], "textpairclassifier (class in flair.models)": [[20, "flair.models.TextPairClassifier"]], "textpairregressor (class in flair.models)": [[20, "flair.models.TextPairRegressor"]], "textregressor (class in flair.models)": [[20, "flair.models.TextRegressor"]], "texttripleclassifier (class in flair.models)": [[20, "flair.models.TextTripleClassifier"]], "tokenclassifier (class in flair.models)": [[20, "flair.models.TokenClassifier"]], "wordtagger (class in flair.models)": [[20, "flair.models.WordTagger"]], "__init__() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.__init__"]], "__init__() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.__init__"]], "__init__() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.__init__"]], "__init__() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.__init__"]], "__init__() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.__init__"]], "__init__() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.__init__"]], "__init__() (flair.models.relationextractor method)": [[20, "flair.models.RelationExtractor.__init__"]], "__init__() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.__init__"]], "__init__() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.__init__"]], "__init__() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.__init__"]], "__init__() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.__init__"]], "__init__() (flair.models.textclassifier method)": [[20, "flair.models.TextClassifier.__init__"]], "__init__() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.__init__"]], "__init__() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.__init__"]], "__init__() (flair.models.texttripleclassifier method)": [[20, "flair.models.TextTripleClassifier.__init__"]], "__init__() (flair.models.tokenclassifier method)": [[20, "flair.models.TokenClassifier.__init__"]], "_all_scores_for_token() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._all_scores_for_token"]], "_compute_label_similarity_for_current_epoch() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier._compute_label_similarity_for_current_epoch"]], "_convert_dataset() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel._convert_dataset"]], "_encode_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence"]], "_encode_sentence_for_inference() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_inference"]], "_encode_sentence_for_training() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_training"]], "_entity_pair_permutations() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._entity_pair_permutations"]], "_get_data_points_from_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._get_data_points_from_sentence"]], "_get_gold_labels() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_gold_labels"]], "_get_scores_from_features() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger._get_scores_from_features"]], "_get_state_dict() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker._get_state_dict"]], "_get_state_dict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel._get_state_dict"]], "_get_state_dict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_state_dict"]], "_init_initial_hidden_state() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_initial_hidden_state"]], "_init_loss_weights() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_loss_weights"]], "_init_model_with_state_dict() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel._init_model_with_state_dict"]], "_label() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger._label"]], "_standard_inference() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._standard_inference"]], "_valid_entities() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._valid_entities"]], "add_and_switch_to_new_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.add_and_switch_to_new_task"]], "allow_unk_tag (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.allow_unk_tag"]], "augment_sentences() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.augment_sentences"]], "build() (flair.models.entitymentionlinker class method)": [[20, "flair.models.EntityMentionLinker.build"]], "calculate_perplexity() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.calculate_perplexity"]], "decode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.decode"]], "dictionary (flair.models.entitymentionlinker property)": [[20, "flair.models.EntityMentionLinker.dictionary"]], "emb_first() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_first"]], "emb_firstandlast() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_firstAndLast"]], "emb_last() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_last"]], "emb_mean() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_mean"]], "encode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode"]], "encode_token() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode_token"]], "evaluate() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.evaluate"]], "evaluate() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.evaluate"]], "evaluate() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.evaluate"]], "evaluate() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.evaluate"]], "evaluate() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.evaluate"]], "evaluate() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.evaluate"]], "extract_entities_mentions() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.extract_entities_mentions"]], "fit() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.fit"]], "flair.models": [[20, "module-flair.models"]], "forward() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.forward"]], "forward() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward"]], "forward() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward"]], "forward() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward"]], "forward() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward"]], "forward_labels_and_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_labels_and_loss"]], "forward_loss() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.forward_loss"]], "forward_loss() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.forward_loss"]], "forward_loss() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_loss"]], "forward_loss() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward_loss"]], "forward_loss() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.forward_loss"]], "forward_loss() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward_loss"]], "forward_loss() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.forward_loss"]], "forward_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_loss"]], "forward_pass() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_pass"]], "generate_text() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.generate_text"]], "get_current_label_dictionary() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_dictionary"]], "get_current_label_type() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_type"]], "get_entity_label_types() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.get_entity_label_types"]], "get_output() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_output"]], "get_representation() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_representation"]], "get_used_tokens() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.get_used_tokens"]], "get_used_tokens() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.get_used_tokens"]], "get_used_tokens() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.get_used_tokens"]], "get_used_tokens() (flair.models.texttripleclassifier method)": [[20, "flair.models.TextTripleClassifier.get_used_tokens"]], "init_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_hidden"]], "init_weights() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_weights"]], "initialize() (flair.models.languagemodel static method)": [[20, "flair.models.LanguageModel.initialize"]], "is_current_task_multi_label() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.is_current_task_multi_label"]], "label_type (flair.models.entitymentionlinker property)": [[20, "flair.models.EntityMentionLinker.label_type"]], "label_type (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.label_type"]], "label_type (flair.models.lemmatizer property)": [[20, "flair.models.Lemmatizer.label_type"]], "label_type (flair.models.multitaskmodel property)": [[20, "flair.models.MultitaskModel.label_type"]], "label_type (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.label_type"]], "label_type (flair.models.relationextractor property)": [[20, "flair.models.RelationExtractor.label_type"]], "label_type (flair.models.sequencetagger property)": [[20, "flair.models.SequenceTagger.label_type"]], "label_type (flair.models.spanclassifier property)": [[20, "flair.models.SpanClassifier.label_type"]], "label_type (flair.models.textclassifier property)": [[20, "flair.models.TextClassifier.label_type"]], "label_type (flair.models.textpairclassifier property)": [[20, "flair.models.TextPairClassifier.label_type"]], "label_type (flair.models.textpairregressor property)": [[20, "flair.models.TextPairRegressor.label_type"]], "label_type (flair.models.textregressor property)": [[20, "flair.models.TextRegressor.label_type"]], "label_type (flair.models.texttripleclassifier property)": [[20, "flair.models.TextTripleClassifier.label_type"]], "label_type (flair.models.tokenclassifier property)": [[20, "flair.models.TokenClassifier.label_type"]], "list_existing_tasks() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.list_existing_tasks"]], "load() (flair.models.clusteringmodel static method)": [[20, "flair.models.ClusteringModel.load"]], "load() (flair.models.entitymentionlinker class method)": [[20, "flair.models.EntityMentionLinker.load"]], "load() (flair.models.fewshotclassifier class method)": [[20, "flair.models.FewshotClassifier.load"]], "load() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel.load"]], "load() (flair.models.prefixedsequencetagger class method)": [[20, "flair.models.PrefixedSequenceTagger.load"]], "load() (flair.models.relationclassifier class method)": [[20, "flair.models.RelationClassifier.load"]], "load() (flair.models.relationextractor class method)": [[20, "flair.models.RelationExtractor.load"]], "load() (flair.models.sequencetagger class method)": [[20, "flair.models.SequenceTagger.load"]], "load() (flair.models.spanclassifier class method)": [[20, "flair.models.SpanClassifier.load"]], "load() (flair.models.tarsclassifier class method)": [[20, "flair.models.TARSClassifier.load"]], "load() (flair.models.tarstagger class method)": [[20, "flair.models.TARSTagger.load"]], "load() (flair.models.textclassifier class method)": [[20, "flair.models.TextClassifier.load"]], "load() (flair.models.textregressor class method)": [[20, "flair.models.TextRegressor.load"]], "load() (flair.models.tokenclassifier class method)": [[20, "flair.models.TokenClassifier.load"]], "load_checkpoint() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_checkpoint"]], "load_language_model() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_language_model"]], "predict() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.predict"]], "predict() (flair.models.entitymentionlinker method)": [[20, "flair.models.EntityMentionLinker.predict"]], "predict() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.predict"]], "predict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.predict"]], "predict() (flair.models.prefixedsequencetagger method)": [[20, "flair.models.PrefixedSequenceTagger.predict"]], "predict() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.predict"]], "predict() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.predict"]], "predict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.predict"]], "predict() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.predict"]], "predict() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.predict"]], "predict() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.predict"]], "predict() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.predict"]], "predict_zero_shot() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.predict_zero_shot"]], "push_to_hub() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.push_to_hub"]], "register_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.register_labels"]], "registered_labels (flair.models.regexptagger property)": [[20, "flair.models.RegexpTagger.registered_labels"]], "remove_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.remove_labels"]], "repackage_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.repackage_hidden"]], "save() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.save"]], "save() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save"]], "save_checkpoint() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save_checkpoint"]], "set_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.set_hidden"]], "split_batch_to_task_ids() (flair.models.multitaskmodel static method)": [[20, "flair.models.MultitaskModel.split_batch_to_task_ids"]], "static_label_type (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.static_label_type"]], "static_label_type (flair.models.tarstagger attribute)": [[20, "flair.models.TARSTagger.static_label_type"]], "switch_to_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.switch_to_task"]], "tars_embeddings (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarsclassifier property)": [[20, "flair.models.TARSClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarstagger property)": [[20, "flair.models.TARSTagger.tars_embeddings"]], "train() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.train"]], "training (flair.models.languagemodel attribute)": [[20, "flair.models.LanguageModel.training"]], "transform_corpus() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_corpus"]], "transform_dataset() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_dataset"]], "transform_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_sentence"]], "words_to_char_indices() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.words_to_char_indices"]], "zero_tag_value (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.zero_tag_value"]], "classifier (class in flair.nn)": [[21, "flair.nn.Classifier"]], "defaultclassifier (class in flair.nn)": [[21, "flair.nn.DefaultClassifier"]], "labelverbalizerdecoder (class in flair.nn)": [[21, "flair.nn.LabelVerbalizerDecoder"]], "lockeddropout (class in flair.nn)": [[21, "flair.nn.LockedDropout"]], "model (class in flair.nn)": [[21, "flair.nn.Model"]], "prototypicaldecoder (class in flair.nn)": [[21, "flair.nn.PrototypicalDecoder"]], "worddropout (class in flair.nn)": [[21, "flair.nn.WordDropout"]], "_filter_data_point() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._filter_data_point"]], "_get_data_points_for_batch() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_for_batch"]], "_get_data_points_from_sentence() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_from_sentence"]], "_get_label_of_datapoint() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_label_of_datapoint"]], "_get_state_dict() (flair.nn.model method)": [[21, "flair.nn.Model._get_state_dict"]], "_init_model_with_state_dict() (flair.nn.model class method)": [[21, "flair.nn.Model._init_model_with_state_dict"]], "evaluate() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.evaluate"]], "evaluate() (flair.nn.model method)": [[21, "flair.nn.Model.evaluate"]], "extra_repr() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.extra_repr"]], "extra_repr() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.extra_repr"]], "flair.nn": [[21, "module-flair.nn"]], "forward() (flair.nn.labelverbalizerdecoder method)": [[21, "flair.nn.LabelVerbalizerDecoder.forward"]], "forward() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.forward"]], "forward() (flair.nn.prototypicaldecoder method)": [[21, "flair.nn.PrototypicalDecoder.forward"]], "forward() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.forward"]], "forward_loss() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.forward_loss"]], "forward_loss() (flair.nn.model method)": [[21, "flair.nn.Model.forward_loss"]], "get_used_tokens() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.get_used_tokens"]], "label_dictionary (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_dictionary"]], "label_encoder (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_encoder"]], "label_type (flair.nn.model property)": [[21, "flair.nn.Model.label_type"]], "load() (flair.nn.classifier class method)": [[21, "flair.nn.Classifier.load"]], "load() (flair.nn.defaultclassifier class method)": [[21, "flair.nn.DefaultClassifier.load"]], "load() (flair.nn.model class method)": [[21, "flair.nn.Model.load"]], "model_card (flair.nn.model attribute)": [[21, "flair.nn.Model.model_card"]], "multi_label_threshold (flair.nn.defaultclassifier property)": [[21, "flair.nn.DefaultClassifier.multi_label_threshold"]], "num_prototypes (flair.nn.prototypicaldecoder property)": [[21, "flair.nn.PrototypicalDecoder.num_prototypes"]], "predict() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.predict"]], "predict() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.predict"]], "print_model_card() (flair.nn.model method)": [[21, "flair.nn.Model.print_model_card"]], "save() (flair.nn.model method)": [[21, "flair.nn.Model.save"]], "training (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.training"]], "training (flair.nn.lockeddropout attribute)": [[21, "flair.nn.LockedDropout.training"]], "training (flair.nn.prototypicaldecoder attribute)": [[21, "flair.nn.PrototypicalDecoder.training"]], "training (flair.nn.worddropout attribute)": [[21, "flair.nn.WordDropout.training"]], "verbalize_labels() (flair.nn.labelverbalizerdecoder static method)": [[21, "flair.nn.LabelVerbalizerDecoder.verbalize_labels"]], "newlinesentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NewlineSentenceSplitter"]], "nosentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NoSentenceSplitter"]], "scispacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SciSpacySentenceSplitter"]], "segtoksentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SegtokSentenceSplitter"]], "sentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SentenceSplitter"]], "spacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SpacySentenceSplitter"]], "tagsentencesplitter (class in flair.splitter)": [[22, "flair.splitter.TagSentenceSplitter"]], "flair.splitter": [[22, "module-flair.splitter"]], "name (flair.splitter.newlinesentencesplitter property)": [[22, "flair.splitter.NewlineSentenceSplitter.name"]], "name (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.name"]], "name (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.name"]], "name (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.name"]], "name (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.name"]], "name (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.name"]], "split() (flair.splitter.sentencesplitter method)": [[22, "flair.splitter.SentenceSplitter.split"]], "tokenizer (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.tokenizer"]], "japanesetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.JapaneseTokenizer"]], "scispacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SciSpacyTokenizer"]], "segtoktokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SegtokTokenizer"]], "spacetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpaceTokenizer"]], "spacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpacyTokenizer"]], "tokenizer (class in flair.tokenization)": [[23, "flair.tokenization.Tokenizer"]], "tokenizerwrapper (class in flair.tokenization)": [[23, "flair.tokenization.TokenizerWrapper"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "name (flair.tokenization.japanesetokenizer property)": [[23, "flair.tokenization.JapaneseTokenizer.name"]], "name (flair.tokenization.scispacytokenizer property)": [[23, "flair.tokenization.SciSpacyTokenizer.name"]], "name (flair.tokenization.spacytokenizer property)": [[23, "flair.tokenization.SpacyTokenizer.name"]], "name (flair.tokenization.tokenizer property)": [[23, "flair.tokenization.Tokenizer.name"]], "name (flair.tokenization.tokenizerwrapper property)": [[23, "flair.tokenization.TokenizerWrapper.name"]], "run_tokenize() (flair.tokenization.segtoktokenizer static method)": [[23, "flair.tokenization.SegtokTokenizer.run_tokenize"]], "run_tokenize() (flair.tokenization.spacetokenizer static method)": [[23, "flair.tokenization.SpaceTokenizer.run_tokenize"]], "tokenize() (flair.tokenization.japanesetokenizer method)": [[23, "flair.tokenization.JapaneseTokenizer.tokenize"]], "tokenize() (flair.tokenization.scispacytokenizer method)": [[23, "flair.tokenization.SciSpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.segtoktokenizer method)": [[23, "flair.tokenization.SegtokTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacetokenizer method)": [[23, "flair.tokenization.SpaceTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacytokenizer method)": [[23, "flair.tokenization.SpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizer method)": [[23, "flair.tokenization.Tokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizerwrapper method)": [[23, "flair.tokenization.TokenizerWrapper.tokenize"]], "languagemodeltrainer (class in flair.trainers)": [[24, "flair.trainers.LanguageModelTrainer"]], "modeltrainer (class in flair.trainers)": [[24, "flair.trainers.ModelTrainer"]], "textcorpus (class in flair.trainers)": [[24, "flair.trainers.TextCorpus"]], "__init__() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.__init__"]], "_backward() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._backward"]], "_initialize_model_card() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._initialize_model_card"]], "_repackage_hidden() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer._repackage_hidden"]], "check_for_and_delete_previous_best_models() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.check_for_and_delete_previous_best_models"]], "evaluate() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.evaluate"]], "fine_tune() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.fine_tune"]], "flair.trainers": [[24, "module-flair.trainers"]], "get_batch_steps() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.get_batch_steps"]], "load_checkpoint() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer.load_checkpoint"]], "reset_training_attributes() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.reset_training_attributes"]], "train() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.train"]], "train() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train"]], "train_custom() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train_custom"]], "valid_events (flair.trainers.modeltrainer attribute)": [[24, "flair.trainers.ModelTrainer.valid_events"]], "annealingplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.AnnealingPlugin"]], "baseplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.BasePlugin"]], "checkpointplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.CheckpointPlugin"]], "clearmlloggerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin"]], "linearschedulerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin"]], "logfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LogFilePlugin"]], "lossfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LossFilePlugin"]], "metrichistoryplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricHistoryPlugin"]], "metricname (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricName"]], "metricrecord (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricRecord"]], "pluggable (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.Pluggable"]], "reducetransformervocabplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin"]], "tensorboardlogger (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TensorboardLogger"]], "trainerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TrainerPlugin"]], "traininginterrupt": [[25, "flair.trainers.plugins.TrainingInterrupt"]], "weightextractorplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.WeightExtractorPlugin"]], "__init__() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.__init__"]], "__init__() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.__init__"]], "__init__() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.__init__"]], "__init__() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.__init__"]], "_training_finally() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger._training_finally"]], "after_evaluation() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_evaluation"]], "after_evaluation() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.after_evaluation"]], "after_setup() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_setup"]], "after_setup() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_setup"]], "after_training() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.after_training"]], "after_training_batch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_training_batch"]], "after_training_batch() (flair.trainers.plugins.weightextractorplugin method)": [[25, "flair.trainers.plugins.WeightExtractorPlugin.after_training_batch"]], "after_training_epoch() (flair.trainers.plugins.checkpointplugin method)": [[25, "flair.trainers.plugins.CheckpointPlugin.after_training_epoch"]], "append_plugin() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.append_plugin"]], "attach_to() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.attach_to"]], "before_training_epoch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.before_training_epoch"]], "before_training_epoch() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.before_training_epoch"]], "close_file_handler() (flair.trainers.plugins.logfileplugin method)": [[25, "flair.trainers.plugins.LogFilePlugin.close_file_handler"]], "corpus (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.corpus"]], "detach() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.detach"]], "dispatch() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.dispatch"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "get_state() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.get_state"]], "get_state() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.get_state"]], "get_state() (flair.trainers.plugins.checkpointplugin method)": [[25, "flair.trainers.plugins.CheckpointPlugin.get_state"]], "get_state() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.get_state"]], "get_state() (flair.trainers.plugins.logfileplugin method)": [[25, "flair.trainers.plugins.LogFilePlugin.get_state"]], "get_state() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.get_state"]], "get_state() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.get_state"]], "get_state() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.get_state"]], "get_state() (flair.trainers.plugins.weightextractorplugin method)": [[25, "flair.trainers.plugins.WeightExtractorPlugin.get_state"]], "histogram() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.histogram"]], "hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.hook"]], "is_histogram (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_histogram"]], "is_scalar (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar"]], "is_scalar_list (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar_list"]], "is_string (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_string"]], "is_type() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.is_type"]], "joined_name (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.joined_name"]], "logger (flair.trainers.plugins.clearmlloggerplugin property)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin.logger"]], "mark_func_as_hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.mark_func_as_hook"]], "metric_recorded() (flair.trainers.plugins.clearmlloggerplugin method)": [[25, "flair.trainers.plugins.ClearmlLoggerPlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.metric_recorded"]], "model (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.model"]], "pluggable (flair.trainers.plugins.baseplugin property)": [[25, "flair.trainers.plugins.BasePlugin.pluggable"]], "plugins (flair.trainers.plugins.pluggable property)": [[25, "flair.trainers.plugins.Pluggable.plugins"]], "register_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.register_hook"]], "register_transformer_smaller_training_vocab() (flair.trainers.plugins.reducetransformervocabplugin method)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin.register_transformer_smaller_training_vocab"]], "remove_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.remove_hook"]], "save_model_at_the_end() (flair.trainers.plugins.reducetransformervocabplugin method)": [[25, "flair.trainers.plugins.ReduceTransformerVocabPlugin.save_model_at_the_end"]], "scalar() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar"]], "scalar_list() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar_list"]], "store_learning_rate() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.store_learning_rate"]], "store_learning_rate() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.store_learning_rate"]], "string() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.string"]], "trainer (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.trainer"]], "valid_events (flair.trainers.plugins.pluggable attribute)": [[25, "flair.trainers.plugins.Pluggable.valid_events"]], "validate_event() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.validate_event"]], "sentence": [[32, "term-Sentence"]]}}) \ No newline at end of file diff --git a/master/tutorial/tutorial-embeddings/transformer-embeddings.html b/master/tutorial/tutorial-embeddings/transformer-embeddings.html index 789691e92..9fcdc5657 100644 --- a/master/tutorial/tutorial-embeddings/transformer-embeddings.html +++ b/master/tutorial/tutorial-embeddings/transformer-embeddings.html @@ -647,7 +647,7 @@

Layerstorch.Size([9984]) -

I.e. the size of the embedding increases the mode layers we use (but ONLY if layer_mean is set to False, otherwise the length is always the same).

+

I.e. the size of the embedding increases the more layers we use (but ONLY if layer_mean is set to False, otherwise the length is always the same).

Pooling operation#

diff --git a/v0.13.0/.buildinfo b/v0.13.0/.buildinfo index d8880f280..e3c146261 100644 --- a/v0.13.0/.buildinfo +++ b/v0.13.0/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: d277a7885d6472c480ed5148a187d43f +config: 9713ed560b9049d08a61e194f48919cd tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/v0.13.0/.doctrees/api/datasets/base.doctree b/v0.13.0/.doctrees/api/datasets/base.doctree index 64c783a8de35abe4beca5d040615df86988b17b6..671ccb7d17a769cccd97b31b129a4302befc2632 100644 GIT binary patch delta 768 zcmbQ)&N{Q5bwes6M}?ueS&3Om$>fW*TAQachA|_HBu##x$hA3}^K9N~5R56axz;QQi>QlD z0Gj9q2a(M}P8^&VW^eBI?n6@xa(h*P;O51FrYLSN-y9z0f#T-!&2owEEXZb-PnJvM z*!(7S5lVPeZ05@lLs3^TnJS<783mi`54&+8L@w4QO>Vf)v)TGw z0zamx;5}9((}8L?H{4%}Dgx9kG1+!G|K|Mjl8l?rKly4a0F>b=+5i9m delta 768 zcmbQ)&N{Q5bwes6hjB%6mT7@O{^X0bTAQachA|_HBu##x$hA3}^K9N~5R56axz;QQi>QlD z0Gj9q2a(M}P8^&VW^eBI?n6@xa(h*P;O51FrYLSN-y9z0f#T-!&2owEEXZb-PnJvM z*!(7S5lVPeZ05@lLs3^TnJS<783mi`54&+8L@w4QO>Vf)v)TGw z0zamx;5}9((}8L?H{4%}Dgx9kG1+!G|K|Mjl8l?rKly4a0Kr=cX$+4*MGLm&TO0Qn*a$U6cs^0@de?fL{N%Sf(Rll0n`^nNI*ndLg-aMB3zLc zLsKb1BOFmMp}iK6Vxw0e0rHMl>2RBLCw~4;Qa6$rdUZTAU)yl?{^o6vNi{CUD=9TBv_R4(rwjhm)FhTR!uF=uK9X7Lbl?Jx^e~j8Fkg-vIhN) z`pkRD94n>iEk#3NV%zx-*wRplShlF>`%+TU}S=EUiO7iRH$;CrP z9(9Ozb!lSpPZR1Ht@B6Eyk%4yJu|>st}si*_h-Epr+a>JDF4nZPqDP%Rbz|A=NJDW zLdg!+vS#I9Ds>d6uRJHkyvM}(=_{q;&p-NBMA-;A*1s1IC2e;WKT!0yh_r5@i3^LD z#y5@P{PrbY_R(^mulVd2T?E;vS(W15JH}8mhiOdyS512rC+&GzgpD0Uak1s+4kClP z=-}a2UeYgzX>9(I-`wo#G?Oj={wxPOKGjsG_~eB{Mpt9=zx&Iba*&uI+keUqq(!f>_<%Zgf06R+{4)THYOX( zY-y4}ZDjg^xH6!}ggb*=fgNe4rD8zEeEOK^|; z<;^6o_&AYunqYFWFOQp_fE&4{0VFmY_0BT6SjjH)Am~2bWD>d6Mj?DR-*i|QXd;Fp zCwpLt$vD8c7?v+J*+dk%hbo1pErJmDfT9Fe*4yb|**l~+;p{5Y88M!s8bRo|&NP68 z5KH8Bmbnwt{KI@xFPOc})K@g66`PL2;2oxwqQMwY1J>_0ec=@Gj#?yd{@ygF0y*a4 zr0H7%V6;ZFx!1Axm#3)RVe22J=Zwi14TwG>lEI=DDm;6`RD+Px0JwV7^qYvSu8cC7 z72Go=ZyIac5pi8_U2&zrjw+QJM06-xV<*C&vwiJ4t_!~AiDG*Tv*tCF(ey-Io4?1cTZ&D-PR z%`|`^Ai)C*%qo6QpYW52mO?B8G}TL%_X0aR&8sKo%yR)K||ng30w#Zbun!n}*H ziUDlSS7tXLt3`qk^xJR#H&MpN8Suzq^W&slF1voj{4dfP$|ke@i_ERz=5ceD(ZOWq zUTt>k-GAj*bCPI{Pcq&+SWyptZs`s^u9;hv2am?G&L^_WyXFR>ez=FUnidTpXg z{L#&_UbM})EV-|x3CWlyV<=PLT!tluct&76Tasys%pBkKx4dX{KZ#w=vdGMH!15;4 zf6elTnCJj)7aQAH#!7oyo58XXmfwV)Mrb@convvaE7ME^A#be3Ba*CD_XJ3sYAGgN z;IilESn3e>T&B#kJSx}&%IcGq8y_dK><=tfxVPAnZS=>1R6YZCU1`ZDGoWS#XcZtc zAeXs|EVBhscz=uKaT1%icUoq^D?2PT1V=#GCxRYBiwUg3Zi|EMoo{IZp06x}i35&i z@3XkUd%!Y~u#Ex|+xW93k!6gqw1hr~4V=rXNU-?0x*15jhRh$$ey=AwBmBr~9>z*<+dughL5w9-`s z^(M1@YphOwj)Ck|)-R1-CbJgB*6Ms1hl{LB$S~GS0l{RFa_+9`HmghDh4ud2TGJRN zmUYM~vyBI>5^Edu;{vqX+V=m^P@v`kt4HwXUDwP3&A%75C*=2kwr;LKpP}3hEst26 zh_1zqbkKa(`h2C>f+4`ux2*wIr>5Kn>fW*T5FHg7PLt#TuSNQw=!L$2$gL^K>_AwG zbo7EM(Jd#=cjK6*0;p17kT%*XFh5bEl^!)ySWzX(&N?=en!wyD5}oBV6+q975aOHY z%%`!nrS&B`;9>xKtBIt*$;Q%ygi8zsMC*w%)py+JPl2bJNsC2PIRFUI##4JqV_{6X zv|JDZl)XtB!pB^w+DGawvdU04lBK;Y`Ph}!&ff5Hf2j{)prL^1v!wB;g$fBnr8#0( zp}VR#SqiXOg|??*>{RKFNG0p?o-~EMkuLRuj5$&!nT<36IxLhL5~f_{dRJ;LxB$vp zl0^|8r?Pp462CwA56oXF*+kE^!U45N`cd%awY1@L$ptTcCjBVd;;JZji=c4TQ>9pO zX(iHPK|#nfcSxC{Z$kd`H&U6$Sm5YKf{jO{73K9M*mqibl!QX71jzecDvFnFEGu6z zD8s&7my!iRy<*UTl@>!1DYX@0AS!7lTVw*6c~1%$gU71LHU}izZ4)b! zR}0z_j1lDe4COZ18nT^=n@Q1`!uBWIoUCr4sXt6jvUL-rdGv$^-gtP~7frm=;Gb%? z86pryHE=&EnD}SDPCax3_&-0pNvSy4Y%q&TtDri&lbR%!|VA z_rOkQcTwC3 zJ@hWM(JeF%@mzM|N1Mz(eAU(+I_3(z& zth#6GX*6PJB*Qq9+*w4(XbD{%ayyZ`7zl|qJ$z$NqB6(fBOj;$U(qX6ReXv@_b4hIUqwQGcT`xPJ_gZ-m;SvK_ z?|^eTbS;uMk-o)HSO9V#QDlq*+52T5%P4WQhHnna2gEWAh(1O7hL1UH@LAc*vf3$6 zL&-VWMA|Ujkf*TBFYsz`#U)yBfWU{OTlhE~n%j;2Y9 z3lhyrK8f1LBb6*RzPn3yl z*HX@k)rrOA>{v6!uf@^Eo}HmM*oKkj0q|Q3Pg67ysC5&$u7ziuuq4F3hiWV0My$cGN_s5u}drMk@@r6 z)plA~8VYNR?2|=9JacJZ+3m35b2~X{M&&N}YPa1Y;;+d8^-qe+3qARl>=N^Qiw*N- zr`28>4xWO!IgCfqEOx)C zLt*cYa&(8b4IEDzVw?pCs-kJ^G}m{++-8mxQC3{Oq@_dE!}!CK4pLPy5YD%EY!_#8 zO%BQZ9Y+kI$$}xTIaZLU@cmx)Y=;#VjB>0cp@{)(2p$CCyF3~seQ(Fj5UoYRCCtW8 z!kF<};+|6sF%v5HXGa6Kc#h+uf#^`U^RDBd7_Hcyp$tU|JX`3fZirb#esP6^+&F6b zaAS>QkQh?j1&VxdZi6H4tPanVI8Me9SoV$Mo4829?>{-{;M2MSp_7is1R)+8`1(}& zsBFCHurlX)hXcl)b^KR!O%EnV%Pu>TS>^~!3#fj{F+qq;xh7t=$K@PPICH(-s?)G#Xz3im>`6{HOFLp+0{;Y@^GSK2#Rx$3IWcCn z)<&??4V{tgVx30LToF=0G>3$ff3~nJ$7zR+&pPR5HwG{SB=$>p=SeZ?8bN5+!x<9e zME|q`eLCQDZ)aZ;;i#E|A>f96FFVO)WXvo{U!(4fcdiq>W2gh_%yi1e9%R9X3!L0jtH63v1mtDQT^$kEgo%0k-r3yWa;M^3|TFM|5v#wSj?c5t&V zzI7((s-8t`cLdUbtH)wfi4I%1e=@*@LR_#?&OPGDx*++C7 zuHAChA;HDRNwCJ`dXf|rm%VOr(RCPQx$F_E%cUR0GiV2)s-RnakF8ba~@x zpbYQ1d$`I-h`HwtnXa&Y?lBE;y(VIXn`hTl_-Ck#Y)Nsq>{>@SgsCQD1(Ps-`~!@%DX!{-AKuLlgJW}DX=3-MUCRz*m6y33uxyEotk)a>1n6fj zTzT$Bmsfw|oVmi4L8?=r_|C-5Ja4=3mGf#>EfNUM03EDK7UPwheYw{a(yLS6?|LiV z!hOW$AOYiE=ACnS$z+4O?>tuZrb~wUms}ew030yvhN~8dsb&Fa(TH?`dpYnA#*g0y zq~3N7C(-5TQk&bu=GAnMgaWgB17U^V0*rwJs+(TzYchs1JGc_uDWq`$K%$$DfGA*v z%qs4sr12QQI@NHyU~Wx!C6Y#dYp^WMZDT*F?w&CFQ8)cmD~7_*Chms`jTpcXkfHX! z-L%3us-4Yz_>Ncz`+T;;M6>w&_ z4ae&!3TXQnS>2*e!;tloyB&#(0G=A+_Er{k6$M-@Wr{nx-b{C|QY%tPU*HbFE6n{k zNhmrP3&|_ob2EYw_$hK^sm7n2dH z$r#FH$o|3YH?|Q096!1J#${qO%Rc4~>h}ix)E+qMK23_6JB_NehCL_TkH)=)$h(LY zI`*P4iRaL zfq<54La`LZzZqtxafITOAl*hNTUWN8Lv1V1LY|7Wgd2fu#0o zKVy(1fcaU~ExM&!lyy_xY+fhT53ADE{|N#yGzIGSQ0df@x<(zzHe{#)$j($VNJ9e1 z?62MuQD6eNFjzfK7;qqck}9!+VX6$BhpRo}{l(Dyo!`C)Ge@Xz$2*Q`z^WYe=L)>z z{rhC~#R?p|;g2cmr3(DHq2FBfXuK=zGY)=+ME5LEd&m3JP(bwWcz;ndJ2ZP=Jt3R| z_WrEV%QUv;Ra+1E<3n|k(aSXO7pq5vtrpT;mbO)uVB{8+enu;R-e0I!jb0)aKkrhv z8C{KJ_xEBxYwl6|7zvF81Qfb(X~{=f2;Tddc1F*!rp$^?sWz~jPLKAdjk6F%@d-qVaw!yx9c%q<=dEdI>1 zlMoWX^-@nBX_5nF+dY-QyUVke1R@HkkoBFXgtRg2Q~!82x6I>&(!-t|q>UKB5U@hx z8P6Ef5JyXX^@Nybm*)w1<(y|OX)TI68MZb8{<-XFNt?V97|*iIUYV5~#!9Sl+e5!$ z9Y#?J5=~x1yAjmK)LoeF0akAgZ8w4{kmdFklP0g#_0G^+Q!9Dt7j#iT0#~Y`Ap~Z! z%pD$F%e97j*7TAN0-`Bm*P}1EUA$J9^@MkvXjaH4wD!IrN=C?^d)n&}Ge}hK*FK#yu{+Ix++QbQrHi}#?IN1{d&?0wa{S4ykeZx!N${hsnFjh9(E5W!t z?*hS_MFEA)pXEI-W*JQmXrPh_9%aK>&N6T0i`sMZy@p?@#8Ccrr|Uv5UFLublH9BV$7VUtjX>6Rl}qs^vhHGH+**Y+ZKsn)i9)K+|I=li<7C z-u}b^j?-~ae8<~~IN-7=_q@G`11@{X<{Ln4@m0oHc*gGQNNl;RveTDNY`N^R-`9)S z;*HxV_&Vf!hS+K{CT;Qcg3AfMt7P-Wm3vn+IKb&_EHtfdXq?L&H4Tk(*@-$nau2I* z2D4fAfPfdKH1O>)ZucX=;U|3^2sL4`uC;G1sYVVIeB|@OsrJ4%jmMU3rU48AH(c!D ztMiDcoR}GFFvFL?GQ0U(!i}lEabj%hB)J2wlFdR2B+T-yB-2mSi;v~b_a#B*JH9@~ zQwL|Dqb%i=&jte*`BqoNo^@X43&4lVeUJbD=%`h`Ar+uCS&cnv3VVO8?|AwC)r3mx zeFMbI#U`BeO#sZXM54}R`QP{+B=v!^iEPL|Um{D(3ATXu_WCB0*a*}+%O}I`1HO+) zSP(5_-h|KycPpC^5O2V3;3??qS|^nW6b zgW899IZQ+0WKBQ$>O2C}@>gf+C;iRge-HZSi0%_KZE(N__3HXJ6S}(7T7Ek#Xz0h= z>vw!_f~}GNRs{|sD!ihKn)=U@p_=-fe=;Pu^4}430c8awlK6Jacla&K zzdqWo-Q5%_P@NorHzvjO|;)3g0F2h5+%qq3=_k_E*{96d27z(ZJ0s1u&2TGFA ztUwJ!sC9D%W|0`gsc?R?y@6uEPg`Jf8G4B%G_!Kx&k7vWU_7BxwZIWV+|(p64*EY3 z_=nKtvNMeW_}xqN6CglY8#0&U<0AOId0-i#fwCNSw|yW#JxcIFl{q9u!d0M=;=3+8Xu;P zHv$*pZFN)|rpreMEM)4#{rGgYqA1V@=1vG~C1KJ4IQDjc{>Y8Xirxv_B<{HblvRW0 z7X`j1tT=F>AdsR@Zmm}Y$PeV1K(*rE{6WA&Na-Vdd%y>)iUQS0|IY(w8Y>but7!6_B!9c|hbQLX*+kTFZ<6L;*WWX=j z0`_q)p@)w%VgI$j4P*3XGL$95@SE|`o5{-V2CDMtZR!{Fk`8H}bdb*+4@$wflul)t z4TDzL>IxK%J_Y6_y70FkZW>MmBP&Mf(O?1LqnQc~zF-7S z1>+_jO(Rv$wdF$4VH`RUP)qf$%RyTlRaSN#HwGDh22)6?IbRM0ZK2jAc2NK?p`D>b z{bcc^Jrqw^a~e_MjNfsG;u-5IWtBq7`T{dKAr#M>sPI+h>7dJfOj7c#busbB*DDKq4OljQHvzT=|0>nM3T;;sKip*hpOmduHGg@XQ+4;E!Y>I z37ry)BI`0Jlnd$4h3=E`)MN~0_=>E5s1k`Y0*m#5bl~OCXu%W^F#O16P-r|GH!{j< z?dzdmgtFG8jzWV`A^N_856AQcAscKMAF`3q383Y?5PcCC1tj*?f@tE~=ZDBLUfmcV=a`v4eRR@z0uDxW#XK zEJU~XF%>`+y2XzH?CPaZBBWmleMJ&wMD-%vaXm!$`9j5G3a9Fe&-^89GQtaCWUE!1xRfy6RwGKc)%dsq&ejW) zhRYq0(H|yH zyH@yaY`EM38BsfHIVs9{)s%3#1F}%zoIA}7UlZd)zjP>lI~*p1gm)EXUieR8m|Q06 z`S5-m#(&VTCYtj%R)y(#h1&`hp7?bihUs}lQ-RZ;gcs0NN4w`hSzW09S=eym)PV6P z!wO5PlF$pTm4rWvF98k3pPYv2eGR9<&F=mfjvN{4{17IiTknie;UVsRC`@l|gqOTu zFvR@4T=h)YFzjReG!@u*K75Nrm%rqgcMsVwED865xtGHm3Huldd+vtmZ;N68yJt<% z_eYyfCcHz&e@p{V;|DTp3ZRdgFq1?$1~3Ft;hjLj--IZi2~IaiutRc{1eMf+06wpi zKwo`vAp1$Q$gP*~8=)2h7y?P)ZJ1E*U#y^6ZGA$z+AQIpI9ot;zqq2qd;B5rX~%@= GzW)Q18h7FV delta 19729 zcmZ`>cX$+4*MGLm&TO0Qn*a$U5L5&K#aD%w5a?bQY2?dLwAnBatN2EdTd5(l-dfK zCwSNk^@D0jncr-UcV#PSo?uZbO1IXiQ&G2IYYnv|C++nLglr|5_2f$QGwZ1(nIR>6vuhGPloT|`mrDkZ zIN}iP>e9rLpT^fWS{IC(anqw zgpwVoZOtyYSmr3nSaDX0d5?(;GFC_>pMUhNh_VrKta~pWO4{Zuxv%(d5oz5*6Bm^% ziEkRk1?@_`?4xBqU&)y-It#KKIF$%*p^jjqNNeD{}wZOJn|Q8N0^d=XpC z=NNX%Y)UOzdbgDJ5#@mL^MWa$?l(r$Y4BjsbTrY(M{{R|Sr3`+3S0IuxQDWFtxYzT z)xso!`k3hl;>v&?748gj1-7S~mWTlr^XX%bgVyG7e``}ulDw#`4_s|cZ;(6)z}d;9 zkYGjunf>0|tn#!FH1EJeAlS$-O8-?)QJkudzpotiY zob0~ECgT9(Vpz7sWD`;39;y|YHVZ=B1Bwz@c`v7f^XQy3h@cO5~V_ z6Q*wofYBPo=3K+xUz)6TgDroUo--z66d?MLNCt~qsPOD{Q!PSD1K`RH({CcSx-!aS zR(RKxym5^AdopIYrzlvR-8GwRaLZ~wFXBe*=c;DpIMp-|PB_g~L`K z!HKZB7wLh90-}$T9z-ovn3-aJg!F&|84sIf)+rVJ?VV?N9A?!rZy_CusytAz^llSq z_>lQM(jnd$+SekZCu$&Xdcs^pXloNMTl%`$!Orb7_k_Gw<_?vi(7vPjX~JEYA)r9j z40Adyn5a`Y`n%%}&@i%e*Zv z-b@1+0utOe-`t$AkD2M{-wVu7#fKklLu~6Yb7SzoXMT%xA!_Sl>MFB~mF+YSfR)S5 z>4ff+^DJYTXEQclw#h89KlYis!M^oovUOlF6+o31gjx*HY!z7Wnfc#@S`3A(FU&g$ zs~Es$e`R(9vRWtzLEnAme-mYVoDL5iGCxY%<+5vs&Ho~;p==V{x6s@QZX7db8y!qy z?p0>D-u+j8H7AMI_$1@KjTLqO=az2J{i?ZTMes;0>wF^1x?^rA>W6zsPqWzAUAM)} z8Wfo_VWipeyr34Rkr{9IMB8 zSO!(ZY^=q!TegzmrVg{@ z!5>{M>qOg(%aZ$88k3A^GKMk*&SqLth-U=GvBg=I$jtFwKg)|o_Y>KrY>Ui1`z>!m zgV!v7h=~r+c9F4-rL3%nwJ9teZuw2fK~xA z19F+W*fL8Hh4(jG9wo7PdxvE@yt3U=OK=2~eIn>Fv>4AC?y@-8o_UtW;Q7ijh&bSA z&R&Zfy!$N!2-_$iu?;_45?SVOOAF|I$iTUxiUf;}S+0?&bCtQLEvmL}{143h#o`j3 zVekKip~CX(31cr?hLIZ702ui{3tfD;tnr_gEYUYW*#XM=FUv%hZM9ZmGm31!jrUs> z+S9)*vzS}9s%(0Z%@4mQ)~fNQ=Yv)^H-%MR>oGEG<0>#>Q?iw8N&!WaM9{T8_bB-J ze(S@e7bqJF`Sq-?keq5VhB6ffH?mG68yY@K&uwXyApa@r$Ano7U^yMFHrU?YN|LQF z;@k|;1|l>%(6E!$!?xy`9*04lt!qgzxKl)}>|}Rqb(V6-(hP3*u+oZ*Q{kJ8W|`J2 zB)eSY)BtQl+h44H@D-~_t~PB!VUG2PXqAh~M_Fr#xbeviMJjuAv^5bf-*3$|!2`M0 zm7*tHrEG}R#+pn;Jx^QHBsiLH{YCJIX#i?06EOwk*Gx38g=9Ju7h3Cy_I257MOM0s zpxz|5ceT~Y&oPj*()y**%Ouvk#9EUN<8ZNcF&W01DIl0kQqJ8~-)eQ~yRcrLThokT zV%Z0+GTU&#DzP>}KQ2JKtZn`u4F%HnTRnn5@499VX#TyZJt4pMvvpG?`V8f6XmQxu zSadCBq=V)&*5|9l77PKNx@8Tpx@mH2sCV1iU364vI8BlVycX$yq8Ix9Aummm+5WH; z>F9Y?qFYX!@5VAs1yH4dAZ@f&U|ym`D?Mtau;MC`opop`HHJCWBs$A!DuA9DA;dS) zSx;kYOBzUYz{LReR%1zl6OT*x6D~0n5UnrDRNrxs_gt-~uRX zK^8@PoWkZ7N&NocKQM2FWD`Bt3J26;=|{nv*V6jWB^SK(ne?M*i>spCErP;TPnKcD zrI$*J1O*|_+Ad{@z6tr$-$>;iV}YX|2{s&-mRHo5VDBmEVG;_h5+MI~sW@J?p}b3UR#y0z^3M#$7333?8c?+Z>Q=w@s)_ zUL$BrFh-E;GnCt4OUQOIZYD)%3fq@#bFz9xrhYIb$<|en=Ft-xc;n$^Uo`ekg@0<; zri(xr)xiCL?V7l}iGh&&r0p$Xq>uBtU2JYx)Xw&4C4d)x>1?YbI>RjhEm{hOF)s?c z*Bv{d-9^Fs-E2ciSoxHJW(v#c6Af!1%a$m@$1l;?h5ayaEL9v>lP=d2^ke>H$ZRDq7W@Uk?mZ(%_Ut#? z%hd=MUIeoT%Q8EaDNF3jk#aY<^@2>-@t6vr3SGxzfM%;eQD2#^<55&$rTw(7=9wD9 zvX^AKj%zA_jTaI^d@ScomSxyHQU+3T0{AE2KtliNtBoWiQDueo=p?(? z-1hPSs69t+NEp0-R2~fn7s_knWztGHl@2>i?}Jq`o=ak*A8p4l?>gB5z1GOP36~ha zdIg-zpi8m5k@PKw!hDc>iy~tj$k`|RSZ1lC6?}6*-Y=G6K=dinH+;-xgU-lamfco) z8cNT~CenuKx;&X>eSuel%P-P`0|Y)K-NMId(By_pClZw9vkrgB4n2)^Z^?87b2MF2 zT##s13P{vG9-(BjaorR<)O9N#R0?!SROs{}EN)a$wh>k_U_os~W&FP7bds`+^e?8d zskU-PtWGQ@XGfbVel3nR_Uv@U!Pbv3_lMt_D}Ry@#+0E~TcwTB`|D6WL-{C9#xB38 z_~7~O3ONO7O}-8qKq^C%F?3*OC;KXiZ1AV|Sg(A<~pKjafRkZC< zpmc?SuPNlp570Kj*pG40X`GT|4BX;QDqkte4x}J?Q-DcI>iGSYZOL$ z6a^%<43x+X__Xwd-Ex4;kQ^|oz^Ig zVay(dmN`f3A5w6)u3b4D_(^Fd8t2PF%5}vCGfpXM#l@VEe{xA7S5HFz;uWQ{NQNc{ z^m9$bB&r&Dt@7n*1t9CDGDajNs^NvcX8XBnvFRu(m)X}zcE5fys9M9mrlO?`E$i6t zl5lIQ(1JF08+`SMJ$^^b<#(Fc|3wlS)n_PIU|Umr{2LK8lHs)$_W2bX3F@~=ciP&? zZ4&sp*i~|8gO6{rrG4yMV!dOU2o7i3nFyaI8^*Hw+nxG6`_9XDx+9IDuxhZq1(|0x z05YfA7l?(NyMpZ5_HvPB)_J*oGF)6}UrXzIxqTWuP-G`-1EAh|kwMKYpIuyGkIbLn zuCmj@(ok4aY@Z|=;+aeT%5I1CpWDevGb(q%SG(*M5r0h%sDDCSUg*icXqTAhTWpvw zJ1zIna2Pe<`5)~sh>%3VBxrWo{%3r}T(qk!`8G!RneMLk;J#%qs;D8sgBAyn6mCm& zOn^Zi$0`y$lud@E365%_FMzTl5P!&yMr@6ip<}`Jrh_d4H#Vs7F9>yP@bdaiwfpD&!W1BdW zYjQ~L=QwN#O*RaE&9R(Bh41%rW;v`df23m#2~7-OgYh5;-{sRF>3chFhG=aPE@3uq zBF2p068D&Fh?!8iH!B*rMYA0j3`B>(?ROmq#AwCt3}Glz;MpQaO+(Bg@(aryPryv+EskXLWd{)Nvw?z|wCV-^4`(8Z>hJ7Uh+hZ zv5#9gUxyD(&eid<-7e=i!kO#sQk{k^Lks6{W>0duS^8n?V)!TEoJYz7ErtW4&xtXs zwKklcYUGS;7wbOe%o8C6L~}_v`DY7DbDehB@T`+=c4GiTKw`gibDj{Bt`UT`-JKyZ zPV`SJ(5C}V^>X$h5ssQU7y@qC`?8Z_IksINwR% zCu2j|u)WYpuN5@e>V8E|BhhR)yvn(Qj2umkp)90*zpxOtedILk_9Cbsu7BdBYX>*` z;#+5ePTuyNv(QK$XMuwiI5L#E*zI#pCv-UDe1n#U))1mjmT|#pXEk0mwSZZdoV`WI z;p$CiT@qY;oCvE;t|v)BaoOt@7hQ)@md75lx?K7}Jk#dtVDys59IDF&%{{JRgb=^J zXja>$K!d6-vKZ-i9SDR;yHRB){B)m-e&xV{eT`f`Xi(QxhqS8!fWXV7khyG42bVXV z2FmcBySuBLgqV9?pXCbc=N?mk*J~nHxOsL>fq#a$$d(j$%dWMAGd@m-%OhQMBZ{)| zP&md_M3`zaRyYyk$3MVGpX{nh_~G5`P&hirl`eLF+O_OZR&}Y%0ZSLV$a>8IK!ASc z!jA)4iYf#W$sy*mrORe`_5<8Z@6S=aM87)62JjNue)lKm}(Y)7LSoGa4-A+!T9mp zfYe*AVI;a7U1D>4*xWSt2q-kW*ArIwEx>5lue#~gz9wTRvx6(aokAKH03^EU2#5k! z$g1XELK=?&tYa;=3+AM`tB^GETZ5(PZX5eab@zZ-54-87S}_!cGgRsT#!_6?j~O_>i40j@-*SXr<>A#ZYSH2<(A+`7q?+;(I$^5s(>@o zZ8%;>Q9#>A$m$k#8iwqb+-*r*1n|^gx3{XOt0>@NDU;pN^=6uTrCOOv#(Z}GUSaM> zNkY-V7)W03Cf|u@GyNE7yxv`f1d+>rDt6y7(k%cyLN^sMK)q_>WufM36ms=zw!(b+AZd z31X>CG_I_iM1VV8==Ftq#poqs@$*h~ ztI^d6c5e^nGi|rp+el~xAfV8NOG`e=Lh#w-p5w!pBY7$xMv@JSI`Uh>>kMQ7Y{c^RP7|={Z0ns6(wWx&?ym!=wVy@!K3u<|+ z8%sU(J(i}giJ{o;`I%l}qI^>=&qdPzs45#$*Atn2OCRzqu0#WlJnr%P$oPyj!p64o zsQUYfP3=6}NLO$n&SP^2dSupSga=<4clE@*GS*RO-`n$V(pzDMfC5RG9{LqV6jktY z)3ccbJqm>MTcGy_dC2z^Ok0;BeT3(8k_f(5qs#@<@;vnk0|7jh@1bupV>fH4I`d%i8Smz@pDQ zI|v~GTr2bBlO{P(zRgnwygNO6NFbts3fbRzN=X|-KlP7ebILtVC_CiYPTGh83;`=7 zp7x9;4RN&eS5Js}c6y$GSI&Cokk+E8lVNMa;h#&M7PQIBfpIL`?3G#RA*{q&w>QQvOx=m;?r-(x(sm=L0@-eF32E|bJ@0hAHMNSDenA%nBygn~8bV+O z%i8Y2wOnhcN1B&(5D-lfyB>YP?d-L}%qP5KMYBRazLoa{Q8GgQ+|yo0+a|9`1+!EuV_vCQY{y%m3uphWb3jkSG~^@2bvy3nFQb6 z^7bPRaGZ{XlH1;n!~vI0zU%Et9B|o7HeY{Yi?1@qz%zDV2V%=*Rh_;JV#{Th{Jx&V z7H`}}!q*|+GsIStF=?}}CtOPKT_Kw{uH37J!2wQZW1vY*L*rcLNHa9fWykCK$UUsK z8O&ih{R3W@+|ak%xZRHcho1DcC)9+++E%_bq#8L;_>s>GC)@enG#*=WmgAYC-s4{32g9QUm{D-4K|1O_V^}{*a*}+(PpC^2N2V3~7??qS=^nW6b zgW899xlBXhM4F#`bshm~`)jg{6aHrKzx(~OMfVAsJ}6*=`t|&q2wmN2ZNHrrHuB@` z^*g>d!SJaH~1~v zzg{raBc!PSsyswEM{QH|z&4oZpGMjhC=YDEss0V|ft_36uf;aV{*my=+x~0uwj527 zf-?Lt-+zH{#*NJcXuHHO(-PHWhu8TZB>YfsnO>M@H~1$D_kchrvh?8NL^f_qG`}am z^j{ImOrSiqV|N(2T<}j|i7ov-q5W?ES`xLP2*8A+MnV^`p)1Gyk-6=y6OqNi+Q5%_P@NqfRyz0MB;)3g09>YVs%&N5X_kcS${hJA)7z(ZI0s1u&2TGIB ztWXU^sC9J(W|A1hsc?R?ynzzIPg`K~7Y8Xir)#`Anv&Xl+}Re z7Y4p2tT?d0Fp#28ZmpIF$PeV1K(*rE^g+NwNa-VdTfhe^ivu-Cbuv7!6_hfk5RBbQLX*TYrv^;~aS5M8GfD z0`_qap@)w%VBgiibz}5qFq9?3up9Bwo59NO1gi7sZR{KLk`8H}bdb*+_e;UJlult; zje=I#;tD1RK3dEpz{|-&`nhftkXTt-5UWUAa_6Q5ml%n1TM1C*tTD|TsI4!#yXyzz z(mVx_OI?y(-dc;%K|5>zZm=7S{C6;}?xrwAU9k7rAU$t$GtWoC>iVK^wPQto9Oa8b zdY9m?c#`8j3t}y53t7G16-Y82)iQg&Z?Hl!=FblLVa~u{brMcqRvdV0bg%p91p|UGQ5FHx0*wkrkutNU)Ib(M*K~UoZkE zgK-m&rje@W+HyYVFbrh2QHvzT=|0#rM3T;;sKip*g{tXcuGu<7XQ+4;E!Y>H z37r&+BI`Ublm{8lh3=8^)MN~0_=>Dws0xWQ0*my4wEyMMD8UpEF#O16U}zj0J0i+z z&Fi6GgtFG8jzYtcA^N_8566u8Aseh87qXGi382N?5PcCC1tj*?{Al9a6@*2C6IjL%p~%_k$lj3Q?1U&F>LUfmcV^|cu!H#*@XzX-xW#XC zG(@-fF%>`+y2XzH?8?PZB4k_+eMJ&wMD-%vel0}z`9j5G3a9Fe&%E0qy4jDZ0IDPs z;t$sePk@h=Fx}^KS<5P6y3a@1L{?li9GQtaB!y{y1*px8cRwGKc)%ds^&eRW+ zp zT`PPyCS2iwjHsQpm>A`}a&oxB0a>VU&K+ljuZr=ZUpkb%9S)O0!n=wxFZ`z{OfD1k ze0V<&<3DIv9nJY0E5r1>!fk~LPyE^s!}PqOslcgE!t?2>quq0$tRB?-ENnP&YQVS? zVTC1COXvw#OT!<Kc)ew@dKGP1<+efm_Z^O0~i9S@J=A%Z$gyM1g9D%*de)Ef=X&Z0H4=Q zps&6-kn<#3X`1j)oGl=_Ph8RAJ^o<$v_rx) G-~Rz^1he)4 diff --git a/v0.13.0/.doctrees/api/datasets/document_classification.doctree b/v0.13.0/.doctrees/api/datasets/document_classification.doctree index 648612cb292da54b17bc127c8fa073cb99ae2a71..f365e82aa6ed279a833f2887e7355260bda686b3 100644 GIT binary patch delta 3436 zcmZ{mdr(w$6vyZHVs}|sc7cFZV3tx*a1>3!M`k0F(?pIogpLh9$7kYW6nZ#0YJp&m z3a-mf5qxCjqX=!aqod%Xu$=LgHaVJO8dg@8($irS``vrt{_by={@l;^obx^BckaFW zYr3D%bU$I=8f1TcKu&gXc5$)4wJamph?=RDR0n;wt?>%+`)tnO?Bs4rX0=W;QqxIj zY=nQ&z{udEwA-GpmB669VOFJ%|C)|Uf^7@W#3(p8Z^g5UWnHk~Et^921fxr@NfK-= z+nr<92<~W{;WU4VVOR5eJ&@b~%wM)({pnM2|08w3o**l#Sy#UEDARTnbl;5ex2MGh zKWb@LMwW8$<$r$83iI>AZ|P{2GPIuJg_I$vXLu7{xHA+Tz+rU~{aJ52dEZOO4U_ty zQ3&3D8qJC7It-5Iq2zwy8Xx%viuUII4`2u4m&Xp@#T7w5F=Swu_WIA5{ib*NIc4>h#-3Ph%*Lzv_CeUg4`z}@ zP?~|)ST>=lAk-W=v6&GMZ)W2q^5xbASTP(gmX1cSVBMfD7f)AxYYaOW9*75PP z@FlZH5M4}_BWg7Rd~6AJ=`-^B6~taW315ZG1-LxI%+kX^gf+V*Yi+_+P`?VNS`0PD z1+&4tN<7{&s1&Acz*FRcxh|}$!*1h{w;jWM5xmQBzNJasNyHqKudJ5mhwBYES#|eA z;4m&wjr~w|1kaG3Aac_!=PG{gfD@_0&vq-sRbdfhj zj;?=f#w{m_As-2WT)^HTv2tepW25tfYe=fB*vTDGR7IxB2g>AJa2G7uOj_k@V~X%_ zFJa*(4lcNt2QHAs(5s#-3U80`!Y_!!c;DYUM4oV&>+Gz}Kt$XKug&;`FNqs&o+dNo zr$#1SJx3f}B?+DaqM^2s5#7ItJ!f1Y?Q&~+F`a+bLh?h3>3shW2K)LkDn9g`wg#F{_0%@cV-!PXtrI~(y0>wgM zF)fnCC4c2r8Y>6urd0%7x&9oyjzJoM$T@etcf{sT0`;LZR5 delta 3436 zcmZ{mdr(w$6vyZHVs}|sc7cFZV3tx*a1`IK%qAwMi5zVR9UFY+TU17+hm)fg2KC<#rgtpqzQSeb%&iG239L+HeD=SOs=`f1@?!9n-_qR)b?&o{X`JVGT_ulQ&*M+q~>^2U0+cDe|!MhyiTbk6JM9e|?%4&IjxL$`-Rd+uG z4&wsV*bik#@HFWOA~(}=uHxqoIB^Q^vXq}vL^kka--~A@`U>uB@z4YiLZQW@J=h7y zZ{exZi0i>eZ{sbNqtt^1^8mhw_gO6Wr;q@Q#>8iF(-;?wfhUH%WU-Wj%|)hLEQPSs zdX!@l$ar~_AmqY$xkJ%RfKTi}?C?o8$+8$rVZ{Klz+xvjOHNuw7r8-LS3q*q4uV`T2D2v->!YLvw+U0oQniB*t)pL@LCP(oi@Zs4 zbp2y9W*JEi`$!1n0`?Axmow`h8=W6qP10q>cJ6?pN-|kKP$uVsyI|2~(kx#aQ-p_m z35zswaKXJiaDgm@ZndO1vOUHNzaS3deShx|dBSC`v%NM05pg53Hsj;IByPBQnoN_Q z8kuzU9C37%BzPK#hFZc#bpImuoOOk?%B|_ebpBZr$qy^0^Zh@N^KxfeJP1B7va}bv z{Xwde%;9+RV7dkh9Q3xdGuXuhI!{^|?CZy<_|UiCo(wiGg_cSmopHh3Q01ff^8XBk z(L#CbTAUwRbLlMA!w+aAZBf};et0BxLd|n@v1-&N>>oqtOCx>wy4lnz&GhpVC>{zI z(;``1@;R^4csW=*kL5Y9QR800Q|8jMfR@ms^7T{0VEPJrR&9f?|A2OdpQ@=>xrJ4L z;OfP$LJREKZlfgPyhY+pxcBjdQ_W(D*6sn{F;eG_{JKZ=y;3(M`&X=Q-gU zS}E77MA#w!2321eBOOHg5TzHLXK=BG$GPt^Jp`ZsNSl}?K=8)!1_Yz9ESGJT2VhpGTnH{W{ya+x^M;~{EH2zu zFgti>F)ANSqm(WjnawtZo2M5s7Z-m8Ze#j}`Rru)^jZjXDPdh@2Ot))M>VhJH5=Fi kW!!2Qx-op*0Mu+^d(}w;Trd|jZ)1tdLthRX53#-EKlL^1<^TWy diff --git a/v0.13.0/.doctrees/api/datasets/entity_linking.doctree b/v0.13.0/.doctrees/api/datasets/entity_linking.doctree index b8961e3cfab643e0a494024c68e1f7a2845a8985..809839ccba4b56742594a7a2b113527480eec3e4 100644 GIT binary patch delta 1592 zcmZ{kZAep57{@v1x;b^z<~Co}*6dTm66S|23?wLJ1br}~7cDhQ5Y%O&SrZ+lwz&$! zOPxSOOb8*U$q61w2nhsHsKBUimCA&O%DzMeQRiOeo_mk^@%;YJ`9E*x-rhA^@0u-f z6X_3P>-aY2H`@;07fBf8Q>Bf$oX7+E>t(GaV-pN@y#WEe?G zmxsHt7+I}zu6v2sNhhOYVtr3W&Ev~sR?Ta@4n}F)V?Q@s$C2r5#Z?ZBPtebk>D*bB zX=FOfEf^&h&2-1xXF}_;f*Y64i~fnl6gjb+CWnLBa`U^dv_9FGy2(%tq36Er5?Ue8 zJ;)4ssmLv4TNhr~kxj^_2u`IT(riKf@Yjj<3h97FbUF+r#7OG_WP9jlj4IBJsQZ>t`n8{f1oA49$>61#}INGc5cHLju=>&)V5$dnLt84kAomE?_4#0d{8#t*XNId0Z@50Tb>DOmQiYyMtM>2(%$$;r3M#N` QmHd~*UTp`Q?T{Yge`XLaXaE2J delta 1592 zcmZ{kZAep57{@v1dgs(lo7;R@TeD9MOPGWZ1`?Dqf<740iKmUmxieX=Qao1qdyFMip_wL+e| zkqPork&DZ=DZH>DE0<3e9CAaX#f3~Ia+6^VdNa!#UVbPCrjCo?f1TIA! zvdWOhxXw6X%mRxQ$m29P4@3Ms8WmLr>;ZW))uTM)ID8Bt(PU(VF(=&VMANqIf=KSg zShlqR^etsawPO$+(TbEm3R3$3*`eYgN@z>gc=Qpf_NZ<$hq^g*R2!ZW%1|yGT0rM? zZQ6dJ2;{v-1G(yTqA=eNw4$vC80*S0gxrO_yYQvs1{Nl@t=I;6)p%alI=dSNCKPF3 zy_`b{wvf6Y&LGVrxB$xAaM_L_;J$*B#=^s7qYszlh#f`>6gvrY#?0{y#u57MVMcBQFi#aP`!hMd(E(KC|APbgeu!tc46@Kkd{owl= zKA;^5JNClFPi)b-FxCU5zws@O5ymWv^JEgc5On>)XY`Bm34KuG5T0lg0-H}5(z&o> z1PTj1)C(PD9S6x|@T zlAC`^gkurCELCZMZUX=04PHE(&wFp-M3w2!;oSTsG)WXw^muj-6S}C#=Jk2a!kD7# unkE||i>7W~x7AJvRV4C+1H!z`3r}qqK$b7weEBxN91)C(PD9S6x|@T zlAC`^gkurCELCZMZUX=04PHE(&wFp-M3w2!;oSTsG)WXw^muj-6S}C#=Jk2a!kD7# unkE||i>7W~x7AJvRV4C+1H!z`3r}qqK$b7weEBxN9s3Ade~n)GfYwrIHyRx^A9HX7Zco8gAi0mH6PnHhF<7 z>*n`X5?mNEn-{ohp&9?dLuhio`#Th+n?HE;pt<&g2m5555c$b-4Fx9O=+E4|E-Z;1 zS*J&l7H+s3Ade~n)GfYwrIHyRx^A9HX7Zco8gAi0mH6PnHhF<7 z>*n`X5?mNEn-{ohp&9?dLuhio`#Th+n?HE;pt<&g2m5555c$b-4Fx9O=+E4|E-Z;1 zS*J&l7H+rF+iJy=T93`Sa{=_xIb~Z@=$5 z=j>eHf9LxCZT)vG$S7@8I01>|WIiBL zbom>RaMmBf%W1 z`{Yuu$mAc}wL~cL$)yecEIV40@YmG91WR;>ZX*I={2?pQ>FZAvc%xc-@T)Suh=>KG;?xSw>8BAy8(~vmDXIL7z@sSB&A~bfOL`dFIH+7`ue}5PL}=SOXPCQ|3VrN^u%4;(eI?5 zta8T&{ZC0D7&cJPhMgy*AAJD?Zn#>sL2(-ONYu58}k^N3TNt-HMnhrJWv;ffJjsE z$q#O>ZV=U;$4xbII&0dH~QgJ4rXDDbHcbLHS1}sjq@Ru|4ICfJIupH)eS5!Q!DxD(pawLE;BRMyTr1gzCN;8{Y@>q@2;e0iF3 z3%h(>bV8XDg2JA5Hm-bHxs&zUO^wh8S!!cDs8ts+V9w`#= zWvaIe-0aUAY7l$aD&P4Ya4f7Au=R)m7IbE)Cfqtu&x6Am>Su|ZQ4cKYsrF%q8pT&Z z$8a?TvkKJ$uL7r$RY*V~Dpu=Bgsy0kKCU>1@@6J{WMM>s|E9R+{>=YWiPOZV$m#Y$=0LM0J zt*UxzNPZ7-(sk;39P@Yekhi>$vR_>RW&c!F+#OM`XC*iQ642A*bDTFsSG#SGdW*-5 z1XQy(I(n?aen(Y}-H472$d-f$&#D7OQWr4rrSs}`R#7a%00KgI;b(Op>w$}I&((Ci zzq@vc9UC5SB1^m3CxjHS)vrOeFkZS*EASl_*f3I?&PLKbA~xTteZkZMn*Jo~-m)3IZomd|D~ z23RnnN(|SbkBg!nOYFGe5-YbFP7?4;NR_9 zu`dBH;8eW=IPr*f2fO7ci&`A?lXh8L#9I7V(U~@q->YIOFE~{t<3om?p6N-tx5~@` zy4jeopJSYH``Ub6#ia#$CS!BKmO?#@^eU+N03=`~Qy4qcE{E1hx{hbZ>RD`6JYf9< zJ(sb>fYj(4&B8zFEndP7h(uS;n&RfuR;pXk%jNEcdW3C~IEpn(^vg^q1{hGbRJY;k za--`sYpT@w+nMNxYijgk><9`J8_zUu(lgn`>zLMV(v$Gb9YWu_>;_KSsfSr2F*}ew z2wCMuGUh~dE6b~zJSt&#$WXEAQ~hhUP9D(rYrO~Gb+HHtoutN0aNd|Mbm$XVW8$%{ z3!Xcro9qaQp=Lvk@rqbnB~mH_#RA;)3>e=85GlLjs=n{vqI}yNr!qYCw<6QQK$qU}0o?7W%iu8gzKS zvELJOKqPP)J96BBrjte*-ujJkfqe+N&IEjv;t?Fx%?jA9nJV_YWb|UGH~mVrC^#eGc^&*hnX^LoIGeN4W2;{X)(GcS7S3HBg#6za***T~WW zvzZ;@BkwU+!5^$Og0NGaH-bc(? zqTdSqaGH4^o9#W{nPre%ZU&*mkf)+qYL+n;2Sq~p7)2v$&2aR^xGh)Pi1RDV6mO~^ z8dhtLVSRPOE;pDuo_^Il;nM&Y_;bX}VDsv-5b&9g*>MizW4p~kB7Fr8IBb3=GFRZ{ z<0gBbLn8ehn-qGi!`Hqy?+~dLLro7$gU+y};@?c`8<8}MBB8!?7bAro6w`H`)9{x( z%a?8$wBBuLxcgSimva;V0#qC_+Di7fgu+@y4L2eU2j6eqBGyp`vlm!F$QW!)#c8vw zgry}kVQFVqSYh`U6Szxz=qW2@=pP$bmXuqXh{jaG1zl&r{f<2TQd7 E0|-lmkN^Mx delta 6186 zcmZu#d306f5kK$l%gYNPc?n?5rcsKrM{!|QdT=WVJzA7Pp@LzrSS5gBgMmbYBmn{p zCju4}L5>CSnT!Hy0FNFp5@V4bTp|I{1F{4wQtLtK-23w0o$o&Wyz`s+{buHy@B8k( zJJ*E3z|iNft~CSLUYG=47gok=n>`0usr|d`P6| z^fw~mtf`Xd|5onKuA*gSZeC<;!IW!6Ywd+*wRXXDJ5pG*v0EY(SulOKkJ*WcG|nnZ zPxP*BoRt>&a`CA_2~Z03Y7b0_H163E60yjI=2rWJT=FUKhZ>f+X=J!Zs zxeoh|3oO4)0IJ}ptiTj}r#2Aq76oYr&WNSI0BwT)(p)p{;tc*mXnjgDvGq|YEY=nUfB+Te z{Z%@`5_iIo!s>j>>`+;-ty~IY(n87bx*Hd=U>Zohv9(&VjKnl7By`F3B7k%DNbj+F z-JHqR6OZkeR$rwU3od*prDFJybcyvZR%$2u#=oQvmi-fp8?6 za>oY!zLP>QWT2i6J5NbJ`T_{taII*AqIB7Wu7ix}_@N=c%Tjjf92C=2<$S*m0pY05 z|I*|`A}12q#s=PHnlwZ*0d2TBC}V-b!T zs_=qb+bzSDBC(c5aO{3188b&K7e(1lV9PkAmsphxBw_IcrH*Y0hu)z|0s=z#%2efc zcKN#K_);YV1>NmzT=A@OH|w>V8lexf)W)<^tJ>dIG}y6G(cw`;o`&yMDa}k$biv%U z%JnQ$0o7p9D#q$!vy2XC&wUcry$!G#Mrv@>HCU%Au>Ik&GwzDK}gt zgCywKuh`L@I_iC;t=CJ=0U^BjvwDE_z(u#`YC1mH zRlCfN4G%b#rQPBaLWsjkm}1DqxZwBNXRHw}S~y!X@bpBj7wfnOY@4B_v&3Buia6_a9AeJt*gjXwXEPZC zEEra)1##O_?bWM4Q- zmw*@WU7Z3r;h1(8yX7d08oc!>m6-!{ zvmswU&p6}uHTk-VOZw}XjLij`3-mD3tDxoskbo6TVa#B=3|c1YI-VP&XR%fBfOX^b zT*eXuQloD)3;v`xdkH%r5?vWXQCgjuGUYmBPdX0JlC*E&tw;`V_LIGPr|o$2z~3c8#r;N9%hNe>_GM) zWR)4om=n>hEU#+vsDQm8L&e5V^sm@Dc|f19^lp6D#Udbdni@0Sd1JcRu1{c%iO0Gw zc>X)xWJgF0HS4R5SHdt5o;K3(j<1c2>_gCXCg8&qkKnj&mcw4nRI&SIqX$dH0gwRpF^6QE z$1SLOCKF{Qv*8|q~Hu>g_15nu4yyT@P*n`kspeILPBTM?5 zP3#aKai6&gR&SNF@xndkyl{?hNCaWt-0DpoL6q9cvA(@ zuo`nT>#G}frQX!>%xmT;p9Z+VpCe`ln^%{GfKPqQj&m3v-)r6~(wF0aqvp3Fb2)B4 zX|ne@B+}opNukGDeEoa#E|F>xRClv9=m=XX{>`+$7D=Nh66#BL5mMM;Fk-~oUH<4_aSaZtS&otakoZa0v z>rdD++q7{zmSoue(*P-8J==IO=Wz6eC2v-$gnV*|1UU1}IS)ULn@57<}OP3o$*PPYv_JJX)SG#D_?Hd%*afCjtEYzwQN zwhLLWeCSh4?9JE3Pd&`tYQM=g7(K4Q84){=)sfp^uZ`ZAeFvy26xG`YS$ug8En>r#oGS? D4;Gkc diff --git a/v0.13.0/.doctrees/api/datasets/text_image.doctree b/v0.13.0/.doctrees/api/datasets/text_image.doctree index 738e3c8f587204f30b3d43af980801ed78a1d5ec..78b4a4ca353eb195e30c9dd555bd7936e19bc4f5 100644 GIT binary patch delta 141 zcmaD5_8@FSAtOhHp}AR!SxL!cKUS^Hiy0@Ph%{{8!`y`s+3d&qi3?dr`Q!vi_RYrx gwAe94%Osv7bOKEWsTJG&NvfU?S#9p-XPQ-v09{Hi+W-In delta 141 zcmaD5_8@FSAtQ%zMRJyDfkFOcKUS^Hiy0@Ph%{{8!`y`s+3d&qi3?dr`Q!vi_RYrx gwAe94%Osv7bOKEWsTJG&NvfU?S#9p-XPQ-v0E$#FX8-^I diff --git a/v0.13.0/.doctrees/api/datasets/text_text.doctree b/v0.13.0/.doctrees/api/datasets/text_text.doctree index ab52deeec5ccdd90e868bec6ef04cd6fa90c8533..29b49278a92805c4bf5f8ea2dc75ffe045b35c9b 100644 GIT binary patch delta 1545 zcmZ`(O-NK>6y;uj#*A zA+8}iFV~an@yJqhhSCphQK3kK?8=E%?#7TU9Q~GDhI-VXOgU05VW>RiFe|>@E|b70 zuAE_GC{iuk4kRg6g>S6k==0+a;jL?WktUH4w*^pMXKR-_e@#KknJ>MIo7BpX~D|sV^}p zCCbS5@Lt8|Kes;&wo;uLTI><e$V!fD~am+xUP9cg8 z-0VRGn%TQdzVgmW)U7SV~T$A$w}P7zE9wi_!q7llecp6`cr;Vv34SYnaCcqDIHCtLh2Nlj^zK9dYr?o%eZ>fc?{6ahH gt4A-rSj9uyLe+}y*HH=7g;BC_#Lv>z#Hca+1G=9br~m)} delta 1545 zcmZ`(T}TvR6y@IaZ*BilbK59WVj;C;BbE|M3!)Ii5C!QWg@PVT(OKP8g4_tf2Tf&^ z4^k|VUd$+*@J93}saO~+X;B&W5K4lTL1C?-edAKI-|Y5!&b{}1=iHe)J7}66G~KC! zxV`mf%H7qjDp_jEQ2L}@8dDV>E0k!iWzAH{mxz^oiAvZaO2 zZB%A!lZCf7DiH}f0m1@k;Y>$9nbV66SjFmmi0n55$A`9#QnoftaNfG*aUAZd)K2Qa{ z+FID2-6+vW1FUTPR~y9KEfBATwT>}cE7#7M!&I7Yg{(*{b+F>))5>Nv-VJBzFy43I2KEvP9cg8 zJnTU!n%TQdzVePT)U7HY4o#lFBO z8e%9ff9k6BL1|(wAT3#NE)DUC6$zvXSRaW^HO)nBw4sFe0<{MUlEj6Q+g$df-eYgA^onDvzVVo6;yYQ@8`2YY zMBrJHqUcoAvO|`S=jGFz#nHxPTDZ6+LRO`6+RluH?XGq&|1d~%L|w-UO?-7rEZQ2> z4opSE_GD*3_;zg6v`EEd=hH5oWgqPFis84>x!HV62M%`C8@jRHEb;zF&$)HBr0*T5 zb7|XnZ;;Lx-Jm%trlLbGk!A1x+9&QGT4xwU%6}-KLD6z@I#v0U8EY25eW!~hIsJX9 zW;8R_AwC%2pbU!4*ePva##KJ;&WI(JT&!|yfDjT^Mr=F=zf%G}6`q(DuUrg3(V#zqNWZ?IZBE#|W zf&|Bx7Lpo6l~PJJD~mEbjwp?1_n-?kW#p1_!P#6`OMFi0!G&6)J?ZQw9DkBL?7oEm z(m=eheIuziZgO}iM2Zdl?lzLbm*mr&H|NnLsA(sK#z857xm(CG_dz)KDrs~}0d|l_ z-6}rD@$}1Yk+p7VoUeZ;!JYIzj9LCosO%-i=LFn*%xxb=jwL+$Adm{Tid#ciGJ8%C zy^LjbAvYe0?>me6D?XQyKZoBrLRJ~3N5|3hm0uG~BY)hG2F?>7M9-U2E;-N6ph5U& znp|`j0o2WqR(I~8g3xMZ8jhsVai!q6YzM6B5+%WciSW;Eq8_`bWBw=e=yD~OTYy_y z8S%(w8ito{r`q$zS^XWZ46|pGCto16H1)MrQ`(YqUFY)WJ1B(*|Wx z4o3K6l&;iN(qP&I^}xUcHHKQ8+kaB6hwv{hVfw57b)_HK31w22as;k;nC73uI5H1R zc$ra+(4WoB4vQ!a`sOgLaRA9>`W(Pzt9`Vq8sJu@eLs#o0=L}Dv}DIwY97-*AihZ$ zekx?{2_5E$Qen7=J)$CV@@AJY?PoctrNS_1!9!1(p}^g1*lNv|EOlz>$#JS97G~Nz z!-HE`Og$XOWd|I1At7^Cryiy>#1VO+b{Erzom2cUw~J}D5NDU)Wm;zhoR)fqad~yp rdJZvd%*i5%KwFeGX)a2}k)`qor9AulWRg*rF+W;S*VQ1O@5mo`b delta 2736 zcmZXVYiv|S6vs0&t=ru`wl%hb5oyrIi1@@3Y5Y)2rBKD%=N6Otph}^od+(xPUtkms zF%%H5I%<7Tnpg`+O9nifhWNya1kwbokHn^$W}`OR&_awNp`N)*I&)_~&Tsy6=A1KU z&Y9U4oY@x~ut>_{mioqg`%cS=VSc*vhXoq@t6alZ5xk3FgPIa{mz;^?YxeCC<>PIgUWM#7E= zK21^-or+pc*b49^1@uO7qCsuvfiAxoejA;e&9`*mKv#pI8|%#$?|<}+SLaCj-u`-z zwvG3O=zP%)nxkSWI^+>q&hD=R;@+WkhC!tKhf*36EhnZ^l}}l*P2#ujbg?9-zAw{^ zX2m+h2jh*(pva1y)b?du71Q2~SR(&IwO0d#5L+2>@EH6~2?Ufkh&ZA&Sdc-EC3`qj zUqiyi>4F@h`3ZX#kTIp;xNPOuX3`oc$s?00W?tUMHbVbhWW6Sqj3Y}1zL*pnj#m^W zIKH%q)EcUkGO}4&l;Lqi={%a7z!)*AeYWXE)*4bO%Uc8lR&l_hAw^8$bcP*uU!16K6&E?nMm!LmYO4H!471VqQ}sBAw37lo9I(28-VO9O@bZ5hJ)Ma zCMA(w!{*4+;;rMqm+2+%lkwp_cv;J9W{fW9***Bq(bwtU#-X$xJak7lH9iU;uTUPj z@s0FTv(XJ6rh22x`jn1pF5|KV!k<%pw8`$XXqaZg%G1>7%z%82b|;QHxaw!xq%6w8 z2!D*ym6}Q#OrM}W7?_~OP>XZtPpb70{>4R1fAznf^dmd2Ov+M@z-1rP{Bs#c=7R}8 zGpZ5#bC}s-5v4=l9Huo6AbCum1GsE;j&#)k+|0D^$B{?irhAx{>^MtZ!n6;FZ(_qw zMa(;)ZH_1vhKt!lDk3*;PC3(lmWx^{4TBau@Pru(+`Wda)@;dArn}r)7}~G z-@;<*;W#ckVE^+8nX@|eFr^`m$Pab9m^SR(;)l6iOsj=ByYw#8IwRn;)H96BE0flD qkZEI17C{8sqU>4CMaej_RQ_Wr4#pFMY~$5x(ns=|;N#Qm4ErCOX$!mn diff --git a/v0.13.0/.doctrees/api/embeddings/base.doctree b/v0.13.0/.doctrees/api/embeddings/base.doctree index 41e62501d7c3502c8b30d18b8a179bdc16ee78e0..8ee8fd24cb4f56e7d15c676fbeb71018c1d8202b 100644 GIT binary patch delta 993 zcmX?ej^)fbmJOMV92JJFm+`QL_hYN1P=8HB@QEceh>}4;EWua`KXNfz8dav(fadPUYRa zB;6cM^mjh@=J-NaZWL2C%hpPF%E zD&4F%cM(ePg4Iseo6EO3bg=|4hAESuY&eM_xLIY>96?M`^CKZherUW?v6=fc6Ov^h zk=_d$NZ}3?ncRDUW3%lQ4JL$njdz+hzrWUn(7Czs4sx<>yi+;3;UU}f2P}-9n^hmb zLNTy%^MvQF2(6PR{wtlF@Qrn{z-hnDOW&?UNFm+`QL_hYN1P=8HB@QEceh>}4;EWua`KXNfz8dav(fadPUYRa zB;6cM^mjh@=J-NaZWL2C%hpPF%E zD&4F%cM(ePg4Iseo6EO3bg=|4hAESuY&eM_xLIY>96?M`^CKZherUW?v6=fc6Ov^h zk=_d$NZ}3?ncRDUW3%lQ4JL$njdz+hzrWUn(7Czs4sx<>yi+;3;UU}f2P}-9n^hmb zLNTy%^MvQF2(6PR{wtlF@Qrn{z-hnDOW&?UN1_+ZWIpYx88d=lWYAzf0yzh(myw7|5`F=m2=kt7? z&-eR2&&0HQV%i;Rgp8d<#jBcDH8pAR%7^&Zuz#Ml@`+aFckltnxL2w2GXGhHSE7B9 z>*bpQ1sPUeRI6F;VWA*;v|Z`1@xAwzyA_z%EI*#7RJ4|GHt%`bk)Evbc;&-3QSavY z?2R6LiVs(>O-mAm|0p}X6<^>pukLUp%j~0Gct;C0dbMjKTln+aUU#NKyu4u{rj!G0 zSrC2NhT4z$-nX))qdSTLUiAJ~IVsDscum_G8IH*=?aX1pGw5N17a^zxI`WM#?rnF< z2H2Pd9by`8dqNv~RPllx#HRDIW%Wf!aO_3@6uxXnKsUjkYD+Q?>`zF8k0 z%d<5?uluxtgv;m#KX7%CZJ#88KRH#iKs~I1vDzNo$amk`WowEK2DG6Wr_mI4J00#Z zx}tg8*R?N&{!}TGtv80Q0N962*YmSq(&4Anm3}I5!iKq=vz8pl)W*73(<=*LVvbOJ zY-29CS$_pSPX5JEVQT`3U88dfpDqF?yPk>9P-xw-(=RkJ|s5R9oYL|E66JHc%|2Gw@G7@rNkEe2CEcoG-Jv`vX_e-8&N>;D>t zJ*;2|9NLYMD%$xYSHVT` z1XNja6}q#)x0CR$JOndwOB@ z1egFEG}?yq?pIL~Kihs85eX^l?CQ$Y636qFkr6fdE0XvXSIPu+D+Wkc`fynG+O(KB zk9o|~1%<465HHz`2=Fr*j=A9aMe*|M6IT8+_RBFb!4D>Ib~t~X#24koO;7xd_on?1 D#y>l7 delta 2208 zcmZuye@v8R9N+gV=W%!3aT2E;NL;lgrFp1pwy;5l%~HQx^(vDmfI)h#|a1laUu)V>By9fK*doa0*M>LQ^v(Lv zXuhoxdfl(}C*4Lj`2MR4Z2P1L{K?6hdFo*ejMaAI2EOaoPFquSFsKbqyNsr=+fKO0 z=!)iRd#Y_Q^rcIgY`rmb1;9RJx?X_&;)I{lR|crW1?y*X&YE)}OB?N4MX$_*@mWIg zvkiIRVSN?&I0Y6$g{=uBc8$#{e0mwU*!3)2N0DNfR@>0R+PC3mTD}ra&R5*F(EAZM zs`emC$1A}VPJ_7U~w;06lJM)8H*N@4YhWth4B%0R|7M!*4Q-crSkeG1YOD zMK0jomq~(RkDSRT?IEK zl2B#IRp`zD-%h}L@(|1bTK^CeaIOMN>7PI0gk^9HG<*}hTC%HzcK-{%$)zOB{cbtG z!R_~;n{H&`Wf_9FZ?{v~U05fV8l_MHZk6++m)Ncq_<;Ttka!ASmeN+tPb-V?f;*L> zAtlx=lBpT=hLQCuzKQwhc#9eWJ(XW7uW~3Zf?URIjLhY9V7wnl@aN+C@cO9Gik6H>-`GZ z1egFEG}4N5?pIL~KifVT5eX^l?CQ$YoWS#zkr6fdE0XvXm&*ioD+WkcdT~hh+O(KF zkNM2o2}P`F0592$2=H?mj=A9aMKmX@{AcWwV`73Ij^oU5{yKp#%8Q$x_#5xd_#ZoK BLOcKf diff --git a/v0.13.0/.doctrees/api/embeddings/image.doctree b/v0.13.0/.doctrees/api/embeddings/image.doctree index 685b25b32f282ca08b2e01c2285c0f9ff0e3db97..5784b8829e1e85a2fea9197bfffa527c4af7eb25 100644 GIT binary patch delta 997 zcmex-f%)?V<_+1592JJ@kWI;)++ZWU*~|GTicf*+T=$@u znK@Y?P+{_fV$R7m(-by;^E5$K50~9n;JTU9M+MCefk2JT$AT=_(QI}VpPXR9wRu8R z9f~V6Cg0DM+B_rS4~i)eQMruEC^mycr6@QJMndRjiMBA5c*~d!l99{c*!-t|Kbp-O=8D5z zJaJMGnu|Bg1&8zInrXop`XDg?3gfjiwqilL;#jL9$=<9(4RF$|G$2@kWI;)++ZWU*~|GTicf*+T=$@u znK@Y?P+{_fV$R7m(-by;^E5$K50~9n;JTU9M+MCefk2JT$AT=_(QI}VpPXR9wRu8R z9f~V6Cg0DM+B_rS4~i)eQMruEC^mycr6@QJMndRjiMBA5c*~d!l99{c*!-t|Kbp-O=8D5z zJaJMGnu|Bg1&8zInrXop`XDg?3gfjiwqilL;#jL9$=<9(4RF$|G$2yD?#kdP&ux*pfB5!G?dbfE?@O2`5xH7t3ryGrz$`V6uZd$7F>woYM<@85K6) zP|(IO0HGw#pV4*mZ6#4QRGUF|{IlShq`|VeQFA&gHc9TyOY}Ell@Z$f!t^o=x*nOy zp4LZE1UEO>B(S510R0AX8vkV9dtsZ8yU1fPUfzdubAeYkicJ0FrCWkFUkUigg=|{W zX8#y1gx5DW#`>UyZ`EXnEWYV{%#6I7vl2o$k+oKBcF3A8g(5Oppq&jE_-c$rH~mhldNQGO*7j z&c`AA2XnwZG#wwVh;NR+7K%tYFoP5}``ufFsh@wc%`?u)1zz5p&px?{D&4SI@3n~t ziunzjU;Xbxq!W0Y&%fwhdL71mQe`F+{7@(w#j-Axj~6|yOA@aFOnQk zXXE7BwOo^Dtn=C)yD?#kdP&ux*pfB5!G?dbfE?@O2`5xH7t3ryGrz$`V6uZd$7F>woYM<@85K6) zP|(IO0HGw#pV4*mZ6#4QRGUF|{IlShq`|VeQFA&gHc9TyOY}Ell@Z$f!t^o=x*nOy zp4LZE1UEO>B(S510R0AX8vkV9dtsZ8yU1fPUfzdubAeYkicJ0FrCWkFUkUigg=|{W zX8#y1gx5DW#`>UyZ`EXnEWYV{%#6I7vl2o$k+oKBcF3A8g(5Oppq&jE_-c$rH~mhldNQGO*7j z&c`AA2XnwZG#wwVh;NR+7K%tYFoP5}``ufFsh@wc%`?u)1zz5p&px?{D&4SI@3n~t ziunzjU;Xbxq!W0Y&%fwhdL71mQe`F+{7@(w#j-Axj~6|yOA@aFOnQk zXXE7BwOo^Dtn=C)%zyWjW8-g|fb^EglIro0Y zzE3{(eR5rq<}AHql!Kotsi(~X!-#Fu|dG{$5tkA1Uew9@#jI%F(=8`3^=xYNp#+YEM zlHUrbXe9lOJ+GznYmS26*f7e24IEGRuyG)3w1WGr!rLmdXSi;?>59kJn=1i(Ktnl{}boOv=*+s0O82KT+GIW>t#+PSIZOt~gi# z7iMeQRS|j%wLudUnI9?|v^eM($TG1%YI8-iATQUs$RcI!9WL#{_U;9(hDMQA@eWUazVHo6Qw!yXlszO7ic)C?&TJx`ktp}jU0c=wOwK%{4$ zOq_Lt;E_XQreu5OAMz4}rgF2?-^tt3D0Bf1%sNGOiE{uB1R!{tST_N-bP$iI4RUab z>U{~eTp-m_l`Q+Mjl{D(mQITFYsyzOum^BxJRK+}(Tgs}lOF05r-a$PD5!)3_;@PK zmdtpp3aD*nIr!`#x?k|Lli@b6xVeK`h;sPt3;u2PO$i|Lc9 z&vM|hYXf}pc{*Im#Iyjuw38sk$C4mFOUpsm0{WFSot8@eB6?7b4P2A}ukU1|@$AcV zL!?1-6~73qjXGl)Jtk^|6RYWB@o7;u>A8^Kr#X@ruD1}@WUz-ZP(vRP7W_q52%&n; zm=}67ez<|27KbdrKA%wKJ!9LTe;fTt6vtFY?#nMWSC@x=_;n*aA#Up~xf_S>r|U(R zh2>CtfO=NN(iD8{AiZ6UVe)m`3TE#vYo$%%41|ZIHX4UV57V>J3AurT4(PmS z=3rTZU>KEJyUW0dr`)VWl)}_4g?0~fSW9(iGFvKGA_pH7H> z`;nvniX=?$eyAGE;*j@Ud?c{9n&#rJboRaoXTscfWFG=T-`HdJL|`E+k@V6|$pOTZgq zyTeNkd4Q+I`nBWn>mwJ3f5)VSW&v2!%p8K8HF2Hoymzg~i@$}r#BrM-a`3#M)uo>Z z<#}Wd?mfa9qMaq`@A&eu;4dbg)$7rI}Y|0deEQPX=vNA0N&B^gAyYD^Od+)A)zVkaDzjN+6=iYbZ z+tef9rZ$vn&RfbKS&&uc_3K)7hVizxkjj!0y*}qEV~t~0QjAo;Fvn@s^x3HBk1>M% z&-GGuL%yr^+yn8tw>`xen09mg6;Wu`9C5~<8EaEx;qy6tjEvmQxEKVw&S`E~SxCIb z{`_n;tP%3nvRI2SA@R_ZMGK9t;v9#JFETdGP^mAnQuID@uTmsadPp{`&>QB)!=JS* zO|PE!MGRu){m1+yr-}^r$LaOH@y5=waY_ZN^qQxCmQ|~aQ_pdfU&s`64Xye&rEC>?aE;UO*Nj(UT2kF#6K52>+Ngx8FoJ8&s?1?v3n?)2 z)*Vu+SD~-m;DT4~AY+YV8@DOMmcqk8XBsbWIjmAKx<2_`_<-85woqT=a6)G`z28_L zZuLZRwlTBcE`HZvWGBRL?oT3$cEId7!`uFMO03v!wGBtvC>6uZLE1Zlx#>Lsb?MsG zIQKfOuV`Bv;H}5=9l^WFEISU*)P}3f0%mtwDid&oR~s*qw;c=&&;)25ttDc@ZQ3SL zV;jA6r{=`5x!M`g)i&V2Pm71o3$(9Q@?gp_rBEB98kA$>L~VzfRXP4UReP?t;$RV+ zou_S8Md&TjhD}gp0jO%y5}<1+%fZ2@EfCFuyj-WFinRnVB17(4!-mOnJLvWf@0}MWJyf0eVmdxV#r5KTEe!|hRf&# zd^b#7Ql)L8H_$}z4x>5v)K?@!EmQ!~c9Uc%O{dv7r-gJ!qujH{yj7;)?cbCA(VlrS z3DymQhYylDlI_WV$g>ch&dt()C9g}P&;vLy_c+-h&H*?OgwP3M-2~XyMLeQ5$ibV&!Z^o(dQOP9;{N-1*LGP6@*P!6re)_dt_u|bi8fA>@DD=}0`rKbvTl}g;~r?XU_ zmB3|}2l&{NG)v0Fv;e-eQy|U9QlKbT%SYEDx>K4?OQmQDJ)p)0E=q!zwzDyK>N&bL z+Mu1f6RuB9i$Aq#N8$5eUG*ftp0LVpm&G1Za#3W&|s<6#hf*-Vd$+qy^Y#*zEzd!oxC za;V==J*(qs8oqdd-l)bf`MPZdvv-%b(-v_C!b3_2O~Bs{(NnPrxq*WY=)Rsg?Gdm0 ziyn+BN~oI-w70{!Q?yYuvk1T`UT)})GxVn@3f$ad7kt$vS|ohK_5o}ml%+6-y^6Ou zSgs%#L8aF2F>vB>H+x!?!qhE?P7iZfOLb%_ds(nV4o+612Ed=j`q)pAF9$LCDZ-Tl z$kBgA5~lY6)C^|{$onoa8rV}y3vfp!dtZdKEx4D+%AjE;b3@oq)A9UtcAHc*frir9 zJ(&6+J1CK~Q1kJMJ7%-~0>EEN*r!o(%@{89`dO7UXI$@j``Bv&Y`tWmZD$p5!NoU! zVvuc>E?*1yZvk=QeXp?I5>pOTg145%BmZy6y%J#lHo(Oo+lTNPJFNPw#Ea`#g(xI& zcZ;E+nK#LR6CE7DJ>eXbIfj7){ zMV1`$0FR3GYscf)M*(Ji!=!~~0a(|{9DRjFDAW2gyCD+Yzkh}&3cIfMnJ4T&FZcs|LiO)7p)M{2QE*> c?V4kS_|b@fxZC46FRp7YpO0DBIkq_d2QNyO^8f$< diff --git a/v0.13.0/.doctrees/api/embeddings/transformer.doctree b/v0.13.0/.doctrees/api/embeddings/transformer.doctree index 54ab63a73104ff3471b41b2ba85c4a35707542f7..650747940fd5b3890b76c8e8832cd6a806e184ee 100644 GIT binary patch delta 2194 zcmZuye@t6d6wbM&SlR-wY$!-(*=CeU7Hwj{Wc(1LEb1mq)KsGtV`ifNjKnJbh;-uI z++<+A-L7U5J9Kl4im;pIB!Uh$CYk8cATx1WNU;l123zC83@Xgq_mulCeSg05o$s9Q zeD~aUPfoc{PPu!U!SRZ(yewE24AMd0ZTv9&Ma+>P_u5CCN`&_16z~>p&5~$kVIi+5 zI^tGx`3og=S&I=q=zH0<_$B%UIj@X4)X25kmDec|dac$;FK=+u>(^`i_(MNus%Yqu z8+hqs-#ldr5|G+d|DzBoY-)7Eh=k2ZG3^j6eN7SxHF7B>2 zsR;MB^MOd8n!_G!05`4s*v?n&v#H6n>9CW1GfGNW5{R32A6&_Dej=M`sEaFY{?E(e z=RPreBKiqPW3QbjH9Yb8LD`sxdy7qW8i`rF{_B33LsQY>V@?)-12*!xfwvVXL}No5 zZ3{fjgTwnxCmin85&p&KpQepTMYUuu)yA^usYo?{^GxHCYALk)7Z+Y5HG))yfICRm--hxeE5%xOQbjc%sd<(Jo3eZ^nYFj?`dthC*`CxRgm_=v7k5|30N?AQ!HFn<$Thk=xvS=w7 zzGKl^s7O!186W&A9b}u{gH{%OA6)d^KqC&_1#_~O1o7b-n3Yx-Kzu#8*rodfbtF=W zH{T0SEUhat3b6PA*ebm;QN{Y^vpx?j!>1mF1JWE*%J{S3!9xLP@+`U|QT(zAwk=hw zi~6b=GFeY2Y`}t7VU09Fa#=J4P89pO%?ic2Rv1%<*+V-5PvUnw;VpU7P?)#F#INas zF#C~$$2hpNd!XDTPe(gGf=m?3c1juwz;7zL{}8m9XyWrjJlz8e@+ZPXEW+YfAkSzt zdK4N|Muc6ShX!2!Eo_pF3|f_q`0?=*utmx-2D{@tRUX zBnf$S{u@-o;WDyM?!4p-R1g;~RFmvmEDGx2XU~!H&FLU+`GFi!4Kq~KofQ?uWAMDH zLV~H6A`3^xNVdgrOwc_j9)kN-!wq_LlH@RP!`ESFf=pO-FPK(7#%}zmNq0ev(x|OaQG-TTOj8s42NF^Ih)}V% zwo-7NZAVjyTh!V{MYfaXCW01PDye8gkeb*wWN{m!6xxjqHKxe-U$}kr&yAT}p)ZX6N%}ZRMh9prC;J z3lDpgT)w5G%9)Dr0pCmR)R*Yj$a!GIp+>G&F26>J(5sa$dTG6fUb{}?#~%JUQ$<@I zy^fbY{=JD4itgsSg1;5YJQ1P(W(UuC?S0d9$vl5^pUs@t&f8l<8EWLnj)+~2T-aT1 zQW1)_^ZszJn!_Hd0S~SE$j(>nv#H6n;gE}cGfGNW0*HrpA6U+^eDrcf*|QB|&_o0%oNZ1`t~ZZg%m0K^+bU z@TU9V$;EX=Mm`ol2wSCBCaPH9Jl5-lCHVAX@ToM%lrp{vym&AO4c?SH62&hYVB2D~ zx~Q+3Ad~fU!g|bq1y)KEB$q{6z=dKzw^^Y$*9v3mFnef6@G1OmC%h?d8Vd7vnD`Z4 z5Mn=4@EQkqW)G|}$QN0iNoC1^E+UA{J(`%aCg{ z8a)CvDkID;%|i_?{T4RLMh30SMr!ei<4`Z>)9=a1UzbbCr(3|)MU=eGfu`m4);oJsf3;hDA4~KSQdvDEj0E|LM~SS4u4zdOJYo5 zcAQB-Mtb$Vge<|1Sva1qOotNl5Vd42GbHV`5r;};{WHXcx4FsNC8-Tf&Z5Veh}&_) z9V9NV&VPeyICK};CwE?Q`u)U>3*{v1W{ZM4_}O!0&E|9v>wh4JRl^JwRcAy+@fbX> zs*qsvrEuc#7|F62jtROK#Y6CbYPdmHYl<9D5;6M z)A|H$lB*sv38S&moZKkw)F zIN#sno_jl3sDp*-XCqH#cFy?ajmv&0bc*(=+$!c?8MKUZI~Q2pYTALBdu|P9pCa_d3;c zg{|`w{$&C$_vC%y)9DM=u{mC=XjG%bE>!Si3<3$K&~thVAre!loX zFlObEvYYX-Co596(Art)<-IFbsWu22=I2%=8e~#rs^0dpu+?9c!oS<}4@b+w{K2=r zaz-gW}`FE$U=u^DwKlyAAF}1j@6U`y^$_5~* zGM|05-|)6(UQ6Ol-G5WVmPrJ5S@ZjotfuY&d&Y-W^U9lT39(ujdKHD?uP!u1^-jh? zrVp)D zLb)m_h;CmsBdROV62(BY&aXxq?PSI4=mTSBuqlEzYJQPV(Q{C~9=)sHYbMzu3k_Eb z5oKR&Lw#!BZB_)2)SzWbX_O7rqWvaw?Lj+C_U!?br%I5qEaNa5%KQgWfL*OeNvv`% zNo2cTqxs-Jf;zRS%EM_DKwQDKN}jDi7)B7v0-LcHUaP{t@tR@63ey>$Hkg6cy@%sq zU^o7cvxH(8SBGa92SMi%?01%5%sK!kvwR=g3fDivUN!Wnw2tH04~tLYKWp!QZLBUx^VO?7~6V(S|=Y`|`;pTw$nU4`0DU;r%Y$YD(MOEmEy-!vVIs zoMyq8UcBFo&FjNmM!y6KLCp=kz)W}h7EXpGcknU8099@>#w^^P38eeTB4q$kU#5DL z4T9AB$V+OIWAhvWefN`i;~+NwA<}B76)3=dFqI@lYrHgyoH5gRA0=ju0)@1wJ&%zK zX4GfniTdq|>Jlgj59X4U##C7OWReOgQ^{fN zoeg3+npBT0bn!X%@XN%*#y^d7VfsR{&S?Z;q)xhL z<&`7(h4;vP#;qv0n{C-myeumL=RoxyQlsg-o6*f0_lfDt`>tg_`K_iU=5g^a#1Hj# zC=^AI(X0eg~qyg4cODDolk5cXaw9ATGVfaThUWw5Rn;U4C zb8a#s$d;a_Zsb%7 delta 4143 zcmZvedr(x@9mnT9c3D_<*~L|9N{uiHu^1Xr6EL7r+ccv|lq$i%inf~6RunCcmefSu zX?%h<$yE=Tgwa@a)Ko-InqLF>N~-PDFk0zM2nmrHG~zTPU^b+ypZD{7 zobT^(&%GTi)WJgavyo?9<-)~}FCVkailk@q^{55wB+MJ>Dvy(F_cc1A=5n4i(yjZ< zwK_sBoW2 zoj>a38GQ78iQN21!#Z7@%;M%-PsQC&trLHb=ii;Vs!#Er|KxK$#MI)pPBw?wvW+;v zkDc#xn)yHr)6$?z^Z4!7%?|P_e!bnR)`+7^y-E`McMdAyg;&<7v}{Tl3R|PP60L^r zWIp>^zu|4oyq?6Hy8otzEt3fBvgY?ESxwym_M8u`;gz@A5@NM5^a={YUtMU3>Ya>( zOdndM#w8hRNJd`ph0s#97q(#@bfltG<6xMVfi^k)O4zMz zM!6~}h;CmqBdROVQpG^D&aXxq?PSGk=mTSBusMP@X?~GU(F;(%0lllg6m@D-m50x4M0cFU6v3fW=ws(WbKu-rRHqn-*aodHGS%A`&<<@-l2x~& zH75H_2TD^6-n@#^v=YQ)F$}qmQnl7e_C`1QuagzRXT9izQpJQ{AscfOC4JbBwi+C+ z-9d*_S3jeyJIBVP=J4-kHhxMnT7W`Sus0RDw;CA5D(Qh zPb4S?VaWZly0~n{)~(0GKwQDKN}jDi7)B7v0$Z>bUai8v^_pSA3ey>$Hkg6cy@%sq zU=RL}vxH(8Ux#NH2SMji?01%5%sK!kvwR=g1~)#!UN!Wnw2l+l4@*wrKWp!QZLBUx^VO>cT)-2qf38eeTB4q$kU#5DL z4T97M$jfSzWAhvWeGig&;~+Nw5z=a?6)3=dFqI@lYrH&)oHf&VA0uXs0)@1wy<^Bl zGwQP^i2Ch{>Jlgj59g9q##C7OWReOgQ^{~rz^}@ zO9s?RNUuYGBoC=OUkaGFfrLQZDyNlB=~}vta3`|Qc0t8%<3t>LF*f3(8Kw&fFy_?A;Y~62#vj@2if=BX{hiDXew{4ZxF_HW@}%kWJkz z%TI%>ERKGw-Wi!UW`xf@^!XIS`uQk29NtNz9nLlsfiQe*Y8RbKu(X_>Fe@EhK|>(=@RHiB=ozxg z=T}od>t07)tldL>>YoS1KTo?c#Aws(2oMoJQWKYp@zOS0sXkv4jemnaWO&ur(sEU- zTycSduyG%K+*onJ6Jg{5y4KmXS#0D#X@E7=(uwf%V^q68?Xsd)82%BBS7J27mIm78 zoSTdYvgK!}8#+(ZPW2whFc7EhQHo=!f{=BAeln;b+)9_I*2x+l{E{Az4eWao2YKx@ bqEg77g|5)Al|YGReM28nO9&C_njiOnaY(u8 diff --git a/v0.13.0/.doctrees/api/flair.datasets.doctree b/v0.13.0/.doctrees/api/flair.datasets.doctree index 1018d2f418dca0cf4a6682272efe4c2b1d8be56f..5ea3647e87dc608b93ea68f62adb9829d15d5a61 100644 GIT binary patch delta 21 ccmdlXu|r}*G$Tiap}AR!SxL#}WX7vp08xtvQvd(} delta 21 ccmdlXu|r}*G$V&`MRJyDfkFP}WX7vp08;4(X8-^I diff --git a/v0.13.0/.doctrees/api/flair.doctree b/v0.13.0/.doctrees/api/flair.doctree index 18585ee75f120622c72ffd67853c1a5bb94db778..f54f9f9fb15ad537386a2481f6e2e42f3d44f7be 100644 GIT binary patch delta 175 zcmdnf#ki-7af2r#M}?ueS&3Om$>u=D940t#@H!HGKaKJ@3FXTz&g7ZLX zHb;tcvZ0FXl-zw--0p9gH AYybcN delta 175 zcmdnf#ki-7af2r#hjB%6mT7@O{^mf&940t#@H!HGKaKJ@3FXTz&g7ZLX zHb;tcvZ0FXl-zw--0VIMv AAOHXW diff --git a/v0.13.0/.doctrees/api/flair.embeddings.doctree b/v0.13.0/.doctrees/api/flair.embeddings.doctree index 10a05db9c75137bdc146097905139f53067ee2dd..260e743ffd9fcc3e7e156b46968137066aa3fbec 100644 GIT binary patch delta 21 ccmZ20zE*rgJR?Vip}AR!SxL#}bVfHW08ZZqv;Y7A delta 21 ccmZ20zE*rgJR^s3MRJyDfkFP}bVfHW08l*!$N&HU diff --git a/v0.13.0/.doctrees/api/flair.models.doctree b/v0.13.0/.doctrees/api/flair.models.doctree index abd2e6401a5074f8e911c2375cec5853326edf9b..ae89dc7e31545e48c652475ca491e960c7d08964 100644 GIT binary patch delta 7650 zcmZ`;dwdOd7XRFPXYS10naRCL#G^<;Jc@|tCejd*gf5D#MRZY-L+o(o4HAT^P4;VyyyEp=X}rko!@U} ze)sd$v7fJwEl;HiuD*4)fexc3&RY>a#+S)|5EN+L-0WW#+>ln; zJj3->gnMPiLSjzy-RZg~%4{9$^~~VBUypYB;zp%9thsKa#iXn1`8S#B<9x+)Dg!DS>wA>Vc1i2WSns23!B@YqxTR6$DqoBB6GB+a-R-@Y zEUSF`cjPmcJnz&?oVVw0(RXg=5zgrSig(9*vUlk*k9X)E)i-bt+u1yC-2nwIr3to_~$f+`)BXXUsTu~s(5_9J5K80 zJ8>_TA?D#KyR8e;_dM(wW-FsUWVo}u$NsLu$hI~ar-s`O)9%38RNJe#r<1LHcvD$O zY@KMEGz!Tw%*M58qUbgtwjgXZ%T}M#1YmHf?I>MgAU|`VK9lc<>&tAf(ti2_6dtp+ zM&I9TQ|KP?XCuI0X-$6e1E*cW^Ji^a%+h|lXj{itlm~& zI`H6S(wB;PcCQIQ0z}jBNXX0S1OfS3j#+E%8(J~(7D3Vb_7Ir#u006yOKlNYveVwh zu=>Q!PeDRiYgl~(yo+y?*te=oyd>!Hgd+n_AGGf?EDs?!0Ik2YZ!xSi1;%}CPo(NK zxw=OtAIAa0;qmH7NB?9>IWd+i#ELf^;9+e*Y&<^P<)|}A z)yRGzzr^8b#&~Q4_bDPZ@*RnT;tzQRGmko!7`6cMr4#|zR64T8m;zLXa~>>=4e2H_j?cfd>24Vj{xc9KUl#4P{soV1Q zb6w~o7m4j{g97q%AKpLB71D}8bAx%;IT426;I2|p)E*k8Ou<3_3J5wMsxtXV|GCjC zgEyWV8j1wHL?3ma+ajm)5hj}!B@|9S$Gh?3Z2m3UG+a2Je`M&ZF6h^3VkeBx;s0P( zTAd~K!PH#71KWrsEZ@v`H5^7HN)iy;L|pkk{}Ron>C=I9i20b8aO;QsiwaY(5j}W_ zztlbu?GCjye1yLxDc|$Plcq6zcO;ZD!^5T#NXO`F`~z&Sl>{$3INGM-5XKIVbDeaxVvzp_< zJ<^#9MNv)>uXb|s=1>$}+|7B^aAs-3{l0UPogsK~fHT6%7YRC@UHy0@L6=&P)3C)D z=W=$g^kPOpM5gn&sTR_QBzhE+m#a94RE2c>ZKm@qT~lhGxXyW)CT+B5;NE=a;C4;1 zo9saB3PQPaaasV_2Sz!BHvake*d}zOOVsGz2MJ?yV7hGYcRN)q7KK49hD7=%`fO|r zGa3F8DYU{lt%W?6ua!C(2{@WQhZ~*7!iW`p|Ld@UK}AzrRR4xyFg(%WiH(vTtxD?ou@i_dZ&^a*Mcp&y5Y;jw#MFvD1kK~Qe z^eL*%;&>o-0TPb8qOmGi97j($y~4|D#X+!Qt?0o6UBz3bT}#0}v0|D@C&&Lba}%gJW$(B+=G1+#j~bPnW*($o%r4mv4*}IHR|jEMF}Ke;zUtFb)q;V zFr|S3w=?;8Y(7~WY1%4{>002uY2u#(V+=wfdsSeU((uv>@e8&=s0Fh#OMz2f7pKw@ zgI@;8{h+>3O!0qltSJz$(moo{>ROkG^_#>B6N$1*6>JZtTYvRelE7bvQNY~ zi$3UR2rfSAsmLsa*oJ%S7e?dtr=?sv*G;S08wPq@LH_ZK znkF5m$E%q#eUWrKP>A0j&%P+Fw5YB#Jp58}!?2}ND6~m&4aT<1q}h+>MXr&YP_#l4 zP+TePdMpnK&+swM3U$Nr&5{Ta??}AHl-)RU_l2`!?5?E+fR1VYzfQ=`I(>baVaJ za@8~xcJ+7FS!4y>RY-IdSX4$zPImRT82R3sTT4S*j}CS1vuZ06-m6^#^OAW;cF8a_ z&lL>eC#4kZvf5Q+-miM`B!CR7z@=cpYpz9)t4~HkncXokk*-w68An}XEPJbk$G*p1 zD%;ooP+sRE_a4_>JRIsO_Q%NYT;Ya$9&*M|iikhdx*oFX{V0+EKbrs~k<-~Nu9Ih@ zuin+0zW8agsRO;?=moMf2fE~j%cISrY&FhtwzgR z*+)n|JenytTnuGRl)>-;rAJPfCwp+ud|76vJ0DJw`!0-2aHQIBbFN&%`uSnFJksIB zAKsAb66j!_I3sVu7b@jZv>ixn7ubc*$LJe!q#@@Zhq4UM+>vJ)CP%j&_@A6WLxFBv zcwaXBYoXcJ!b+!8#iEDuRzoWZP)%QTHQsXE5vqJcDY^}aO~iXGm5qkpX=JGCsE9DI zN(qMY68k7z6s24@^u39KS2`=#SmDcIdmlx@Q9TsHzbSqN1ej!4U|rRUMCCcNDq@px zUWzi1Rh5H1MkvNh5)vQ>h%E$fj#R#2d%7ITrYkBumEcfu)Fh?almiL+EBhsbwb@Dn zec$bWfSU#0|=R`pBo?f+LFH z9Z(hmWM`z}#S(?Him$P7UYXK^wucF!LSIx&pCr04;;6!wFmnB>-`NKpQi|v`1r3pV zUJ=0kt-`~t4y1c&RZ4gIq+n@CXxHh{O~J_9N(~QtFq>EV zTY2hWlAxZU&siFFZoKLN&r{M=6ywwzbkHbc@(|Sx6K@DnP@1fM)Ugm% delta 7650 zcmZ`;dwfk-7XICP&$;KFdy|Mqk%V{@5sHd5L?oeuBID6WyoJ(w1Z}-T%Ctt2roClV z5TRO`rtz3tRxw_E8lsJ&`twU8D4k4;bhMosui59^B>U`hk3aAFzO~l3)?Ry`bN2mw zMbFPy^xTu-5W6qTe&NYEU2}ZL?{@UBcJy_bE%Cl%kt6(B{0AYy)(wsRZNm*~mcuh# z|FKA)!dOVmN&ed%cg9$)BYoZ}obT)5Zh!o+G`BsvJCpY}dG`57pkEK?{Vm2#3P%0j zDX&;`RXqPDQ+>R@ct&|pMI-$WbJ#BFJsIhHm?QXW=N30Lt6c7HvSv&eYq_)K2`0;O z|K6?nj3v)E@gnEzxsk?%JUU}6Xu(B_B%E- zG5Rl^yUBE2uS)e#sw}fub1p~tORp}pB+IGw_z(V^&T#+YyYY(#JHl13-+$Xp9sI}d z_GE~8xZLUJ!1O&2yGA(5s1F(LY~PW8XfU*;L&1rWj)Sy2a3;<1D(-COXdT&577|-K z+9sVsvJ7%?EgC3>4TvoSn@w}nrZxZ=TIx7VR~X38T&T_Bd*PZg$E&oTfdGX^9L>@H zcgF;}M*`Uh@HbjhfPCNWl-vlZn5A&VGN?WnSl1HjVjj<%i#&4KVO z?>PkQ`nzMQ#RCao+C2?g!eC2;OM{t1-D9xW={!$2PoM;%;D%($G1KFe;eNT~#kHZ% zWAs=F1l3WjigxC{mxg9?0DE7m*COenPG?W3{ zUr73LY?jk!0gwQ(G&~aWVmd)Ue(u5SRnE1|n0WJ`=zV7xjC|k1b z;ufGFp{z2kJ^|jvH%gqFG$vj$ba~8`iKq5Ecbk@nkn4cvUphCMR+<8%zIG;2^}1Zc zBMb5_lY0A{clNMJREIXd>WrYn-{2dk*CxWTUM?BdaV`bcmO5JD4-VJkY=K51D;c-C zT=Us_>jY_nD-?=LoD;CU5szEm0Dz$Lw1ABR4Q1BAolm7%WQDU@=2Bv**X-gJSNwE?m5_+Y!M#w1lI z2Y~z%m$wn)u^BukiPY$KBo2x{qb61YB9}${t|}P#MX2u`rt3VOna# z%>e$>j;m(l6~V4Vt~o>$a#QfXJ-JX;X%P}sp#zO1)DF|ylApVQ+Z4_=tgzeSsdb7%7pO?@>4{W?i(hY3sgC#^~= zv&HV1mdm$c8738l>Ru&D_Z?yT+%}>CxpT;L-d1 zZ)^z(Kx}`)KAd|u8!7>!#<=@Ky5d&#?W^G$x4SPp76A$p%2$n<+7fU=YxnQ0<^=Ez zb*Dj5j9bJj?cBUI6h&X^1f9&Tegcx93v9^g*kpuz zF*{dAF+(6K%YD>R3+Y2LJ&MW8RXjv%LI(ae)qRGpDYcJX?LJ78*4s02SH8P{tA^MO zb|7{YVUPQz^dPW1408!B0`u{)LugBvsNTIh62^w$bUD87wrN-_3jJ6NiS+gK*;pTD zJp46UXofSI3wbPGFLgW;a5#Mq*E@}d(_IA-7dRJT9QBq)5ZyvbR6nEGoiLd;NgvFLIi&E zykI&#>==#b2)T4mGYk&9F=NJV&-wTbfvQlsb4^t)> z;F>C-Q}BWsm3d&?b>UkZQKYRNy!fMVF}Nk8aqtbHeQ>tXK+AwWi6mgsSW!i7tT-Sz zrHKKzviJmSJYF1X*(&wvn&90@;-7aO45hZDhMU=h^zWoEbJ0oV0$DbylkVz zsGMXwDM?7~EDnVS`UcRhRK<>OIMX4%NW;5{=;_F zbQHGtmTPRXg5fG8$pto*k&;v7-ZmrOO?PW*YU|;F@@~7fBH_K-AviCYhZI?Xfq8N$ zM4pgRvBL_v%DP{T;zNf!E5roN7bhwp-gWZoXAkB;FQDi2;1K3;jzb2S!4U! z8}`)5VsDK8PL4F)^N=%!QbhcrT7JN)51>c_{A>Y`M9yHhxIvzd{#v;k zeeu(0(*U}`;qzo?_LY^o%cBjVVtS*s@R0BdEGhM3#=x;~g@-$n#8&urh+?{LZU_*d z_-@XPL+~oy*^aEk2_2Luwgu~e*m!K(O-W^^=LL9>NYuvlR8&}3>WD@mUTMSj-%KfX zxe~Cpm-3L+U1;1}V^JSvFb$8SE&25MtBYR`1&@)-Cwk48KSa6AhB7D`HXE*NVjm&- z@NlY9cQKSbRsquolo2^`mg2>ovlWG%?tC~&?z=EP(Us=F4Y^7Q>lc9G(omNhe|STw zNu+~${Is$jUnp0G(RLuQoo5$5A7ig8(WadJTcFq3vNpXwU;y%O{B;j5unrF@jvb8h7>~2h<{ZO+iECo>K+z ze5>+svkmE9dWG7VJ}Fol652I-bW2sEbotdC{!TXdn5yg1zIvq617(YPsz}V|T43ws5A2n=UmVkFswShJTvp1uJ#zmu+6>Eg51En9Fn+)4fus>y-Dw#%QZpU!MqZYNM@DHY=}yxbNY?J%;JhQ? Wz|&GJULK=m(d$`*zj%>$O87tLhxf|> diff --git a/v0.13.0/.doctrees/api/flair.nn.doctree b/v0.13.0/.doctrees/api/flair.nn.doctree index 34b750a3cea1bc341e3904f1a8afb075ce31ebcd..ee3c45656bdc7343407819aced6b9ef36c185ba0 100644 GIT binary patch delta 1883 zcmZvdYe*DP6vsJtcE@RTN?Tnm5Vyjp2vIW2Ekh%cqNptktso;3H*;;tQm~?^u%H)B zaI>HX^faoC`{8^lED3^)!k`a5t)L`&hh-Gf-BIVx-JOr~|DFH2|8wqL_UA7B=Po_E z1hnRY8AXjnjg3acHHGblUScUM;%ZH{zBmuFaH=Lb!t7JpeBm&H{*CN>`fEkFVoG0D zMUthkpnsOFN6_D7Y+5**m5;xnS~dKv3PYQeWpo4!*r~|@iL5c|0;z04eywJ&kEvc` zQt@j^WOacWTfB%XR+h|4OJ3O`4yi_IiOx=z`9xG6!>l)Q7Ce^P#+q<(B-^y`t(2{T zwFj$(Lf4f+rP0&xp>;V>%&t`)5zQ^eE><5GqX_wYDCDwE9hQ?>bGT!4qHHvWbr#*d zqtpR;x>G3KN_2Mf?w65?oO!ypO_XKU(?3<*ymdA<)YajmEc{vCq%Bc#=Z=(h`?8E5Wl#>CEkT-^r0bmsy$KDq?yxpC0{2sFCW1v%LA z5DMih3?Zj)G9^bP_16?GQ}m1N`fEo8mCQZsiFa{Ad}eJVcKL0TO)r&10^;GI3>SW03HmDV34 zN!W3elslZJBBw`vPPP@7Nh)r+LRxLVwR2BN14g3cN4jvB+OvCPiMSXnxKG@+$@yn3 zUHX7{Fxo|`Z6k2+c4Ki#3ZCsIf5dA?t{<^IW&XK_h9@gNZ0{kTHX^wOv{?uYZKFe3<33WGlMw1Sf89hOl@cPE`YcXvL{|9Af9{?EC0*&n<0AG`JF za?obCY^p2XR@i7nTr=1n7$la$BChrn>x=U+3#Vz4Bg{UgFA@$T=&xfJGF~ad6;pX@9uTEg8E5@n+$th4Bz zon;Ql)1OM|cA~SJJ)g%Va^~sZF-?})!0=3Q^VZqe?1EL|?u1^f!o6&%MHsi`!n}!+ z7Qws{C=#P0-%ggitPtI>2r_Y`0w&3`kAgEx!6O>P0)%K;J$PxsT1dq?tKm<)P0+jR zARrHAdi{8$7Ruvn$ZZwz#nD#C!OUiu5ns$fubgTn?dpXIbYwsHaAY6c7O(Ap<`suP z$G|~Y7}tuL;O}90mn^L=M894H%{bem8Po0#ql)*nSWN(aK7Tht^x8%&hsD8`5%ae69>sv z+mOP>>46*(ndhmb9jfA^&s8Ob@=$BALsJ@Tk;lAQv~j%R#S^+xfLov^MuL-eW=*iI|+AB{2EJEso8PSu9yGWhNxE zZ=TG>iAB$ZWRA@uyxBbHdIUFrkUY(eAv)Qin{D#EpSqjl)haRUk(q4!*?e=iPBt5= zz5~|MlkJZ=Y~E-bjUgj9xy$Mrit^0|tX%GrJRK1%Y1noz&R3Soqvci1l&5==s?5HMzWG<{=o9v!+1*^p78Og_lP-PlA#6V8l z{GjXvnzKMM0)gD%FiB`Sfaa`*4mDJf$p`wSCr{Q=-0ajRhZ5Tnn-BE=WkI#|K)>u} ztEq*Y$fDW6_;=l$Jf9cEQ`wV2G5mU20g9Or(Q7NBQOwPO2QtsPL=@lTzX;3Q>wI}}4kYBS3t85HkEY;JhWg=W6PM`5^kQ(i=)csF9Q!$-Nzwx3@hyb8>A Y5tBE3m)tz>XC_Lv2;ZK@%IL%d0KLP92mk;8 delta 937 zcmZ3{&$6PQWkWP0hjB%6mT7@O{^W=Iv^MuL-eW=*iI|+AB{2EJEso8PSu9yGWhNxE zZ=TG>iAB$ZWRA@uyxBbHdIUFrkUY(eAv)Qin{D#EpSqjl)haRUk(q4!*?e=iPBt5= zz5~|MlkJZ=Y~E-bjUgj9xy$Mrit^0|tX%GrJRK1%Y1noz&R3Soqvci1l&5==s?5HMzWG<{=o9v!+1*^p78Og_lP-PlA#6V8l z{GjXvnzKMM0)gD%FiB`Sfaa`*4mDJf$p`wSCr{Q=-0ajRhZ5Tnn-BE=WkI#|K)>u} ztEq*Y$fDW6_;=l$Jf9cEQ`wV2G5mU20g9Or(Q7NBQOwPO2QtsPL=@lTzX;3Q>wI}}4kYBS3t85HkEY;JhWg=W6PM`5^kQ(i=)csF9Q!$-Nzwx3@hyb8>A Y5tBE3m)tz>XC_Lv2;ZK@%IL%d0A1^f6aWAK diff --git a/v0.13.0/.doctrees/api/flair.tokenization.doctree b/v0.13.0/.doctrees/api/flair.tokenization.doctree index 9ffc7014f9e4f55b2ed31c8532e4b77e4e13cfbb..966fa58f0c06e2a3be82844a1daa7824ec4f0528 100644 GIT binary patch delta 900 zcmZXSODIHP6vrE8%-p#yzjMz2gWF`dP2TJ?*(Rjwsz6mB08+RV zmrOTFiHZz&{dRmXH(8A8iv68*$Gs-u$jW*-=*r?D60*SW6pyVrKHlKKvO;G{qN+ea zt$?S_3qsaaNG*RdT74CgnN`!^@X8(q%Q)>$v$NG~6_$j3cv(uE2VuMn|Liw4wvoPno+xNWZd(JuU2e)Z(o3=e@$gG(j9IEq)qu`2E z;Hu%qn5sx{H*CR&^j4EzUAMfG?xfcs9Gh7$2fcYbM1v;yo#nBkz{~3#SXtu8NL6L9 zHwbvr0E zeS0@qSw_YEK@KK^;*L|h66;Dh)mg_-6IHcOK(QxCjv%Axi7-UblM55xXF7IV#Osko zItGXy0it6Z*scb!+2>-QiK=rh8^2}`2vh?5TFy$qgyO;p6Pi}Y#PQ{PLee^R1C3-- zO$2F;$CK41yHEqB4&cnrVXTHGls*}gg&YL06d-i-x6IBmApNJ^0|{sjm8g$v1ICF TSEYpHN8#R24&RTDFIC1r`;%Or diff --git a/v0.13.0/.doctrees/api/flair.trainers.doctree b/v0.13.0/.doctrees/api/flair.trainers.doctree index d952c8e2a69ed079e76b868d766bfa18609e4c55..b31ae311b943a0554198c0f35063dd804877dd9c 100644 GIT binary patch delta 564 zcmZo|VQ+0=-w@5nQDJCqR$^9CGI@fo*5+Qu`%K6pC6oDiSvS9BS;mecx|yH%2#U^x z$p$(+lWisWHiz=B} zelnjE_w>tC7!@Wza$1U_6C|^l-{mVOs_2J9tee~XerckL_Lp#P=BSiXM-}~WNO1Fp z1&0+;L^pppG`p2qkAP4RSxrHuUB rYv(h5LX~KnuD6PjcRSY##%ZWVwQUDVWQxLF08AH_+i&b=)MWwy=zPop delta 564 zcmZo|VQ+0=-w@5nVO)`%Wm;g6KY4<#*5+Qu`%K6pC6oDiSvS9BS;mecx|yH%2#U^x z$p$(+lWisWHiz=B} zelnjE_w>tC7!@Wza$1U_6C|^l-{mVOs_2J9tee~XerckL_Lp#P=BSiXM-}~WNO1Fp z1&0+;L^pppG`p2qkAP4RSxrHuUB rYv(h5LX~KnuD6PjcRSY##%ZWVwQUDVWQxLF08AH_+i&b=)MWwySnJLm diff --git a/v0.13.0/.doctrees/api/flair.trainers.plugins.doctree b/v0.13.0/.doctrees/api/flair.trainers.plugins.doctree index 21ccf30e2f869ec98b653977c7d406a04e732ef4..a083f82afe10ba3319f281766e5eff133351512b 100644 GIT binary patch delta 2933 zcmZ`)YfzL`7@qemi@Pi9f}3Kl5amFnHb~CsBm$buD1otg1I(Bq6*Tceqhl&&j@YP# zN=H4~R0xJQM8z}msyTuenrTYHXv!upkPHr`jh2Si4?5qs!a3)Ye(v);@AF>wJJ&9T zT)P-@Y#}(_iyJd~+301b4sYn`)^3CIC?7R9tfl_z>d%b}UUgy1_*%~If zeB8ioL7JXN`DW`n-ZZ4qp=m^9KF^Nv>N*3Z*)eXO_`>!l^tm)?q?2Y=CGj8PN<&n) zeRR^*8GL@y-98%1gC`Hy{P**gls-B_TT;S#b!wrEmLK4Rf{Webn3xqnHHOUAX9o#2aCZB%jygz|NN z>5@6?uPL3hmeta&MP8adFp2v=9Hs1|wd@RS`8b$QDGt)~0n}GA)2aH_@>u59bhR{= z4WiYl9y)e+KOVdLkSvV1mVK{jFVV3L9?mNMk<+B2GM-*VwSA@0&~uBaJIBxOpByax z#Gx8Y0d219kVOfQhn}0SBnrqD(DCQPY4x5cnt$PuCKnzi$zN$0t#sEN_Q9nPI;$#y zFaK_oQdMa?#Z~iW=4M{`WMOg_iZ9k#~?BX}>tkz6Z+4vxsPSdXX`5XU! zs@!yGdnyWQs&u0QGSnG3E*Q30@ksEqJuYz3tg1vj;eb5lWXwPzz&bBDdkYk}vBMl} z8vv`cibcjqc$;qbJ;Pp(fG^c%MSYPFZBhGUU=H&|!>_thz;l&Ri_2!&Qy`3$yb9^Y zpA%1ygg>@t;!F@ZU7dM=#RiHe3Twfd=_C zUSPew=s6yj)Wp23sI zPqJ9kPC)(GieciA4o((5mQ5x@m0607yi4onxluf`af(|H4l_xzd|=t-*bdoVMPe4`k32L;HQd~!=V8gCcg zUP|uCh75=aXam-+Bo(r7Q+l|N9I!|Qw2lp5Pr`Bh1~NoWmxX;xRXqX*2ow<+%HF!gQS3oE`Au%72gmpKk`q?=J0kAyPmv=9d_89 uSZ%irQdTL7G>K5Q;yMY%0++3?g++(Q=Cfi)y|&vjuUO;+Y>Tk14EhgMsx9LH delta 2933 zcmZ`)YfzL`7@qemi@Pi9f}3Kl5amFnHb_o2iGUU}N?>f>05fJt1uv-3jAJThj@YP( zN=H4~R0xJQM8z}msyTuenrTYHXv!upkPHr`jh2Si4?5qs!a3)Ye(v);@AF>wJ6A7+ zT)hx-bRjs#ygz%vO9i8s(7351_-Bx7Q;{?p<(tb-+jsVV45jXYcl!bzyxx0Wvo%a| z`MAMbgET#l^3Bq9ym?rYL(_=Je4ZWS)pZ6+vt!&m@wsh}>2qn)XeZ6APU1hrm4&Eo zd+Ee0)A_ulJN-122TvNQ`S0VcDgAVWwx)#hn$#j0$>XNRxTQ~7M+z;N6Gr_@(pie1 zOy}?9JRjUA&0m=}mGs3#)8<7_(8&CLeAL2o$`&43bN`YYmyByGKh77gSg+&|2<2=3 z(j~LkUR642E3czlioG;_a1!@_G)CD+Tls0)`f)IyToR<|1E{ZbhEw&eFQ`K z8$xSRJ#_4@0X%lsL0K4YEB{{8UZi6iJ)BkkBd1A4Wjwu_YWqr~p=TFUcaERmJ26!H zi9N>ybYjEgH$su2i{zwx`YHYAPh7i1;8tmCj2u#;cEy;3txW#fZj8cn<6=WqS{ zsdCe09jPd&DbkG!$WUkCxM0|9#UsJbcDukuv#JyExC8Q(lQ9E@0PDTr>?=^<#tw6^ zeGshBDi#?d;a$4T_Y`|E0=`t674=0zv_0QUJDu**~?#sucTX}NGlCn|U3fs0+PBB5;kOjwQ6=fgGm zmoP$21>P)#Kjrrq1%6sKY06k>v6y0JF|_wKFLCTz2ghWCSi1?jlul|Zpa@5O0*&%( zzzmEnEr;vU&V(-ShD*H=3g~sEBk^-R`?-pE*y2)n0UP$f0^M>IJF*{IdgF~OCKQ6+ zgD^l=7$Ei@g)_PqJ8PlEDl0*;_bDgg?LLXu8{laxQQrhkmT?l?*!>m6D+4#`LBZaZ z7ig5ShYKE_3? z8Hkf@>;exSdjN^bjfsdN_P|Np?3XIy#?3a;q1=MOqF|r#Xp?*7cPgB?u<}W=K|U@< z1x0uyf>c;s*pO$5XWxzCM46tc%^N|wl(m}m2y7tUizO%YLN{PSJQ*boP>7?gd4^6T zKgnWEI{^(~%SMPpIxtD}SU!miS7s?T@*ZuN>qha+#wl*SILsi)@_}WSW{IVo$s!JH z&Lj_I>nMn&N+*U6zs@1aQetf1$YsY(b4jAUBNJx=_h4oo`9?A72?~(4`Q)Z_G~O<} zRY2~_h75=aXdTuqCzY~rQ+lX~?6*h-w1$mbOTuydIx)*4 zCDBky8kFNU2ow<+%HDd!QS5#N`Au%77sn6wkmFYOE%(SUY^oxe7I$V4Ob~8tI!xjt zdi_xNePJ!$bn&;4)z*4U7eNGL!8Nk6FBZ3Vl9d($MOdeNZUO@`b9lRnT~A)j4moU2 utg+jMD614jnnWmDc8!E$q083a!lJ`t^I5SYUfV61S1fV@wnx~O2mJ@!aW}gF diff --git a/v0.13.0/.doctrees/api/index.doctree b/v0.13.0/.doctrees/api/index.doctree index 9f292190b052aa17c4a5e243f17524d120d8f7ee..ae69cd1c9ebdcc51823ef02a7b7c6a26b986527b 100644 GIT binary patch delta 21 ccmX>sepq~iKO;wlp}AR!SxL#}aK;=i08v{8<^TWy delta 21 ccmX>sepq~iKO={6MRJyDfkFP}aK;=i08+UI`Tzg` diff --git a/v0.13.0/.doctrees/contributing/index.doctree b/v0.13.0/.doctrees/contributing/index.doctree index 3ee6e7ee32f404065e06ccdd1d5729b455fe8cb2..5aaac14a610b1db00e74afcc2ff351d8d40cd294 100644 GIT binary patch delta 21 ccmeAX?-Ab+&d5<=Xl_7+z07&HqNdN!< delta 21 ccmeAX?-Ab+&d6b0k(^~(V35B#o>7+z07^p!T>t<8 diff --git a/v0.13.0/.doctrees/contributing/local_development.doctree b/v0.13.0/.doctrees/contributing/local_development.doctree index 0758275b2f60a94599cb62d3d7aa76505e5f14e8..6b2fd1a735dcb440dcf0b7ba630a640128c0731c 100644 GIT binary patch delta 21 ccmdnvu*YFTEF(vSp}AR!SxL#}RL1La09acG#Q*>R delta 21 ccmdnvu*YFTEF*_;MRJyDfkFP}RL1La09m;Q*#H0l diff --git a/v0.13.0/.doctrees/contributing/making_a_pull_request.doctree b/v0.13.0/.doctrees/contributing/making_a_pull_request.doctree index 625fa9abc918c5975d2d940a60532892e1723653..3722ba833fc795afe59a0ccf8fbaf91b65b12179 100644 GIT binary patch delta 21 ccmdmFu*qOUDkDdQp}AR!SxL#}T*jkf094-xhX4Qo delta 21 ccmdmFu*qOUDkFz+MRJyDfkFP}T*jkf09HK*n*aa+ diff --git a/v0.13.0/.doctrees/contributing/updating_documentation.doctree b/v0.13.0/.doctrees/contributing/updating_documentation.doctree index e439bb017e44b0d51b1436c705895ad7df8da690..e7aa1714d4c9345e31d9911721554e26e2184c53 100644 GIT binary patch delta 21 ccmeyD^Dk#ZIwMDgp}AR!SxL#}d`5m#0BC{;1ONa4 delta 21 ccmeyD^Dk#ZIwOa1MRJyDfkFP}d`5m#0BPU|7ytkO diff --git a/v0.13.0/.doctrees/contributing/writing_a_good_issue.doctree b/v0.13.0/.doctrees/contributing/writing_a_good_issue.doctree index 6156646e9c7e5f482ef2904a13a64fd256ce8f45..26a34515c61b1a0909ae883f4e9a9e8fee203ee5 100644 GIT binary patch delta 21 ccmX?Ca;{`UG9yQYp}AR!SxL#}Y{thH0Aq~^g8%>k delta 21 ccmX?Ca;{`UG9!m^MRJyDfkFP}Y{thH0A%Y3mjD0& diff --git a/v0.13.0/.doctrees/environment.pickle b/v0.13.0/.doctrees/environment.pickle index 7f7a16b3f53ac2c0d3d86aed7026a0450c66c841..1379fc6a932301c1129509eebc3117598be3c342 100644 GIT binary patch delta 183593 zcmdSCcYG8@{5Sr+K*UfIdXbXQ0|W?c$S6vJbg4ng z&;R1L@+oi!+X zRB>U0lrh6c@c&UBDR0%wtoy;h+HVaQR4a2(t*n9d1`Ns^SigRqdUfl)Rku!7y{rM5 zbuw$!tXEv98J#M{68K(Wl-+G(Zz*o^iNLa@T}3reT(C` zu&}qdRz@>-)urNUN7Uo25gwCq%-Auxqp~xHrDW%f8I{XD(mA*?XCU`q2Oak;Sj$a| zav`jZ8`0IkrH44U{?1U&=CN>*4x6k7_edYag@ssU0l=b958(2mRNM}m-CW3W9h5bJ zvp6HUrX3uz2rzB-j0o;(L@k3pb3}H^2g5S6MlGjT@no%u}5)XB-hUvYRDWsI6G%BGBr=(Ox6b6&lVSVFv!N$4nQIs zwd&k)S);~fXN~6$JEGCWSni=do;z!;CF2={sD@?d3`HEc^vGb)vEPhnZe^!%@UY8# z3-^(y5m$ul^|)&ox2jVr_sHYnnnpUgD4QJ(lEe*i2Y^nUX4<)Jh8V6^c%00`Gek1D z(754L4+mms=LO-`S!`T0Pb4BV-7?R~!*0mUCKFRT(tII6j&_GVr%ALq*A4_EzP;&Wd&TUa+&b?gyGr0B=akwO0- zz2@~(nkVZ2z&CjzgGF<5_e1KjjT&6H&{n<|j)&^G@UZ&-e^0*u`y8?To#^#(T5rT~ z%{m2h0bM;D3Jr}|gt(ffaFZm!brUX(0gnZ}A=UG%EQmszDYVc(Rhj64%$wY;? zxX|n^3&V2Htu?q+P;(S+&BU#bUrolXS-3T0-&EXMja%c#PQ$HFaO=mT0Jl~N z{VG1etwP+IXD-97DS5aV{_7gtT#H-jTQ}g=4&3U#WDjm_z%Aq5gSfRAw;qLmgWuY}4w*muy$FwiydA#-^?S$quOswoJv_8YF&J%QB@|M|- zThoCBw`Sm0t#@p=B`ERqi5<7*Vp?)$5N?&=*3qTMr9`*2lPY@3GJVxbvks}+TzTW~AE8I4;UZq2DBwC3a1^;KF&RQ@DQ6pu@a01jgSaOBYA~FFQO9~*gZ_H1-Um*u+f*lRPwKDpFB-Cj zOaCy7AK5=KIT@U;h>YhdGeQy2C7X#z?_#02%#NgMAnG!UcHwNwceoqFl-z^?f&Na^ zJ#$`?gPS$7J>N;z1xeF_Yd^>;^OXz9ATNwV=$e<3W4NwUorvWpl%)jATY?z`i?xc1 z?t_bX0ST$Gc^jd^bbpz%kk5GRI`+<|L1p$XS%FkX0>) z5xKc&RXP}5DlQa7lJ((xXb0xzjKhS!d{d8bS(&5og#r8p?m>D z9KV3uF>17II)hYm*TzO;Bl3Oq+=S6qZrk`CvY`TITn(<#sEIh1c>|V=`4CBjjC)B{#h`*C~GhSW!RUhO#3X*ve8es63y6q3Puk=HRCA*IDz`na(ifVx2`}N!Z zJur#~4z0LdRo2GaPkl3vr?&e3dR1y|Zt`i}_BAKQ@CaAs*=i8Lv~Q7m`;hY!c*v~_ zmDNF-E-2N2LH&CNZGZ3TJ|3sMafg@r;m;5Fe{S4rA`yLi#vRDxoPTO16lC5ypmIT} zdHecDpYxFS{>JJDJUuC~6G+v|T7sh65w?;BvR2!Vyew16%D_N{Y=N(tcwAdJMJely zWPz0`*?IoowHjF)iH9Hp=1Z>eog0JH0GS1*nPej+!eS~!)J6)#a+pi@6VJL;h-?Rv z96k?|UE$jo-LkLve?N_o&E~I1M9Z30qf29OFj-~-<=xVTz&?qxF+9u4nzGNN(DJsj z`k>%;MDVT#vI<`1!)dZIiOM_%{?tr1Q>qRkv@Tg6X9wm}oyNftEoHAHDnW$El@3`n zTUHkj$y*x!(^=-ypmDA5S1~mPu1ohf!l=HoIZQ_JnFGAk)c&&0Qqd5#9ymByrUj)3 znkfM?w+)64kol=3y7}PraC5e-g&djc(Qw%hyp{Lm%J_hRvq#Fl z8-;2R>~d5#hS&f5ld@j?zY%9;S^U2R7i8nnzq_u;Ch^V5H-sSFeOvY;ul}On1oJe% zBTMJa!`+v4Lcs)YKau^x<4-@6{mB2j{r{70bU)Lf;EL@S`mm!yxLRqSxfw6#ClDPvmEquSG-*kVU z&SPNjx_&#>0MT&INWb|5r2WQ%*TenHQ2(Ld zIByqzGi)qGgju9t@o2wGzT@S9j1N@~_-umTBVWw~0+@R{!d0?G)fwKJMY+xNm)vIS1rDUZe(PANv_# z#WKH9ez@lalW1|WWEZ-9q1V5Z^qRcn16N#gZ<+bX8a2ta{3#klJPwt>S2@% z78@SnZ(ux#$HZJ;#rUI?sNsK?QJqpG5@l$|5F1V z1NgV|FRqFWfU)iUTa(C`+QEMv;~$<=;a{CkTi8|Hg=q<=`=3 zBPi7YL#*yyICiXmJEfrP=}G>58G~T-Lr@w6Pfhb@*Ht0`n8vB~u-zR0^CXyS&h!6` zh#XhwKSja}qM?s5fkee|f})NNC7fC6A4JT)d8Pke!e{(y|NZ1=i?#lrlb?UD^Z$xq zzun|Nio{x*FU8@T?(n}xgi3<`iR5SY9)BPa3Lp*jaLytB;f!RS*#RTL4SSIay!^>u z1t%Tz-=GtmRrdnxEFYW!cE9K!%eYCTLd0bsGcF}4L4~783(EfVSHjje{G*uotqM^I zLHzJtIR`(#rF5el#d(yqGwfoK|Dy3mXtPB5bYPB^s{yiS7EBJ2?-Obl z_%B+{EQ)y?M7T1>l(erAwyq(6?6ng_ghoW7!rJmUMj}L+0ai4Y>%f6j?E-kAf&3|n z^Q&p{gG^SSnJfpCcb6MscpLd@;^(tnsx)RTpge)9!)C-d#ykWf zNHH^w&~8ewC9xM^+n=$|Ot!geR+eMm6DbMj%nQHKXnfz%uFD0u3U{3j+fL|zb4e<4LF>Xy8b zgabsH6q2x>{7`lRR~X@gf8PGU^G0 zvQia%pjI3tN*ypMCNUz37*OFl5-6 z&#G19qZtZ4IMQZPFg!6!kxbCKg^K%Lju5%;5Q(MAGD$2g1`l5-l<>t0#UkH;B7}J4 z8KxW{R&zoA1~lfWMEScgaGhcz@$HJuipGqDJP_t=SF9$1971IZ7go=}j`HZY06(Uw9MpjDDgVdF1L4*aio>Pn_0x!L! zsLu$@qal*$3nH-QcLkf7IJt{nB7yI(P^ck_)hJ@p^8Z*_eQ-v2;hAC=nNtdA#{^r1=xd>yPzGYX5Jj`2z+-9!jL5H&C-DV1DLWyZk_N;Z(3_39?{f-GD6kYQAzInR-84tn{6Fr$U7L$ZIHw`sxfmE3Ani{CkCT@yk6T6FWcOr}}}7amr2Viqp^*buRw&O`~7Ck~vrB>w<>b4+Oi$4@JbU~-~t zFr0WonZ&q+g3%7#cr-0kx>O6`H|Ldq5@8NsQU1t;F;4I_tx5sizbNB~HG1A>tsz1H zf~diREhru*KTwWm1gs7+?~(EWV;%}o0^@&54cOdJ)fV=6q8v!XI{IAMkjX`g)`Bp# zN(oY1t3HEu{8W3G)iMt$v8v($T0#thul1@aOy=;!T~^gyGP^#rtD05AT?s0kDm^%u zsx5?lgH=z6ECV7`tcffp{bb;7tx^C}U6mT3s6lJ4y7WA<`iimilEIzn4!&7H5t))AVk7sF^NPwYe83cSn5fJXsKs|RY#d%!ug)QsniZTnF%Pw40rEU^=B032@v&d#kd%QhgG1!yxc$9CEVTkA5p!}6bUaR zAy03B500s5g?Cn}XobIdT16}Tma{5a;rpLg9VYj_sh3m_nZkjV8+mZuO;tRp0zd!B z1~#TXxu;?u3h>tex@HEw?h_}0d%xO}f%%on0CzrAwP)Og!TFof#yj3tx$&2Z=6;uF zs!@#o7}(KY?cvwaHFuV(4>95ECE^vdMX9Edds(e!a~uP==+!16y_=ZSG`(9m)a>+v zqac4vsT$^msy7k$HL9Uz+$TZ+f+%5^c=b@mhrU#>E?ylA5A9dYmca)}>W{sXk#GZx zMpA+mjno!#w_*w0Q%gOR@h)Ykgb0^PoOPqAnmTqvGc|SWxE5;a*w~h8>ezqZRsY90 z_H?d#CY;h)olG3N?|n5>v3M##R5iTPS3QH#%S-sHzxoy9Nko_hrw&wCkP_8lh?=<> zf{4s9?nKQmz>4XUlrVUl=&ail)a>mJ&k>|eQIoBRu6gQLv=+}+|HR}PHciS}wF-nS zM-o>oP&Xz^FT-b5JjUZ7!i{8<@?l_vt}^vyMpjC-fTru!N`SVUdV{8ml0rb`t|BYc zu2pZThLr^(@HXip3=NLCsL0;k4mC~D&AUZUj^8VKvc-PUlYbvj(?!^~U#Ulv8=rT- zSJOpU+EF#V@ku_RP9l@s&{OI(si_{6m!gO9{La*pAJxA|V+_ft2G{l%8HMert~bU;JjE3 zE1;L~X$=jtYX&gE{XKHJJ4v&FjCrZHCW4WWV$@(kV~s($Q4ejXc}&pZ%`~hDn^|ll zLH|sR0#0nBX-$H*vb%;UGa>}+>!mTmhdngynQ#-S5K)s@Ie5;83N=b_V0$TA0}N`2 z3Jls#gID@%-eSrRW+1_N@7ps5X&y6kV^y#o{+6quF>D^Aq1EWpSPiX4YsYJ7HR>@@ zLu0tcR81!m!}DfnXbexArJ*sLTcF8df(;M-dV8r;2;6TLX?|v=<}t%5UhyMZ9^rk|4|i*1B#R~<((Gmw!__7CEQ)5lhID?XX-uY@tTSvJ@HmKY)0vE+ zeXVffkD9NU2@w+(z0fE?`#T!5;P|8~8av~73B|@c>YyQ#rGxH7|*8w{IYv~CKUu*7EJK96FHjWKFey6e`St|$E!?a|* zt+i{nlYNa7p;~Eb^I(X;Qy4en?4(@KUZ7ihi!mpqDnQc+E!nf&6s7G!+-ytG2C*4N zB(gwst1y;0x5Zo9b5iH#qla4HRJv9Tmp9dhlO#XhUdtpoHVVZV;h!C}S&Y;o6(TO} zq_#xeG@uBgBsbPlYvAUdTJ)%jzI8*E7c3+Qy#6h4C7jV$dx^0x9mC5?Da=uiKh)Cv z4j!(h`F%S_OY?i%2rbR;0i(1uzw3t9)ReOR=OwFfhHRNZX8QR{} z7%d8RoTvSekr7w_qH<)-rA@WNVfj++VdDO2Wvu%}99*_STV+QJGe86*JhW2F?&*r% zz^RAmcB}nbEhL_|Z`QJVLLv~J{89^u=g02Vo?w(fi}8_g-(f9XiKr`CfAdrjcMi!A zd0Jb@gdpyQ2r_S=L3GW`x#2-T^(O_M}c*F(DnshSKQUB7BM z1DMx?nmUtEfc@&|9uT0ck&ay@@Z}ozYObq6mN84(u_EDOj;K1gwY`olB_aVJf)Z#t z=!6?m(D=R~8KgJY>A}}(bZyeR_F%B0ug(UV_RwkI#&n%OqXgzsnyxc~6KfUk!TDWu z8AQtGy>#rl0t2`9)tSkiONNdvDbfb(sw{>d4%Ml_%PBe)EX~o;5d34ZPFiw!97MP~ zj7Yc=PzDCjZ>r7%+CMjk!mZPEi|_Cfx-Rs+C*CP&It1tFi>< z#e+w8>)JC>DhdUR=EX*k>^7&v$6x6lkOY5p)F*84WKnb##TPPh7Tj}2w}-^^^eb!t z@i>TZ^O$g^eFI?mb={wg?J*(kK&cI;-qL+RBH_**pGcq>HMkzISO?1<=<!qsy`Jv}j8QG)&uk*$ASRyH075w3`li}nqG zpS;D&B|P>(U=^6!K(7NSw{-8poVWGaf(iYH6dVVi|0b&g!&>Os^Ieo5dR7&+*dRz= z?_E*yX6btN*$NJjjEYh{a1Yk2!J#}u7IgO1-z1OKv>)iD`Ne}F0<*UD;ez)3vh_Em zS%tb8U{Q{Kk2I@z0zd@xK%AcdJ{hf7N^dbKgzWRbm8YlEcjgQ|&98)6dYWJV%+}NV zT3?{2`SsBPJxEDTrdP82z$>*87M&NB@|eAm+HiidRnC$U)8f!nxZX2 zmCnDVr&W6TUHwgFzWmwGkPkXuOA?N8b$YBP&t{i4H83%RP!nNSnSt3dhUnTEZ$bjp zoB)#L1}!)^;2rjnt4w8h$e7ayXMhD(0}YF94g(E~NlpU|i`Fg!4U2z+4Kyr{x(zfe zTE!S>STv3^(6ER~Fwn5bOfr1Nc$*ghPN{8(CFNsBLj!vf2Fo|1iNOlPn;8;)1#GeO$pFkP7YD&%BMiah5iyuxDD`!8F1R|+V1uY!=t+!To-36aBFJo} z&|w+SwIJ}`e1iwt7Z}(h^_Y61#1I2s^m7h?p`4+CM1F{HSUH8GDaEL1`!@_U&6nI|C87v`5Nc3)&!B`m|L_sb z2LTbHN|Kj5)Mp_6?H8avekl(^c3qj{LMp_6?wl~s3 z@J&Y}Ed-l78)+f9)73bTsoGQk6njPhz175~x|ez?$fO0jSY2Bf z;xN&CFAOoU`R+w$j7RH3{7m>%go#e-r)!v4593%ZYKcS-u4!sY+&rYINt){zG9k@W zWsip^07Ni?OKBz#xHQVz4{T~-iUs{gTWiB6EljVZxsH1rXlc^Iiq@u;Oc02&0G?O2e*J2_+r^5JUy1Uo-V(77*BuA{G32%@hj@ZkXg!J0b|$QY~Dph2~$Y29QVv zh)Nz>wRmizGsdu|VgS|qR}3J(XJP~*P7=sZlm(c zLCQ(AtAuYQx>(KhR`+I*`RnRbfo`|C9|?qoHO$gLC~0SwgYdV}Q3$-*{$5QpjRQj? zGgD!Bck@_?u+lJ~Jd7}m5@Q^YnU{{E?ZuxyMv9trMPnGp!T%rkQD-D4k)Zbz($;St;G2Moi`K;Ue=*lFv7R z`MA`1JO(^0Lq!(vyUZ#z*C1{@xX%0?6Bw3D=E+dA)f`5aruFx*j>FV8d(G_m5&jxL z*NkApUbF%$DmQh9NB5g2G7~+5OabKw%p`Y1D$HHU9H0NKc_1Sz2KGH=CdYXn9yjMO z2KG|%IRwKQGd+iJ;hedamkmU~=foHxH_hx?7j5F^g33BepZMdt4C zMY3f&vD?CWmV?#mbm9zpZ861d?&$ZA2OKtp42Q*yEgz9yVJ$7}jt+iX!<}i-fR}wN zYFO0HLLb8Z*4x4)oQQ)6*O;-fNZ=V5;nBX9Kt?D`Ezh;Mn4{1&2U*xX8y*4?qyd?e z{~ImZ_Q+V#wu{D#woRKT+SWQ%wC%zfqHSl*5^X!IK(y@_^DOL~OeI6x29Peoe_3o< zMveQ4KnecwqElO9_)?l)V$6M_mKprf)4t%&Lf|LNxdZW-UZ}1PHf0TYnTI z`Qjzf+AFV!*3P*mT08uPXzfS8h}Ir{SG4w^KSgV|eIQ!9;E|;vQ?sZ53XoQ@*aFdm z&#QvzcD`->)z{8gd-M?IYqUOcpGT#-(U0mNcwA|1MefuiOxBlg>SBXi0<3)qFeuD= z?@d4@ICvht-0xkF-;A=N^OyY1Df~Cd%09?KQ{hJ-Bi$+oMQK(w2%C!@;Owqz-6^2K zl%`hSc~byG1O|*>eYhCmzUJ0nnevON?i1*~+W3x@)Zodjtn{etukEaC`NHTGKcZCu zehtFY#Y&H{hW56y>v6t-z(JW-ddIaZ*UIEHE-&jxSuOC)2y2z&cZl#i6Lc6{egW-4 z=q6Ynf{Z*IMgeBtQMPSlK1E57-W~cUbQb;DG&BcA-sy z0m2&Fal}g3*tL#Z*~74SkLTfi6eHKKS=I29vsO2moqxE>hKGoQ2*+${0+GNoFv90I ztn4{hN>zaJi={f4_ltECnVlQ`VU_M90VD_6ex3fvN{{!=`PX`bNl0{>WD>ml+Pcv! zY{;xJ+q{th5%nS)yB6Ct;IP^}@QBU!)EgA=u+tXlZ35JsgZEwFj8NNCgZG975oQXd zN0(@$kx?hrMkC`@O&g7jqqS``GA7lv(a31u&_*NUho&|f85PZJG&0t`W22GrODkJ* zGMChAYa7C>#gG_dz=@yeGul~QY_o{pU43jvnNq<6VMeCy15y!w9AdjDCC87n$(dbR z?4q(ln*#2hWTR(AAJ4KewLydc*Ib(s2F|guD_4=a4pEtU&R>U!aRu>sE@!LD$U?g* zVag}AXGGoxt89`AHW56$T&jSD8*KC?w}U%a*-%LlAOJzo={IOo!s|P2>={8{2t<%7 z5AM(y7EoSjdl#S#;jLG zj14Y&YP&1Qx^u4m5tCAQj?1`)^7Dnt-jU4ueH?agUI7sT5Cn-DWLLtxKszg{F9ae; zT_(dQRS!}^>>BA44@J2B855FK!3Owoyq)IX;bc3_zxkF*_AX3rdWFsNUt-2<-OcUo9x|0*>t_FkoS@m>L;P9L%f5wNZPmx_sKyuJ zU}t1NFW7c~J%Df;F~t6dFK{GCQ7_TK>m%)Snyi^`XVMl)CO`m!s6f*h$Y~v?+1b4- zUkF5ygT79~474!6z&^A(0ziadP@ZgQ2hT6C*P-i|5>eCpK>T^+6H)1DpW2^Eb?JD$ zRKIJLovu1NZL6XRk0@D%l*sssOZMCOI}xq$;HBU8=})FI{v@#piSqB?ty+u11!->jSOBa^>>%dUoD=j@>*soLITlS;%v zgkuYqNZ=V5!NFU04?ri-ogm`^Iv4o%W%SL1(%bg)Ol_h)Ec`nL=u;E?^7?~6?Fo#E zJ`k61lI+|=dnmIa@>6wrdOh1Oh0V8lZ%wBLj|;{h^PhNW>)!5bh(dz7TO9&aAsp zb2bc_8&E;G{8=pFf}T5+1dQ-9;7j-_b*hK-Qq6I}q2l-|Ve(C&C3x}DhOCk;;TnZ^J zhq^fEDqwCm2dzondN^oJQucDtnsl+RgHG>V2Ri8V-ZslYr}tVPI_UJCJH)Y=sjPHt zCtNhbF^JxlO>k6s^*r@a+_>&u!mIe;@W%)`E2ucM=H6ayLZ6BtPVs7 zKoB)3{{wxICg6~ReIKkE2*^I5(UpdfMh#ooK^9#wx+j!vOcMcl} z`qp6rCw7=JaTB8E5OQRdJLafz3ZEAq^gEA&rvGUNeR28uMF+da#w+p_f1uDok(mX* zyWyZOaW1*bs>K)Fx2#@ZdFv(Q zWq~fQ9P~}6Ohq93vOHeNrvwM8;cK z1KHs9(7;_p^fgg|RgOU;j0R@J2bPdnRn`h*?+TDV^MSk55*>KG(mo76Z4h`un2EvJ z7Od1hI2C;MPT(MB)q$xMtpe>};nBdhu;sgfQ;A4tI|imPsX>7{P}U_-51L*GEQC$E z2bzg+{rUznpKriNgkj~Nz?LMmqjOo2@L4WI4S;P&1ZFbQ@C2ATCh#heA#_q8`+)}B z50QUh*9BoCyPBTr!iO)CndpK9p7jFrX*r-Bnd4eZH?gsByo zORQkg(ZKiMj(FN~=ivcwLNyFMY({C+L)d!}09 z1>M4bkW29c5%6o^m*jy+ufGGCX^!HoaO{)7RZODt1c(@fF^hT(Hq~`1KnJyxOdR;t zh(BKh{>I!$ia3aHbmCZ`chZTYhtWwVj!3hUP8{bfPC9X{bvTnrk@_XrN#BJy9qRm+ z)aG?=Ctczmj&RnKDvo8m9OD%33oq7i(x;$N|fW=6u-H$?k|? z;DYW>9cRL{Ir@t8K4kS@Hap*CCOrhs1EEvVUHGAL=Q@%lFW$TzIHxmq8feNVob?HbVm8aoPo7q_EBUw?|la)!p+B>SwxwL3(hH35#VBC znjY4^=v>2i61_e>1@^t-yveY{*S@~y{E(D~w|{po_Oip&&Uc(`87`5aFoynvFq3 z#C@6|MnoP35u>IIb2KYYfD4U5R~c^nHGr-u!FR#(!LX+#=#j8&0=--;KM@B<1P8I_ zGEt$M1QvOS#4sZ~XcNPpr$R&>M1=HDV42dsY8ajvw1~-hw0<7}9`10N!NT`~RIqWa zpy)v14tCVLK}L9}KrpBzNLPZ&Nuh$ggS zW)OWpR6Zw&exERHZct;go?oya=m1#;_g)m#oD96FSiCy1Bq)ts{ozybYRU4TqVR| zcpOBy$An?6%Ah2vLg{~%M#1Ojg5HAp~5L zmqAM;)LyTUzkIHJ4sXa@%*Wjz;xdOgucyvMEtg_&ZD&+Qpy}ufr>n7tGOelILu^_E!h!QqBEy`bh))nNHA0jgp5?2g=Byq)jaB5hv5`O&H^&=xO>M;X6{MUuP z(ZE-qDNkLa7_oh*B+^zq7yVK6TGV2&Ech#5i_ZYpb-`hRKZdJ=+g3}({upiyra5%e z9PIGwBfM9c-aHu1yQQw-@PRXUncx)gNpdigNcc7gH4hFgi3|G-&S)9j=8XuDVGK6FytbmA zf4BG16V14JAZ>OqI*?oH8U|(EMLjnTW%U$s@cUuGHy9N$A^%xvD0U+#7!_;-Ayb3V z_qm2z2E!&JgMVWd96n&;)$?OTwZEAts{Pp{AGL8ua}E+Se|9h_k4vZf=q-WZ8o9VY z)LS_}IE3*pTCq(9r}m?;+_EHCMIfy{)N#5_dwSog-AW|Ky=xGzeIJ4 zp9HUFB*uLb{X*PWov|;1>q&?Z5kDnU^#yr|nNfl-s&JS-L`fVoJtBn3Ii3m-RR>o` zhOp^|2@h+8kXY;;6JmoUu_4_VO?)6E0+%I*(8QaU8bT8PqJZ zAQi!lbc#IS*MykB=F$)q>^mnUkSIEHIjg9Mg9s;QWXFVu+Yp2F z!AM&?D;!%H!ufhHANW9s3tj6)MYWqmMStELa*0ue4v>H&QoA#R{Wh;i6cVi7K2gt& z2YfvE^VgyWmt1BQLxd&p;FXX^jPua7d7$D}h!d1w4OQbR0l-bB}s!W%iE%oj1R1`vTbQY5Y8L#rfQ@LO*fB5kOR_|< zEM>LCk6l#OB zFNR7!jLCQR!btHrcvaMD%g>@#vu=g5#|h~eCGs*-C^y^<&1OQ~2Y_qknTMj5t^W$G zDb2Nx(P0Xxdmb7=bZu-2lja(R46ug1kOnAE01usEMBCQRFdKLs8AhV?r6bIbshUD2 zusw+4yMx1MI<5~7qv@FE2|LZ`J9BlIBzQ3quGk>@&a*j8%fu{N z&rOC~cZA7^A{9qjMR+PeR4u%5EbIgmu9%RKzy%A-m$|2r#|&4I$Bx_FgJILkFmysk zeCN#z#>aef z?|u*y0gIJ8Yze2yw=E!?CSO5dID5N?x~%1=2skY)oVm$^=(>e$#66A)XE%RPeB{Bx z}D43 zbH86W@k@T6aCS4xOT~VfkQq)>=ib0@W@7>18=vxF;VLlkQP@!UYH0XpWR}}7jn&MH zyL2o}56@2zXEz%#)jTsi4EqW0ogL0@Hi%SMIY0a!vFnLNqGqcXhwouxio%s((P!c0 zX7uxq!`XcX2?XDaeqJi-==eOGjXe~?=kQpV-`UQ#y{VS4*c!7sOG_wKCwqTC*c5u=h*0Tu>n5w4y^)hZu;W%Z-847@g5AGaKAGeqIJ;}&_CRb4p205lRLblZ@X=&rIy>4o5Y{HL3!^01z6cH`u5 zo_i)}KORYp9>Qe7X<P;?$IJtjatNBHV9`w&>bwc;h3t&&GJ3dmh;u=`&N*qSkCT zyETG3&H_fx9f?D+_5wG%HNq1iA}%DMxM``IEr`5FVcK%HffU5P+gUL&b;J(0nxFIfq5jTOM((vgNJ6$Lz5?hSxw*qdC2L} zg7=oYheCtXvyz0-p(GEJIbPgHJKTDBFWFON6YhF_kKieIt(IpJ<0QT>L{#demyJBM zFq~`bVK5O{lY5Q>4t()hR84M_z z+Xf8#z;na9%n|<{BrF>2VZR0abAe|y{$3L3Un^=DROEQtxk}E@HG|9o&jhhQM6duR ztx$6VTtD9fnUxf}_8Bk-mg&Hu0q>wM>nCR0;DTJwbs1DH@f>!Dynqi-52t_OdF{^+ z2^Vkn?3LkPeYSe`3%_Ewc|MinYiD+Po@nu}3l*MY!nH5I@mvvpl^*p(D=_u!DcZN} zwC9Y#W!hQKMuGbFPacC3<9c03zQMmzfA*{re%-q1*(Us2{fnoW3R9o_;juG^E|K&l z;DIp${ZX;o5qYrgQ_p(=JPs_oq|aZ{o`3AgOdUxx`$%%ey$ZkjJB~(1Tot9dJ(JqFg3nGM5bWePv4Hv z3cq$XrMPL$B8Y(owum?`^k~{D;+lX`>JyU`}G5C zAd{=if&Vry_@YOI4gS+JVy@ttrj=w!r~!mrC`A{Gk2CSHgb zY>>#a;#EW-*z&|P2bzA3D6nHAt$QYkwz+`9)L?5m`U`%SpGWw7sf)Lx1R{SG(X5J* zx}Zo4w?#64R~VH27V$g$&o5G8l}MJxg7xq~K%`1g<6KZAiOSO8ND`GpLL(asrh*Za zIxQ-a#8dN_NMb5$LL?Bl>`93{B>XC<6G;+%OoK>bzP3#wiTMmIBIgOXb*&@S%t0tV zcpwt8u8{JxdPP<+B@8HbXeK{<0rH_&Y5Fr-$MjP%G0zVuPX<&*! zWoHBp#~|~)9v`W|`P^}Aq}n&1aen~@5$t^-Fow>dR;fFeTIK1y$mc>{$`(ep7j*2m zBvQ+4ba{upQW9AMy{;EoZ1&Xvq#llxgRT1_)v*7D$lC_2XxH6RMManqe!M4={o4e1 z2%ZTg@Iy`1HQ#E5x!A$5ZE@&0zBP)d)+;cIgnMLA6bbhSt|+3~ijXLx z+I3IVYeBX9F;RP%qmWp&CMi)y*s@mCW>UXgR)o*1ls$WhYs$Y0t zs$ahWRKMYaqYg^-bH_)^;h|Ac#|8a9&8wmxj{pc^fj9G`lB7u|QbE0GQL*sy^r)*+ z{U}5OD%PMl=|4A0U7ZyC7y<+!2>Jd_aBRFa#i%(LQou7 zPc@pmfoe2#Q}i}z_M*N9u=RYj8r=I9{qNa^s65zacl6)*)&jIUQk`1f4o3L-*U{^$ z(M^Cr#B+``3FwGHtXeZqL@$)61$ZDtqCF++^q;71vg=g06E~=CTW?0MmFo83ZnU=K zRkVu#2$xN`p&NTYx~@=e_dctl8o?W&|BGnJg1P|k#9gnVhe@YMbX@}$MU?5FSrK!~ z_s$6S5~u)Cg+r@gZDb7kpyK)H39yDaW~ZRseOnBfF?R>VkX)Y`7(-^vxmTYPXI!^j#j-F%nU1)ymp(!*9iCe?;l z6J6emStD6HVFcGUX0db$hX@*YphFD%Ef_2wPXK>LqKVers<|8@@!pk6<^uufZ_mWk zl=!mbET;o6N5!c5uk+@?76W6V1vgH}jgeF~3PoqZM#QjxrJ9$9Cql&MoFppI^#Huk zfoP#~T;fGc#7i9Gj2K;*Xc6f7JSLJXAGfe#pz8oG-5TTb1}}f@(Y6?lF&x4z0!^dQ z9s&P-O^|*w<~EGl6{BLt7a{P(p_qO`mN)vE28-fb8Z4*3qro!$hnOrOSpGRlsYfbf z$h5KMOiTphb;N!F`rK^{Cs_0KpAt0|pfBCVXkgR(F^3qZ@x3qsAc7KnazDlb%34Ns z2mLQKK!1!gx-1kne-v|9+T+j5$ceeHV#w#CvAW0pjzNEBNqqiAF2N?fRb_S528jIf5M+;^6qE@U?61+S=0>M#quyJe`K{ZeFSd#XC zw4lPnmQ=M5TgQGNc=B31O5MGaw@TDZQUT*J=u1nprtLHbcN0<6tX80|Sr+?9;J3Ccc9yRp=feFPVvh=5D}fT#<^n_vgTL*LWxuh6R3n5Zdt;Tp zs?CLkhhm3Gh5+bVEG$17n=MFD;}q5EuSzQSp)*vg5$9sZ335OEiBiA1Oto5lHI^*V z4&00#>pM^ZDEgDr!;|-7dkZUwxBinTBp?7ns6g(ESS6hCEVfGJ z4aL_eG`)W(`^3_?Gw`fm+!g6`i&%NV2AHXfBSHGLDUJl`LQ5RUzuvYul7G5@xKzOe zZC!EiOO>pc7^f`xi<5)L8=~gG@1x_+2n&l1sd3Vzqfq#3&A4t%>A=xRi2xCepiQkf z4=8yNI|Sy`iEAp=nqZA!Yx6i#YOvCc8^)cKDowEvVM!c^x2EdeX+zcB`5smGgLYKi zwVmR6N!2Z{f#%O;@5gl$eENED6)iF1?d-TrsfIiOAc7uzmW{N_n^r>shYXElKl?~6 zK|b?`l^Q%U?gxod5GgfUh~5@csV;_ms>@H)s4nwnP+g7|#Ib+Vl@6o?Ls!O`gekX6 zaok10ca6%bXvLe6#|FTH6>;sQs_|5asO*Q%yhHTa7UvYcTZk3eaBso^gfqeWaW!1k zD#)_}6^rH{kRjZAT6K2k~qr{c7}vbyn55 zW)f@|x&4ij=^^TMyIRj;V<4&=G%*!x;C}SlQngO?#Q}s<3(~gvw#Mu?`WQS+Dnp-_ z{s)0wU$ziLKK*-*VZ`knp1xUR+!dm(A#Zj&;%*W?^xpV+jrMPLHpbyimK0TdlQ&B{ z+)<3aEfN>Ml*qTbUi_QGk_Q6>R>4#C)!qlMH;V7i)L)?N;$0Fpo5Ra8`IZBOVa>X5_q4J}X?C8~^p2q_TqkBjYtCdGY9@DkxWgo2$11 z9vmJ2#hb(vI_%1eFIVAcgNJ9w?~w^V=NH89BR_l0i(f&0ste;=qFXyub6~&4@g`=) z?5htLu`1pHHr(rr{<q;To9oY5X>(n)-qv0;9K*FxPqO;$M=VA8(5Pi`nk*?E|i# zk4JwBVSl_1Chdxk`G0`}2#5ao*TMMZ{=!fjzltv;L$&!X{txo=o#XNR%`2}VI33Tv zhgekr8=P|?zBh9xUL9oSwfG7$Vz-;|9jdj${g`4aSpF}Hx`ub-&sLkNJOm=h;MnSl z$ji858-Np)F1Xd5psLp2JOs8*NLWUMd7PZ^G12+c+6lvn&Or?lz9l~&Hc9xV8oM?F zBZej@;M;8y(DDG!K4Y^JCRY_ozyX9)!~7u$Mb#ucflRF_+<7|T-kgN^@Heu;I6mP) zadCnLatjmw)(M{acv%9C+X0^?pqFm3|B^}*R+67L$`a;~7@x3C#5VsTfyTITV*-uw zLz@y_5yPC^mH>%0N?^h~jlj3&;e>B#J{%E;*!Oh;`qO-P;AzK1zU@yWY$I6Hse~(p z*^6@oV1+;Ym{3jt^DZVlBY>sX5}J{pzuijcRIM9MsuT6_+dmVoIPs`pyCSigy4DO} z+&N|91ZF)%1GO1M)brI5_-?^4O_#XRyV1b^bxphiX$IV_6OH^XolyO+$0wqfv2ZZx zT2(6rL>)#|I}Rc!L3u3{0xuRcss($zo4E0RgTp)UTiPaGsAfJzAytrQhrz=WBZCBi zI?k?EAOSaFPGUi|qw!ooe#2rdTroHC!v7iq5JZ8#vXoR;20JZC93EOt1jDqAiABUj zKYv@jL{io08;s*kANX8>$&rfI$RvNyn~em(&h^mzrcDp1AX_bZmejnzl*f zB%C24L`mm4bgd6>=1tW^d;u`b=;2xl%#N@oP;sSxoy zA-Tqn;Q}}MM+d;92}vn3c%Dmgg<<~i^|mBbuK1zg58IQ_Hv;g_r8|?h`w2gL?oJv- zeqP#}G>`lob07)5F^93?6-l$m&mCVS#rO+X?|zenjyPe!;qQ`Gk)LCJNJ7;JU#)vA ziT!jt)l3f-bS&1xQ z63LW&bnPQy1@F9(R9goB^-InS7JUQ}Iae->cOxSCdm`iRsN~1w>fRdS)g=kZkH}Rn zRlGX1R`M;Sz@cA*(E>?3 zMGN@t6)iCMkZ6G>heZoK`bxCGmtQA0U>4*^f&QR#W%3=_YT-t9Y@gyNu?=EyoX$i9UuR(IkICbt>nC(A1Gc`JJk$@A>-t#Wk?YB?mPBX90C>KjQEm9nv*h}3hM=c; zF4*`*@>ZKyLmw`BkUFS13`}mG;(|xaDIv^X@ZxdnkQhcm#+nH!)yS9uvl3G#S0g}A z(63>N20UBPs1Ah5DWPwM;JcEVHB&g|ya|=D=l{dkR|jTsJb(WJaTi-SCri`>;^>VJNxp5bj~~sZCS4rs(APo`_gtnfafK4_Cd+|8 z9a_V$zHE6r!5F*L4!tsHk~R|@xNV=>ID$B1h?(e6sYCq) zKvw)wFIr_=!`>+l2|7%YK(LqzxwO!sBOG4ra8Nm?VXj6YV7=O5{Qsm9`_CQB!Ql&s zMYIC@FUrN*k1=ccfdX5_@zzKVDGMmDHk0wI*{z=0XF21#}4B)UaM8Y5)7X@Y~U)A zsrbmn!I+C$iO`B|Cxym89e!)qlqsW{!wd_@e=S($u%Nx;7y80wkiFxV;$`#hj%8eg zAoIzjYRPguu*Sc}kc8do-(JvSva{p%u7VaG$&PEZD&$N2`^3Q#%2FJ2v?bO+Y=m8~ zY$>TS!|_XQ1gTXy!IO4p50a`9{v=p(f%Vg|_s((!00M_NxW=v*bzGsCfU6sj?=g)hGYrz>RXPu9`t)x z(U*pwb{yM+l^`!~IC6(*$pz|eIkwhedJ7Ww(or~Z4$j?me97%sl#1fksh5s%MuI$h z-pJ;e@J?1a;{OIZ zUDiZ8VC@%r38vgL+DSVsR|&gmFN|?Iq;1P3U_ZgBxQCYaFClo(1{`ahYz>8)5;r?Z zj@ogn6V5GJ{dcxG<(mnY@%x=5pIv&$N%Dc*BTkv3tmnRw@2>pT2^U5fhvnZn9TqRu z7o3tr?5QhGI2UGswO5^Ry3H=*uE`Z!|Lmj|vD0qL*tEMc*6g0sXUcXdk8W;3!tc;g zGfiSOPn>48Wt@qdfit(#%^Hz`ulEbIfHFg8b8VAhc#LrnB#&|5eAs4cG)Rj2Iad*w*I@oWtDh$eUVG3n3-M;lR2CoE^}B? zCKn4H>C#-prj2)b#|`>55_g*9f}0yET+$TnL#T0xK%M2XT9kjwJQtkPF-fN`aOtem zLeIa(l~w;`E_?qsb5`^Ha4UiY zE2w|zVq+)B{Hvj>-a0GG2FtNL9U6Z_e$Av*!aSu&q_jb+Z=0}o(CV*9%iXJ-OTUH_2S5~2mzpTQQ z09Pqx^$KydRR%Mf-GtO+xmuC)AN@u{M64_BfTS))re^BY0}y;pr}QsQFSj9g7W*86 z6KdDNx&$W@MA%eKx(|27Z*v>DUxUM?u0~>n|2R_CXx(U8qoHGEjoOWuG}=-=*;T1f zV_1!O-7Hr;vXyDEacL7RD583nt0A0U=31ik6C|3Fx655k$sXcLU(pxs+wRN-!zV_vw1in*x%Bi{@%gdoIh|8uvW zI0-bwhM$&OfLhu4*o}WIPwxXNuht=QM`1B7Gu6#P z;0Y53%hC=SDoblMOqRC3RF<~YC|TNOZv3G>tZ-Eo9!K5G*>NH~S>|?L@MiMeMy0}p;^5CO+Zk=0$82Xow$o5!$OtwdHy=;%xCuDmJKO@^C{k)rl z!X9A#qg!*Olz7hucK+mskGNU9Cf#>?qwTnJtDW2pN#J92swa=!_6Rt#+aB%0}T^8kPO#%Yk#eHJz$^E}B?zLPl zmtcUfx1zjJA+o$J!(@5yh0F3Tjg;km6zASYAuqX|i~{dTbC>L0R;(0QfYc0jSK68q z%*pXF?q+1bc-nOGj)NP++;=JD)_?)Q_#px21s$fy(m$9gOaIk0S^9z*?hnO0kvZ4> z6K&~N6BB30(Xf1pyOU_{YwJ1b0qxa6+Ygr#`!C$BSkF@UxqDYGyCQZeAhDyZAX#jk zELocavShyb4ks&?v?~!854(8&riF1h%&lg2{oP&a(SLd@>rwMm)??UnS&t5l zvVV+vrR8p2I(aPKzs*DPjG>kuoGVizEVJ_9&-cN5wVW3mw)4o*cmW`Fqp@JzpL%#m zK~~etLkhBCeLSQf>(I|b3bIj79*Z?x1bcmq_AmtE>+!3wo)m;aElERxHTRb)Dye2RF7w3WDUrch5R>17V@N87IJL9D5Nc%AMDYQ^Ue639-on% zsUB>@qBs+LSMJeY^Z@TEytot$2)@p_Dr3;ec!iDd$|Fk#OJ;Z!aE8!8*iP<^i#*&# z>prfQ1^;@bEO_N=S#YPdvUTTd@HnAi3dpoUn!y}Z2)PQz9rNIi@IdeqqQ2~5BeXf| zc&?rB_>=2+Cd80+9{}#;5`d)aPnL%_zGO| z_vAlaiSAlStP^XjAakJSzskal@Hp5L-%(_;u1@fLqTR_>lD$}%yf5}N7Lq4P^Tg*n ztgrg9$de0jRucsSg83+y2<@P>#IvV%PGaoa5w;~SXq>0isRmA#ZDu+}w%N6*vd!j9 z^Th2(OlE^Qo(bCV$(Y(eW0mJAjjPf`AP@)=T0s6<&uiS06{SM`AA|ueW7Ycixp%{q&x! zYVZ4=(mW*Rf#+6*PY|r!h*ZAE=9%&i|Fk{lItJQ4_v|C;k@QxV9zqGg5;K)9q2V_o zSzKHoJBFZw#mO}`#5BU7OSMB_G8y{ObAe{fQc_fugq7TV!Sf)f^t|4RO?;9t3y;P`GUG8O4Jpv`!+01t|7-f5%6i4*8N|l;XXx#`eeoq$FrmozJUs<8I z5ZOl9JmNUY%S~KA88=H7G;oeAsQG8IphxG)f;L~|RV_Bf_A0MAoXj>`y*`5z#A~(a zU&A-?VlwKI&Ag0&_wI6r#eY{q)pjpW(Jg*CB#X82h%8pwF@`Eqd36*;8~rmc8U+J_>$$uxF))TZx4il)GZTXGJIA-Y@Y^(T_|3Mx zkG!PxwCA}j^MpoO=8(T+nP0#3l2Ur~e_p+~u4rVn_cRiihTb`~rMDqiH1kdn29Tt@ zg*Ue)QpN$|v@(v!z?dv(>&-@{q$6e<>3P62zwilM1~LiX-HZA>M^zem^u^7J6oxEVOE*EVSNeZ)xz__ET@IrGaYi zMewB3`=Dsz{mT?WFM@~5y{Bu;1}K&V?;zFQ>sTO>$J4zJK;tU!FyWyRgzuB3vfVFB zb*E02YViSYX*F{7VechkH2EI$-Yj0etoL5e8908h&phb%o%ahd{=5Cmy91*-{o>6} zso1^sx4iwiw~fWN-0J7U zaYyUSCU~p05D{~He7g45)Pr>|6TUQLf8E`H96#l43e$>wzT?b`kWa<9zcJqDh;pc5 zztG2sJfH7_A0Mgk5m&6p`FTFd6i;!0xG@^mLidgY8^Ap|{3p3skTU`+37YJZXS0zoN+&XB}L8TY4EKfOaY;D?$rQ|Y|bnNDD4jbC~NsDNj|=(yPsrpgT8)}&Hr@pQ`($hCHllF%FhtCdHUgSh|SJkhU?Nn#I=a@ zYvL^$F6A+PjXD$&$`YiCLn4DLS)23uvNqL)vNrj}vNm=@WNn5Hm$gYA<)>_ix=DV4 zq6+czl`2$E!n%*Ya503b3;g)^*#(bY?Dw})?)t@kcmxz3z@@F1rR}^)miCX$vb6iR z%F-5Zm!&v>Z7vRw_i}oOelmP#29|O=-0&ak=l~%ZSWJB8b!{)0LTaeV&^UI*4CBh?11Hv5-z{gN;MD5z;cYPb6fuV2J$^#@%DJgD7& zOJB{v4X0$&$=;>?r~*FeU4Fp5UHv6Bjem=gWF@ zTPW-CVv(#zZI#>{KP?N`!!-v6NCgR48DK^#b_W0yv z!qmOG2?PmvI@wnNOIr)=;&N6N_x(9p-0v^Q;!eCIi@WDafRFb6pGh$MM!+ruy^Zum zgj90*ixsA1aznsQO<-vDPM6*bxWw7=o8l1fW$MA^Bjn0c3OB1O@5zK477ydWlSH2^5Y34fqgH#bsa~;Yn%+<4Wz`JfU``6mQb@aEYCUA6f{MFwW z$nV6I8Bjx;gX8ufJs#Ln*mK6aVpChfk8cB)>1=NXSzJ=Xoi4rKJm_RE zUAEW4n#0iEL5mGh(El8QzSqOwZ=Hh9(ci@`LB&*o*Pg=tdhejI=J>yRSkOKb{C%tn za-j5fDM9Bc{$XlRwGsYK$qo8ZAAb`HgR1H8A47u1)8D+|LD#q^2bxwud5p=iZ&nzS z4hIWx$M&T_6?C5vRA`STnYSuPXQRkvV9n|v{v*#ywx^J7{ox>SOYOq-K{L3Q7XN=> zartcf(V(YPD{@M(Lf#p{I{m*7nnbnVc2T%L`f|`RY8|87K?CT0_g@98H2*E=XR7_J zM?ov;@7QNS74-MzpFtDp?}*ny>0H8ZDv{t$Wc#}yJ2KY*UB-M{z+i~_5cGf+cWyqg zyAJR2CgqA*CFNCc^oEEAj= zF_0*TfJ6`O?GdRuU(#`SO>26@9D(Lb2f8UG3cQ9A?O!u+7PXJh*G(j1^yK{mn`9m& z_>uwFSD1h=4CLR}Wi`uGLf=p$%v?3=1{&%??V*7=ninkzMFXNc>j()CQvMcC#=F%Z zNSFU#6X~##M9}0nO+{qX%Oh~fYvBl-N6^=~Nf`_@gthMmj#t=^<}MGS0kebWq*g|; z&wLzcrlYM{kq&}+KXe%6tTZp>3fp=NnoZ5?7%)hO`*{$gn?ZcwpcGv)f&IWi{0=~7 zUM4IOY&mZf%)2;bP@+yb5v>oo`GXpCiAYp)kb0za5OafpvvkYJKv}Z~HSq-|4yBUv zd4q(<2F%Wr=MK_sXT}M!Cv}R-I9+_Yf*str64YA@b>a0$o z0YUsQR%5=lBWqa0;n51oJ>1~!g+VQJ*`G)_0zQ`qjnE9|nd?^nJt&M|dMSVvw+GFq zJ$;v#N;&HO9>gC7N+rNz0VMWc!B$Z8dJw-BD**rjr?{8dr2Ax7>)>{R%Z0QE9>op! zCFPunMf+eI@a-7f-KJ@Na)PS^g3X$d`}y4H4A&3_g_@G>zt1)&u};C9pUQ(ZaBvQ` z)gGt~ubvUwo^*;1#uwGuD}Fx*tH8%2_?(?y1u=>W)*i7jG$7hkyYC)O>_^vh=iY?7 z85bPMy_1D%2@t?fMwsjCRlxb;VC}fvdTFqBr#hU-AVNXHNaxRG!TfF*4YP*PHMV5^(I9bgrG8HE z3GiPT{82l?M5Yqh9De&exD6HZ{boUlGg}2EmTeFIo!+0YCwPr^S17Wm)UP%s9}fnb zlNWvUN}(eJuP{LTz9YduXg5n4>2HeASF=K0!2Lup_mG4-tw4o}lfhY*Sp3G7;709% zTsb-Rb1=RDcP;oI?T9D`Boxy^-5&uGZ4oIelD}Am7-~CC8Cf(I*R6)xg%~R9WQ6xELq^k* zBR>gIs8~jBjKwZtjCrU#wCNRcN?9?bLQbEMY+C$?XVc;}{vnp+Q}a+~DDZ7k9FRJg zmNbe9Q7AhWyZ;b=pA8ydEOz-JhVVQgB$*Zp&I{qcF^GVvaJ(?&jYdYmdkqx&`PdNt zyIahdcgEG=PKik&`d~RBI1l8|DQ-Riu$L;Lc zP|h&pa7YtZrc^k0G$fPi)AM{&bA0SpZ3v4lg*5RkM$o?!l158rH)vJ-=i|_F;`bl~ z51zQMWeG|EBoxp>8~#={R2i868)Bj`DJ*ysGLGV#n}jxT!xz1)@l#}$p$34?qzJb% zLaF!_n9v+rJho$Klh*3rEz|<)?L(EV1xP5Qg_b&nDm<`^4EG2%CvRq$d&GxG3RXc4rI4*d(=0!%Zss${l2o)u~cW3odzCng%g z)7;PuT4mS>Ee)Bmca02f#?{FR;XQNGx5B3-X`mg>$}vL4^QUW7%$zS^R;UqRBIGO9 z5QfhcD*moI^e?Uw2H3MU)CvMuhw@L?n1PT`LZxlDLrYplo4Pxc-)znp;XMn2o9IMo zhkYqXn{!;NPNvvyAM}Q}Q=tYlwG06LZ$r;=VJJfYA!;hZ-XEKKREJ4YVoSXq+9a`2 zDy;h@lqI&e4|xp$`H$kPfd5V=+nf1{az{TGudz5YehLbX%SH%(qP z^-W43o|SH*+>c*{u@rc_d3bZ>Pz5Ek+EQ#3&P5m#h~9^%CgChFQrd*`ZG?bwGN4nq zDcSZocmQBSoz@n+9FWR%UDQumvJ750gn!h=W0&F(ZU*Jf;cTdJI(+Hl5RvMZX-ZX-dK<+;a9SV_|;mkmOL&KZ6Ri{dHtFKGLo46Gt zxR!;p=2=-0-XwxM5602%)EVIhU^*?liAzu_AeD8Zca}6Qew2h;fNDjPl7Iv@+Wlm6 zxH9Z<$P#X(Y)ZUm1?_f*vvB+LkkUfs#Bw-hD*YB=9?P1k2^!T_cp90P{Q|n)JVT&w}g6#(77uY&tAFqKOMOOsqB|qs>EIi24fV#5U0p zXOyO9kWI~e@l_g{o6p5YyrG%ubXLSJZXXx6=P-DXAJMkC-ez_b)r#E{jYw>91ZW1# zbYhL)vx^wdWr{!jBa2DpW(1Rgd(%fa_!BMLYd)lraqKQ6+COmK}%fwmJOzUOqMU{FnpSlCS9^{gV|j8aa= z`PJqyV0uJ%ML9wV1PKKbL!*~ds8Ii)xYMC(QGjVr9gK3O6B+if6sT7q_%SR^W z!o5Wi&AIhKscie|SqX_yzbc|HxAe=1sx1+1$cV1-cEqt=GeZ)$vg}i6_IX4DH%%54 z+!9f&FDQ6=N5omtZne82Hi>E{?~U+L6r$RFLdtf;8W8J;%?3d7{)odm48S0!WWcLt z)}(P;Y%G`_h#1MO3giZCPUSv6+x@tX)YWkqOyfl82S2**xGd}1I7``5V$d}hoV z`N)NcQJmvxvBlN?N5mGZPZ$RMu0|{tOP~8C;@KZc^#=nc$ELPpWS)?TRKg}aS)Zv&xq_NUBsPYhC9=VoV z-;(Pl4s-B*f!!TO;R&c#`PML{W#lw%2Pq>}{UeQGihZQBDbs`0_leYwA_lR9vwb7u zwA-(23zpSxs!HLheoWWM<#601vX92$0EIe+wUf{CC?HgZQw{^WSE)2)h;&@&x~LdJXS}Z5i9tnDAG*ZX5}Ps zE)K6^OC!gK-g{+4#>^|a9 zbqlhq!>D%9_(SAjWpEywFT`a#2)-G)Tg(p4?nl;W*Hi?Sk0USX>3vQ6##qwtY2=(_*g_BVx;QcJpoRfW;LDVv`w@;>B^=>2l&TDy86omd2iN{qt+B@2iC;Cx~ zWKMwC9?dAh77iLk4dnW-ynoYY;A8JhTVg&W!;FkLo>>eg=26vn6hE?oz1C5++I7w+ z^=Hsw%UzPi)!v4ekw3zXR#9iTFHd598k{*q^^CgOTwv(fH|kFV;nLYDDgd2@Rx{l* z>Z2jCU+ZBD%L1bOM8Lh^DE{ai$`l%-qV{tciB(j!FmftDN)$Rj<90qR>Nn0M7$$Hz zIwte`9eGiIaDLCIj=SizowoGyAyI3&vU<@mNw}N3{rWo+KMdx0SD-{JEHNJsOeFgxJ=y?B0g{adSTQAu`&FYMm^FKRP
    }}7B^FEhJSvv+I!#Sa|BV|AE4M`f*TNFDO?6qK z57_UC`kLz!WFq#BS!y`@WmLM-R;XnQqTYhN^x=b1pXeytf?N)dUINXIM9t-5M&fKu z?w*daB5#vb1IXLlXcLliD(a=|$AYb~3Tr@EiB9vy-NKP;eYd1IaJ&*_W-OR1`bJbZ z*XB}f_%#FUmdW_LQFgGcA?h2^c9R}N;hr?+N+FM;>cmU)$5G`vcyuO}c5x$MPNVF8 zYyXNmqr)s#(D)|mqmp1>7HtKSn@5ktEhRK=KUhU;;#Sa?LI^@o7dpi4X%o$VXn^Tb z^|Ts4sJ#@I4&=CmwJo9_bCJ>%XAXTjN85=`65B2MlBno_?$L9ZC2ZllKGA=RcQ5pd z?x~X<^P)f8qYo>+2!-lG?B_?gz&PLN{YqD$)aos9Y0xzwI$LQKB(`K;M9_-{kkGK` ze-utY5rCd_QI|~6FEP4QZ2E1P(b39g!@}0A>EYkJ=<8yuHw=!(R=3}QTjzHSMR^4W z7&$C@w2tC!g`TBxWHct7!2K9|hGU{H=upF&Jev}Y1Ft!$`EX%!bT_5XH};INAUn5U z<7%h!N3)_=+Y2tSY;zNrprrsyskux}8@T#ib!$@pE)@rvc&IgbZ$H=+CeMi;pa(B^ zMi1+#Z9@&%ajLm--MMHyVUIbz^`&Sj&zSrWJp}temZNV(R~r!3Z6Dms)ew!lFWKGK z_oDGAId<9OVf13rn@&H8UN2sbZH&GsUM9VY#uFhK_Q8MAqr}UhAEKR=>B+HIj3r@? zwa6fbe}Rd4F{5U$kBuQFCZshcDm*6Yx41C?W-+alZYE({kwuFl65)hJ%p_$iRW>6% zHPaZfc3Z3obZQmDPv%&)60Qn9Z4<+vSg8@JtV@guS>%*dN?f|e*pd1ks7BW5=)v$y zx0ty)l*GC7)QnjC_(P1o=&o5VF?mXVV>-kvh_xY?A0-WkGhQ+1bS&ZD_K7*JREMGK z2gZm_w>&teNCN?sb)`@h*`5@mooeO@3FdNg%xLY-YdTS7#)#dgTYAhM?MR7?Qd92v1tkKY`#pQGX+V+3h99MfMB<(7M5 zj+!xD$*n_tYtRCK1v+v8&X`>OFQx}kosAI>Z9Q^4=3g!Y$`C*ZzU9fR*zRJCG@Se9 zO3V<>3^JUX7WBIj^O9>44WxE{qzM}oe7qaOuh?lLgpt9SUt`wk607c6%tg`B@4kwe z$r)PW;z$-dB@H8?Z!vt<8OMs@^X^^D1OuTZ=QNAOcM6$eD*afgb8c-I%THz`Zaqj< zL8cfs*Ue+40pe53SVztuC3H`cvoB>Be9|VCPtzlPV&^NGEuc&6eCz?rTx`iL?^w;& z2|z5rIE4SsAiMoyO@txe_g!N<=t1+K*m12inOF-Wj``ZB#Y(xjZ&s|7i$BSU#dCO> z<}-_8F&DGTzQbbiP)>IFZ)xmfF{!>B87n2=&&S0|33%G1*o`8vThIA90|t^r3(D;Ny;1{tLg1l_SLFiVjzM zJT_RN6O^5b4Z|Tj?cUCuig&XDBviE{u!;ojOD$aITZalI6H&)D(yI#fO zXLA^vv2Urq>@wgz)t6lwevCEb5(F#$yjh%>Cm$HZ9XAqybrx~noHZG+GBnOs=%Sw6 z#nC)T#ckdy?jDy<7_ea@KDlC(v2*R?Rx8=q=Mr%;7T+~4QCpdzq#=v6A`J_1=CZU; z++0B#($_g|fov>-b!c$d`gGJB?GiVR>(nGjYjU?^oFSkrcG_Yv2KFr9Irzr$qgSb@ zy^!jD@{e1`Kx-agSQu@HL1V`g^ zf#C4rxP3}$<@>m9LPHHX8Rw0k=Ai++?@|*5C7h^W!{xXgTx&7;>MO}7#QJCS2(|>e z$6sXz(O2U>)%MOIM8-khjkw?Sg;q(u8)vFChvT*ychdMI*%`cki~ELaW>y`gLhXaN z1=>MBgdm~6FvszKF1v7IW1NA)a8!`qLZ^}VUmX8A5RE#rgYS=5C2N--3@uGmhxPQ9 zzz?P>6HYo!?zA^ot>={b#wva&IM}ETb2$+2m5|2m_|ksGtmwA%MVnaov85{0npkJx zVx@l%6_*_};OyK?b4cr{;umqXsbptQ6&~J}8J_}=`lvqV8eWjpGK!0-o%2q>UIZGdI%`Mow4FQOYY*N%4M_B^jO>pAIi( zsg`hT9~WU}WAz@}kFR{Oj&1^|)^RZ`Lty1m)iz~Iv9d_8gda|- z{uZtM(;3w_LVa5{f3M=-$CAV+Q*Nm2gjgSbL$zC{#V7>!-cnsvIGSK5q?&^D1Jwkv z&Q*_8ACxW3gwxD)Wx@p3g>@NE!OnWXn;z>8h7tU)oLya zB4OH!hIkWh8Nn^AALwv19@S}gCGMueWJ&F6Jm8JDwsrfiPugvjGck7;`vY4 z_*UAnHI3}qN34Z`LW}*Ftrm+LmhFVi-i zD2jS#y!bTBes}zRZKE-WxH@aPU$$;1P+C{yRsW4-Vuz#ghqS$(LD-VG;5f%mC>=*Y z2*akVQ%c8SRAF75u4sA?WWYPl%?k?05eu-T^4XW-f40!uz|A)tPb3(T5jzAvIsuvB)EUXkX+xCfJ@A+lI_T6Wif-mV_m`_>U4i? zNWd3rHo%dM2`iQEz~sf6gxw^7yGiV*zv}Nzc&dPcx-Mb0Qc&w>qyt;sfW|PfXNojCJ;hggONT8h=Tc+#a2A_^T$)h@@7+oOt=` zgkeg9YpC=8O{nGiWoF3wSEP-mV}=WF6JE4YxTFRmbjmFg`_mwv+Aa}a3f=(G9TLaV z|4(!g{$JcJu@(J)bFajA)cza$C!VH8EpbhJM(?M2CoZJF4+0Xe(eg)w62GFq<%1II z>912rVgaSEh!ptcM%#F<9O zrf5jwby|&INg}`fi5Y{jsqDMTq^>OSq0){rQRosbjZ9pr^aln}9l=A)K1@t}MV0=0 zTB4CIaR{RHValAu=M*)3QQ~{0hcjOFB+-=InxEoIdM-=+ThT5WMD);crC_}xu|Xja zAcQ|_LQ=8=tl5k?wX>XW21wCMG|Ne((JX-(9wNqDrWQ<6QkSkoYAx*SIa#XE#_`N@cTM*Kd-%wR>)qq#nO8@$qbuhcTMYG#VP30bevT^h0pznsnMbh#YdGFMxu?>dDS;rtS~yH= zvP-fBHN`xiDWK9}I;HP)jA63nT7ekX<>0qFN7{k)?WR@J}j810BA#H53 znYP1-T;u#!ic29qXD9E{_A?H`oa5-+enUX8&Mlb z*~uoJBEc$E|NC0u@&Y)w7(o?Z$|y*rwx^wp`0rYY-8Q}|=%SyM9B)E9*3 zzyH~#BrCX}$T<0<+y4^Ur?7TT?U=$ZrD^zR+S$5C3cmm^K*pu8&2f0fBh9qs15%FA zChqT-qD%&R8PYJy64LxrqLdCUQ^`*M6k(WOy|6V-qTi-=Ba{f215@||4y4-cz-my+ zNp8JLCJ-cunW9vc@*j=-;^dU=^w%aMr31C|fZP<83Erwxy3zkT7YqMC9o)oXR0um^ zGSIgygZCP%h&3*>2keKk2n2<*O#aP8ogp5*annojl*~OPSmRatGVu{e={<(`Y!H5^jZl z()(OfKM|3ZkZ`_<&SWoA0r~K6APNm|C#6f>4=I6)`4wOROWNeee@$V@zv5v^1N}ee zX$qUtwEZ)smkwcVs*6_Q0u1d4djFSFt!NTbd%mU}dpb1pLkho?$V8z;VPM-qFEy=6 z!`wmtzPw<*S)EzxdF9{-rDa5%l*Xjt%Sv?AwxxY4f7+&`tqpPPnJPy3nNLzZlud_H zbcL$EsUvCM-fTeX7rL}0m&;e;N}qcwKllH#G<6(Q_@^e&NWL7M%0)6I5hRHVW&gya z4&uC0rb2yODu0GG62_Cjv64miC8XwX;!-M9rKfIC-rK8AZPaEzp5Q%kx6<5#)Giw1 z0&;o5c{r=GwgS5|HXvF)E|t%ujEbzp&hAJ>DocXjOikqnnGCgiI`Uvs$$@iI`KQOM zAslN`+mS^C4Wb!t&ZtWL9kU4;TFskIh6BPED!aJK4XN$PrIolhjrp9#n$+f;HE3Bt z$Rs-4dABXKi_#zKccu0dMwL%@r}B?0S*?@`fnTO-?G2_wIa(`J9!{<249Du)dos1T z(qHV)ruG$H#`f-1Z-D8cHHa z620o`n^gYn7^F_3qdrS^sL{)JsUtX_kci#L&3mcO;O~#Ax!hSOjB3?3O|+_C`!s$P zi%~Tr9@DOA%n7VMN#ipdLtVOnV?H+6+1oE|3uk?ahd6fYM?Gx9Z zTZ!|_OdDv9O;9;FjSFn%Ck)OWJ8T(}wp8h&NVOvVJ8_uF_Vl`!3g+?|k;XsHmKa%q z@3=JnTc{GD4b)Fg4a%t&i8DyLP0{k*gp8f(zW*$~2HLW0=Od#*sv z7$U)I()Q9M|EeZ!DgB-MMVg@w+gOof`&Wwlp$G3w`<`~dPG6_((uNL(m?LR8eApqZ zF)#Wi?L5~`_;wzlZy`YKi8RHl17jfPblQC*(s*luHN;;`i{(bH_-4TvQhs!0Yw~rs zmhJE%c3M3yX;NT^+iCNZz_Sf$ZNU3}+6Hq0^W;U^SS4otH#l<{bD~*0FngUgi0cMf zRqOTA+X?Sud}yBj%tT=G)*^k5f(?AIORwTaQ>^gaPU)?{zDv3RXMTxbO3cr$G=sXn z>GwF_WK?rkEY{mSy;!^0R8l)My%o)u!+->(Kk31QAxnp(&(YWw8B7JljnxxG?LI91 zEf@BbOxbiG{Y%rkz;DCT^SPj8RL9FJTL{T?(CG9V+GS&)@2zr7OQ1jiQ|N$fxA z=J0-PI{%HK%dB+j^6 z&fbVRmX1%=nA3HuPv?hdpeyD41_Ec9%TjurKdrQOX(vmg@#;lJDoch zis4vJ`RPvj=Uh%f!XonFH?%R`q)IaGrQ5-ZU(>s2YqN+r+?B?#n;)n56NBW}ztYER zniP;1-)}S4jdyFT_pi(NRs$pKzP(|F6&M(0@LwI$5C)iJm~ewKMri1gVF@?eWX#hJ zs>P&Z|BRMof47!xp-;~YKknNttk{%$c%t6XT{$M?@{$~D=oTf93IvUo>0*#cj~ma1qIFxyl64#zuT>pURj{E?+_Ss{ASAp5Uou(PfE({-%oD};yO&YQEnZ{A(~1544DmT_{qM5)S083P)E1us#fAIBjTz50@)L;- zp0!+uFTpg>Iohs&GFB=XIR1eT1<^f5?@!A7Ocei_apq!$_yUajNe|OZN%DHL%ukh) zBhZf9Vw`B5DY^Jy+sx)l!!fkx1qagmLT{8(MK79-e*rD7OrC#Tf zsWCbrwXc}xO5HQdIWdufUjy{SP0(ye^S8Gwp|M})bL|Qc_*mMQ`A=WQH-Rd5Lf|tWD0GA&Tjcqh(wTjv9ApZsr2fEe!H9Cv#FWhN`i+x=r_Q zgJV(VNKw5n2WOh{cBLE{P-EBn@=SgYtHi5=FvYn%KGRXz*{GUFnG%O1nQV$P4D_dG zKJygvhu+~#K7Y_YnSueqTKR)^6~o@dkA$noGe_zRk(zum^HRlVr5ZTI0IpPudA~D6R`~mS*7CLthB7}#k+19S^47KExGdD%Dk+B;@vC7 zS-44rF{>GpWiQ^nG(2mVco{i5>$nJLJ2vZys8EZFtmoREA)4EMpzx%n9Z_wI3J1eE zS>rgr*EEacsw_+$rZGO`MP#NK$28z`*tM#1PIh!&blQw+UGxI`RMddd(|p)vi`R$Bl1T}101s4%o?UsN{R!- zjTISo`y&g_G++()?6K@T2cKr$5F2jeUs;z$z>L4MmWy|LzR9{Ea?t;nbz8e_MnjfS z_K@a!lgXd`W|k3Gv+Qx2NMV~^E;|+)!V|OX#aw?Ll#?9`mo2kLaw8UYkF?8f#eHvr z-Xm*zW?O)D@9Za>l8ms~GuwukT-3LNvCi2yIa4uKNS&@vQbXrhgQs71w32*dV74pQ zQj8(q>kKm@vL71=F(^KJmvC8^nEjo|_vh5?JPi*(9^LfxrVEp_ow?at zby;GCIvabQPn|s6$GDFfLxPUxsL1n)*=CSfm_5>zT*z8rO|Fi}F4YCuSeDJNI!a~D zt4C&=k~t%zhr-iQ+1SHTCUs-8t9hNV9>9903sk7A$gWk8sTk%YW_q>}%%72s37xV5 z^V!+k6+p0DkUdKzZ(NkkkC#!Tcyf6|whauZ&R%0IsPoJE?BQDKFi2~ttI6g!Jkzp( zWxMi@BJwjK4yE`x_?bJiC&TS8vUh7s#Q2#I)%I*t_-A`|7cMPG0*O>)U}YjGwsC*< zRDI#n`B3&=Zt|unQ*$iamLNwL`0RMLp-#38!sMFzO}3AqF`WHAd$Pzo&_-+zwhD~>}F?QKySwnWC$h_=#`L5T)?DsmYf&v=C`e)g9420qf zUdm-sUS<3K&oadRBgUQ4+id>Hn#MF`pRQ^NM$L0}Xaaybv)B|4f8#i5*3Rs{#Qkj;6?`wtU7?Ya|KD8qb({o&*!8d1|7?8zbIocj9lmIND zXg&=qOSln{1IkdxiVWdJOpX_~B7yR$010=v)JpGBsSM$WI;Wq40D(hte$=+R04C+H zYb;<&Sx%|8iACzJs#Q2|BDw8|!>BHXFllT~nNHjvuWMS7Dw3NEM2pVGv8$GdCw!+qcsJ%RbQ-JcFqJsWDqonim1qOLHo<+c|@*`3Jw| zfm7JF(2nHfYBzQUv0Agrk{sEU(~k74&9NgF8`{_aUcE399H+-trLVCf_=eTGRhEF| z7K`zkS(k$+*Dz;uK9Ixh@d0cHf9<+6eFTju_(B>2BUbGM5t#g{ai=i0*Jwz<*TzLx=hU2?b#QLBc9kk(4Y>xeXhbf) z%1xVuJe`_5O{?b;AOs;eLzs?Sey+?d&~|bT0tk7f%m7%2A*r32s}KLo&gCC?vyi9M zEgcpsJe~10#1G@tv;vIFP1TdeJv8hQ00>}u{w zZ6_3|?>^vUwu5Evda!NCHP#8~cypC8R6fo%<*0eP^5RLmkGW>>{O{ahg2H6zJH8nu zhz%sY&mGP+9wh*l<&TD8;OM)UH?xoBCc&y^>cgDzS&3by>VK5?-rK7AqeK`kxxJcy z8pZD2>Za!RXVH5rcGOysq7rpAOzf?m!Mk{rIt{X2)C^_NHvE0zH0tM zo} zb(s+||5;_aVpv`ztSeII@NG}4%_>pnYByLK?xa>5lU2SsVNfzwy~a`qzLqo9lQiCj zrb)wH%4)53YP?6wT7tR0zUl!-KT~s`HzOKq->K#n zD-Jhm)~cnU*3k88JV=8@ifgSJ7yj7g!wqVjc?c6-=#f0zByjJX>C!JR> z=PXRAQ2v9uQt*+w8)}@;F^&y4)!j9%E!d#;l3E{1?x_pKZt%_@YJ6pi!Rwx=+v$Rn z+s$i@!1qtJwJ2WJzv>HO8Lv0$Gs-eGMypNt56fGvl(E<#?;+>gOsh)$T3e{M$}?0F zyj$m4kTZSq&cNHYc^$+NanEjfQWn$eo|meu_=A3}6`qfi_qzx`>MFyDdtQhF4t~CQ zexeoT1?Nprk_#jAzEi5OFfQ+c*m5Pwd3@)~TH$C$UZ9dqjyf+~JK>}gyw@5!<>yUP zXkAyDhX)?9#`s}m-gRZ|CgbyJxNv0#WbJ8DnP;kCMb39wEynT9&+_;f{HF^9Q3JloLbG0SB*_hWysT?JcZ8;_4p#H9Hyuk{IU@PSLYL`eSc&`PSm_JA?cKl%8V=)d7*5@5m z*p2k*zq%bfJC*lB#5_HpcTw3)?SIUBBf59@n|TkFEYK`wq-|U&D)mo(8?yHY^>Ao? zFRzQTIW9lUvlMW2Fhy`Mr3RPBc^MoIJJ)1V)tILb&;QE1EGG7gZ}YgsCqoEAj8+un zcOZLbnH#~?cX@7N;I;jbhexS0S9$R<57#N!oAQ-Sc~L$qorB5|DuMBP!)j8j(HW zt4&y+q>j$F(iWK^4B@&+^xBgGMB$z`TX|Hr%s6cJIH{`KHQyd0X?3 zb5FAU%_oKWrWRHtJ^@u>HK+|#TjAZx%}2J`9ePbS{Ebi{t*eouI8t6 zF(?y=#kc|^{6toMKs&(!7dPg&RkCjVD&G#;{*zy-u?%4xC}IEWg3DsJcul`R>SI4Q zERZ_k;l>5rLsy|-&g@04i21kzV^CWb*eMJ`B&sF6YG1HMT(qj~RKTA}$?CUvD`*3i zJqiYL%a4=*NVp~nW$0Cauky3tdh1sp4H8ZT6#OCHJr-OrTf9t)DEL{-n7(lZ((KYM zzCap9oKBF{T9Q<-MQr@=l!BW|o7HBbXsfadxVL8o)sbL8c3IV0k%|lX;!?})!h#KA zy^Bf;`f{EwH58r;IikRdwHCqF!WDt>1$a=-Rt)C@Yf$lu?NHY{;%L`4Lbtuiz&O!HoGU3(C0)S@4`c8fZbkEEo&3))kBs zx^H5(rC^RGWHdPZnxF;fZ!KuWMGT{^&CoN4DLV?*h)~{E1zTZ(F!WymW70_$6m?WH{w*Np2?=+QX3KLjK(q36ew{GO+rKrTB*(2{F{K@K+Q;l0qEg zFb?}x6vlILr>V7Z$!Zg*T~m0Bi+L@oKD_#(@ZtZW;<>3i3vumYcj1-)1<@xj_7@t! zb0}QG4T5PMaO`;DCtP-A_2NAhsX8z?3=W(qEa9?&BvlUXq%R);&(2_|YBwWboBt>p z=fu@QJax)Cy3!UFUMs{Nj+r6t=fa)hWy>3d_~mbQ_q&@k0kF$YZx`a3fb8=4uZ00h zogCAP!eQ2v!Zz&~hU_*dnyD=VVUUA{Mavb!F#cO+^A8Q!YM92VIY)hG-~>xdv0-HVLiNV}qHZk19~mQo2)@#vNw zMb||4xZJnszS7iG4hV26`blRcySJ{kh2367W4S?^rjoTgR^vX#P+XmCYMlsD7FX1Y z9Be*y0Njfy;vYuI3;-eg`7o3KC{Q(*+!?sCtSFWoDJilhgOjGWg~kZq2&xE42iek)^)pe`&$${hv?P1ESq76FjP&&WJ680}F^0sCkQMbMb z-H!Rs*_xuS#mmJTijtMl$3)28RMe6b=mnxXg%;(*`z=Ki4TaKkcNg&k7|AmINDfv= z7JXG@3eWZxjS(Y#R9zEa0M)S~_r8Lgl0S;3DjEW*@v!-EQLZRrtEWZTN)M=n;z)Sc zSX9+ZQJ4}462z^-ecKh|pj36PyCUYEu0T4#$yH<-$~KMjUr%jLa}7+(4=BqL}7p~Da8v! zz_H9?`~(BLo0C_3SiI~rxVV{k=~r6Je@20s8BH^QSdA%ePwobn4X7Jc%pb=jBLESD zmF~?f_HklyKW>I1_$jp*5<0>U^NU?@8zW8YEmz3m->ok8;YR#YnRs&d%xVMJ^F{Gi zrT4L_8g>@vabqA_43NO@^^jPl!>9GdZq0?7k9}K=^K2%>ic`h7VTN6nohioA54&{! zz8Lqzu*-sr#r%qq#4i%Q{;_z9E~&`Q%eV~l-OXZt8Ad7=PcA(y#@%`=%i0QuDGvLs zm_LN3DGpDHZ1t%j^m+XM`1;SVN6kDAzh8-o84#k?zw~a_YchN%+Aiv&d$#6vt`*) zE`9xDqx4@qHLB3?`?6h@os1dkguj>BL*|mm=H%YL%Y2$OX3LButACmcS?3Zlgd5tg z?h&7IbsYDMzzCM9qo7&Dbq>b(M0nXrsfLyjAMufAZl{PVoWtPm5ltF15m+!dLIGRy zBJr67dWL)Y+Y#EvG)a)oFF-0`)trcbEr%m*KfE)!?qtLw(B($(KqqTS#9bGb1>zDS zR#?_np2L;wPmGw&E90GPtnI^;i0^sow`ma=>9dNT$}kd?XGNUhsmpRAG?qiSQ7nRD z$#)(~jmt$?43mG@APbKwmPH&UZiNv;Eesk2J5vT%;h6ce7Rh>KY_erfB5e4ukX0Yi%d&A8lh8jSJT2u%#A4X;Z-fJJeG$>tvtij177%ME z9U6b=5?RU{q0l|@95?zU-jRDb*s4Y3Tn-ksik!p2f7(QP^HvJz6nTT|$e~N5@Y*|r zBfB=}$^9Z{Gk;9h^@-eL5nB;7k$H{PhvW>6%;oK&7#%6vdNw0c_@|R|B8}d4UZfbI!WKlzpADk+MX;n!(yWAx zONqpL@tL`FPK(58Dg*yZkG#ggA2TE6M}3%mvNo&T80kpvEK7{EB31>FCuCdl%xM5= zY>BEe@(UZ#f1T?=#%zxi-MGchNa5gq+GQ;L=pJL~oAyQi#04=Nh`hm@GW-3==Nw!~ zj5VF|Q6#Q&G5G_IM^LmX!l}#Ok^bJS zC^+C0W$7;k9R}@gQO@M4b5tsqE7dg$UpiqT9#lk4Y|zcH0D=X4%bieOo2ZSJ?i-me zg`8ngZltzrl%tnrk3%d$Y%o{PsgY4)K6qJ?1t0^h}g|&!E(wnkyrq_MZ(tr1Mu%^2@6&u;(vFx$>5IcrEH2j}Fe> zjS^mH^SvniqRN!1{W;2s*MHNmQQz{^+y_xRIN0~MC|}Dl49zDAT>pr&g*Wdl>`waB zN144Oz|A~~Ajt(MshrVAmh-&W)%TSyot+SxnJs8BQNZa!OG_x zd^uD(yuk?BT$v7T6O@h+orQ0;xMnq1&>{ef2q(p3lrtJJ2q^>EK1o@{n_>D42N+g=0UuL5at9m~dfLN*`XQmD`l^1M$Mj zSs@JcRQs-;wikD5e_$wG;Bv=~cg*hZh{b?9jyEoQsj9i#6_ zsk?%lqa`(4ErHga(PQDVmvSalIY&E_I@jnPTtR`J(RVng@Qp6!-~s>W2oAPu9esp@ z586eG9(=4rG#<5PD)#Rd-JN&9xxJ!Abkg(fXk6oF1b_627K6u$e$lNOvHrdg=cn|9 zEkmO5Y|bz|B0*=zpc{*OQ|38r^ai)o*ksZtBwBt&hiC>_UV?dLUlYNCB*SSV?sga- zEx*3mf@D%V+z@f}-RQGm#%O4l zuTphLtFhOkMPM=X`)D349J>)6z_ro6E?TTSg#8@dji+vY7~QFnUdrU_2Bn`z;q3QG zbThaZzpNK2dKzsxL!d)b1LDD>RTGHEAJHj|aVDt!k&Q%kjLRZ&>UnfNw}5HZF{0}P z*v1G8cwiTEl&P`L=4>NOMnR4iTRJ>1Mt&MbXi&leV(p-1%T!yUUlsEKAHb&<#fV7c z?UEQg=ZR(ONgVX@*9!KVvj@#=S0 z+RTVp2M)%^!~$pL7a!YTofK8m3+8W#bAuM?u{ig+l+c6xof5mFK}!lcf^_noERy;B z5QBS6vtvETZB6Va4NOm90kL*u!iv}{e0tV>b*%7v&x(u{`J^QF0vCBhS!{#P9w;)N zs_3=Rk5sLTm0yW!5`|&`vG!!_me@32*w@=)<1B-cz@xE?q5q;VFSv6l))_u%AL~Q> z_Qrl`v4BXB?geMl<)hdoT)L`HVwZBz`%G*K2RDCiY}9t=W5t((9p+NSwu=+4X<~=Cr<~!$u5rS!e7eV- zw_pUUeuu`zIl$!s2^iG=yUdep>>amXcEzPIrdc59oXMXP;zsZS#!QJ5W19c8I1#M> z{BE3B*}pg=PQ=rOxp6{q(cy8zO#WCBw~I5|8xA| zUJu*oL55_<^|TE6j95UdJqcP7SHrdRXJMRJQ9W2{R9LA#?g-}+#aPmyDEet)E+?{mX9Vfq-ma5u} zEQSo;8~0x$;>;qKtK;NXmzr7$5$@#m`*A(pB^NmCv$%`g&{~}{s`t_PI1fIFar-*% zBp)wte-kGhZq;{j4;w2OYAZ^t;iKq;-emTjILmDVl0h*N|G0!<n*SKI(Decu;xFD%S}sGF#Qq*Xz9&s}91(QAEG z3&`gls@c4H!CtCwIOyfA>Shs<5+wiFA`P&BP$-?e(Gf1kERiBV^06HZIEx&T%r)axwz4VMsR^nhmWIn@7IYzG^kmgQ)>a;5&1{wE$@Ax`L}PWDuM&;* z%L0{Xto7k4(O6>_sl<*CeT3@1MPpI9hQUdV$^+)V(0W4EZ%g`->1x#oS5|r0o1&% zbc3cZ!2qpXbbcjN}^b&sx$8=O2D-C(wB_VN|hL#-rc4W zVM~|oD&ds>-l4MSW?^uuhZ^6Po3~LxZ^oKIPVQGFnNK-c2_6-1;h~F9s#R^w+f{~) zeqXi1+)$NJby_tX#tfR!9dEr*&9TTz5PQVjnR0eLtMJ>(MU^wSrYy$2qI8ESJH#7y zUX^J+U>P&`LhP9(4n*^{>Rw|MF!YwH1&nGP)_CJ*vnx4H>iBtd(=i1*CD zoz&YoxL2W;-{HV)tJ+`PjqLMLmz#G$B|*dmK4B>QaKhjv({W)dToIwJV=W&HQova-W{NYmCsS(g@OxH5ZfRbtQI3)$#*MNE`;P9r1Rv z1?d|-A?C~yM{@gPb%nVOC6bD-ux0B{t2Z`=Joc5kmAPpZlImLZSkvYXf@O(dZPi1y zh|s1#Qn%w3F8W<9KCLGFseZ!^DDRn(cJd3gn7)1aMs3eK$6c#FxqzxFPi(kCpJFsQ^b90x=H4zXLkGsjK&s4OFxA=~c4&6q@+f|H-$1hVf z%5~@xuktq=ZX}9hW8#Cj{Jkc`59bwJIVE27g}Kw>MUQSfJzn$$=b7>M(N5{7VB2}| zK|EXkh4CV^vR@qEhNljSjQ8WVwk#q3A71U)bY5+DG9WX)t$9C9CwB_sADY`mI$)Y3 zOkR{akmy#%zr|TzF~ke=-B=zk%r|0fyfELk5HC9D^>y*Wd{=HT%6EKAe2~n1rwm9) zf*z+)ai(E=|L*t*Zo_SB;$=2Wi3t)9m&qy^xRRG=;w`=`V9Pa6aDsVX#Cx*g0?>wM zl73&sSIcY_86<=6jhG@9p2? zg|+(s884PLx;!(|K6@TNkGIv*H}T>-SE5zIE$$Z(`n@ze$n4#ma1Yw5X zyptfz@c4*?PTUUuo|GU=>*e$W(P_V$nc&M;BmW3D%GhLCLLXU=q6#HPqZ58HZ^UHc z8<&9J4OtD#(-MT4&Cf8Zpi@?YFtcB>6NH(q*CYrt8=ITp$#oRFBEjq(^k3Bdpl(OP z0=QF^z+Gj4F5$3L9^6@VmM@4^(wf!LWk$;{i zgz^TOX`N`k$x5Ol%WM)Ocw5}IO~i|c7~4PX6XnnEFij&{X>%9}bxM3}*=R;AAhx-r zG%wdgjm&NZm-!^vE74-J9Ft}~Ai|zpYo0iT%h4|&@v-P!L5cFaGz2r88(fPmB(pju zcC;vpph)d_=6~Kw6w&>~UWuY-z}tyRi%e8`GhqC{Dm*GMFcDw4Wa_Y*m?#!+?oLXS zA7>L{gu%pViLUTPheQLZn4b72x4sSYjOE5JFoI*k6aQ_r-19OI)+Y)- z*=l2=hy`mmp@Jk8jNg_hHZrZ*l_)kcZQF0;5OXk5d>rXkohUXkjXi24@Fa<9&TP$z zMB(ByPbP|uOzS>P6dRcw&nH@JCuIgQgKWE!_@EKfn*lw~Eg4CceVf>ycdhE%#)32I zjCC9JW1?_?O@B%h4)EB|iNXOc`!!L_kq_Kt%Jw5OcI^yOtO(>X=>8v zvhjqmJh(c^9cE8&-!UHG6#0(SNvtxM-5@$S(I~BvnJIoFMc{ngf)C zHdhcsS<+TZ^$QYQK%#!&-1;QEb&~n1y_HGT9E^T1=}+0faQE+|JaT_uk|$q|b3UFV zTVr9^W+#&5pHo=ch?7YxWS$Ds^5M`KG`f>lgyp4umUKk6ieV%nNMg%{xq3B8gg~EM zPb%Q%HuYALaLS$TB#F*=vo2{1Cn)~KNU->R(oSx$%^xNW<^+*Xlj2R?vO{;iXR<^B?s z+}u<%!1D6JrDL)k>KyJk+7x8^`>8p~(2KUn?Mzs{_l0}D}X-F2slzn;fG%iBS zI;5=#!_N|ZHzebZAGYc2*~VnNeUJ5!=T*snbMVcM_PbF_)Bj8sqpZ!}$zr?9@E6Hnn#c5g$+)H|E$pn0NN02pIHqhj>C1Ey zw#+F-ekt>mHYrgg(JkdW7pPv**&XHuq!gI4Q7m){OmQV)EmO>HLZI0Y5oq!T1c^VC znKAxMC#yT9T(f4JNqqN|V!7T<@9kr&+o9Zej0~HnN7n4DXWTgHwu| zNc?7nq{w&lBYGZa7Nj_lHltJUW@A~!lnX&I@Z$)TfaEStdA|`3&al2`$`Dxo>&E8rUqs4v zv#PT)7=;2ths;_=K8#A)YHDn`p zvr?=bC3P%Vks_PS2;!C`bY;p|D@oqHt5Pm-aOLWhgB%=HobodV2bHGW;b2#NihS{g z@*`Nd{N)W+hW1EGYYe+17g>>w>r;wk#}8N*L|?)!byQnnAElrJWni!4DR|V3f&ZLH z+0N^`@03xHt*28kHfIDSpQm7K&OkVyf@1*#7hX)kp2fg!ms8N`G4OV63dZIPoP8|? zV{-;>yODyiIRmTfj2tq4Ou^Wkr4IZl1!Hpt&U|1bX#HCX#^w@-`V@@K8Cdv73dZIP z-1%<`#^wz4eUl=;4o7Il9o$-`x{*hAsUMowCc%g$h_%K^GSyDowy8op&)TI5?Huor zDzu~SoQhup8ST4WQ&YIkZgfw@kHajrqF1WWSzf=?H9WP$;M96vM8^@SxTeBr{~nn- zNw!bIB+XeJr79XNk)F-&8lEbD$;*sn zB)%Y>>MNNnITDj9+A}*YRkY_=bt=wBSYfsa#&SPOOhr#gQ+Gurr}7ra$VdfK-;oqs zeLmF(HVj&ox%7=_|Op^yufgJ!_&_3&B@6&X(KHAKkCyL1PR}@SJ*%8Pu?&kL(+shSQwHf+(FxS z(u6zsengsZ2cL{e6YgNd*tFZ6L$66`xJQmjJ7!v%a0icPrv1p>LEVBh;SLUjr^ye= zQ{51SGR;O7VljPTT9CAQe<3EV8}G%AsYYFVo0cYeaaBf|=*9E1(uDU=#d`dSMEvti8h*ZK;(YYE(O&gm8rx{jxwHmuhcY6_=(KE&&8&QHX0&VNr$`rrd2X|GF_`O`8#&DOPZxuE^OosiFz?ew5FBflF2?fQ&go(-kL;Q* z#`5KFrHirr-+t*YEIYJG(=S5Oo3WixuwiKW3sY!krY>88WE1~qbCCn1)4dwCKh~It zZ4GY2(rws8hTufzcgwNbC=dBydb<4bT?;Yp&QE{Mt)YIQPzL#Uu~FYEmZq0-htW=% zeqI*r8aa_rRl0oP+lT-}DB$AVc-;7{gAX|L<`-WjtjTTIm0MC?pX4agWHqVjh#Qe``Ekbf_7ZgNIs6Ik1E$z;f# znz6@JUDGT&dRoRZSsiodH3^2mxtSd+=GwYL_}t7HWZle+WE-n|aGjr#ZQ@`~7}zV* zg*Yt8=-LDc`-Eq#_&*5;EX?R{ZIw@wmS#9(29g_*v5@}17nR}N6#u`7$q1C0p|L1X zv~H?^z`>dJP`5L~0S+{=#>dOg*mfk}#AlS-Va|y3j5}8Ne{^PseA|`(QMT%p=}OLQ z&X7;iEtoNq^eq|RQ0XUb&1fcTeG_R|$ff{tXJ2hz3ULZenM_|JAoMKBxav z>oVS^=?8w!ctn41_%-7RHIu@J8Ci{*M{Q^oKJ>LSBa^&(nz7XuNw@qX*@Na;hWru> zqYM!KG9wU%uFe=oro728doNjZ1WMv9(^nt+O!r3hb#n41KfDP!^V`NM3luB$r^Ozb z-_ZWl*Ee%RVr$=!g=e`&?P56rZ0v`N)daTg`C$9?TH100a~S3NQt zwMRzDjO|Wv=EX)Or6dGNy3iuWzn!_VG4}vSg+Z7K?{GqU%pza*&)i5Az9b}*b-)qt zWXiwanG}xsS^;*fvBY(3W}s|ZTw%;iS7&%be@=?n zgtJu@p7wveKeMqrAj`iGb%yu9?!J_?KbZNKY+OD(IrlA4e3%&mVfI-w$-~2$DjO>e z%psYwQH2r_B%0p@QE?w<%9b!h{!t|6c;@F#tu&<9sZ3v_BNI+%ddXT)5cY$NbD2)$ z=Gn|sc1X49V&+#?_IVK{jykm&`Jg z*%|SGczX!_5N+?XUo++J%QQj)zV|cT$+`!bhb#mkSk!1L?3e#Y!j?VDylFuLNHYYq zcd~3DaAnp|()ms1u|^~ghTv^h_+E*7mOVj*#zk^)@Uki){7IT8ZV6P61g|<-7iDnI#MOEVA91fmh-7n36S_eAzCm zf>u7P8_PyI^~gHaNWNYWJT%KgvZ7D=WbLC?6g8-^nlVaWq8XeuvXM&lBFIPn0D%y! z7gW7#JE5}lJBNh)GfI}5%ElbU5kYw>%IREy)+ltuY)Pw?SuQenA}ZPsf-AG^$aZ}e zK9Y?cdR=1`k2=t&vJ+AGZ>TFZ^|N#5fd!WkIFu7ha|h#t}OX` zk!FI~6V-t%8%wdVdj&(>2UwEZoy-Mf0?9f|E$sD)2C|z`+DVkt*Bm zYQu(Ng}?qT%NwwbLdcaHS%)lZjAqiE{Q7eiKAOGMF=Y(k6~A_{@7Jt7CO>DIFRZ^g$#1W+aH)xb@4v~qY+e<{Xe6<7%${ZLH~JG4aiq1B z?;o#hTzF(GUif7fSy0l-41&_R_}Mg|b@nz{q(`f8tW$O`+46*_)gV&cE4$L%3o~H` zL*+Z!_T<|^*&WQSLWYH-4`N%8O+&J?WVizvu|kz0LK~=l5(}=3^>y`ZF6>t{8aruk5>= z;EU(kxZcWAZ@$j1kqC|+$iX>2OWbIagU6>BIK(jr&ml7~+bstdVHr5iJ*NXt&GXK& z=itT`IX5}Ms(>84Jd@EHf^trCaB+v6l@3zsf5ACIu(LgLa6ydGuIQa38h3U79Ng2+ zQkxFV!Iv-?_|=FUE-u+HDyNL64xV5nXgW0qm&_RL!)ZBhbAsU6#?oHQ$qC`9JTr4XBVIRGpLuBh0%s|!8a~86W57_Z1lTD{`{!_3*VRvng zX-^xN5xbJluH^Kw6a!f;!mr-A0|#y0mz=noli0@GR0)#kEIK?1X{woR=}j;#9lrZK ztQm>4)yN;J5@IZZ@USX(Qs=H|-bjrm!h}GL0tTM*?M^-q&^)tL35qe1AjugINx!Xn zY37;_kNwHPmQs>To`x%a;qEQ8QYjRTw- zsf~d?sTxm6Ezn?ednY}DIHqeRp?#x$1@{^V|F_Hn2 z&6LdG?kPpWI+jBr$KosXRCHUG3 z)&0R*&F%)ef2~OZ-Cd16>@U=Wk&N#&AEK*5Y8YN;DK=CgF+t*nisf8f$*y~v$OhK@ zT9XWlpEaJO?ibC828K+r)sL}{h0N9TChH$-l&Opaki?dBbkhFVz&|>SAbS@f>$lIq7!@;sI{~l$;(vr)keXoxA5^X)*7F7)NbLekr=FP z)Zfq?1apjUAUpM1f}bn7+DqH{e~}bOXIyRiXh%0jLXgWW*=n|_qai{G8;5Hh3D!H5 zTUqM~#w!0d(OBj8Cu={oust+yM>r6v#jAuDYH<_xOzls+vhHD)l{KTCLMDc5`&x)< zq#($x%EAPVNLtiz(rT&pUGo5u_8*fl!yzC>>m)VisyOW#-k5Wfj5TYQVyxMtRP8Sf zYvx6IXtZ~nq^{JesFC`30a8qqI{$)V?c|2_kyFes)wXU}DMm4p1RAu1xb|bgC}ZFC zMj2mk(DrQTFr?gYd#l!8>N@^a+Q9!I#z=x>YKuOEO5+mL@6%d31tSs==?#~=^O{m(>36742>drBae8sC~7`jf7v-S}b`CldyMgXx(suTq}P_jdco^mtq02c&S^~ z1RHi|B!uSVg^?L|w5Khsj$n=tdCPTrYHYbb>y0h<@gG|G)Sc%XJ|2uDKstv_eBF zKq@@{H`&{kM7GG??Pfk=%jw6%C-$4&0QJ6{OzN83t6{HV^&nX9s)mMQtm7hxvHO&1xrZ%uZdM{u49y+I8z5q2uJF}wjm{Om`q`LV+0|hLRkcW>hqg0v&BN*f$*O{8 z=5{d`PeQ<*S-CIGYM({I=HyyTMza9Z(160)@#pw7^Kw5mA2YKcXGyLCV9=~!uw9({ zmjzEmzHMITEchWV*M)g`NQlk-$sz+Hdzkm^EK-t|`?n<%OlwX8^KwgYDS*ZkCkt}V zSx82li*g5;506=ZX)fgY+T7V((Ze?7%J*@hN@JmJOKvlgxh+>?k(uNi$Zf~-eQ?Cs zKsiT^4K$ME9yhm?1bFirtuy~*ZY|DFX)LqkON*xBB-6giRhc&xM~pn5+uhv$W1%Xs z$`OVnRJk6zl#6?Cmebcb@?_i6=`1=HE=|dE1-E2W@VrTRx#nGgVZF$* zck{9vL7?-VnP*30=j0Vwv`fVTtqoC!>DFq;f7dao9 zH`}~W40kaeEFX~D0&cC$TS}hA1!y{Bu-~KWW?_gx$fpdAdUyXt5FXtT;*}l!gOA=UW z(f4_H5Ql-^+|HwmXVg(_ugh~b@5)T%K2S4lvkU0PZ+0eQ?xR-B>_uKH?GrS{8NcT} zkiFfA7H&aed$ca!+G6~cRk_+F-;S(M@%ShUZuPFRX$DjLT28&>^`sCBLSr z)luo_%g@vEx0@7*%SL+;GjL|Uza|g2ebDFU=wo~IKYg5z{@=v^AL0M$_7Iw`;r|Qy z{|ffs^eo-jllK2lNtrT^j2+{pq>Pl53uB?A`IQyc@cvs%Mw5V9`Aw~%=hTcb5IHY@ zznP>x;KH4J7nn6aKgDVnxjaAL%f@QIRI4tF^Y=7DTi$h&JL$9}zhi5w!xG{8<@tvj zAta?M@|}FFHb_KwH|HN|gb3y@$oD2sD)Xy{T9rtYzueA0WKKy?#%u3b?UwKlg9^;G z-GiKMQ_#i1suX_jTJW<)R+sJt51irq=>^WvWMDxv_+xs3H|aL8V5tq#Z=G6zYX%_& z`|YJ4(@FK%f_qJ@J_f511-{@j5NXd$D7cNZ1Zn#XBn zEeN+pqDNr`du*+=lAyJF@`J%8qCo!reRfel@@YhYua%XS+>9*1hX+1$oF4!Ms)7=k z;FM~Lx**yO>Zi_EfcCRh0Wfs$^0!G#Z9$vX;5Dge3>0oHC^yS8tUTP)u6$xMCz86Y zU{+JB%@F_Ds;(>_4BuYh54Da3gQ45)Vmv*$qrj1D+*uIYL{O!}@}4AOPr-E?k;2NW zI#gg~mIBR=6a-Y>Z3+dlxd8IeBi(fScS`Ao!s$q4@d|b((fy;f{S{;JlZx;6g{o0Z~ zn?%wVEkEI8!VpxB!3CCt z%^w3(cPy8$5S#c}ldzr3k2Hn)B;H^I71+E9`(1IXxGj?mR_tCL0QE;p@M-{j|C>DC zzx=vHBDHbQRYhy!QN8?q2lITS`^U?Fu(iseb~Oens&vgE`tCede>2Q{(E zA*G)!Z)t0_PBO&5&NWbi*4vZ3Ilugi-Btis97D%otg_+*OMYlh!5-eEQ_70&wV-Z0 zk}Jw>*{T8LJ zRdU}VsnM-GT;V`c6ILaRu&R=z>Pc3aOEsZ3=eRgTHKnfUS0T| zjn!&NZq150UQnMm-WDdujP-?^`obu)nood$X+@6YJwu_BBj#ZpaKW77sifPc!n0OV zN)q6YAW~RanAD2Xkj^IyXEd=|O>%1r_uA3It`?@iyz@x**_VZF5hJlOuO~r*UpUht zpcq}$hh>4<_!0$_d|t?V{PHgf-9ddB|Md8@P(hL|6&BlKQCP$)S`^Bd1W7jvaj){B z2wV8KZBb`ZbE~k#2^`y%j)Aog3e6jL0?|J#{0pyJyI$HG2AwZ*VkNJ9{;H5Xf3^Bh z3wTpe+6^ou^>1GEhn0lscC~OE;O`)^%fAR$lm(w*a5bn%5`v%*wvI-OR01sSRwT9R znjS@Xu$&d6A5b)jOnAGf(ZS=88rT`0a`1mwR zxB65OehW6S#5}kLMh&dxnIcaJ%`R$15Nd1U!|R5*+mIhVE23{aaDkSR?DIvt`%1qR zR||VURqi-ns2o-tNH#Ss{sa$s8%5XkD4s&D+ZUe~_4{nqGUDr2d|K3>4vFUVgL6T} zK_nxv_-nbqj1gkyH{iabL-An~_W(f3MDkC!;uu+Wf{DfUR%KG}|7?d2Z)5b*xxlJ^ z#iho^25jsJ5L#2{O|<=s2O-Z9(1{6Dyq@l(5!QO<%Zae%@E#k}IR8Ib$Kq%m;)dhu6gvJ5L%zw1&S>hDDyzc0o+ zyt==dq&Rk~_}&l(v5|%-{7csQntlWR?gbrsl}J6T!`mezn#iyR$7kA+EqzPoHL+R= z=%ad)?gL8fykrz;wRYgLu=E|WZ&Jw(ZwV7PN7n^&ViXJT#(eXlIBvnB=*Ui5^q;ovG{v9IO|J-$g+}>o^p}VQ0?&9Y+VRJ zbf}Hs-Iid4FxeNb_g_91Ivy-J*+6s6U~{U@l}tTUVq**MhAr;~o9>oO25(Y=Pa|F^ zaf8ier9Pk|CH@tpq!UXb;m1mpb|zvn>SW0vd+9e*?6|K`LhCO|@R~lxk;PV+xUZS? z`}2QG!r`~ONVNS<3C;s45y4_#NqBV+7Na;*xk-}~FS~Suqdb>njZTH7P7auScc5+wgaNY0=JTh*m{LO4mYy;e z$m)uO6O95h$ynCz8%p<3LQ~cSn@XQh70?uN_`TAr?)Zc0?9{V#JM!_-(#6(NN-voG zET}cuohl6^WgnLYnk5rV9>!C;lH^ZIhZujT0Q$S4&nn+_{RzQ)km;Fmd^=^k`GT8naE3^B90j2ciUpLb4X{lTD^3Vfv|M$I%E{NQB(5-CB5GJpH2)phy zjnog+E%35hBe922T|@Tma5sc*roGh~;yy>WstM9EHPdcRu$yml<|$-Tlmfe_I*|8a{!G{-Q7nOuI}uutud;)h)3X9#;2Ol{ zZpE~^yv?3K)*$z-JMd@owYpiLT&L@d+y6H-gTreP5l4lG!VN8ZJ6)VHV46gP54v29+gwMNjDwtZAJvEd8f^YaHefs zyjeFBa@Qc_TDaK{T2&%KPx)1DEpP>WC9+?=4S$Xsu)Hm}p4)5-ZMGoEFU6QPKYh7B zY}1EAr{>aXt8NjTrIr5q#O8MJ)mB7=RpQUC+jI*c zf$HVJHeDFZqfC3er&|gS)+5yF$IWI^D>?vWC58T?&<+Y&MIux{ zAy*15r%($DZKqI23azKm+Z1|_Lhn$hm_m~&lue;|6xvClC<=W*p%e=3rBHsP20;S_ z^)zuSg*H=YABFZ(D2qabLTs7wGYZkwOXU>`(e+E^Z3@v9OyzGBVoQ(DD8$wuZK4pO z>zGOp3bB>QRurOZnHptR3Ld5C{uJ6pp-~jtPoZfPI!vK(3T>cJEQLxaltH206k184 zQVOl1kd{JQDYTJ72Ps6IuktvB4pHb!3LRi_U8Ue2n)oAyawznaLhC5>l0rZs2PHz= zDCA9{6%=Yip(+XmQ)o4X22rR$%Mc%KlKcUv~`h##Oc@F$Z+< zR_LCq?{4sekk~TE^1#(@L~%%0MN{vd(Df|8aLAtgR;{~06RfW5I+QEk_a=Y8ue(SS z-2c`pw6>W<6EoQ@IQHOA*JM&(wXb;S{`t=WK=#eAgukYTU{;&xnj z1%D7M&ZP-5jgMdF2dclzab4>eE?!MOsk4WbGuFG45vO!DG}q~qWo@9Qq_PzmeOfn- zW}$*X@Gz?Y&`wz6NFIEu+e`^_L)QkC*L;eTtS@xl5bS1!->NR?+{x{;x^on7=xjhg z)yb*@-257ot-sU_LT+nw*GRd-`&cO;eZm@dQg}{RK{H(Gi=x%uH{hX|Fe@84Kg`Ot zVz`wfL9XMO=p)g!Dcs8#9(SW&((R(zsG4Yw7Et@pYwVO8h zk&vsbnglE5#wyphybZRCHE8!+Il~=&rK=?F;_r2%&G6ygO`4NOH*~m7)#3NeYN)-X zi-TaRN_PnDy~&d-x~+?~qQ5;r{muqw^7xJpZ+l?B^(sBad4@`Na__G0OP&~BU|@-M zr0yQJkVI)rgg3EG@Lb8yI($5o@d&M1;|^6H*#tuU$BuZJFl~s6`#QX4Mk>N;gEIs! ztgwNq4NW{q`a|7&f@J^}uK5F7dCR&cE+p)c4retiPq@I4@FzOll}!^#XuZyg7pZPr z=1(x^LjGI30dFj+|4`=$f&Hx=iR<6GJDiiYeVIQ5KgW?U`+O63xZk@B&FNnq-V`ng z_f+ps5M3vJqdv%x|8)3xyo9IvDSeGOC$=@XlgL-P_XXo&6?lH7qSBj8d!yUI6BQ%% z0iX_U>I9QpHg$l<#T(tp1S|cg99^G{!qj(c>JLABtam5Mrh5GN&&t8NF$`YS(YL89 zNwU$8=T!?{ztJ8_MjN~!#KGB1(yo)e9(cx(?S=pdg-TzTl#eW5IOt_nV;E=H2bGTG zm6QHQp67NR*h7y;Yw&LB0Zo0NI=5*{P^4h)F|PVggg~@WDVhvb=$DN2k_TI#%4J%D9UC>4vv?l_?g_1EHmE z2}Aw<>#ILyDytPBGrUX1)!GdXEkv|S3q3BtQQibCL^N@jogoN<`y)|pu(bmzYNZ#g z7dS}IFfAnIoNcY|#pR{_0I(k@pn8V29qHCqU&+g5c8-a7aY;M*4D6b8LIk+t_@Tz zu^_eG^>cW!iY0~)PXtQc z(huI&<25o2UA2-*Kr^a-wRVPy`Fam>t*?GKFHHXw(Tdl0xTMk`(o@p<{SbXWxf<*9Y`n?r;dm%ham$3>3G^vQ6g663%NaAvW0;J58)uR;)~F+kXq`P&)#|aIov~?tY?}TE z&l2)#1MbGYu5S)nD?2+#b)%WU#|^(}1OAg(9!p14T=y@|I! zZhN%#Cuo$o?T6(FE=4tCVjw|N#9OpjA{z-X(Y7Mh)(Jk>;;{Qcq<%103}ORFV6>^& z^~fSr)6@ov%aL4HVT%W-WA&4`fJly)qcXmdXREfwvn21MY=`3Y_+~Q0u$EJQfZ6L3 z^p0>R2kr4rq7kiEVb2QORp}4mmu&+GIw+A*k&GRlWeiExJCPn~dNCByae+3SD}*@O z*^o0CdNB$y%Wti zhL|o=ubNq`$IV+*ID$o%a>dr_^>`|XiEQ%XigdeHph~y%mWGu!b z{K()zmaf&~L+y-(_63^z#V^XdAapccP`}>bj~}Y^ zTR0EX_!M1Z=YrpC*18klN;7?6Cv+!JCHx7nwm?tg3aa0+M0D65WcxOu2!d*F#|vZ1 z4nA1fTNKh44cd z20b~Xf5g>}zOD*7Vd>v|XzVvQ zT>Hb*>PkOpy!-8Ai&5Yhs^ZoO{UXktg;x4)j<_W7)ZUKdpVHG?aM30}(u|XX0#w!x zjzoLfIOt(p`9sxHd%Wz)$-zYu`1q&#p@L;oLr_IuJn$Fn?_f^`er_CBXs@CO68NRD z2T*He#F&Or$Y2L&iC@Gy{o9;h@YS_=QX~)kVOW@h9YlVEHTda*UeD#kAq>B!jdZ}z z6e_%Ei3I^?FX{0t?9n~wUSi^{8zu+E!&hg}zjSCOwTr`TJ-%DTBn+iN z49x@e_KvPn9MY^#KZuuu;X((f>F#JvN`KVvmDNfbMrvC+y1|ejM@ORh$=EBY<6~OI zeD0+37t`=Vb%}O_qRer$Bh4S^w+YFq8nr7O9Y9Yi9S9mVo~>l^iIEA1td)*!CHV$E z7UoWHR2R`38)s@>**lQx-}R5B>;x@a%d5hA_WXbJRiYNg$g}2#ql;w9W1s2qOCKwk z#kx68PI$cs4c%tH&=28^u+1@&=!@f|wvCfDx&BhWkLSUfcP1xa>+ur@iTo6HXow;fIc{y`w?L z%V8a|KHA9+K3Rc`oM&SwYU6AWgDC5j6ir^Z7(`gf<{&K5RbhzWRYT!|AmnQ&7l`!3 zN`K*D*eKLN2PMQfgRaiWi5&1Uh!K#ve1@rdj2U$SnDIw%!#jc{wLf*dj~@y5Gl+Q^ zcJI!Bzj1lb)7c4-n>$HqVGx5g>*LzjPR*cIbKD|`EJdWsJVxkKTR%|uakiJF>>Fqh z(JgZu+K$d{kkeoA?Hy#nmyVy9+m3{^HO%Bvn%sPNO{Fuuv#HF3+-q-G!)q_i0XH|^hT5}QXgW#>*blU&}jTwB7}@}!PSceF7Ax2 z?Qp{-QAs-WKxzFjgf=XewG+YVqL_PN7h-%|;CyF8YjSL?;R4TI^J_WFj#D6w3x4t6 z>f#5TMxs`J8E-I)W>+LiVy2iS?5}a;|U>m)e zh^CE>`w$>u&6gPe7q`Lze#A1lu}Z!jN%#b4S)}1DE-o9D>W{kGkaJ3d*{D>1AFu8G zT(Tn5+T8M5pld}wiSNR%?&OcM($ZFjA%AL2)~FkJGQj3f0a-p zK{3TD2NOfKb8yKi?g`tPhh`kI3`G{UI zL19fw$_)(%bj2VA`p%&WN0PJFT++a{xCtTra-~8N_aGR8d6jWs6@#Y9jn-X8_r$`( zXB!Q8i6|3|c^Jf4L%mKR`4QVn;S)&h7DGB$x0&~7h6{u!?}}}P-MnG2HE<)5RNKn3 z4shp+qO~-w_-v=S)2gqwbt0#Bo5qiDTmTE%XAqNUQ$aPqV9f`8jW!=`DEA<}4j3!N zoWJ(90=rrlcS+qN4jFg=MHGjPQk!aDJ>T7he0Ibj7S0$8x_$)JDtAwE;HcpmR|$p) z*jvA;Y)LK?VR%3%m8A9~!ve11kQ2tS+$3=DL@#`N<(#`K8GOE!wm8xx@ z8)Q@G4iFaVVM7AGGKfHk&5E@l9tv<7;o(RW=Z*E1{NZp9M+muKa3;YQ4Pt?Yb|mV{UNKO^cC$qSa45_*&Dd+Xmcx!;BIaF#O?=yQeLA zf{V|*rHw5|s(&&+Oj4$f+_zShO?y)>NX#?u{P7V}p13lJzIujh( z_)-U8XxRbkZ&cclfq$4cZ}_M(XA=0AK?J+3W$AJbV4@9ZFL^puyu#ru{2y~w3->H4c~M|@BQa9!zNQ-U~3O}JNHY}$eRbAj*_^KUYKj1E>e-FFAei}l}#P5-p&gT z^3lKs-k3*kfi1mS6AWyGcSdpjq2?C$0!`DhU%3PEBJsc@pvH<6dYgvQ2HT`mc`#Ya_*^w^p zWx^@5pdJ(XEW4d&nb`=B7`$=TubJdV2R18{&pD;p86!DWha(wQL@cb^hGBOpJf5S0j6SQ2d92 zJ?v_pkzuMmyj{q%?qy=S!=~(t;kdc`NpP9j472Vh{6MXp?Cn5mdzP7bKE(JD{CZ-U zh=+Lll!>T>&E6T0%f;Sq#Jhi)h*gWWoWd49xeW%PUhQ+?Z!7kvqG6f1CSa)gPlaQu}wU+FkHrcC%>Y@W{0qlJ$>88p7^Fz*m-Qcb%X#du2c zO`KSEj-zpU&GKLb-`R(=OrKmfme-rPg!(s?cwV=Uk3C!t!`ii+S|&zC_Hm)6j}JPS zF+NUkFcQ(7-W65^)eCU~z|etne4NST8D-+b0i9<<@FE{qiKX@IGBKXBZxOXxADmHb z@o|(`y38#T!($aLjT6QEvNSFrnpX#?UFeUy6RNS|D4ljt$}$6-CPLv-9@7gaW8Vp(n z9ZF59PlIjPL;Ze5`7Xs*1kH^^)k;%LrmLhX%)`VNtILhaGRMPMe~uAfJXvl`PXm)% z$flk+`BZRmIGh-9a*e69yk-}_A}fX7y;v40YSxvz6dfG4WZTOV=;E)i6uh?jb(v`t z0!z|G12eJg_e@F(4bHIE6&Y63t?-hx4t^yiot8F0EIH9$uI8%(`kAHJ!OFxXE1ej< zJ6+{L%lu_GQW6PWNf5)lhEEXjnkm6^!>syDtl&2s!dcb;WbCX6wh9R5qp6}xYM98~ zXle{lG^hCAwT3$BBR7>B3po-aWe-YiC9x$4ZL?__*nU-vkBXz*NvRQ{`4-a^p-yWm z`vYrsZMK!yQ9Z-TGLCjVof=Qu*QRFZv~Ao`e$)C{bLw_k3l-TfmK*Dk0p3>sp`|qv9s0)8W-} zHRBc8ua#FQqB(3T_zN!ZkHcVk(!p{gm^HQ$Qh`HjuCuN6>!w-dZ4^M_sH{gC!oJ(l z#N0PcNibd*1>E1WI<1bleAtwP#4E5p(MnOkh`40@%ru;eSe=%p>(2x4nv#H#R=b!d zUQ0uG`MxO$-W}!rO+dn^`lYl6I;m+V%0E~7-ThB&h-5!(P1QF-Q4r?>rRF^FLHS*Z zion<_`a3yUoc<_aP2_?MMp!a+{}CN!&Hwvk`G;!IpZm0&6b=LhZNw{|mm70@fIxNk z^cY9;^ahkO2pl?n+LWtKdH3{|IxSh}g8fHjL3({UcOJgstuM>fhNUR^x?C+ViZkDq zzpUDYx56pQ7t>S3+4JSbVj|#;2u`TIPI1;xCHYBuBFPHw!Ij-wiq6U%-H zZoT4kdVP^tQ~s9f;oXpnb1#b;(@=xxsW%ZwpF4MWgo zPKIjp$lt+j7EH-Zq65*^B=PWdqsPQ3m(9t*-+YYD&_%n;YBfR=MmuY6Mnk<9Kh?4h zyqPE2j*L_qdmTJ1v_M>S=@nN)89S;!h zSgYauo@i$6h%$Ak;(K(Pc{#qWb*Mtadt%(Lf~y&I#MMNrVbLqwP`LP_p4C{N$gkA3 zEQQL#{A~mfjr|9X`l4x?)!5mT)d|(xQPJqkbOELOpOQfU(V=jE8=az8v#bOD(XkXU zw2{?VszrY~Qdw!Hl3RHbtBP|4x`%&Z;%JViMEPekL&Wr!R>ReDup&c)%>}Kks$jry z6ras(u2b-STdQHP*fPXNXW<|3a;?TtG3$uD+pNY~7A!+!Do)F4C173DMgs9-O7ZZt zx}tkWs}V25x;G-WA?tc)VK-mey9e*I2AOyX7EAB4&QWBt;jB7do+)naW;KFnHk>k( zv=Rf+ggmPox#Se04X@l;yZueA56k=C0+W6-h);5RN}|F7{FtFaQV zx4Q`KvN`NF&iZd#i;8tA)|#zG`%@FFL9u&&qCZhYO)}Xe9rW%g)(FK1)6eG}$yR=T z!TmQ=h9lR%W=HIP(9i(^n(k1QrNI|4_y$uE?<)6kut7s?VN8O>t2fJPOaq~3ZRlLb zhAK9=eYW*&`>k!o%15j?N>KTwZmmlP>uBI_D=sdUB+5Kd zxzyTNfx#IGzDqwf*kidAIoCsEg}+3b(x|?ps2L9VJ#NLiAp`XD0uMC8=Xqv(zpt|P zRP_*?!NEPys3lciZxlvoH9`2Fv|_HtwZT^f&L7$sYZObZsbc$6R)ls8Hk>Q|R#&1x znR+^9Kd-UExpEl<#&xOM*|?b~DmAGBxh*MYX5(1uJh!ph(O2s}q_i8V-A{SojEF%kR~ssp##uKBwv!lhX(hzrnib=8^>&{$}E%jaE$b zxVl-Aa!Z=z=)`=nNsc}p{49Ery~WyCjDFsVnH*53RTvkN%dh}ExJ5hrqHAcO^^wOIC=6`NrUk%~-*-fr4Xv^^+I2WLW)TVj^l6ibXJ znG`@Gx&S9p_M!DyCcC2<4qUcqR!1Cs)9f@{GL9rDNC=fR@?*>Uu(Y9!*D$j< zW~|EKc0-P#Ab?}2IJdc?%~~xZ zD5j0AMs{<5Cvn%;(%*CDiKYl!V!yRw`XJK+gSbY4xO~yO&F>V^KU%RA!sTIkVH}HE zWKz+U=Apv-vnfug=nN6X7p&Ni=HhaEa;D>wwT?*t)hx|Il6ZDsvJU6MN>z~8P`G}# zV!?|su$CaRwaz^E<$nxjpb+)0nA#W^qD9kqKmz#Wv18_VUwFdvUo*rTQ+!EtcK zfIR}ZgLt@!Ni|1&kW`$w(9CwmXa`*p*IL-*={eahmRfM;xv+JLh-qzujgXlFWG}y& zQ-CMZ@$fd$;_)0C%q-XBace-5^)quNx7y%)7;MZiv1ll3XZLOsCa$%&$(35!E-Qus z!CzwD26Ms7UVn73!Bguk^tLsjq9@xViB+9!a;;KUWcSS#8B*NY?60x91=oDEO??sB z)#wlD3%5txG!z%R+2m>On|qFLoulyA-*W~#62#+o+vJ%q2?h_ENJt#Lb_Qnkp?hp{ z?jj+qpG-k%+qTi-`<}MVdL02Jh3(q=JYpq$)s{_@``P-?i7iIJbiAK!o<*h;C~(v# z?~%5N0-tFBhYpzqr7bFNi?vPpu}9G$+nWl)I$l}THd_xkp2)Ysi^w|S#1I=Idaf=H zc{{GRjS&Zj*2?S|J_jGh z|J6<{YKBg>A=s2C#cxw=FVqTP7l)?Vu(QCe1s|Ib+#ZTzx1FDlN>IC zc`XLF1efLIWQyGBHcXi+YP(V$p=cJgWKnKsf4F#Wh7HRJ+#*c2N43aagbNic&IzYx zTd)}P#2gzURz}WBW`LE~eqyc-^CCtxXTCH%TvB=nf`?E|0vp~aCsiaZw8{C7$p`~m z1Z6*y6D{s}%!WNpMuB-a;s!}@{*IiM!o5Ta<&J0Uv-D3yTNm2~k@h?e)$w;QzG54q zZlqxopR_fmg0EZP6Ns+Mx*_s`nQm(gQi?^FURG=gR zFfIffD^#I^4tk+zS}*{Z<~?o0!6-X4wY{#uY~%sX62A4e0@aShCbDfd?9nj}W;W8zDSP3qYJM=rVY~BYvWf=OPSWQU z-#Km8o5{-ShYvrZ=NlDIx@`z&8845Qnl-m&>HV4Fv$+kjR)TTaf8G`=^87YT<+wPj zxGXNlZIGJCnZ~9%!Ym1yxlvKwnA3D%?QIb>@%>VqBH3iaLN(W6SI_OXMHBj9eRH!M ztPIA&LR~5gX`e1SZLuN5Zc|8@?_56f zvG%FriF#DW>n0 z_Ci7&2QjGtprN?BPdY~~&5jP4t*Ogmn8Vr!Y?$pxh=6fbw90c%_&_=N_H3LvkiJ%L zXDZYRjYp7w-0k5a;;@O6wF5ZQ#KpI5qg8R9>>#rN9kSjYBAz@dT?Qj!0qGDs?m1*{ zvGP4>aTy$NI8ccMTw8(0emiEvn#q5GkN1IXxOl>bWdaEnV9_Q0mAhYgxkEDL_vru> zAIXq~Q7{hzkm{2*%oG@shdzp;&uoYrIn6yYN+#>1mV9oi0QZr>xy2pA#EsLoqpBhc zg&}2S9b!e?Iq7a0C2N%d!EEA{4$5Jsd})XxKzaN}9ioNn>wp@|$pk957UElJpBW>^ z6v%8v6GQHZ5c|J3MaJY855U6Q)E}ke<>E5X5cuHAruwXF#3y%T(b?g5MAMrWF_UX_ z(dNGydzk`9(ZRWQsF=IuuQp6+sV1Rgn5cbCMqpeg;9n$I z)LgesGCHMpzwu|+vf_;a9YclFVmCB^2bTef*N4KU+IFnj7do~O$0F^RFftCdhRAGA1yv}1Jla0wAK3ACL_c*5 z7lm>EYJwqQVq#spp_pv=;}h{WI{tQ@!o}Z-_IC^($f-(RQ+tM}oovVIJ~z%RlbLkm z0Tj<@V3HMJnF*$YLt!`Yt%PAgS)oj@=$3BB)L3V@93NGg_Mq{>C5wjnL#XuAP7#!r ziedOewjEQ4AX=J=*^SMfnq&ynF8)W!jNL8luNd7^-#SHbAE`3)PV7wIb7ur?+lA9A z^;_A4yaYs=>?i_s^WBI7H?^_ro)2=<0g1Y(9qoduInH-$K=~u_?*xf6P_4dJY_L~hipy?DptaFGc?Pd?M-UcL2e!!3*D9?_)I&LfA<%}{RBIO>t zF)a0k4FfOj*xXqi`fJ(KM8SruV5~n|Z0T((4cjc4N!n@DVb8IruN|=yH!H0sJ}JB_ zUUVK{H|!h_a*)wRpX1##C{SE#EU+~ZNAm3miWvthc)qwRO1wKnaYzM5$c&-mL+xSo z{-e;WcZb=795i#jV4T0cI6cCSIRRs1-^`F3%k}MvWY(Jv+Y%{o{s0u2RBub{)u}{VH zN=G7!9<(bjribadtGhHKXc9jBF0^AhW|kyC>d~OLyTIiV z?W;5GK`{%LDZbPtjOu4Q>WUS!?PZFL0CS8op(6hg({Qo7V@PcOu3@zIPB7=vJo|c8 zJ3s(~iw1U$6d)i-CR{sj0czXYfV8QL{=c>>)^?2-P&8~<1^QiiqH8*>?2l$o;=t?8 z%}R*aRQzvJMb6`PO!65=fWYoOy5T;{gl>_JBUtBXzbaV$nMf3g6MLR8^_j;2L(bg~ zbHP!|8zn(@L|2c}Rox;*_ci7)*Y#`)rfIqB?3mk_q`PZxvi|B(6p{$@Ho{V6cW@CN71s%?vbKPg&h-`!UdQW2QIle_>6rxbzfpkjXQ0$V`_{vmU6Dx zld1Sp_c-y*vvwTm;mr7N^vwEnB@F$mz1fagj)aKH=j~Wt-19K78`tH8(!#CwKJ@WS z1N*mI?U=|Sogj*~+cAriuRK^BReAVq;X!{Q#kR|f(Dx=b?v!JYi^zc1D59p_@4RTo z>JCGJD~)oN<|R;X8w~2GSM08Tq6QRSaLErX`tO#WO>Y>>Wd>G!e7PkrT)e->j=c|t z%D5^3tvrZ-ap3zMK7ZAYkeiF}qD|F}yapnFza0w)GLwTp2#oW! zyHn_?+3p1K>FajV>xtqw?bwCllDu(&LaFwpJwVuU?2LSK*p83n7;3CpgwmlIJ@Dmd zWDo2`ykp0Fg250`HkCE)5hHTmwPTjfnUGF09r_u!8Ua#Aba`Kf1PsCXy@ulb<96&b zaGIG}u(wAjotV)hMqhM!vnp5;JMW33{PjK5O85B>rG1i>1&|pcGw>wps@>;P6T-rj zDDpn;QHLJ;q(^;yjeEu^0}laDHWmF1N>6Q5^d5 z-xP4^<3HPRJ~exy%~+p!zQ^{^gpLSt!1{d*heERFwDT1Hs}0l6JpYZIpFUb8SJ!rc;|!KG%6hnn;SoOq2)U}ZF2wPH0&~#H;Nm)taJsSgUZwd*!W>X9 zz5U^iOwl&dfdi48HjbhtQ`yOTBSdbr1KP(B^cHKXzucQDI>b7#CdZkODQ8C0;CcQq ztV27%KZfwaWaVe~#?ZQX{v^>g!GVR9;3h<;qtq_;rS!-A5ju`Hy9VQ^{1G^|b~kVcG?+mwFH?< z2mS}633l#RRkK0$(at>uCYvzWYbFqQ!`jCh^?YnmLXb zF=(_odU&wqFZ6=}OZ_oo^w@vXCHjnaVE0>Z)6|NKIekLKJrje93*7Dlq@?Bf-Q=u82S9{zu;{8ubmO4v|pTI*$ga zn)qgcshPZ$BIyv-iyX_a$lpbqC9fKsPTsD#cx(I;$83vyg<z_AG~rc8Jmo&^h^BTc`i4{PX{sxt9+&#XWtKI=7DDWHlqp*2 zuSfB1oef0eRZ>I@&Oca&HJN5k{2`saZx*dPKH=D-gLjuWLTl*-%j!^)EE7+s zU&FoSSH@%8;Qpr_IG)6KiW8l%DlUs|ogd8O*})L8gR zr3KR4&O+M-JJ>iou%WBZa8!vGwp66^@@&I=Cd|JqZi+-fqZb-ZKsaxQtzv5x|DPp3`N!!CTy9 zU7yOn8yH1JU*WFcYtK2bq{QHSlTUh?wf*W+O))gB@e2;@6mgk?x7SD52ZCW-B+u3_ zl&W{3Nc*iOTcjokXu?88Ma3{&@^t(XMN#pDL0H=$XQcRWrvnoJiP5nD0tFz6s`jDB zl`qQC!A)h?hS)N%sA+)^BY z^M%MRA9r;faeS-5*zpRdpYL=<$-B|<7n8C~#nb)bDZ3N4dHqMFePujY;=zBV zzvoE0sYOwJ%zl$jd&I z0?m%Ir|L3baGUEeDce4l7Mz>S>+Rx-*u?vWGDP(!(h}xPL!CSaSdTh5s`Hrx3yfU6 z@~V@IHxzMSn0=I_lO)}7xIaERIPHjX{EC_Wh%-_zWi^p|&XKD31JQjGQT(Oj_nQf? zy3!v5aT$o#^}Hk z4G3;SZ~Q|vUgI9vPN#iWD#1xIgq5Ib)4)t!FelRqYy1pBr*Twf-@s;+zi(g|v8`K^ zMcY+H$#2@zhHkb7n;TLUgHv@#^~C-mqN*|dqSq1Fp~iwMW5;=3%y52}!}#xkIijEi z{iYC0J0f65a`ln|2d?Eo4nxKY^D#%N7@kA_)}kWcpiF`mC5WGIC7;46Rf%eP5WZ;b zI!IZC@7oh*MFG`9#VpERH3-*6bRZaR*`fdw>Z`^L9C5VdvIB>>I}?IuSxAm#9eH)d zASJ(5T}XboX%gM(9L5?GkpIFUrJhH-1?!(Az_DwPZZj_B1?w(TS9Exg5`D@&^n-;$ z$HI)87b}&E5pJCBdSoFX6^G z`5G{;@wX1HM+KJ#K|WH|s`^WfVPsfdhva?+GA?tW*5DXD(D-SfRCX?ty$Jfo;No6` zbysKklRoHAqs6p*Do~}c7#l9C?<1H%t`#r^Ts30HL(5OHVfTG$!u>O?M2T`l4oLa5p7@ zvhNyv)2OP z3{^ZZs*#Cv;-)Z`E+(vXaz&i^4yOfuah@;t1%F%JQyf`J@K+3GQF3j`XWdv{DJH~y z5-hOwi?z#rJ+&hJ`tWV5p!8RI8&|Vtt|lzrBCRXEfYKv;<+Ri`g0?|#%PCp+lZQ$q z4;TzX2$kLL&$>x~Up;MtF-8C`r$*w!TG8#CW7AbchikNJv9HFpKrk zJ_R;43eX00a2NiUgI!R%pKu~U$1noDlVDMQLr_OJla_s+uLjkyjdJL49oR#?js!=D zf=z@-@Za>{pzE`U7TN8u+f3MR542dd)1OHhZE@KOMIYH4+zCK3Xy&VWClbWWeS}yv&HNFo*NYI89d|$7F(gI2_dX%im-Paf z6t@qt3QrW`P7tPl3^puBU9LzuZH6S$z$0)n{XURE50}9-1H-M&kZdY$?NSlfvX5j( z7_1LG2`=k7R;jagQbt4nAfTe(5GAq0pAy!A85|f%MVp7 zAy`s9E%i!oR=3SqIi55mLAN0JX9?>9I$Al1xL(c5At7|(GY75;s+Qx0!K_9GI8I+S zSpAhjvj8U%%yUV@!y;7N1O8!kpssl5yZ_)HlYuhuqUWU!aBZpGda%rmb=x;Y1+7uortHJ)o>k(9-)XM`W3xM4ymr~72O|DK`ZgstV7!Fa&nCo1m6Q)Aq`3H?TeTGHSV;^`D#2?YlpdrDn1V&7~I42f6 zbV{TEK)s6do7HvpRg#muC-5GpvUU%{RY8f)?Wzu}Y+IVp6Mw6fACK?WU#{nbzhGfw?6DOhyurW7Xv0 zX}TBuqlL*Md^>={FH>>mxT=LSo~maK57A{E(%Km`icuSvF?2;ij`Lcy{kNbPLy>Jb z$Lk3qFUO!)-W$a6vudSX+z6!;V{SD$qBBeqfmYObe60Py*xyj6@lZO|6YDxSF&WbN zY4)S??cw!Ad?)7%iUEOvoEJGlehA@A7V({(H=6|++CvrIMh^oFXx+sLx5UVewE)|-GbO@?hQWb;KilI!Y8$M>osjoBF%M_tfq~8B z2YB;aui$Y|cCRyos*Vk>L(H4RzD}$oG78-M5H8n$5k>h&G!Uizo!g9#nR3D3P$p8` zJtLHzvJNyg1XGYiDj4WY5$gs!*6nlh8B7mZLVaqPa}E@u~yXk?#<)!5&LnnDg3 zYOZ{+Y=p8ri6cyPV@Jo}!AJc{Pi`M&b{4vyBL6irk=FW0M2fsI&QppgcFcgJi-K`x zW@<5g?$ zx0HXb!Q2Dq0gO%fc}^8Ww3%;?g@AMr zh9Jb01pz#PKS-Aqe3Dn7(Gg6u;ZXGo$rSP8iS)Q%TBS2zp))qY+Tmb!QqWZEhxrm##NkImu@Bh%=FbEN9=geRQX zer7PoT&S4KifS)00Wx3{SVBx!%>+z9!M>4gFd=ecp2;ZK`Xe)&CcZgR8Syq{hP>n= zVG=R;#0OZA<^}mF<>pA?fdm5ZHSkH)W_hl${d?$&8i&a%R_QFivk4tc8?FXyv@4ib z#aW|LC@y7`>T-t1d2^sB;(exrkk|yUg{hu0MW~LCvCTkZ^#()qWa@}0+UUf5k9ok- z<0f+ljnYN`_9l~F9xl0l=_H4YQjY%X&4$hjgi%K9z<6pt@z)dGwmGq6pv%Z~*7=oA z=%QT2esD){ce&2QN@LU;qXaAbvP#XWQBh*aOQuZNq{%9j{nV%kQTB>q0|M*L1aL!r zjpx{CR-0Sy6 zVHP$zRaCtxyTcHD8u$CC1WG>zrd~Yk#F7I;bhG%L6Ssb3j!vff@4`;kdq+lp|7ejr zfijUI`d!Ihvo`+K*?C>1nS%JPqnncNw!vz~H2S#Hqrey^Malh2z9gYwUFeN zF)@m!N)M{F!C zTAnglYwW=^qM|c!9K5kP?TY{(E;?In21JpA?|QKcTLqmtP&qnIynD|1rJ{l%D5z{x z{jcPJV)}N3xKy3)UmGU*-fx`v`h&reH=^=885jn-Q*&-~u5JS_oHxZB;6*|5n5I6!IlU9Sy~$ zSQkP-hOotx1d1E+F6W_-GNXzeLwf^6o4q)N@T%{X^J+Apff|&FO+= zj_O}l0~g{?Mr7;}M&Z+nv8j~(^_VQ(3v^6%A%c`;@F%%0EGKgDfD$muyvt+MWZs_X z!a;K`Bb|}J`X*M^IE|Y%!bNmrSCfC?sBSp64g7e2 zWRd9v;TR^l!mkTPNb>k~#3&;d|8?RGM=b4v%VAK~IMj-xYZC~Mvq?($^5W)<1q?ldkva8}a^~T^Rk^8U<7M5{b z+))}$+g7+>LAH#K5O>XVA--UU+!PWmi{!xJbk$VQ-ffQSN0r8%vZ`jqf$iRrT@B#6E1q=Dc}oTZ8u&y~sH!0Fv4C8P~z#sAzG`=|VhZ zrU~gN5$ADztum!h=yaQju_DW7O76fgWTs#BM~Mu->!d0vNuu-*CPdQp!xQQX%u)>9 zViM9mm{3o&-e~rSl_hgCbSd^PoX^VL6a*1~e5VixN@{;hh!LG%2u8fG*2H>r*QYpI z(r>G4pQ@ub`MN7wxPP(S@jti?jYAGg)+hSvm*K zOqC45HsT7bb}e zUv|wEOWPw0>go)C=u6j51>s?IHK8Dq!0WnV$k(oe3L?8LT7T>MMx|wsMa%C^-I7DX zzNI2YwEMw@V3XT%-+>V^@Gn<5bw6DYPF=5HWN!b-RiaSvC;}K4&-`NQ7Yla4Ul@dg zFPhRa?HvIUiS3aJrDXGdbzyy#8{^TOf60YC5KiNd6u9vSG5&WMv~i{s0pk#3FS{@= zk(mN2J@saam%Oz$9OrHx49C52xV7}m--ay_VB95z$s|dX-Ed(l!I+@V7jJ4w_-eav z7Cs>zE1nN=8&-|UL1v`zhq=|T6EK>Fm1AA|v#lHd78o~4ogaH8%58L6c2ShYxQ#BO z`DD6Yry^EtjdKTC^YbAU_`tKvq*$@LuG<)V%<7**Dx$=;M7Loh*xvmTQV}gG>$$PP z&TM1rTUp<2j1D$+)h*pP$XPH6ACRQ{M{C;(C&f_D{Vq7vH1{3@k#xt5{gVun3*c%p zRh%fOBRoq|uEGKDre<-;4^iFR zjaidfQh;oOy=EKqyqFY6tIp$VfW$U#6(@+Awr;E|aZTwrnHoy_Xi}=^mg^3(?VuBX z&=yeiEQ$*Z16py49jVI$vnY|!kW1d_22LVoE zZowq58px7j*}ZOjD#s+kbXF?3v^(PYJ|%zp=Q6_VtGcm-O6=MSO zRezdVNBGCNe^cZ`p_Ayb_a-Nc6BA6zkeMP*6a*{yiOI(36@dSx>O+jGrHj+thD$bC zj(ZH;_#efoQ|gEt54sKGD8~x{9YYdC+H^y$ch7Jasm{x8iPBkaBN~y`P%NG8HjFwO z+<}j{XQ}cm|M%i6lEj61ZcOJ`cC0Cno|}>;-hb3>7&(qBUt8$@TNQ#H$I#+)Q<{h? zj~NV>r~abpv2#=K9nTWj7eMNYR!iNtDfz>N7^4JxHqo@`+LT7ZwZa%1@;2#c+7dD~ zNjO%z=US+(!#iL85&U=ud7F^s324tt;-x3t^DQ*C2r~lwDf~2AHb+ecsNqv6uv~oj zlq}HgHSa9>H}R9H_?%ZAgYCN3J3}BWzm@zE-=m&h1bT^d9$&JMoh< zW-6|^b>N3L%04P{V{?yd7Y){HHxTcaOC97)qhg}?z~+Wm%)Ql@D&BFpvD$9J1rTFl zg45tAlMqMO4^EAupP$0N;3j$GU}A9fQXF*c?(u|)8n1g|Ej<&%CY%oXkXhuHBZNy< ztpg(ecJ!sX9(*O%&J2>6&dQyD%t*dJO3d0Q{ej;2NjuJGZt{fb6=Ry-A4YpNVDE9& zCO3kT0D%VH5X!q1W%yp6^386n6mS{2>q-SP3_LrY2Qxh{NXxB*C8Hz(!n;+D3z;d( zw!3fK1Q&qA0mfhSrqYf_3`~Qj+@B<{zytkbOx4>}C&f=M%MlZtxqG+NLC%9E3CF)c zD?EQ*~~4*Q1G>?yo1hza|}-j{7ZxtLt96U!7bZ ze!z`GixMofL(*gFB@IcD{~cJ;t2Osy!SxMk%oz-$X|P&?V`ooO!hZIx|6-#oQ?X!L zve@yq9LC%jRO?rTt@OA%m8!N(3lp!rD+dlYVfI;6yf0OcE1{%O3H4Ly#Hnd9VsDj! zl#q!nmhY#9(7D=P{QcsG?pObbj({$T2K+uPoc1+`dVcuvztxjFE%tum9<6lLAO=#% zK!7lM0kmr5DYsi8XDbH@gwffIibNXxISg80kahpUjWsLo6eNy=7vH+;ICejftPhVN zXWZ`^G)lpJno*G|^3R#W16__2RbRTX#>*%$GUDmt53oW9zjk9@!I_7iGBS^UE2Er% z;$8T`oq&HWdJx<7=TIl?y!&lc2P%t8&VDc%im}VI#Zqo|1rDxn0&`mb?8X$;Y*)lx za2NiAC1Eu98U_eV&Nfvtzzsl>XzAS#;h%LgXNTz~=ehp{^;bOgn>$XS#7Dg0)aRNz zLsb1ChmUNR_XJ93L-m2IFTLyy)W2tENPMjKI1ZmT&mA=!QE%H6~Z*h1cQ<*VBP^mfZjWU)A;)iiS@i!v&f^h{H{?X#z2c zbnffIa4KC1KJ^Os+$7>SNoyiLH=M3U#pp;6riB5aFnCdvCr(U>_Fy{Ccmrlfg2l{O z59Zqp;WG^2Q!2%cpRNSCE#89}2f%g3;sj5zqD?A`Y#d(-ZJQn;+ST)HRX7Z)8InkA z!hCf_v-%!Gx=4nDN<>rPan5iui-l`r z1?Yd?APfF-cRLdWdo@{xQWwsM)|qpAuIK2@B4zNo$7dwra%zwA3WPf-@RuRCd#)`;h&KIt&M-#GUCg`j_)$Ko!@8~xZ(}p~c>3pPB;)+-A_9Tg4 zdU(#N?(hZ|L*m+2)YtuJqn@6d4U9=kJn=E0JA0cd$I>gF0YPC+?l42H)=c47DJrMHnp` z?1`tU0ki5*>1t@~-k~0RvCOsM|Kdda2oL59oaWJVeXK_r{1&4;J_TXD1tfv8Mth>^ zY;BmCoxbX#0@K02nyLUXrk~`b9}%#&lD|q*9&w%87*tyz95)n>RrBI@Pprh&fZo{%xzv6>SS}JQYF;qgF$`unQzz>^=3;Lq;x;x*Pi;Do>FsZ^oyrK%-l)YE1cGysYG<FVFETOH8%3^rQEkF^@S}lh`R6^~>PgJ;!^Pkq zJq3(Ky#BLi?@e`ETh~TWdQTXFtrtA+=>V*xhKsTq^a%J;sf86@aBa^D#n(6f=Mj22 zEIEbiP`0|_H%~X6QXa{1ml1<7L2P6%zda`ze?wN0AX5L*G2_z`gw!JAZ%>L|jeSb~ zHBW+`S@Z+N0O$ssV1)T0BvE0V?g7VoDzcHEp3F80^<{-!6TSrG4qcz@QDJVv=% z@k0x6=lW`l>#Jej+Zd<74&_e097l@RW4sZR+7~Nb8PVP&0e}GDoStOfT#oae(UVy2 z2^SaYdYM)D_bCXLHg{W?LW@5@LupA~#R5Kq!>* zS83kqI(-oD3B5*Mw%4Mw1@}9Ii?NN2{$gN+i-($cAJL)Q-}-I6DI%`9_hlU^JJ-`K zyrEo#-RRX;Ku3q#+foGz*ERtJ0Pg;6=ZzN=a=c2Rn8W$EdU0+oa%IA46%AC4?qwIq{yjNx7*RIwSvGiW=5?PUvfBMcM+$GZuZT9T#b(f`-e zCSE^Ko+4uVd#}iZY?jb$Bo+O#2odu@?^uav!;@&Uq5y3k80`H<7R)+nPZ6)(=Y3ly zzWfaYc!zo~%ftsAakO>&aPJ>7VOFG~Ar(oKvusg_I5*NeTq6DQHPjk3#`~@;X!HtO zk3%YwbzVF)&f8rUoZZuxLLHxcEREvFhRW}+z~74#yks;WK-upG5&_oyCKD1p0X^<& zs(1{?vPOad7pFp7Xmx+Y4DW-r^y)H=9d>VwV4>+2(G`(m>(fww9n5z< zm|(GEE%Zr;NJ0e&#RSl#YMCf%_c zRyB7sda`aTR*$~WFk*Em{xOG2@zRpmp$YSll0Xda(q{X+HbjEeFMO_jv2kvI!NTqUJ^K zCko7mysKY^xz&qH9_-%jjZsM%{YUydCL-@jK$g+54-h~PU8~vR};bryW@<5TOc+ZP3oS6ikUKe1Y zh7KKte)gXNuUT`ON0!O9Uydo>m*Ux z)QWiF`q+zWbs5ZGlz^q+_{n9sx9d}Bju?Xbg~NBB^43!YaVHwSA&!6^<$WOqz-8pA zDp7F8o2}CL*UoU^KIg^F7!ocHed%4JK!Jve@|Iy?@VvL4So00Ml#WT(B-F$;_2;2{ z`#TiZ6Ta`@Cv`9or3gS^Gq_>to9Ue|vHOwz3k>FGzhVRp|HnyMK30?j7PeBsqUClEiSGvPW|e|S`b5c@h!bIcwI2PB96}f4`nVM zLo=UTlBPnhEvN3U{Vo-d)8?22GMtCoT3naF>bj!IpNM(%BIrme-Plr$d$^`!MLG8{ zz`d_{^B98??xAZd@Q=}NpiI{GrD3!*-WMr8z3P2Np$JISC>TTeCylmFU5Crl+mb=x zuKhkkulOwZlMAq71Kcqb_j7Tih^y_xhtzs!++hBpF3VGdC&Y*4Lp@WjmO>W|flDnA z&;l&oGCV-bg_#xjzlqzH;{)g@pD}s@qXpn}@mGuwvuds=4T*pu!D1%Ts^diuFOL%W z3BGffL;Q%$1H-|7nMv_QFw(P+07 zp|Q_4@Zsc$4wkn-VSMX&#rjmATt_n-tM)IiN39y7&P(Y&tSSZ|Oopd&xzd7znLaEZ zF-o3o$2C-4!AB~MeDIVEGVEEJh;Qn{VgP3{?bXLX-0?XT;UcrSBtb%UxAZB6bR+!PYn&RG|z{nKE}bPaE+1~bbZZ=WYO{-A1-oY zu;GQEuNW#~Lr))EGDEPj98S>jOq#n1+a53X_Syc`wd{oe^VPDhzCNsUbH%`LKQz>b zedqo@-SjBU%wL21ql>S5^vwp1vZQGQ)PkHF9OZ6X}$+2;w8keqaN_ZS>$V7vEV`95cT@SL%wn9wa;{4 zk%eZjK&}0&9?zhAXQ1)B9!J&PGklpA`HH_ZpD9uAJ&!`~7Wp2gbw2<;X11@XMZVS* zWpjMf)ob)z-&pm!V4m+G_4>d0z6BOadB{=Zug)d#)pt*7{15DS9=kzg>-@3s$3Ov1s{( zEZS^{YZk?p_$E=!5LXjnE%7ynxQ8I*eeWsXO7&W>#h(9fZ>D;EgnU1$ z*O@NgNcH-OTMik<@R--PNWF$?z6aFnQonDGdbMouVXjM`ftY@sS2dy7cYUGc*$850 zomQGA!k+crWszz8Yx5@GF7=wW*{4}(#yqU*j9<7ao$h@B8WQiYDgo|(!Iy$v76+#Z65E^rAAeyU_*38X*2q3r>~D=71#w$NTO+#zQZ(ev11mw zr4Cm-=THNn?Mo2KQgQYrDU_)@4fz$!vBULlC~ZjJzJhMtT?wAvx69YaVsVPOyL~J0 zq%X^Ti6U~3??IXQ$X?$P`TX@&-ztmaDniX~U-QkN>MYfen7`k5n?&6 zL%s>>b?xiE0`+?14fA#OTavYviyTQ}_1kDd$58Jb$@`DX(3LjNlx9-WyCAZ<+~9Tb zyS@%6Sq@$wdC%uiud|N%%Jf&lYa;Df_C%8Cbi#MLf-kL-ysWA4C5h+{eb@tF1dTtI zoZ;84C(&2=nk1TkDo1voHSSro{h87%YI+I;6j!;G+}5A+-2oFD#2?LX#3c_)t7TVy!@sGpf%>r;W3I;(bTsQLUjZdfg&;P5 zUG1nzEbsi_xDmk!g6p7zQqr|X^z{C1Mn~X;A?0>GC_R%qi>%6 z_VCZXM=kW(G}ykEp9KN)FMxoZ55V?)bpg6z71oQA10VIZ&7#hmO7WK&zoJ0)AmjF; zsQ<~KhIE4He96~cy*~Y$9ABIp^@k60J$@~_?E784(qF#0>NVqUUvK@DN~5)=!gJMk zw*p!FZRlWAGXfTPKd$5*4dR-K!O;WGF#B1nCt)8&C{huq% zq2ffX4^<8}4DZj0nzXiqVR&z?r(yENukR&m{ncxW1{x&9xi6(?tJQ12H1qYVbZwc+ zeI!#WR<9x1+HCduWJ5_JW4PK#!xWTXYno`VPqjAsissn}!tJlV@H0iNq?)ui+EcKeuR(5gqDyUxJ=F&FwOb$>DTMhk-&DGN3Q&&U( z?z&aWQ?F}o(;!gJt$Vvf$gfK~XzSE#Mn?^Y4LJ9XJ2j|3zxKRKd(2`fqu0A=Ur=SG z(tB~JEAy(dG(lu^*WN?-Uk_U4DJPT zua&r)h<&{@XeC~8b!Z=rEHtti21djSU{B|MS|3MSH9F|Iep;pFNinj&MEAr|bR6g~ zESF%3YwSR65ZyR#F!IN>9~p(~^~??O zQB=59K6(}|mXFZF74lJDxa=kQv=lDaA71(J7rrbXtqUKQj|PRyHFJM?~Qhda6`D zLJBM8BfPMzP7)_=GFhweN%^o8+G*BM?H=aLcw37?DIt~*3x`F+f?=_+P*@}^5EjS% z%uQKUN`+;@5@C51N@=hx?q?p#Vto&U-@*bZl+xhZh2AXrDh0t}U?H#wSOE7IZl?TU z7+C9QhI|y$Q}VHtHV@NsEmrz$nAWg1xRog@ljUz z{DJUg4Ahfbf`HqCQlGuA_d*VrvcfNdQfGrwUk0Vd9@Fc|@l{qhJ}5O2sb!Kj9XKfn zSaepeC`Vga;hdn<+@RF_pwxn()S{r&;-J)0nOcVC^(H!Zh+tmGVOmz$B`DP`D3uqK z>JgMWGEK)K$81^Q(V*0OL8)V$%4)&GyR7g;5by&dMfsz&lz1svef&whg)fPPqqMFT zi=V`3t<0iPpD~&Zk2CsX&R9-`jpK(`f808rQ*Y~!u@g8|qd!(nb<^z^J1zI^C z{U`C`tp1oinNxM9@Pnpk9?N=aKNaqKJvpXorFb;EU-O2u{SF^Ah`wAtr6fnP4{D9WEt|yrBJFmIWhHH$t-WMfMHA-0R6I+ibF@(w zmpDI1E3akQNRQ2f9a%%pdD`oiC1T8ct&hd>9Bq75+h}=3^j@IdX|Zgf_$mDilG4xMA^i*< z($C-_6&MfcXYi1I1`p|H@Q{8659w#{DAOO(%^)RJ3lBSWDA5M6T`pmJT*3~fggs0N zyOT*5pqVHTG# zhf4}2gG-pd_+Kje>?v(bv>#c8w}j&7j&Qp5sFq^Qekwj}>(1;4rxdh8`D{b3X*H3 zh8G&tc3-b`h}L9>IyKfi^rc&COvSrvg(lflDF*kF;M2`%L#dWR*>~27r0Vrr1K66s z)}uv@x|eG`bwt~mq2%%A^y@(&DtIs~*=S9p56VHgMsZe{dEgz4w4oE_yh6JW-R74PnM*B&dh)0GK69J7L za%uzd5Kc%!qsvZ60@S#;`g#|`&bb(ME4MZbuw`y-1RkHbwJtiPZF_;zbA73(%-~?< zh&rKkqiI=WfacL2rqbiV1V*DjJ=$2k@{9dZdCvfysYR{uz4bb;Ru@GoyjpKO&U?8( zoqgI=r2IZ@s9x_tKI*N%PqL>yb*~)~uJjbNYfK+$+C!*e@xx?8Bz|t*>*t<)@8=@j zD!6-VD!7TW71~&o?7Tr6kB4)EHW-id8?@0etS9jWXz=@jTc}}se|^fo7@9)))gdW# z!p&mTo?+hp^o%w_FaPIcls_@$7P{{ztu2*Z3&92IQK8XPxhIK3e{5oT^?r_f;(AV-0@$_Z zFvc{>-^>c;-mDEp>cVDinBLO)N6^x`xm2-TYl#m!!xAWNd09%Jy)Dmc!!4TQ1+Lxi z1+J~VVAL*HfZCx8_1a}4!`hhqAG1Z)qslGJ>c6+JvW?x!BpuwUP1f0Sc`@pjEV+fM zdVrnr3&U{ftg9?G(EOrp+MP<&OHs7f3cBwt@MQX-Fbth-S{RzRyp3tQdppx+->ywV z=GE=maJ^phRj7Am73l+ihZYNH=?)&$CwFKAbUG?aP-ybnTWIzTt)(M01lLdOSb>`i?R=WDb)%8mfC+k zK1AyqgDbY)WR?EmO*X#0-eRXv@)oyu`Yo)oXw>mAkEP{@nWU44xx203*81pudH#DK zF8)#VrD%42+`0F*mW+x=-e!8!kHAes&5rQ+@*iRS{N)G>y3;!>=;C*@`*du#TmrUF zFWo{fp4M8h+V7;;B*T<8JIWe6>8N&(lI0&L{`6nEkEl5x`+rqkc|eZY_n%0MN{dvA z%2GtDtl7$%t;H^+EJZ^0HIW99CBu6}-ut{W3T266#@I4r7;E`5cF`F7pvJ!cKF_(m z>Gw~!=ecJ;=bn4-^E~f8c69U-yRrN|c%4nWp z2VFVC0yjU)Tw>1hxX3xn2K{)Jhj8z6>~zgJR_4|@9t57}+1LxuGv2}TjQ9CGYZ!ci zHC%gv5w2Wd1ot9Fm{X)}C)NJR#^AfSAO`~~+=-~YTcov>`aQ3W`}OUp{5rgb+lExO z#tKIR-{Az%xtO!d(qf(|&K9$Tju)|i(Be}?7W@1~o=i;t#~>m9W9c{jPj8ir4M4xJ zVFlm3k=A(ckAVVw_eh_-zz%=2 z!qI=T8o7Tnq4$5YO?up8E2Q6Jx7?Li&Hv%4DDEF^&k7Z1gL>3F8C7@x!P9uG{q8eL z*nK9az0bqqiM(q2fYbZh2Rw;Ad4O#NFY_)e2A%8_RZS04p4&OlqKE9oi+@Pt>L z8=vs1^UV{MxcgI{MYT^kHNSt#kbVAT$Zh{JWQ}K>h611I{gb>Na_l7vzlY$qY~@gc zZn`^IQQ!rZzUUbzDEsGlD50hB=laN4u^CtgwKBHX&Ru7#M<{vD2<|Ur4tv4TaPEbE zw9{VpFD37dlVaxZkHCT#&lH>x5I@m(a-zbwthw1o z4yK_Wd2@5*qjo$9x_@H(P5i{s^5-XQ6mEKa)+h7M*Fm?%Z3FV_ELVC?l=oTN5HOcM zGnuwuINDZz(Z=ECn=jhQXvTfzD_$C;)Mg$}Y76z5K^t4f&$Jb4h}NhhLZl)Ky?{T}ubLX=E$B|0 z29@}S>TtNY+lej)Sv0{;3_)|;PDEL#Z&2c@w*=y2d^(2hvAxDYcvT9UMf2@NG=Oj0 zi*XV-FHn^-2tV`*Qa6jS4gD%6?JUwdh%x3&@qAYRx%DPjf7J%D4NFF>z_(^MNhXxM;8c9b+x7=f>+qXxsdVpUnth9*U$O7vV>peHvTXR;+ed@avK2y*Ij=+`EPK zXzZik1!qym`b=?keK8CaAJrEjXxcclG1oZrRf)W6?ZS}DTo|$xS5oR}2`caDdg?>n z+$e3NTV=k^qBK{%m}jR0)OI#m`@$@)tKFJY(%~O!{y$k?%>aneZ0R;CJn80B>50q+ z?6ofq5HMNPry){77U>#_(b5LZ76S9gLK&iEt=$_{B8E3YD#@bljS&7>WY(CqifAl` zNCi$L19ANKJXY{!she=AV)4(7#Q-3MyNO&J*WfA5yWiuByWp6rr=*=`#0CBZWY7&;vv_a(q zMRw;-9lGmg$()34{gaU_a%jeKO=!k){oYKp!yAUr%|vH39h+mgr_j>oqMwEOQZeq* zE|4kPTaD5Swb(uW=%Jof?_ossjn`K?FNKmS=kzPooDHQ9a2kdqTfFq7o0Q%ndaG{;=Jn%CXFXZMFGV&IE%~_uKV*qse zT~*7U=Cx~PNs2eq+5r$izVU{`Q>d>GMokKB^FfjYx~~|8CdOCvkyPfM1C>$5s_mN4 z=cemx>q9+-zWR!;5~#r?0NIpCpu3(`f!6wo-XM6>4{lE(pBAEOToH(no&Y$ZCP+1yI> zu=rke?!=EE67aPmrt^xu8p!1HJ$bbjZ2=n7S_Gll-deOobGtR;JGBv=@D?hf4Z>(E z<+g#rw~|3ySb8f(wH4FN)i=&@^2?h3~v^EZ+hj6M7zi z7}!d017OIlG@!jmKy#u!hT2y0>%fw&?I5N}A|9?FlGy-6(h-z}hOPDH&7i=JBHUbk zMIL9>5J27@loW*XV59Ce#nX$9m>x6eSx1bJ3~Jp8qGizXPNEk@#flonJzD}{XGba= z352!j>v4$TOW&I0+!-#;Ah*t#KQm})XXKa+y4@LW$spfAh?_xafufgWy1W-?n1@%; zFm8d<(A2$A26+UD-pq#P1Tlr8AQ(S`T)T)+Gznc0hZ%ID3o=Cp)$1yHNO~tmg5Her zlAhJh^>(zoE7LpBRgAD;Jzb*!@-n(QMHyo@33T(XM~QjsJ@orvhN(UpFt#z|+Zn2X z478f>@2F464AM9TAVXuT^E^scKltktat3wmF1kxzDdPduJifa6xD3@|U-~;zVRvCI zW&JV%o%Q2Um=R1|OZ=_$Lo$P0dLYCyXl4(rVlwD>4>1spT~EB-|Ig~>%K;O=ii*0ZRB>HHoll5B|d{JM~oJu;hHmfa@5&HY-_u~+&A0kG8#k>%X!iyous~O}MD#E0x;&q@FnWYYFZ_0DU`@1rm zHa3;w-U{V#^$Zh3CH$&vz@OPpL7kvu-lR5ls3?pB^lBL9M;6d42O#HAa7-On0I{I2 zJKC61VmQNnAI?LlG+aM!XYK`f*?u{0CHT`e#?;xW?Ki8f?$1N`YJbeH8RR~Ihtli; zm<}`O;s93HcOYil3|cr4vn`9Us}OWkep5rI6)pPQ)`aR0Le2sDAjVrXh^btZSIq}w ze#oF%gV|_ja3!fMJr62*#k6=Z>=QCXI09(G5dH8kEJp9F%N4^__4w-R?NA5jRy#BL zI)p>WXebj7AIgNYhKjz@)7!2A)%JFU8w)+#qa^ac02I_1#%2m0#)jWGOyI)-Dj&v* z2S#wZ*cid8K8RqKb{x)qX~RXZ6xsbbD9?QBY=|$n%nYggG9sB#7QO6XL{U-t6tmR? z5ZPu`Xx8e}u`119qnM^yw4P?96)+yzR;8(|>WG@&JusCq*K5{*xM3@4<`s3US2>Gi z(35B;*M78q*srS#;Cjx6R5}pnm?w-z0-9pesd8z{1kIfQQwuPhBw3BlT{>A+9kZU! z06EamPp7XRZqLsP&n;VG0b>203n6*u|V&)?y2tMoTAR(UV3eCPJSyGK+^k zX*4PxOQ1B;#6AWEG%*hk57SRFY2-JB+0U86?9WYMe6s{Sr&05O*l&T#sR@NG z>uN|B{@sA(x@5OKfx#apu$UdDVk?|RNmDVKrqS7{SSY8F`!vxVP5dY)CCDQI$FnA*UJBz7!&X#?%`6_od z_dS+Z9&;EWehw4cHHSf-&0z%3xeOUMm#=or<-W)As_8teY7;4L9^cH7SO3mqDqi#X z=A`)yvS&V{KbMWy0@=4f_Q|Ukvhhh|ev=Yeq`X8XR-VWRehZmOf^7CI#KMA&oB1b< z`~0-(Zv5bBOm_?Nb`CbG*fKE0m(zd;)7e2wp74vB#O-*8^dy=G-NzB`C z5i^}Co4t!fkmR=W5@>z7Oa{rqjVvZ~#?@*d#N-9t9b zk??h>>}N!GHvN@?tddR5zsGdIq@Ugg=+g&=cs&l#ua5KI>)E>F+VbvdMWV zvQjq1F2$hDrrk>s^V#%aDb{M))N`3=k7mg-WT9;ObD8Lh#(X(nh08{>9HTs&o-Ai# zol~)u%cj&+miuZdf-jruu0Za?@JD&(rEF*KBjc{ zgvJ>Mtq60#bzIH(n^r@Y0(!Vw43cDm)_I%Tpj|A{ zf7Ox<@~ZTsu9@n)0?PgY%d!H^dX`}5dKT-zdX~Uq1N>1y!#0S4lIOk+tj*UAEZGPR zo-r2CaSaP-PfTG7VVzk(X9+GTAlHpBbOBA=h~-WJ9ooo!_8Ht4FPq~T%*$aD*0C(^ zPIrhK(L{=i>hsQOHD1&WN<~x_(5X#gxP<$=3E-T3G>T|M#qZUc?`Hs}2Co!0Z8J;x zcr!M)1vEHQ#G*NxiKnCm)OZUXOc&7FEv&)oEv#pdRW7m$fgw7>_Y?RCgDIkZrR2+W~k9Z2U;{U5P< z%%S)n;r|>u_9N!E95Vh1k6qMH#N#3ZLGzbDGS~-~p$d3?dXWupq1fZJmFxdDXkTdB!}K_MeyWM&n)J)DGRd?Zf3#PIW#02_Rpc+ z*%&-I^e&s_>bXr%I6oMKgL`550ZH`bxN*dAHoTETpSCf@(Cthkd%K8~;{4PHSTp)k zbSAL4GWOjp;Q)k5JMgePhc546`F(S+Ey|&_Il|vq{TM#(QwRm=go~zmSRMM31C7(k zI2X1_r_fw6z?@;6!$CVgT(eWOr@$_#4E;P8vZT}NTo^c=dhSFxrqh<4P&u8R?u3Bp z)M*zyoK7otA$z1#(Jt<*zZ)v2Q|xX$TVu-ihJo_K;Wel<1zC$rPruj=vD3+94?-ZF zM($z6+&zfubb7M~nIfHf=fNfEv?&iN;btE44W!sBBFvcR=_nBGtjQDY=+1tsa0%e{ zGL4{pOk=}7rg48CmIvwhl8A4v&u5Bd`AjjWK(w$>e0&I~Q)fZ>mGsPwvULgm5!_G*z|YuUF??b|n3CLdJqZK2QcIto9C zJqi<8H4i{8^Q#cJb5K}=NBKe6RYyI3#g>O5hc5u+{sq+FJcZ1j4r>yLa=2CE)B1BctkQ%3;>;;9-nC9T^=#MCmBx z2p&cx@Uxx3Jntx*@!U}s$Nm_L6L}2ogZ+*% zgcMhB)jM&LSIL33NftUh~rFs%W>op z9o;?7Ogw*MC1(7F2~JAbgytxxh* z>PbAoU|g&Hz&*Mj!`6|$)jAD4AfbiW>Qq;uBMM%{uqnwfD;ITRifXPQI#<;!& zDh@kI6}3Rg^bAWd^bA%TI?6o5_I!LsZ#%0Kz>YgXAwtzcE&qx7p7;V;M%%Kp?5L}< zX>v{<)Gtp0EBus9&U!2d&_8{S>D!&h0z^kc&vP(|^Q=?ZdC_0$^x+K9*PN9Olhr>_ zpp&ewa*(87VE^8}z;WqQ#Bn*Vh{yGxMeGEpV$J|_ia8%#EyjeeBfpE7uXU7q5wn1f z9$sXxb^0Hc+-%6Z{{z#8H)S~FwIAxB7ORxgs|4`=3jkfNQt7X74eC+WmgOp=4sj-O zzNAkchpz%I?pg(*ZK&bLMQ&BcOG5Lm0pRjA>0=PWdlP9+$IEPpiI-WkBbV8@7Jsp= zLjU5My1&?DkN!dmXR*_7gV@vCHDqq&8j+|TXBcynp_btsohS8yc}wmk+y(+!UQUZ{i$JcjNb$E3h`BWLHr@y3 z(zV-Ips}3S{{y5y9*C)m1inOh$fObkM=mWZ5hEnX?pFXYe=TPZl!J38pF5(q8Kc*G zjXpE7zAJ*%iiuXFy(5fdm(v?`&6QnccZ3~i8sEk8JeMZO=ImXp_HxO;6tBN?DYKL% z`&!D{4*6RQmt?#?fy^>WFA-f)^w1KJR`*1>1#`Fjj6OR<)U(}zNtVkWrisBQ!K|+B za_Q(j44Yi4_Yd<)`G<}4=pUA$_kE0|T+-cVtA4tVSv;49KES-2OS>Q79XT^_t6_wf zhBb_+e4k{%wFObIxBGA~)gsH~(v*knkqZwoVsokKBQZhZo-hXPG!r8#D-piLRRDS0 zkxS)|Sk-}##o#*3W~?bdUz!$}zU;(r|3p)M`ugQy_ibeo>^^{F9^j{9eZU3^#zshFF zGgjxoGbU&ET#S_L?=}RTm_`+*;CgwkStBYY;9M$tj!7KqzhJW_yjFP=eT^cK zYQZ~NU5?2pnKqS+wi2X43xH&|pv5*gOz>uGM&;YjWU}}Vo9blh{2v}HBvaylA^^=V z|6z(wrjP$&_CViDY+#dV{!1*ilBw_|rnqD>dWDpqOaoqFMUqTgUWwLdF2BN4kYuX! zny>o4hEB;eS6=147A>SSe*{9BK0)Mb2x&$|Mw(NtHweaLvU`JvQOVTj4PHeiQ_34W z)<~ukZ;&X#@2&7f)8?%RkW_kg1C?#v$n}G8rp<3f9rW&fi{~QARQ8tTZuw65<7)gn zCXn+^k9ji~n7eyXsmg!Rd(3;N!)7a~9_@v`9lfjcO?eVot0K`PQ}lZ_lX%Z&x*?l7 zADHXF4}5dY2e#JP526j2SO3V?>h+OzN&U#^r#@nbo=l%Vik6aV-2vb_Zh-2-I)pN2 zmionKGEMlzM$~*_^-q0bZ@vG-Dz*R2=3XG1BcJhgpyE31?9RUbsBB0;s^D7;!ioS{;f{`E@o23rMQ z-!MplQX5t(u=$2#iVyz2Q2eDp^G5^q)M#q(2B?P(6jQp;Jxc%ZCz*yCC~9PFF;Gp_IaOEc1FBthMGfZJ z)tSOx**ukvo1vl(pP`1T%#>lsysj8Bf^7{Yu)=~fK>gheDR7!8YAG#5wJad4sG+Ds z;zA8Yjm=s{iW-|?MocW-h($eZq*M$$%^Xl^JXZ}-1iA^-Mn$VCz6~;F?hB2XN}(|e z@kL$*ny@jFOqAZ>aK=PYhncOZq7KhcQ-)k+$~HM-${LlKvJieXS?P&2*`#?jnaYcr z%*fMBQO8%bnWB!%)nlkKWUyj zE1}q>G&zDlnWMNyoCTX_mW84Y-8~k}{gnk9t8FcA7Sv*!9p)>IC9BZMk^z@ka@X&c z%(aFUE7aDCxyDawac>%!ofw7)J)3{~rLpSL5+ zH_?%0$Zy!mhWprB?MO?jg)?9G8-|-<3>t^RPT$uF}|g#ON+gr-sHM*Ts{R~I(27f zFK^6R6*ZPFabshSbz`P^Zfvk}H&)ftT^RuSi`$*!_Sz)?O`W;=r$7ytL`gq$$po207@X z1V|Xqc)%jM&2$S23E)IiGk~o;B!FWhBY;)9 z7Qm*f*PgG2w`cFx* zEe~YDPX}^9TL*D7EQsTGR}jZoSrDt})kSHHQy}_x!E~HY-*-W_%BMoveCz_f^Qm1| z*ejoAc2#`QWOs$V^68Fj9J+Dez;2j_^J#TAELQUAXg8#-e0tT5A-%dI9`b2icL3Tb$)_9LF+b*$bq@%UPa!>E(tO(317j(lp7+22%csDea9TdC=?VAd)2*KHPd>Q@ z!=d>!Dwx@B4py4s>SQoW_BNQ=diCOFOfP1;xfdcmpNe|1Vl{ii=lK-go8??Ao4vi6 z*t6a&u6rMtE}vriz-IZhrw`&GpUUOU7JV6Va$lBZUtgB`Q(qRaS3l%Jn4lkD-R#F8 zE+G(b3H1&E-V$0G0%A+(&k%4}LZ+ce5=$sFly9bog5MIl9tr`MkZTw+;}VJwW5``$ zeDhTp^3oFO9FEbd9)}a><&Wcv^8HEIUvVHDK3`YUAERaooeqbQmXJw*NVJ6d^;d$? zpsy>M8~x$^B~*U^vl}-6Qv=iT4FIj_9VM;6!IkgSeIG({YnzO7{*jvMZhho6cvFGNu`Yu;E_t#B4Dmm zsy`fJq*CN?1Ys)W4OgPg)$@ho)(r;L#zSc8Oc=ZJ@bSv;f>J4B1dNeNnIoWED&3G* z^+qz$=#hwJP#ejd%0^=9NTr^U5GIvYMMAe!x)R9@n~uT&PNg}c5X7mpdlaH6l|GKb z=+uyR6ilk2sZq)(G#8^lMMF)aL0UtzqcONObT%3Y8gdv7XKQH0Xe@O!^z&$CC>pCV zm}fNX!6HlnWiC=7$p)-Yz*W5 z5rc&Q7{xL|bSxvBj8#UOtLHDp8Loh}?yR8V7{ygR6B|!mMEA zfu)X|fC$jgjtQ`!hMvlso#PNI8d@2r43RV+uLaHZ=~NmC59rURwju9{h*J%$liUzth%G*cA524^xyLl19lCHhjYbW)YhJXTtso4D}%alL1?& znGO`6>(p3sl_x}RR*z;@CSXF-(2A)@iW)jKm91eq4dX#W1Ewk6C5tW7*n%a~*k&Hn z*-A5~^Ht$=gp`JiX0TU6XE5a28GQ4Kyy-HN4HPpI15!h~XR@F#XEKwHvsm6$vy|!R zGnlQ+N0T^P8HeWHY{a#O8qDDUn>+`R4D>l1e4pni!BV*1bM-ntIRG6KekR{}3cjx` zPu73mqM_?^S!B0)EJ*x3W_@5D%kxEE1-8&2awy>nJ{Q`$pckpppQ8E0cv!tG@M?ee2~rYRb+i%%BR>iIr|myaOH%9&3^vn>MT)b*I@+-a%ZYV#VUZHk zT|GH1Zq8|w@0PBQn}DOv_)wy_e)tbJ9v9)pW)lUS^DGCf>F9__Z89xPUzo%m?BG~?)m3EtCZ#jXbq-oWvZW~<31S#k6~q`w5& owQ1(D@l&QxkDfNS0(z!;65D3PO`KN!vqAl{@#pwtWtidr0d<6M`Tzg` delta 182929 zcmeFacU%=m_&54HaC&bX4u^K=9kI74s4;fM9%E2Y(O?1W8VlI5ql-*pA`p$5STUB- z*f5DPv0{tHikfB;YhsG^ot>T8GiM?9z4!ie-#_l>lX7OC?>zJLnVp?ojxL?8IEwx) zE>kz0GIV6){FFSfqTih46&KzVFYIh2D^eFUbT??w0{zptnL8n+K}t%=64j8b@!7+2 z#+58-UT?yfeEwg`qh8Zy&6+l8+AJ%jVe@9gn=~BOw9&9(jfV`Y-=I;m216P*t>36w z!{H5vH*H$7L^D2b;<%v#pVt4)C-i^Ahzp0 z*d_X`{G58jM`z`XOU}*Z#&);KBDs%D0bGw>23aF6%oz+?>@D)=MubO!)a^?ZAan9^ z3%54Bd0P$NF(-Fe_LPz(7XJ6JtO>|O6UNu$Emg9_>~$?~D6*V!!o&%A<8rb_qka>{ z<#CqqSnhE|EO*WnteTKDVnj~v2yT`;g*)Pm;HtyoWno+^YY=xkJ%#(%VBtOsi~!~- z%N;&T!m(WWJr*mtu%3QgO@s~<|GLo3!4LztEkeuv=#J+)`VGWfB zB6+~0!Z;^)GBiTw4+h^#_2*XfwsF0C27|Dix#8SLAxiq z5Y&~sH7JlXb&ud895y^+deuTFx5MS)wmEIwt;k3&($JUd*T=@C_0VvsJ?&h0FB{jO zdjPlA7R^=la%!-_cuRBco(?3EmOETlt`P9B z_hJj@;|$>@7=yV7CXLJwSoGX*_>rtP?azmUAxYMCcIj*;bEysN2^eROALUi0R zx0Xf=Ul!8>Ra{yh2d+aq-2U9U@MaQcKXUnV3s5;r^N-?=^zt`J>+|WbL~HHR&Q%6R z;X=$c=o=_hxDbCyx#5e@dH(=ZACowFZxDpt;M*NH2fxRZNjZ9+S|Cb3%4@+|BYMkDf5wG6jL92Qz@QLA8)YNqR5%yc;>$~pft8@J{@5?a%7>;9x^nCB|osvkQYx3=TfFK-I1LcUd?8ht@% zuE)gT+8G$S8n>*!2(2}^b?ceXD#NX@tL9+jY~1SnP-tz&t-K*~F|7!52$g9d4EH#oR0y4r*r zoT=k3jA|B5B$_otGs9O~k-huV;Ue9rQK!NU^0r0dOvjcCUm9BTDq$LBQ5 zj?o7T#Vbz)Qt=tjU}fDA$JbS3hmEN>e!?*BbVdi?(Bx#$=8x21ZrD&itV1c*!TwGd zw+Cs)>kB;kzGDZ~U0&Bwu!=7eJbz2>VQ$sP5Q*XWvcXgHM~8EMqu-Xj#huOV!<`zX z=Bj2mxz9%CaA~7Lalavxqqt@x(|CL6ibwJV2K8H#!Q+)^m6@G2j;qe@!M&ZUQwBvZdT>W4p>e#-=zjHiz3d zX{s!rwoK+d1-eE`5T5 zyFA%nHiPsGn zK=ogvtX#7hjX3QLD_1ow#5V#3jHPOL7b$ zv|RDDQ0}MceYoM%ETDWQQhV66aL#9Xf^RJ9e`NNUXhq2qH~Q%g9UUSsDIU3y%bOA6 z>p)i??wo4p4$W|JOJ=xGFz^MQ7pEUG0!oGgJGXdd1Mb$0p2%-}xkofEqhJJ=USQ;U zWwhoL1zotAGYy8~k$m~*dj=tu!?n;3hG3Dn1p46N>GTX&f%+`T3Zz0Zb zRxC)lQ()sB&x+@I7DjUG3fpmxSxvZJvm2uS2ZGFB3e{ZdY#VI^aC2tIf{LbvHg0@j ziVWQv%ns-BW*NDk3hN>H_!)qgFJ+FCdo{ZO*Ky7iS@F&zb7slJ1u=ii(-5Rq$7*)Y zpVvt4xsL9VT5y?n8|+M86zu{vEti|QVIO}~o6aRKQtzC#evnTsQbX?KcFoR=Pn5p6 z`_A#3ugipAnOjZDI^cny>2^NYxze_&Y-1M`$o$F6cAfUMFuj&8+)Bfe^og*(!A*jcfj?{%pU0S9A!v?<< zu(R{^{RHY)bA@Q}>Q)W;_25oDi9S0s??Tcc=J#i{c{c*pOUukVKY8>KK@Iqm8Yl9v z!xCG96uqoHDE=|rR@z+l#?CKal&i2s!8nC%rnen=Xcss`DeEPO25+ilUz4A^HL~Us zr$PiTlw9Lkv;rx9G7C&I$;L_)!&HcIL#$HP6p^3BwH`21GS;DQ{?K;ZrM)q zb5po%G6B?&k~OG9%~s%0vdjc3`=*VA0~2Kv$RIcC%a%&fm0e^_LD7%lfqRTE4*8jp@Ed7?~kkz@#Xjioion87%81l@3vxfI}l>T2OYdjS?VF*kJGwnU6}M zo)=CJx8}&&$+19ta%GG->#>&=_s~yM7HWTyuPL&-XSI@jFJ4b%*m@exe zWI9wA%HEJz0-}*`DTNrAwN%zcA{eSPu^_#;%m^0!7#@I)wQiN{fn6}x+D%epdGMd6 z`|9Dxn`PZ42E&NLEiygG_-?rdJnSM*N{yGA(FJe3_IKjACcN95-_avyVDhQn&!EG{FNFhcJ$kZ?a|@#!Y<1lBgw;o}0k zBK%zNpws7FYb|@kz={N)Ou4KA%2Ip`jJ?F^g8SW}g>TpQneFS;W^vCl3w$p5Oy z3_@D_jFC`PsXk{Ib||zb0Cdd=Gu!x_^JX;>Zg1~X=AC5|0lH>^SG)L3RNygSW>23# zy$j|%u<2fg4W#w=aX@WR03x6 zZJ+PGV<{JOUsYy>`k#H?kot%xfQ)S40Qko*KAUus;g`Miae|s(eEeYA6Q9cx;UJ<~ zNnBL=`hLU6RsVZ!9!N{^)q<^7Up06;dYTQ#z;LZ^CqYVZ*y77%hu8t44!MjUMFP*s z2siop#!IRBDZV<;BgEH?3qLU5at49}lNDzC3m$g*8l{r)Js|2~lnWLc6YgtZJc!4{ zTwg}}qLhg9{gqLjQeALC1K$N&kHsvd%JHBg-Pa_nKKPh_(aQHP10DnTcJ(c(jrD^u z-F!Qc$e7vPcO&B;o*zW~lI)Ux?v=i3n4az1Uq~ki$N2uth>zvqF<>(&(*Z+_t`nR% z(YLEoQ1Jq})`IfieU-37jc+6qzqKJMA&4J#l5_B* zJH8W{!1D$}#4nl{=i)=rkmZj>Lyr1WG-S|Uq9N};^^Ii8kB8~x_seV`{U1wz_{>MX zoYa!lTKV^Ns+4Y&qd1SW_JX}F@*gyw2yK%npAF10ay3Bq%!bK9^8G^X0{=$ImwMwM z!j&_oqt@&Lky;*x{o-@=lCgJOQGsSDy{~ z43yhI^?RQe?temD!;CMMroqLnz#~F{~d<&~(0>sm446B1j1{jnHmNur0CJ zA8p$!mEh74d9H5kB}^o zm7w^M(H2jsJ=zuPK=3++3QT{X$c7aS6*tJ#xvY(X$x<({0q$t)WdUz0IMzXd9x>U_ zEdKa)MI<8|#c4rtM}-#L>xah0d00F^zX@h{QM_Pgc5g65V48;!0~It6@4c;{dAM(o zg684KOa;xu*RmDqWD5Imq=L?%+-L=z!e-?umepYuEi9g-SWM>ngaXCWI@Nf0jzSN< z>^LnDo|>mfCTQI<#eEM)h}?IW#8P#+B$ifyhtCyC_`E`~+&iEMAs%^#DF=wvLQuE~ zjd>t0!48y}(AOIIURB$SP7HVr61vr35`lS&J4#SYYb~#dsp{sw;}7jKDk^B8fgF z0&9Lzu$hUIyZ8kX_so@qFL>4CiyAV4bTKO5}wXg4yl8xES;>>K{!=8Ux)_SZLX4CexNCC zCRn}_SunA&Up9QXShy$1M zfETtZnfU=n0)ZLflWodc@y8SQ>`?wG4YP`|#b&Urg{m_=vrG9FiL>VWm6CPWR8Y79 z-8`bL5)xJ0^^Af~RR!3h4ep8B473=6%*0A_O3a8a&vB;&J)| z3%2vMt)Af=jDjuLE#4z|uubRPR4o}=;RsBk4*Qa(>n>x5FLA6t*2ZvI$OJGKz>Iso$ zNVtkMk;SB+4%{773SeriQUeq7%m2O}$hj8OziL8{s$o zRdgM)@+~h*QM3|dE-NOMdXgzx>gfp8aVD5>zNc>~v%~IrDqleXkTp@oB&i4i2%?6W zlT-_tIP#_fL{);%C#ftTzn;1u{AG#?G7&|=ejsHQ+D1#8uDZd5hliRu7a67bcj`cR zZNBOiV>b^Zf2v9Y^H!>A>R=E7uJ6?aK-n7A2C}k-8&ta)t??3P*#VUn-rK6GAh$-|RVXm84vumOcQ?LYs@`Ubga?vPpf|t=Csee; zJF8W+!rwltq7{DIc@?ejgDhE2@V~;Xuoc0=V(EDxOq-O!#_;cm-`ys%hk2Rjb(?$G~lRwMj_t)+RMg?{*F~JH6m2DBM=2h6Tau zEyR5-w_3n+i6@t7G8d1FHEl_#jFBo@X)=ZeYI^KZ4q}X zR>FM^)T0>hQie*1a4E!DHK}Uq*iCKJ)UlJ=si|XQ+N-H!|LLUumvQXbJoQ{SqnA3F zIClTrYNlfGRDh^zcr8OchtbPJ_+zm8CF4m%m}g6EI7xKYk5km_?GDcoq|H#1t%yDa>X)<@&sTrXZ^>blxhK~pQx1pZ8^OKQkN$Mf$BZQR;b;e-c|=I3q;@@ z(nS~=9CJ~Ty}Mm%nxb3xik_VOx#-Du2SiW)c~DIkVPAit9#3w3I(?(2i?FogYI@_7 zd`g`}Cb>~()M-*vJ*X^m2|H6Ozf=DpjWHyn8r(QgY!tSm`qZd@B`f#tzo@Sp9ue>mqF$(aQ%aDA-tUiz)-WNCmqdtaf{S7_tbiWE2XPu^*9>5S z`y1qRcamlk8S_d*O*kVV#i+s3RvLqFqaNHs^O&GR+h|x5wz1g8g27oD1)SPZ(}4tS zbw3SLW<&_sKR{!I5BqDnG2tdsA)+R+a`2oFFVQH$!JTDj4KS<)Dllj}4PG0pX~vWv z%s_(k+_z^A(>!M8#@b*#{5elUW7s@FL#xr1i5gmsHcZygYSe$KhQ@H*OifP`!;9u< zXbjJqr=c;NSER{hf(;M-YG;{K2;8H~HMf{)`Ro5uN6-HP9r&Lk_(nU z*C;@@yBf3L_@rwZJL7oV*8}nFnU1Z|WJzlRkAsL+Ju>esxhHzM-viOp;g3X5pMNZR zdi~!TUuNE+<2pc(e=KjpC9gDh>m2Q&S{uuT9=}srm8_M6n;}}V-qzZ+JITJrsbH-% zwRtc^;2DgYaduKJXfM#My~CK3QWYRITub&Ww?u0D6F1uuv;k~}5s54i-6~8Z&TZFB zdqL{lLiA7zoJrTJ;hI!!C`s~@-Ly=SW1~=<5&qs?o6SfqQX%5fRccGrO#_M{N^)ZZ zwFYi|Q;Qx|(f69j@`8l~fLA~JuZ43mv{xAW(lI=&l)@bK_#G|H@4zuyn%_U>YH5D& z$k)>R9x_f#^SjYxZ6lK3Q>JUtQ7!x|Dto5(6q%UX&eCeg&w+EaZ`EP6NZ4bM_8mq> zT>XnHku_JPYRACJRoWxO{j#a=pb=iwp+*KEyY>jf-v1gCIff^L=2uXroz`=M(cJHCw-Zu3-wqHU|tXE>r6rc z_GzShK!CEAI(C)7muonntuBr%V^(%$MZ(1#QFU;8Hyv9_L;^qrCD3%&2{)vm)qO)U zNN=mtgRj)++O$sgKv0pPvw_t9It|>MuJdJ-z+B4Gbw+S%gQ7EB+*_APqiku9W5^(SLkSYnY3OvfG>vAAg~HKob1Xaj&q!lST1$6ko{1*>K-E-98f2v#+rM#N!~sEn>o% z_Vt66H+8==w#S6DgJm|Da!2% z-5BWeO7{&B?uuIPop5sixUMtq(dwr$0^+Xxb!gY?pLhg>h|q?NHpHQ4m*$8v7r0$| zJ*aq~TLO0k>FKKcK!lzZ3s=wlCVFDH;spI+BHQ4`tZY0EB3v;e7wzi@-*3jsB|P>( zU=^6zT(1N5?&vzh+}HFuf(d;`7M%ni{VZz)L)z)t^Ieo5dR7&=!XQZAq?0Iln{++< zYy}5MW>uLUxJT&K;BbK<8#>?A-zJaMw8Qn%{Nlk7fmz#naY1{2Ir`hutU}!kusB!0 zPnuOc0U!c;AkJsi`{VUW=`ALOkbVAU1$sJtXU);m{7RUor}_2wd_B#tPm1(3zusM{ zr}_2QN-N5o)?q0HOSdEojYgAJl`p(inVb)i&hh#>QsLWgBQ*8)K2#fC6w zUuw`wM?Y0+hz8FGIfuYt&d^*UKSb0-Vrfm8;c*?E^>F6Lh9n~O{w;=`jMV&U1OBlS zIYM}ZS?`d6nKkfQWats(tKNqV?D`saLj)Nk4F(TBYf!-ZUm56vdiM!K6eAMuhcGLN z#Io-V>@V!ri}liROiX2vIA^E59x?3;A9C z$UyVk^p8QB-$)V#aQhf_An&YUDeU#qKqtBkh4Ce0L|or0qK!&m4l}CZO}){KmWcdG z=2yW+Cd<8WMi?AwWS^pmREW5^7^Cq7h}eI}7@LA!{QO`Bl}6(^_)CIumBEuE6yh)3 zDwtasX(4Fd+DHq5Z<>)7f-`N5v=9`wGtxrPtD}(?g45lMv=AKaVWfp%OD`iW1b6!w zhcZ>03ZMeZ2CuLPy8sOa8;gkVj}JHgDA5uiEmbgajPa1(qX%9F-JEPxp@(DWKghb- z@W#7FdSkJEu91mYFR%d~n`f-G;m5Orh}BY1Mt%>HVAOS&xb|}^x0!%kI3V0h;V>03I-Q{i=LWX z8ypn?YYrNVm}P)Sh4;QSMv)zx@YAAme?KESckfxzxjE-W=eE2oIu~9SoxAO(=-gGe zMdzOT!Pu0Ec`R+=Z^l%{;aDE`asD*qB5eRLR9Kq9)lZDKh?y3@FxFZgKD3(T@PXV! zvpvdWV!Vl0Z9D`Zh#Iyvo7nZ0gxbw&VpH8iJriKk0$q%*3k-6YXudBAGO_vYL1#`z z>qGoZ_)NHoPU>glOst1-WEZzbq6gMDr4l!fOf^Y!9Ydz1nQHCv@C1MeMsOv~6b7!0 zvkn4V+L>a&;PKXmuys4rOKGm-9tYc-w6Lm!X)O~3qAY-?0z^e;>uilx@Xy{RCy9xm zH%&C*e;Qz-3IEwZ6HWM`877+Wjfa?M!tWSiq6z;=j)^Ax^3f)m@F#OkJ(!sAh*C9U zg@5S=>kw$1WLiPozkP=35);}Yc+XtZO9C-2F`=_e-dkE&@dvY3SOHouya~TpY0?Wz z0(j#C({W~WoWtpdkYV$-nbg9Y53ARi=*D5jRyMLkFhpSXZeJwuT+k`VN>ip{1FrFuc2YEJRpo7*HNY zSg*CYRutr~T44f)C(6$7_cmr40KGe!r2&ArSm4WUX6pYrea-Cg0bYH$?QQdB@+=_d z9kaBGAgT_|%rQ@udYvZ#L{P$+qs*(A6)(1F%^5mvROXxSOSj%JHL*aihsp1nshj)H zG}Af}R%oVm;@&JXtrKN)%(PDA7nzmP9csi>4j(Qz-zNEd8<%bn?6S?u;NNnKY09r zc`7r}BghO;dC*L9H>k?ohs^PXUz>+AvSMJy88bP~`|zYWmoc!1iq9b!&Y9^sgi9C9 z4Loch0zM4SgqQy@pJ0MP zq(a0h$TK<+3E;JJ=TWH>|iL%gn<4TN$-Kg_O@;t#}DJ?elgU^#Kvx(i7HL)D3Q>Rns z(3^|(+~yuWe}{o1hM+O9q?P4e(krCBh27D?Z)>=-EE@1)phXRfyISZ&*q`6BFbOB( zAi}j`Y%CIZ21a;1!{W~fg{hT!78i3Ay8bW=yJy2gAc8a}bMn9AMcaNkQMB#y$)au3 zri!+;&J=CCY>sH#dGkcujxG{y`{^PJJ10}g(6#}ji|`*-SXNWxzHhluhaOsReIMEx z#jmNfudw_}(A__=upx|i=YjO&7CHQIyQK}8yY3y7*pon>AF>p9+fyI_L@_+ z>WHP3Nixdb3DBdiA#lsrmLz6X#8V*}{1memqCNbCTb}LTiIIHyifHY%*Fg|LS6c+x)Bp2{0hUdhfr0N^s~R`nrH;J$^gV ziq2o+XLSE0S=k3!XexXcWTso?pg7H{1|bX41Dw5$t-A#@n2~Dro;L+BL}0-9)r*S} z?r&@Ti7CIB>OO_;tBtQ)Ne!O6R3&WBc7D&6H)Hl00E zlwVwd{JPF+*t5a<2gy(0ZB}-P?FF{OoL$zt1UTe?m0f64pr5eDc6@22YwQLmt?Xe~ zyvOtKK8lf>H>_&-{&}mL%+B9lXTw9pL4;#AHGxRr85rTS8Y_DamQod<@^YCD7W`n{ zLT2ZdzgeaGNC3$}wqIvIveM&y3;wazFbRoHlT3rZzOrsM3mY=)%{EVDKt#RF#;(OS z3plK{F!-g-_LnCp;1Q=S!qWt(xd89Gz&XLTzYLxm7DSjUlpbB8jYdYJ6dR3F7Nvlc^QOaQ08 zr_X5T^|s9;es>MD9cM}f4}_Unw&A2Ad^gf|SxSx{Ym+m(wAe-EOKb|bcbbi!6@5I< z#?%H80$dAiM(Dr5#;#mN>PAFm>N$TMBF0t3<9VE|F(V7@riAt0w>>5DHeY9xRIsVw z;ngw)T(ZeVUvfLNiN8=nRdags<+}=mzcA4{gkPRm9lf^1p1q3bO8AXn(|{ z6rSTUZ=n2quCn(av;IJb-IG^9ga8CVq6XNNu)yEWis}u42-29zFiO>fdO>!L^ofTe z)c%wS$=YB8d@tTk^Y2Kqo#x--6g$no{tfIT|9nRd>kB@bV{QPJHL%;k!l{-haHfG> z4}No4%)r0CJqVbKT#477eg(BUj%TXm`}%i%_sT!fycVGQ{pjIOUJD z|K<%G3+ky?>fp_>b~;VgFSIjhizE{u06|nBbq;b`k6Cth@5&nj5#*4!(=Y=qEG)8* zs*3;+ArMq1Te`xFOYM#5`lVFV^ga-Oe)+zr^sEo;Po=u_xLKy(v(8ReojrHdQiVs9 zu0u-Xd}hyKsytRgBxdZgUzUoBh}zNvcK%L8D?E5<{JH%;Q>!Qois}aqhedUI9uswl z{#N|??6|1TzLR!#io!SR=KILxZ{M-2VaNr0FiEN|x7nl;aS-9yf+Z4o21an`jy(*Z z6X;Hmc?q2heC;aw=0Vwy_KQqyqCG79I|k@e6a4ae`0w@vMnx}(OE^h(;h{a4SrK_4 z_%(!i&uPl--sbluiPu>^el+8{$^Gbz_fp|UXS`~y-!n3cT{Zb>$)S!X7Qa?Z($JCA zurk1J0<+^R62Rdabd~}o!TY4X4odQC$8bO%%LB!ketKX^_ftdkD%pVmVMXvycRy+6 z;&Bk+4tht8zyS8><+sW^8VTn?gZymp-2q4h&x*h^?$%rA#h6V){n)d3h&l5(WtOu18;pIFDi0-KaSq1}*ffB3ynik#IrJ z9ZLQ3Jq-8~J`If7iVR^W^ZUhHG)yo8^f`cR_*;eFK*F@&775d75HTq9W{Sntf$h;N z6>!>azenDjS?W{hcZP8O{!0mG7WeEczXItP_3oh0!l+OAJ&>};gn4H~b7ozw#Ti59 zT=Sb!2UBz${TDw4c=eN?0xtf+?`|FJ1qeitZ;AAmAJ;X8hm{Jx{KK!0WHea)%#S@k zhC>BibAV2(v?Ji@mwvf~eOIl+JAfwv9tS7r985&;4xI!ltqud6YIEF|3eFS2oh?m; zFAfcII5G(L6JfQuV{A*a$pHTjceG)G9p6TvEiDz=d3C7ap+pCLHezVWauIQ8*VS>9 z5k(~M42&?pwS!$0P%2tb^l*@G*5H@UAGLFsnYtw6Ai~un#pQ5s2VDg$?CYR4sc(M= ztx3uO4qB5gXE^Be-e;(TPVZf^9dvqc@Q#B{?|CB~E11ek$9BTy`Ho@qwrq-{)~n|! zKb8duo87l(Iu;Y)jQNi9bud%IGfNzS!i^SuTI%?h6j$H(9YLgE*89MrAU|JU;|OBv z6O{-(mtN=SL8jc+TO8~m6}-4MpFuv`y3>(D?&$6vbTF#}5dsiI4Jv;_U!?In>|oyq zs{;aZ4m-$3Y}pY<2~&|gVD}de^cA8tp0Z-m@u(zy~pawmjpf8(sf8^LkZeaBPIM`cO53sVsO7gNm@0Skxrc;)}pM6;# zujK0m`m5ndy+3_(OY85?ctnH%1R)-&@APNyw(EkVyZmdNg+>F};LTwFJw){Nk^Z%g zK_iR?X2$!Ml2}zX@MrG|kUtB7yXQ(Bc(v9(8vfPX|CBHjgY)fJsl9M2`1E!EVa%!n zQ>)(aw}WNJ{ky>So&0AKkKIf2QYw+Buz_Y3`_oS~^jpnJX9q$5V`ApBF!&1{J&wU6<*LS`y06wKM(;w`F}

    UybId!mg2WMk)TQR4v zQ({SoAf2T~?DnQJTq%*Y~v?@RVhGxD7D z4t@T3(ZuN!MH2^27EOF=ifH2U8BRJk2hMTQx!F3;N$2K&7dYwM++>lH-JGXV*zsL= z`U>ZCVzg`TIk$Q=g)7RP>qwz^eUp=^xQMU-W^Q)&U`)kd1LzuhQ+=~jnCig&<8t(c z=>5p*KWue&VkSKVE&#zZ(OvlAO6NwBC6l0&JzRt_tqNC?LnylsI_c{SyS{R=-}prz zx0q1+5S>vzwP0uim~$K%&U4>EiE!&lXEsqL{E~AFF@+p7R#N1z(&0z)7|o!SjDuE|_Y0 z>g>R9L1lItIHL_vg2`KD$)ND8LIoW!o$DE<6e1keUcWhjh`3)9z=+7BAYzotFh{fU z6u8V7aGl}CUjyix5*!PZkAQDl0v-v=CNRLo@)L0|KQMqjmx&79G_X93NDMPW1GX^i zc`8KIVMIvZ1ePi7tA?S80n3@3N9*@|@Nk#Q43>2cP{CFW0;2qdJJ@lZ0+@UjaS-7) zFyo2@o`C^=+ckilo-j4#F*+If;8B?tru7M^uzS4gO$CTb9v08c2{=tQ#oithfGRA0 zvNU&G0IiwbCj`)%>6#QkYvzf`0kmeWnI1sDPZ&BofF`tKZUB8hRK6g9exERHVL&Ug zo?p5&;2>EBzqLG|Eg5)AiFkEtX+Rpe`t1ke)zUQqCq1do-xTEoq;(ufpC39Bj#(ct zoS8SgsOV#a7ebVi!fHz^SNq@Z-A4Wyh3K<}mYkG8=Nj|Ti(hZbhQ;~>I4CJY-?2P8=qO8=uQ z5rV@Ts?zpC!;a~%|>51bp?WIRp1&JX?L}+lbTuLGQuF2i&}0)kjuv0 zLF2`?`3d@}LsF!Riruz_ixJxc$!O_fWv7I2AtpMex<)f5^rDiO82Y-4#zgOqqGs`( zy)>g8(R-JDT){$Mg!c4OPXfWw;oo1>amfHzD5E2)l`~*UmJ4kO;IqbkC$sADRDh^v zIDLxiHscyhDE_NV1Am|9V&@Z)01zQmi1yX9M9mh>6E(|P;5y8Bg?5Y(}SctG!8O3n_ z+(WJi=-%f#?(MSa5D_#a`WAd4YBK067n`@3?egO;_T?4K7F~-0X{kX<*z&9>f8}{s zfJc6a%&>&GV$36nD;9$@qXU)jy~nQa7>QAjIpE+lxvft>T&J zkK$LN79(VVUwB)54!Efc3=#Y>MjhCtPAc}t7-JyKq1)y_hesdby~^~qfoR?>bB%!y zoPnzar-1j91DQm^w?PRzepxT@JfovXh36)f7Dy9m=WBtq zL@a6@xQ9`|({Xv*z~Iu@kPqRU_JJM$69F=ffd*L6Mbz`pZeDt#8MgqW%@0Hea?4z! zp{$>%=jKtYo+1u@Gdi$_Q4tdgpOyt36-A=n%Ef^}jDOLJZ6-K#0EOkY zm4P}Ex!-=msw_ePf~etxPXlipy6oT|qBxWcSbQrw$OcPe zg8DIvh$dcEgP=-AV%*XEvMfxfE4`WrwXKti>&hFcLA0*yZxfX4 z(F~%UiI0d{3a0gdI50IV9M`m>l;&*CK_&aVa90X4j%*$Wo0kSFqzQ)zCafxa zb9Hd7T%%N?+s1NHH?U6BEq8seG|eFD*pP7@m7#&)wJ$#tz1D1ZFdKzv7GJpMU~m}m zSN-#>COon9Ao6JDg<$p@8RR-TS$`#1SWbfWSAuPD{^elFhcWr?9vCSehpvlSZM!9E zHSbO^dz_GtQ7SJdg>uuc!8uH*djW8*Joix4vcn(2^`*JiBPv7zb3E-hKglOBr8DaykB0@-%zHo&2FjZ5?1hxlJd~aX~O~+3{Lufh{goT`C z^z!sBS5ehJj16I57x0F_%H$CGM^5V350UB(A2tgKAu5OTsHHNZ8eo_75cc!3m_H&Y zK=UAuEv2#jklr;}RPP&oYU}OQ%?RHgAga7DLsU6)aBY=w$1`fG@{HlNRrWxzzt@Zo zp|!}G7s5m}M6t1nsH|Jcs*DJ$V2foTl4xEEj+YSM!fq==iWz639v&+3<9k3$&N0`>qffQKafPs|Zg8h^mD( zCqhm!;fe{F2^{)6eEjld;aTJ{!*%4blQ#DVm|7izPUwj5ym`QQ`SSGzQLjChMZK0@ z3E9NNC+?%ymAi$7*`!+`uhmJ#E*kQ)=%Pz^L)aU>vk{@Q;p9glW}+TYg)-U5Q^B#> zp+q2cn?LuF_!rH|fLfN|?#6-Yi<&IcFY4Yvx3#G|d z)FDqC9PV3XD%XGq&qI~M z=ie$cpSHtpBB z*?TxD6?(mRsml_MnHm)*ht?g7fk3zM{&b-*mGZCr1k0b3wPsNMiI5CL7Mmbe9pQ z)|P2d7~*cqk;o!7WWL4z}FEeWH;NnuRp zcyRCTa_ix}R93v75$t6ok}(&8OVt z@x=Al!`Q!>CxPHBx!YM(Z&0_e*^GMVY5N%1w{O@PGk82@UPmx`cvy{RnIrx^NLV}~ zjQtk$t)j4x@%NIz;0BSSp&~b|s|$2rJkJcWio&Ld3?Rb!F?ofWo8Tvl!yvPiLf1Y7 zX8&>>I6UNa^lAOX92;Dk7j{zyl`F%JI7D8+3#f;)KMi~3i^qg3wuYexnf&l@;Px=| zAQS(L*%9`ET=;ozci0oH@bgkt*a>p=v!h|?FLGjR+3~O_bnb-baQ=+Qq5NzZ`unH& z>a6o&=ntggpRau%W>5-02i)Wxg|DXE3PXQP75}_*J8TE}`SA~7==*H=>XYBX?93@l zq)jP!U<^lpW$efB0@(Pku+DxM2$t)@nLp%9aelB$AHITl7|0VKV$eZy4V3#uIM5$M zO@jWGaJ{$jOL?MGu<_x)!n^9a2Vqzw)ChiN0i+Xf1TT{%146PkQD z2@rrFDsUq)O$iUr2_Nch&RUR5^TOA7M=yprq#>NTC_E;>D|jV1{l>_T!%6rx`b0GS z%TGmf9^V|^oTz8pAp)*{CR(d(S9lfSkh?GZE0f@+w%>*yBUb}Xhkr(XUOgASjQpH> zDSU)MB3i}EaDTAvN!S8t`YF7~E*Na%Q%NK)1Qe$R+tbnC`@8xq-0QnuyiFw#`OEM& zwG7r9MPaBdg875Sp#10XU*Nw!5elnBv@{m1hX?&4R78;r0TDD}%K{^4#EuM(XhqBh z!$rWX$Osx_ZKETo*{lf>fH2!vFXAxyS=1$}J)nfqJJeBh=ohkNXQSh+uD%U>UVQv{2)PqJ{oi6!DB?uWVUF zH=^pGl@VHItIRX@wbF<<^uk|6iP>8Xka8qK4z}-)P{YBSB7QUo>h{?yRae9r;d}cc z*gtQ8$Kbg@#O0Ahafk?Ay=`B_vm)=6$DE4jMI>K%R@Achc`;BzFGiq~F4&9J-$m3T zF=M(Gag%g=Srf6GIbeZ>srZo7!k9-9pXdc`Zoa6c4Tc21ijY+6BES;>A{fDpR}o=w zqAaqj)Sd`p2hZb;E>Jur`YwD&6M4hCtYI#8FnUKUI@oWGq#6$JkEE#(5fDjJ;ejiX zYFH5zNj1C~7Ws;3ct1LFA9J)4YuLJ8q!G4n5V@6T=#v^L2~WU7z=(@Y46sL9B>TRg z$N*Epy0pkJxUy|zIkP~+kdWYVC%AXHNr0f{)lQK=OVz{>{OOZPy+t)I_ZQV%J3v%3 zcc7?dXojffpdq4~V@5ryo-L<6eUqp%sgFj8HY82lIl1Rx0cu1{b|Bsx`%qw~|%q9%LGBg^Yxp@9!K zMdpxtlC!5SP0(LS-xP`dY7vawT8Act`f^`nmL$snQbGf!g_Ik>nxUEi_+U$92N}$+ zihN62*E~S%wz1ztrV#~>oECkxv^tWm5%SJO>PXTpx)eEB8USe-QCc{sCh{Gk*0bMg zsf8g;??qNhHR1^X5lpc7LF7QGMwoi@MWhvf2ZU(!=t(5|b`K6y%pU;<6Fs`iqiAZm zlu=ZV=c*|51|Rm6pCKw+ss}QQ0s1?lMiD($hDAy92}90?N9~mAfeB$zQS4p`FBwFH zYRN#buwm2?BIx7hqM(Obih@?O5(VAYwzi;1TLawRMHIA2|5}1#$iz2m3yKLx->M}j z;0a&}?@II%;}MC-9xA{uC#L5_wI&*r<%t@M94l(jb-buS_LQi}Qg)f;Q8rjGD{3+^ zwQ^}K4R{DZ5H;+*Eb2?Cy+tb6xGX9Lq(?>dhAme_v5(SlU?5y18$2CBRFNbdAi~H< znH{?>>NOG}2R{+@TDVEnYt)vg9n!Q${S9FI#V9qn_ci*@(@l{Du;bpSKZP3^(Dlo@ zbo2Bu!jHa++E|Bz0t6za3#5rbhYVnKn|ms1nM60h10j;_FM1R3y{Mq0p4q&!Z&k^di6$_q>c6EuB%( zbq!b^Uao^?Mf4r-J22c!paMh{PRoJ~5z**Nju)e*z&LaCZld9RTQr?u_xeTCDlpeS znoh8d1ETp?7x-JqjF4#deM%fLSd5d$IDcSz1D%5%+&8)r{5m??PwF5q+=ldjy)6&2O}o zLnL1(sc2phfd2GNbbX0SOV4vU@M2uFn*TU(0c>i-p~T(v#g>lI@D z+M^xO9Ai3!TMkmA&>jWsl(BONZz;nN(>ss*J99|JthXt z>~Ev9NznX#S_FJq9Zlz!_2;6)8ULeEmZHz@MsvihuYQ-PvlM-DH(CQz??)eI+{bsr z1b_%i@c#X13n*_N*$)i9(j5I&(5UiY*!EHMuhJgBUq$ZBdl^l>V~y25@npgWfF1sjx#HLvv+@GKS_#vO0#Uz0M#4@=P&Q?VgsH7L3|BLTA>C z@q;O$F&`7%e@KXtgcLxKKv+L1hV>`k7b3zz#-Eg*0TiahppOTj^)`IoAjT*OXPzH{ z;IKN>DyBD4F|2J2EeF4~6E%SCMHS!a5Hp;3_C{9`u&KMK;*#_jAXV|f#27a`KPaZ2 zQOIoTm|7}g$gtcP_A6aj9ZcZzV@^s^1|q`m(z_&dt-kOHoVBxKGKo&s1)@&ZibRn= zStRN-U`fmbqSN&iBH&X_)M@dm7%c&;Umf#^@ZC@zGtb+y3*muHF~^A?OQA%`g#b}Q z;Lm$w*v~*AB?;ll=P^oeB^Saahhs)d#sKJA46HmJlSAZ)J0t4%N3|&a;d7#X`4?g) z5%K@}UIct`Rn+g}>oIhtckp)1MDGEMK=JRK9-h7z^A=ftH2YVgnE(L@q5^r(W0Y{t z)0kRimgj;Y5JAp+D~cJQw<%wtsP+6!?^CN{&%yIPvDc*2G-Ble8(@|$md5W_rdS%k z%Pg@pMc=Z;(iGMC#ikHjbaBPLEmgH@YOJ#K4^9pqZ;D(1zln-HN0ud7QKRo?i5e}MBWiTK zD3<+$v~)Bj7_~OmBuv=7OJXk*KejBdr5kTj9_$B;Dq_1y738T9QQ6P5dBzyHBi1Q= zbrGxe(Nd10R_9&g7Qh!LVjuZ{Z0)3u zAhpc^6=-!P_Lyhl;va3GQysClnY~H$Fr+!i*Cw?BHD{4B>o3G+nL%dqBn$BWG4?}G zUkR@1PqAMxlZzKs0Wy9@ABsBtHwjo+aX0oOrtH@Nh6p?*tgg|_7vuG?Iw0mlm(W1XJG#z0g#Xl*Ldzys*Lt2&+P zjROd$7NqU?b=>^_^f7ptRF1xn{Wk);K5Hk4eD;^P(ZucD|N2j3>Ty?yx(5BX+Yxt@ z@TK}z&*HlMx3e)0Z{^fe#kc-%X~#H9(8p0?<5v;+K5i2K-(ksv0RpSwnWpgv{@b|k zHjg)f&;Mw+AKq*kKbWb+-Yx~+@xoc*)y#N69JezP&=YI%q|_iCJlT>jU!F#XG>Jdl~3Y58WN3f%QI!-@z1AZ!kn) z^jZ}jYthE|7v$%ATjKvhw1cfgKVORuf?!Cnvl| zbpD`W!Wg1+K=XvJ$p;i8%?=YYQdd0K%zZ;mCyI zIuf2hX4V((T%GXq+=Teh|73-6e8Pj0k^~FnmL>eD6Fl|a>I5NfEpW((2{dk#$`aO+ zxUDHqSU_TY%0>~}_S1y@1Yq2pKx6#ymV}qYFsFAUKw^zjn6OAAj8^|h!q+q(z7&Vp z|5XC|+k!Z7W}OiEb~}}Tp6k_oI@t=%XA-UwX3sB(fN#Fz0YdCwPIyWHt8OH;AwPe< zlhCtHH=I@{>fzVFCtO2^CV4mPR3z3>*V+J#yP!;*!YqksptgaCda*77-z^ZP=@Qp^ zb}INk4~kbHZGgK&qLJV86RQ8s_(b$J8J0r#Mx9bX)L~qm;~;_(R5m~%@O){@2C#pp z#LfR39Ny>O)+O;$9rGy)siH(X3>=dffsTRkX6Z4%PJsm6lm&@Jb&ke!0fj9}w6J1f z;-&v<2tW`8`b<<(V;StZG;vID9T5!EHYXMn6W#i{Zix^?4}HE#%&c>`^plA;^zbwp zMjcQ5v@Qfhh~Ti=V|Rzo?#>CAoY0lAN$iRKtdQiPAhkG22a0|S4+Mvc(Z@V`3`uSUcT7q; zg3h_ET5JZhmnJdiT|7NDru!P<++|7WjOaWSB7UbN*Z479pk{ECA55B(R8Iyka!IZb z%pbnmk%S5sKNS3SXA-*A#Xnc=PTGl%v+-Bo+?zCx{Jipc(jxM6!oei|r9U1JT9q`9 z{M_|LQZzbu%U}KVXcB))i~o7#SQ0wSf`3lhJQX4ar~Pa9a0n~$bMGbd zf0T*WO0_1LM#|Z;WEv@JDw5Hr2nKXto4ki$?Hff4ly4R-@Oq_afu!A{1$;giEimG+ zXo1#8L<>CnLbSkVUnMtZmgGo*!Jt=l@?9|NO81Un;=qzfu<>m2E{{5%+$%qqoX*6< z|KjT_1FJZ`xBr2-3mPmyixYPb#O>a=CpQWNN$?*YoT9-pc+ygeLn`Fpq!elKqAeOK zKq-)#ip|2gi{u_c13GE@^t>bPxt%f>W%!zZ+iq2&604IC+&f2LX_X#oqw;9F2 zZ^fco#HFuOGcszRxS!MHW&}tlxxP*&I$z8IsMGFtW;nO|8Ph<;pC&I_YEvP>C}N!RhvwW-#hVJbbpL?!LNJ=V1FI- z1kEITDwH%hcxqtkIj78yr1oN*EqVCRX`D7{bxK%*;UlL{xr$^eKB{pt=CW2Iw4vK! zq46)L-|U+*rBrj6Y2o~j1-TF!V*?92IDf7$UWPb0f5|Ree(YSvWe75#Oe&YIz~(rx z+K@!t?%zSwVzR6Awr;dE@k()Ct5YFg;-5dAETJsbIagO=EyPCL#Y>lxDl(nF zl~bHKT$|*K-@6K)6=w_oOmp6=Co1smbZ4A4P_-7#bjD?9dUp?D@}T z=g-*X_8rc<+2znLo%ga!_d4hE?6TDXXY4|#WOolbPv@o>k|oTmZaU+7(C^(?EDb;5 zJQhFDjqW7RuRC+6fXM~wZaTMZ#`G3M_1sxJG7nDQaemHip_Gc^R;}mGDxA>^!Ls|c ztn!4nvdUraookrvFI%`wVVARvT&AxtwY# z*1oN)%eRc<x@$*jH~Tj1F+Yub9y?{|<1u zpv`o^+Ryf)6ta7?%XpoDUM+6+Jv+u_zpgEpg2M!tk{&wXr3CNUfOCzDEpAR1jFjJ1s6sr-xc4x9AKB4 zvo6UDd;Fpc&V?yp-DMY?ZqrNERk>p8pIkHyJN=e`EuVz(opHwn2Q3t9cGu+-rC-Wp zTUwCF+rpSxXvC`jbeY|rqKSurE4R{3ok+pg`UP7+nW3w>uE{X-ja=JkkNyWIQ`fcJ zU`vbw2C;yV-CS|gJ{4IF}+-+d~e&w)tG7H>?8wTJG)ADKH%!=-c`p#lZnGW zt`<;{?3(8w>d-jGRhc{jgdl|NTQ(o(x{;gxP$>~&NrJ0aSd-5Nt2)5239jpu!7e~x zO@-@@<_M&0;|c?~HP`hUZ5$FU=Oc@-@`l}d9U#2Y^$ItIZ3+qCn_#H1kbiMN|0&LAF~xOWA$7Za5L4fLR*19qclsz)iCC--T|g+1(ArZsDwDdNEYy zaALU3VQHCMEOew>ONLD!@Aj4(^lK&VJjo3=Lrif?SNMkr#vvkgw%Zye|K|B_IHRMI zPFv{KrCAF-`36^31DCti{x@~;8aI5ojI!}u@5UbrEM~`TH~gr;=Wf%jDTWN#J2DWOi+ra;Z(2w{o*zdNgjVO`(k8%{ezvw2lRHrVx zNdu2bSKaP0=|}zSc1x)yR&GuHNDO0*ZO&ac+>IpYN|rupP7iC?`_zs9gs!BZ6`c6X zExj4Rtq2mVp#Hg=4L%PLI;md_-KEIgVeBr+{6AB7N#@?>?ys55?pE&Cn~@n0zI1mt zfSNY$>zKH4AGtSUb`eJqXABcRcCTyFuHJT|kT%>ylR3TJbGZ4Dq@W34m8L907x>C5 zr1;A!bPbeMxESP)O&0C$dWX5&D3ck@ZbGWF-L1%(4*{bgD&8IUQ__KYMV34F%uic6 zf=@Rq{nHaGY{=~;e*595#(hw8f)fcM?%pOJ4|m6piyL`fg#*LfjaY_X8YyeEezdI7 zkg>8x_TvSO1P5*|pX{zws4=42yl%ETo;gc{XXCOa-VhK~v)v8h%yRcqWt)7pU-N$h|H>i1+ zfV%}f7#37}+z%?M1f;HD(-`;T?st_gI2Va?=FwYA-Qddi?q4bj6H1-cu0wlqD6{ai z`yNwK=)|k;zbbjX`N`dc1l`2AKKZlzpGsZ=6_C1^Npt%T_cxp>Bda|th&s{(+nA^B z;jAsH|G>LJh7g39?RnyHg_A%_Y`C(*0yO#_{kSLFx>SNxBfw8Y|H#JdwjDgAjK0~? zL(1qaojs(C&T#OMdhp#Jd)#0R^x8fi{#+mll~hGnTf%TRkAX~sZwGpCX)PljhI;Ui z<%Roz%4?btxs$k*mX+pVA@YO?gJfw34w0p`8Y)X$KTMXk%_v#g7UMlW=9(gE66Xrs z5^V82!V&(M;=%7~q!J-@HS^Z>MIQXAM6_^aC7!3;K^VmSH$ZSHyGcc;#yfu;V1gR(u=9G2}- zQZL)1?NQkt!%xcg$T;KSq_78AU-D?FloIdRz>X^(_=ub4Yx1uiuXO`=UX_cdAqjqn zLG|YYkKH1UY=5b+1P8nE%7Z_+6Sb6yh9u9x(*&~KcqDL3PE8SnKA6ul@_fR~kZa*7 z1#vGcPbrB1w)T{Qc$2NC6vS`ZdiK|iT%mpoIPTzyr_IwQaGs;5ZsdxHy-uF|%hyb< zwj?OXlWiNLPwxM5^Q__8atQ_qd&A_72@~Yi42`vgHW8lEnCxz(Ebp>tS>6XK&prxy z$*mL=cz3#|Wbd*PrNAPjdXT5m)&jwt92w(jMjXcru9J5hTp#MWQz5q&3<$LMIQaw50>BVI9yv)f+1fNnc;M;17){GKxOUP>+^FR8@(^C=2LNSp_-%TMs z?|HHw{m}28QjdP+p{z&sBUz83Ph>qhHp=la>V;0Yb?xl6WY1PFDKdswdU2sF5MjBM z7k@wz-mBrF;DDW1t~Lq)sT++&<6i0EB_&yPFE1&{hW7E2lB{DtFDc1Jxp*znauMzI zA=b+fh`-k_;(7*|AIXbGO-dnOM|trZcmx6;wD{F_y>;1z2G!7JC}LZ<6FS@5}^ zdL7j=1!USF&0r2Ggj@~d4tw!ukRW&|(OmGd5q(ZOo~uW_{^B|w0RjjyVEI1osw`UY zPqJv{*JZ~ax*?yi?KMELN#SESOsAO7?*hK46zu}t284+?odAp(RT#Ar{s_isw; zA`w4MXzeX_n_#W)y_MT_L#-=AAlud(_hrx~Yfw9HDRy1#y`|WF*TGwg-Cdo$rP$T) z?k%a%*weeGZW~bn)sEh8beo_Gg7+-I$;Eq#7%Ol-(3}7ECWdPTu}-SCf~*1F|0oMn z!oyH+d=rw&x+c;4Pu)(og4AMR@~*_&SZq8=x;H-Gp?%e*Vs9?NX-xtc5X@(}M6icp zrQSVt+a$`~p3p6MA>+KIPBnP4Y%|lTvdykelWjJ4x;Jh=qB0xI^-k2yPs-E=8Y{hz zYeQ9N2t)!wLMz<#<9(G|vJ$9Jzu$WY({0N4O>{$QE7VV8$V~;`bc@uqm_@82hUpjNO`catf1vIK4F%6<5i72y^l+lgC8oJaY1 zu=SI1vt>bp=gNYbe35~MMVb5e!zI^T@HR-Yc`t;(uqLEd;(@AhTM(4EFzJ_4Y!Z%SIK$7xSzTB2b z83%~dX>k|>W3sTlFCCeZ%5V<@_`a>L8)s&zyfGlm2@l8-me9_)_(~~Q<>o7;V1b9P zl!A6%zEZ4a`1;P^ZC&NN07iuP_F%o|rUYMZaT;q|K#*z-HxqsN6U`}MVSz8ML8SUF zz3f~!8vjK`_!3Ri{?|Pa@fA9O0<$w2|_;8?9m!Ez4DHXl9 z;ihjOw|qhGjrh}dSU;|DuJWA&gWLHvGR{MK`RNAQ9D-C!nBLn@r`yJ2n{W2>^}I@nb7iiPK+a7l9^5aMHG8Kk_-*N7-Atijs zt~P+f=l!Gw&-`0WbQ2&1A;$2@ZNI@v1(9kkZhAe?;K#pdEwQ&I2cNs`gRZ~&O<@C! z-OprIC;Tm|8un6F_2nx+De3*+_+8^-k}|Ee^*14tZTyV^yQsCSZB4iKS2{(&0pgVX z6Mp;EAHV8u=O3$7Mj#L*7>I)+=QjR3naoc<_LtnVx2M14o>{&9CHHvr^_OIx=gqJ&1*C3b z96n0-=MOTMIJ6?_Tz?~|&+_L--ZB-Cx{Yx#8|MFrO9zUnU*T^`8fT#87mf6HVGZy3 z>AdA-93bwTQVC?xfzGv{e2)JauJsj)0aCBAY1Wptvb{&Gm+c)`E!+EPjla~Pg?-^K z%~4#o`}6BVl|()IHD~K5ZW$Nj}&iK#FnKZUIt^zwaI( z#rW=z10N($0B0ncLxR~cAZ_s!%O++QAOs=CaOqq?lgLMEYf{?~z}7?Qs)*60 zfF?O0-~e$)S>(^WFY6HZhoA!;E!+PYP|coRpL!(g;P6b=!TeQI9m)%;@wJc-vfbNS z2P(s#LVRrk&nUwm38tjXHqaC{v4s;$o zw|}6dgO^jFlmm<01En08;1d|6$X-Hgs-3&i7~%&6N>8#jB{rvsDWSM?NrC*c5t<>C zOU)-MZ9tV4Xu=JBbg2ZX_-@dtI3qA93H+LQM9eNLsR5l^Nu#@VK~+ z6FfS|fCP?0g+>$xtzu)Xwj+bMY@~jsi!=fl5ImK$wSuZ16O{3vRDx71apa=+49?xFkfQ*I>?;lJ`Zw%{l5lX|4%AG zsyTGI7ZhkroE@BPV8oN4&$!W^%nOj$5fh5R-QGdmmOmLHR2M8BRT}g@sFG`rbs*lP zdJwML)}{oP!a2R*i3VcD8AieUS;;y@@Nh7z;BWP+#Mhy^j8bC@XB~W~8Cxtrt1^L7 zn_!bBI`kOeN@@pJ+rq!CgU{osl^3VmlIwkgxlQC^l``&XzhEveU}*A7Bf378=}}+qSQR>k4R-JGi#6YnlzzWCimdaMJ>vrUu(WpTgkF*jyoy zSWO7#KIp59BXkS7`^4a)CIKL*iLAQP2Z&jdgZbC=WF~+Jz-0wNpjRXq-(jJbqt^sa zWtT112QOlmHPyj|Es68G>9){%WAIuo`(%EC1I)pBTd=V5CkQ|8P;iq-Vh+G}PqqbH ziQzQwa4=~SPBO0cNN{U$i*lEvLO4+wx19{$%4L*Rgv!zZmUJ^dG@cJW-A9z;%UFgHkyc+uhk*K{#2n@pVSax?vDlKFV?r9M& z7w3h1htHpd%YveiIqdS^!6Ad#<;dY7C%C5)I#w_yhreBEOgio>#NFWMgVpfygpeZK z0gT+pn$;oAIuW%Mi^1A8A^byEI&#Y_%c!1t-+%qi7pr(9)AC#*H;7g`dpp8SD2qZuVLX2V0umR}`sR&Y|X~T1J z!~mio0usHrH(8__{Yj_c)oq0X^9ZzDHo!wERPa?4YR}pMvze7*zG)&9g{15m(4?(H zf6e(N`CUg z0JCPC?nRJ)N72adI}UVJ8d=~9TYC(g!;BmpG_aXa^dbl`gM{FLsm+N64g&`A+Y+gf zsk}(AUYQWEuCq#hhLP>P4d+0BbeaoKYQHVFzUkw7Ko z^9PELGpMyE&l}jhwJ9gW9&1)w%IVyrmGn%?RiN22ut^Bh8h4)_XbyN1%~WRMt*4rm z8xY42ueC;OKT`CdzHsiP2fR5uuvK$jAQFy%--UrAw9^b4##Mh0j3C(N6vE0|0~fHN zhRbuMD0P1io@KVo>~YAiq*90RREVxmWF^`($U^Pup0o<~Eu2R%Y`i&U6$EHv9v z+kpF;6HzN?|HbhD=%kWj+Px!(`vzsgH_H~bN537bVb58<_1h4}z27S^0L1Y}pHrsR4pl~Ay_wfUlt>^DBpAS=t+E-OK~u5T zj;}Tmyyprt4}>)dcYzA04~1nh#XQe6HO+_aRfe$md{~pnqXhknVd<>!um+v#|9Ti+ zP6FR3e}01^sWx!S*#-YWz1f5J=@!3qmshmB)JY)!(O#Oc%CRrvil%Wwn0 zP*db)84;-Xp`P$u#v!LucoP@)?;dUe^$y`m7XlKBSh-JK!WAJ}MuvNZo0HeG(Z+5b z;rwal)UQa*XN7Nvg)1X(vvX9qLQ#UZ%*g%6;lt%W~RAohu@K>S-B1*p0kLaIy&p8vxX`2B;9 z0x|>;GK49x)jFa{*xs3hU5Y`gh$e|m2~*lcWU#{bKGG@t>5_`Am z6~V{6Ooe@YBBc21?i0}@+j1sj%k)ynns59gnzT#;72XC$NFDLuxQHep6r2=cCHnA# zI)e8h4HTpfV+tJ1Z(98wp@I&@5lwOXsd~2@32Tm(%2zVAFeHmII4|AKK*fd#MF&?#)=$AD zvj?9>@EZoG?JK}{_aoWQH5+nt7K5bgA zW-11+$@8YcD-eixg$GmM;fn~V1%1>qlK)IJtsX_R+FW83$>pMaA0C-RO8HaVE|PZ~ zV#P0Eq= z;gM!EWN-_JveGg@s?=mzq(nB&_-SagA?cA#Gad=#*T>;QAUZ2jvRCYo$RXl6j z0}`a6x7!zy%9a8LNs&fM7vnuEu-_3W<>uV|N`sXX%i-9{>9>mTg7$|a`BshwfIx-J z`bepbI&rS4!ODI_pZ32P`CjR4O4xZhQW{uv{k5sH|9F6fr{0TH4oCqBlAkkPHLdjR zs46q4f8DfFN(g=zIhK{##!MWw3J^H;ag@|8xVuLwg9PS#MK$T)@ty_OJ&yB@lA7d+kx@-zv|(bE85wOJ z?nX2hu~lss8+B4?dcwxE*-4g zH4#50SrP@>S-P-PfL}O_8qZDc{|byQAr+IO&A@qRRJb7)9zQZ_g|>`LCrCFU&iCUD zVd1c{}#2>D@Llnt5S9-Rv9Cq(_gX({jr^`xjpEs)Xe zDN$FIvNxEAE73>oV0+Zhg1MINjQU2)9!KCO2GvuS67kyQ*%neQSRe|qU#nJY<7Ahyf^Kf_- zKP-BT5Rl)Eh_28Dln{sTA$G)KaHc)n9vkf}v=3I3qpNfTkU)kp7NqmEXmbdf5*;U0 zyl86lHf6qv`~>K|<NS;hj>_}>+N8|qI+i~Wk{|wx_FaCQk&Wxz5 zq72BLl~JwW@Qi4_!Kd!5pI6Ae}XzpKp)O z(6gJW|9}6t&}39`Nm1GG{2?P&l;*x5`Q?G`WX<8|R*=3kI#_8sT{fi6m&|@JzczZR z5?uRTv^5#=WwbT5%O77ymnx-}5cuh9!8odeqH&TBM?X;*2M}th3=CS_3UG$%?3q>w zTTVsu#~e}1kJw+;itOw-${rejj6R^u!NUv0^s|T18_~Oj#DD%v^e)|Miox<>^m#qK zWkQ!0Px?KIKB5ghy7G?fHAbIlcsf1icPJKajG+aUi(H<OJ?k-ycr@oBIP}&N$Y(+GivA;dAFXp3W%Hlq;$k?UO;$X}?E?p$f*5uBK z7%TE7MeRu5d{7b`%3`fxa?99}=3;EUvx?QGt*Ea6Aqc_EU&7F|r%f#XJqD^v<)bQV zvSb-97szP|>srM=!1ACYfRTWgJLDGZygdVdA)pS>=>ojvF`R_ zkJ30YR%&$g$Hbm*Mh$E7cxtREX_%W<0B0x1c2~xHW6wAXvSTwkSGOg9FgtdQgBTLa zzGxB>LMgyf8m=K1G^=`B)t1!1O*0TD4DTEUnZo3`v5tE1d`IliPP#VKf}N+C8`qtV z#e)c`*R9USO6`pCkFi5c#Jkh4#}a0$UJbE_SXjKc8|%RCetbW+l10<;KVz%e<(S4; zJpYsOO?nYKgI)gqZ!CVXiQXOjKGsdyJURD@vm`XI78}Iz?|D)8QEJYH_&8!>LfT?O zg{Nu#rWyla7S~1@W)ijyS-dzZ365ICO;UQPq6O)xosf`qTjNcjbDKDRHb$$JaFy`C zc5(c{o?4;Gy2hE1#V*Oih+DTfJ5t{R)yO^(I|zR69yhNUC2`I>Ei)d!krAiQ!Zph+ zu0R=YREM~QcqH3y2w8ToM&bpszcmf^_| zWuCSapx%&apth{UUBQXK0CwGg;!2Jd}jL!Sq>g9M96{?c2Bs%)hf+ z#7i-u(vO$?+r}_{b2Hp}kjla=mNwVSWEyLi5t9_bgq zK;gEauJH@ni*CE_8?Q|wK%({&@H~B9<&UJAJ<0P66;{tn6E>6 zywn!=$&Q!W;_kWexTl)BbY^k9)E4&{8ZWiQuZG3r*`yTkY-GID0Dn3zUTT0VCdK2C z*c9Mi5zn`}REjRM;|+;*e{}(5&W-<#Gbg25c@vfek&9(ZW>?1Z4G;welX#W|tyjnM zjW?yvk`GuFMLs#7}yZ0IMIwKhotjo;dia%t+kT6LlsW!jSReJZxX5T2wO&q4m0pqe47 zx+_anYfSA)MilX?N)V>y@?zCAPD`ZDqza10)*qre%(()o3#o!jN2vC4xh32ebqg4& z+M(4AkYLbK^s3<$)eT)qXL5S{G+V{LCW1B@Oe#03+5r0P2mB(R5a0XO@OsD)L0_iK z^|dN~93nwPmx&trRjYP!8cC2|;0SmGcq5F9w5`dUe?c&F+vI%@DSm9Lqo;8*9HC@A5Wf(;i`+c|Gh`RXgkN5uLk zj0n2gxjRs82C}m!9>PE{&m&w`l44-@2Jd_=5XFx?MWK{OmPLD-&EgnZl=`< zRH(V9;&<~&g#O|jC-8|J!ikNzkf5*(3esEbG?M;R@n22Rsv`&Zo&&Y4(93&oKoLfB@6*48}$LM4a9q;q;XrdHJLIywmrdjkK*A{Yju`2 zsh!iuh6MFcFVIS@1?S{tnL~O{^;*sex>T~Gry9?=%SuRv2Yu9^aq>}IaG=^soTiNG zuU@JvWGSK4`UTi)(n;|5uIe4lG7unin4IgOF6Yc6Q~}83Bo}T{wf3+)T+R2q5}^ZG zyaOLB{}HdA&b8wb)rxFL!-ZU2Ug_4HD1g)%+_+6!3}s}Cs9g%w*t83F1@|H~KUCDB zs|lj%a$2iW^$4Z-=YPeu;z_e{4GbOC179)|e3Ux9iH|5QD=*6uM$S;rRmv+TVomZk8>3NZlN2}LDk9q2G{9bAa2Z+NrNT_nKTK%_yczLi| zJ%e4UHmOgs%RbxHc+fY+w%Dm&q%<3?_wXJZvC)oh0;tz>IZSOOKw#A&^;V^)Xjvp! z!jH$)e=}=eJ*lo|^=cu)~SV5?FYd@&h=w{&b zl?@3d+&YFs%LIF{Zkh0zt_3-muz~>zCJBSJrUVprwW0tCYLkGE^{_Q0xU^{k&TSI- zPyb=q?GdUNO-Sn?@^@Us{~6p z5|GdqKfEJk)BTJDT~mt?f)LjCm}Mon=(eB~VnxdK6ShMAAU9zz_xV^9Ljhs4m7oa; zI9s8Kpqi5KfW>I!w1g2R;@y+;5>~OKDPNp`yW}Z0pfUkhj_Boxl?k|VL@%w@By3=p zhc_hP#D(77urXnouIZR4njH!3ahAibgkN>NO(AS~)^v|--7cWCF5^}Itz=@SLkatJ zTXPDbYvN+y9672C91$Uoo3f891BX(@g>f-(kO3b!H_j>ohZUfKGv|E5PZoNMxCw{z z(L^J1s};O>gg?lr7sggxbiOUS*uBnSR236>6drf8r9663V~-#Fq5yqv}T*_oQIcUzz3xnxsS%Q#5aBPNLGh6rP=z zWdSR46RWxQTFXqJk_WkoHl+4wl8V$Pt8pSQOWlc-Z%*t=)ZNnBk&67pScN6=RtKR0 zb%Xf@i8e~c5>;F#hTx(^oe!l6fq@WPacGlJo;XYCRZ4A~m8fkB9ieh;B0qqm8pt?s z7@rugbhkhSPgEgm|75ZY9~Tbx+Hb!ghk8}?%8;r@?O zNL`iq8yCJ!A%+CEh!~PyFUNiZU*jkp55;$`AcrNOn-1^*=0aQ!tk zWc>@$PTOI_**A$#+bKd)3lTf()=B+^B%WrUbVjgiY{#Ur!v9CRivKU^p43M8|BGHp zZw32r?4NW(FlwoL(qrL%x^L1V;rCup5^e!m1cySBz7l@R2PV}Ezb;`(g#vwLw8*a@ zHpy1_e{6#I|A3?<{#{_Ig=RyN74D|a8U!OVllaX(G8Gy$NwbWQP4VEQYeF>vrAdCu z?4WEa`mQ#qD@(esw4+QEyNdH8lU6C?fkM;=tJ}f*iAgU6rT?CuWTc2BBBAtQ>fEF! z0&4i;q<6{)r>J_8WJ+!>NOdPYmnZ$L@QW4^J7nB2uwI$epb!WU!XMNjS)(JY-IVmV z(1KQONxC3dBY#`cV{Tw70j=TO{-n0eSi+hh!3c&OObT$t;@h4i{Ufm1*qGEqV0-FW zQVZet?B7YWp}zPsX_{dC#P>;~gqS$qBH7aff8UxV`*LUHN!41BslAdd$h5k|II#LC z`J_buXS#pbJOl3tdaM+OW#VfHfxAM4wZ&NYep#}aCFc9(nq=M1=aah6k|$^d1~eMc{ws8* zlSt*}WbyF&pEf0XD2RZ>FS%1PXn}G_X7inX`;z%1N+|VQ`&G8$T)66RGXL2UnM$X@ z?%yW+>h|0yNqw~?d^nZtWsIitx|BRn*N2mc(@k`Q@Z=3f|D1eWNOYe&q7Pf%6@7T> zmt_9=y-+6{evmv<2(STvChya=;Ut*)Jefav74d_~gql1J(JGZS1jkmV@P~g%?yx2(1?yt< zHm1`eJY38_7if=Aa#K_aH1eqBnbkcMT)nna2Ow}kb_Q_7VA zQGX0y6sIc)ufI?ETIm!li;Lm1Q|iyB^in!S2VxA9u8K}6|5b?3a3>4nbMP{ zDcO5ArLABW8&cyRI~I;SO5vZc3#JpW)Gx=Lq>NMgMW`C;U!@c)n@%bd5^Tf~*9n7E zOSteh#af8iyLzd#>D}HkwQsY!XkA%nn#v#3PhCk_3$Y+R82;BTHATS%MaD^?upcn7 zLn`%iTBlTgjZMo(>u2j8sr<^k2pN}3H_hQ0nLI9^)3WWCB3~Ybl1QQ~wn* zza%AfoA7Isnc7jXvtwQ=Z3*6JQo9TPcPSD7e>A9x#RMVj#K}P4vQ&OCR;sYK@I=pv zynQgwnCw@t!d7NmBDTMJVADr_d) zCvii@4F$c$sh1QCMR8R>RI`l#a#gBllh712T2!5CDvrDFe408?5hel`wyC!JRxwU` zZBPBGNwN!!-hYXV=yU%czD}Lo1acdF@$PIY>ogh;q()j{ob*23G)@@O5)#ie(V5gD z6_5}AB7*3E+o@gaeoPHk%&!0oSPCvb@=Gdh{HNScZ4my?eUwV4H0}RN?bVF1HdV#A zTthp8-v6dnDO^Ho&Q#me$40Z>r}9gTR1|?I4s1K>rKLA<%x#SC3kw&R)tRN8Q4W4k zT1v!8XUgvonXVWlU;J{j;;y_wGXE<6{?Xk3$%6M@&mDX2WragFund@BI zLnR7Jb|e?Bq?thQwKPYL@6yQhiO_f_ZLcs`-1;wX8i7QR#G>l*>ooq18>CJWMtzp_ zAg1SU(?)PHArZTi8+X$l!`~m$^0?DlDAlTcI6VJD{%o?=>yEs1r>wRxx}V% zLgDmr#OA^2%akFCR4Wp=1BaP(t=@B(XfD4I>HKqUiIElfk4xvjB`XoyLH*=(GevL{ z%Di!Qx;doIOm8wO7pUMcKYgaw8sbVPErtZv&wH;#&X^*hYtw6mM*c;0`ZD2n-skCt z&Dh3@9Nx2vZIm9gBmD=V19tf)eWxyT5X2o!$Kk{0;@b1#Z`03ke!_R{i12a()ErG8 zz%4xBD+Oa9_eA=yM#Q17lMN)EOXs)X3S?4#XjNPCP50LJ_;fqH-dF^7x|RM3H^imD zQw{0u!1vemPt8Tlqo?WohFpr-@GZ_<#vE;74`wgZ2Xft@NY%@*7vIr%-!kK|iOA-y zMaCRORq);}qmmm<(ZY8+XS4x_t{DcL`6YrWF+a7+4C?x3+~s1EQqA45SZ~ja65V3c zNX?LpHbQ$j6i7(MpFOBBWclEXIa<3SgK2=cv3jDYJ%(oRFUAXGflWu!e^^FW_-%Mb z0hg4N>U?2UE3q*hI6C9HuA0*bQt^vSlQWE9|AdS+oWrHEc%b973>F)qGcx#by$k{M zf{cUBmenlHupu8D6SKf_MTQC23evLWw^rfX;P|Q{iGP)04)4}w@DJd$5c`d`nUXJhM`iw~FalI2WQK7~ zCN1oLDtZ`POV8w&*C`=bZ#9m@&t#5*D|wk4c~-|W7XrTFWML+Hs?X?5-cv{==E4MR z@R-bM-c!dj7n8-+sV3sK)Q96T@sksi@SSP8t9$kTGQZ$OJD$0S#C1r^1jmZZJFM~R zJTEg+iK$+g*&3{uWV-RKjZoNnW2PPaxi+(qQ}23_eF zlbqJ8O#p3d#OL<$%o*guMGUWsE17r2NF}3gXL9>)kd+7_2x0FDZoHE@pNSuMH*+Z8 zhX`ngUo+YB+xp*S@vq#^yr(NZ1+s3^mL6rgCL}nDE|MtWf4w%;V~>=hjNQay}>O@Yji+rU)IhI_srrS{~`sy zrs$2kqv??5Z(mtLlYp$px)mVsp|oT3Ran+D&cKw-kve?HMs52vHj7^}!<^K>j5L&n?FDEpqFSWSP+Y$pTpa=2Y~B)dG(E_*t=Oz)gMTXY9J>5-izjn*8q z&oO2$ZrOL(WmoU)U{-8YK(^HU1O{b)DLSeyBpas**e2P+pz!Q}SgG=uY@F87mg*;U z_CL(0cN4Smq+fbBCq4UncGojAJD=U%k|*Dto}V4U?p`X%#=Rr7Sk2&UJV%*cUKpNT z$}VF@XCGz&`?1*%nLe$jWIyH;PPVqg0P#VKJyCCsi3G#B+2gpd*LuZybvCvfrg47c zX>^tu)uTD?IMxrXxPD9I`vRKsU5$q?nWPr}$J_*h&i1>ay2y+j%6pMF`Yg z$iB&(w(&}~Z?oa)pk8fGHvE=tME+=PfFqV0*+ZL^QosS?#xjN<{gI95W>arHc__!u z{zutAGsk`YEc-kI%=$ZfIlJ5Ib@my?!QeyoO4}#E6LNNnmvu=wc+fTF`%_v@zLp0dkM4SUTg5rrj=Y>L+9pG5iItk1EUqC9Ih3m= zPbTJ=K~ho9NK=xrW41N9JR)b9wyYMiu`GvQbd(6@RU>mu$=s2#L*UV<9PHo(CUs+T zs(78T9>98Lh*YSUl2fA~3u2g)xEVP{uwZ5mw&wyHFrSmNO#uYUg*mesdE??7ez=Sx zC6EiB=GcH^RnA&tQJtSR5n3nPTg3Q{HGZ}7u zp0i6=BFfK%sJG>q!mDjLUAbmK5{OZeft87<*v36M)AYql*Zn!Q+}urDruuM>EkTZM z@X3)J!)Do12$gHvw>f^I#&GI~oXL!L>baaV|Haz|R$j^p`Y*ON5OF03-&vw=*mOGw zUlXC1WequvjCtAb@?D?%Iq#aa3JPcl8y@G}HV}(1d@h$seUan;pJj-{2h2O8H#z)+ zHLYpN{NMXmA;*IZr5h(++~;Bo{TLR zXfGD&(k2%_9Z8EU?~r?{ITOMWhukiFqaX##=HTABT*I#w3-24iX4hPPmoQS*q#`{R zKdlj&YfNq|{GT0hnvv@c4gR^~SVERW4v;v$#KAR<|LQBrgvRP0D?#3&|j5^K*@%> z+Zljm|I`&clW1O5o2?v{9|hLSaw~NGoJrQcssMO>mRrK|HLETc_mI&6}SP++IO>z(CCBdVpyz>gzL#L!XYu(zipfWp8(Vk_2 zQ$b#UZUm!?it`NN@}RsN-73|@8uAQa@rXQp#anO*c{D9=x=zm}LI^@|f-nQQ{8W)w zs2k)Q1Q7B<*#cl4hNNazo<6*qlgB^rrYSE_H+Nj3h;+)+kaT`m-3Bl(H|hF>Q8n-I zMC&cpc~!cmqEu6;*^<|r1=`QM^G>m7|N6^316}K=0Y%`~8f38`{xCk+&@~6tpUAUN z+#`6;h%9+uZA!Cx+WEW^-N4k!s}B*E^N#5TA)~&1k8|0MmU$b%wjs~BSxBcFtBs-J zVV)^R&EJ`yKaa zt6OLeaK@)4cA9ElDet|r)$m7*P+Up}4gWBT-n-dd!*9G#Aq_WD_G;n`&qbmE=)62dk+xz1@B3O zkj&?+twhDQCu{h(CIzM>=f!FZxRb5n=lhh9^=h^0%Axtuu)bK6%llraHoH`lr|YnE z+(@l4Cae8(BcODwX04@|e643`CTXJ$O_PqBlr=ib)Ob%QYY8TEHO}0y5y2T`_gsw$ z{R#;j`b5Kh8jfhGeW#gQkgF$=!P6>D4I6G$uhU3FtsxsUIK`%|vwMwZBfGr+sRk#& z^zPRiHD9yKaho(jtSvsiT?Q=Oslii$D0cL2jZ;hU@~f{j9ogmWJ(}&T;?)N<_zF42 zmK@Rqux$PMnC2PRPEp}Iwya?t^rSPI6`X|yDwO}IsSsnN?z#p~lc5|NZfHK%dRw$X z&3TPJl-|`8v2O789~xW*pzyjsHTKQH$*q<(M&SRK#+r$j{g37>E93K8b5dER+GvgG zo}u|`lrokW5;+fCCflh4};GZABtS~<`e}aM=6h-HMuT)`?D*r6=Txm)^ z-}zFGhcfenm27e~`H{K}P6okyZJ~2P{&a=bb;I)UASCLHA4le2Q`T-WKEIkvS871& zPm79tQw1w>rt2D($2UI7=ku5rJKuec1z0W1=eMs?f`i>`LvrimHRkYPb^abE%(3cx z{%i#bZ0Nbh5?*i2@1s;sAds!OrEF0Dep5d8jv8RuPjyR_lU=!`t;HEY!|wb+y6tKP zY=L}#-4YoD@3kTm3kI@cNA~4EWO=x+K7XIWZlq8DHTLlMc>Ys{d2}Y9KO<652RdBJ zf6c=C;~V++l`POKW~9Ap7%KIupdG3GQ8OIc-p%i-bjOAJc*s4)34kJ_xp0N&^qJm4ZkAV9EH!E)t2=k^8jxCo{U5T{QzbS!8s%p)|g zxJ!Y%5>nf(fc2JhJ}%&cjWR%{2C%C?u99inc1biGlX@2P! zA{QeHbj>3|2tthEtH^@4x=K^35!oHN#)S4sn%Dv>U6Com5Y8qPG#TDt-TX^_l01e) zV_suOjO;W)&`?mo4+&%l{99U})|wO&#uPlW6*WkjTQF9uJrZ)kab7_Z^V`x-3f6Li zMkJ@g{6z&e+@n8w@82~ArpkNyTMCYF53>Xusm{a%p1-GH3b((M628b@(+;MbD45S# zoDwFUE@%sr&ld1+by32uOGp@cxgdkfL76}-#uXajC%p=S?8N|F(pb=5$-3=}0y}8` zs$iJbGK6vv2zy=@USQqgRsBM#kNwQBQ0jz-8yAk}d`AoB&RN`sn2#$o290H*ox&hQ zqFTa>4uxykqE$`j!cwkfp==yH3fn8wMVv^K)moZdxS2UWGPUrA(q=VTDB9|r zLhhwn(Pl_6AUmyUtjLtJ1#GG1R#D-ntlq_?g?*LQLJ#6`ks}JNsJ94u3s(fj7uu4W zTQHsXmKXAegiyoCB>??9fmxzzLg8MfXztWPzP}OTAL{28nklmo@7a)@V+x{R%KXAB z7NV63Ruz_W%_~iwGlzmLgpVi2!|e5ipIF4NWma7R6$A8BH|1F0N#|k63 z@Wp!tpgLC=#-NIE2-s`u* zy$s&?d*OX0yzi7Xc4XRJtRnYOAyF6+;{Gb^#3d;;3Ene>GtUasxZ$@zfJyHPw{Z&5 zdsB>x8pYKwm||OmZ@kl}j%!u4m0cRPDZ#Y#i{99Emu_f6p6D-N9Pu8?0nqg5! zq>FQN%1y^nJ93NIZ1{gvCEFLdZ2kN4`!tbfXqT5{L$v}anCApPU+B7@C1sMa($6d2OK_9^byy5(t7cpnpEx`6ajmW7L{`8 zE=iS(JLStA;qgh#MXjqTKlJD&GzNTixd`9sm;;lq7M&J;BY!G7DEt~+$1?c4_XZ{} z{tmuX6fRh8_b){%rTESn#gQ=k&!Tqr7!w-|in(*jsU(!X&#-ufLI@%d2ofww2cu#e zvSjA4S=HEY)7{rkcCdDRDX;xgyH6Ri-iVSa4Yz~WUi>noe6Y7W}79STI!9n}t zDsH(^TUMYFq~h5uJ&N(L@;Ol7x0pXZMS{jbkW2BEW^35BWsNQD@+lt64Yj0VQDoir zHMkiu9M>3i-5^R=rYdej_O+bm2zTR(`A14J13(CW`inpS)U1kYqA9qd43D2XSXyjN z1|`pE50eXvk1JFLgqSFcQ6p8htFa+}*BiD6zX`?b6ve2dRds9h$=;L+9boG0;!m5k z!>|R#mau10v9C3nv2lGd4X*vw#m9son)YdNu`;!2)p?tWTa!Y)V0&^Qytn|~Z7!ZD zWbFTT74vgw$sGMiF4jU8e^qP>kH0R))8pqrL0$1~g+QP_T9v5C{_3-rm0UCAG%L<7TeeG*>{)V2`2C_^ z$ywodj7y2JkT+92OWp`|P4F(6F8u!{pu|V`^%z((TfiNNDA|p_n}^1h2$~N|ETNY3 zOfI=D6thV!Str1EWtCJ5zw!Acr-fhp|Hs#N2S!yqkADN{<#MS6LLl@aga}A4LAtbn z(n~@ySNZWut8Lof5+75Sai1^sTJisey z+!irkGWKA_kO0y>76wu?F{2^kou*XhjxQtV!}20r{8a?qX;Fk>Uq>8e&$cHbf|)kn zKNInjRfB%|eMGJ`HelO1TJQMga)flf!%**JIQwe^?TTBeY%ZK;81qYn^ooc#@#v^V z-wb=~dOu<>W4G~!4yVdwVBOD=nQB(`O^>;)wA8Ve+QB?gi+;F8^ zQ+y(SWzRXyBHKIAGp|+T2^Q(cb&0&e@Vf^^dRntL%o`jj zhqd`pwBL<=4L$XpNR2gJA>lO-AVL|lA{{IPiKbta6Eq%*TmagN1jhf-S zB)Yn&SH?ocI|;!`5VR&mm*KYL$eE0F`&2=sOKFk!*!!`J$ouTMGfT)XP(^;n-lye8 zO1F@hlSJY`x>wH(x)3H^S}hq@R7FJYLiggxp%%Uf27yckWaz#;ay7H-ClGmuX;fbw zIhwiM&+8(i-RU`eSETgd0kevGLdcmUTWGkw+IHW*Na@|;{|l{ZU!*@$FYow<(MWkn zx_-p0eCBv09eO}<=bK30Z_hj#DgBF>6PGWFT0pxMBONj5yT~7X$Ru`mBbQm2gdrgz z@d4b*`+~w_9}0$;_BhgqMcde?k;5%VBfMbfvq&#XJ_)c8*8Uyogt8Zr?Y-WtPk;hJ z9fVJ)@4H2nGX-aQL|tME{=heizKSbCcmJpu_RMY_rC`rH?V{+D>LPUO67_%y|4-K_ z9wn=SqojZO88kbS2SQxgCu)nuNCe5ubFA@=xkID!NWc3=M{)K3G$x9xx8%Jjvs3FS zYyp$A>i%lFVsWLi1=fT{t+j0AQVhD6l*NeW)1r8c*fA?g2x)Voc;KHjFDl=nI8yO0 zH0;I!X;IgixGgfG=ExFtTRz`JV+7xpNsNm`F$@4`8F4$ zG#vkmP;d0LDEdsc2#an-B{J84en0A(WgL>XP%MNRuV@-?{~6WNmt4KZCE7Cj7?5cA z=^pKhPh6wZS^bf+=swKJYvs{%-*9rGi$wPa*3OgKMQ^nn3lq%`A$M4`JD%$n?d)yo z>;y%E1~Yx_92w2$C#T;4=Y)mPyV&#fqG(qZ@LiSBKd|>33DI@~qMNXueNAO_Bh!PbD*7I4jS;J(zh-;}t&MhKeD>QEon_&o zz{L-*kCsE&r_uHpyDb`tB(&cXy~K(tfMFtGc4u_UK8x&=ZjAi=N3395%IM5ZV_hysfBJf{cXxE%$o8!h!MgQKiC_)mOh#!K2*9)ru|beNvsG z6N9I(SB(B&B6>pKlYTvM;}(Vdf7R-Vimi&vtin-yg$gI4f`@^=2NbuNAp;I6X0Zx0 zzErrg3YUJRkZuhzX#7KH)xNGZJo##V3D%rZNdNSF6U816{-B^EScFnv#Cgw}_{JBF6Z%>;##eB#_a_t^7gtdrqy<&J*+V-88!@NcGiQ(~dTfdkdRxH*R z;+reHVC|3?`cPsR?S5yoCD4wgodR>5*7$;ZdR!{@35k)OmtfGWq%2Zd$$vY-_?Fs_ zh?3>9hW>jV7b87n*MiE#4)pi*-Vb8Xnp>m$+?XQP0IL?o@b(@b5yN|dHc>G?)(lt` zOQI;1^uyPHJmO;ZSu-L-LqaQMQSxP`psC~8F}$a#$cf>LL6g)%T}|?0_+rrR{Fnty z<33AcE?MaS>C>{mXeFmyA2ZpTf`8-27%M%mfCPl(hyj~p_(VMC;}|~PkNhO&pk(ph zpeJ5r2Dmm`H|%#L#+EtD;ICrVaHlyDQ^}rjXJYtZ{qN6taXaz{xZcSmfNt2TkISrNSJ5rK}&~g_#k#9*0qR@CWiy(wy`P;MKd@M z+z~z7#V)kuiJ+q>D8@RRXZeT1oi|gQ6-u8bUBIK8b#BO0y_IWqfb=oqB34$OV`rU^_HX9$%J%8EV0NktMObFYZtl>uc$ftQ??$6;6-rUziVksn zP?*svZU}qFZgIyLT=jNbEPLL2C$4}!;|9d-Vb3;0bXb6eZ}5g$HpyT&*c;1 zma}JG^TD*Z42HL8P8{!$2F{D)P4ID89A6IIGe549!AD2NHD}NHv2mMOIj6+9 zZf_XzQfx1nyE@(-{4?WdbbThN2mYBBxA6__8}N|uq<^&w#=aCwo8WTdJn@=3?x2-A z1Sk;H0mm1`ooD0zR?FgeM7dicu)V!3?h0dbSw-9%tGQ$l+UnhFO>?YU87Doa(NsNy z0zn;d?Ao{tR>9Hrak-W)C2()tLg>FB%p0zsiF1WdJH|D`=AXoUW3fJig!h8c@c%q6 zg)yZ&7?;YP_DAE2*t6`oU>l!r*csH4J-~SQ! zGm~cfKXKBtI+#+c{Nv}shX9D?GdpIaHsJp*>WM`ul+9gt)X z=l+iH!Zp3)w@D7rdlSzUpN)?n!ASR;9MAgz*Z1T3u=2tO@qA(P;Iw!?{>z&k&y_Me zJf55S=Aw9H^S&W6CSK3_l7CX-*SyigF+Y7ZY>g)l$%*f2Ifmh0%%DI}M{HXZ z-@s(QRUFTkp=!$o9pvibU$F{vR>Vtp(i&u%3303AeK34Y`~oYjRDc3O>Gq_{5k6R4 z6aSUPG6px_t8MYlaOh~NJq$gW8ibucj+Y*0DOzbR7|>#I@F(&AT5~--TOThy?$E&J z3?P69zS@R7e#X4$2g;kn_u&PpDds=Fy|7|XS9E9scGA{^UC zxt={A4p8=B`7J|~(hIVgSx`4Z`NrS9ls8HEySI3>GTx#q6qsxnr?i(0`VWs+?y+<| z&ZGe^1V>L&4rKZ-n5pFLc*1NY*MIZ5O0NGO=P9}Vi^G*%|NR#z`TxM0Nab_OMn$BD z!6CKM6Xw3qctPERMg4GUf^vk6Y_d96xxpeFGIS*LIac(|>3HDQeC0A`sXm3uP;*~X zKwxm47gP^iG#TeCQ~pAVgkd_R`6xm}8Z>ng4Mr-JZWymuj%W0~s8I4hj#eyJI+;&2 z6ewS*Y_zP4@;VCZwdJ)+9`8r2SMomHe}ka6+Z&Y@tsx8!_eh`{q~@%VvmT>W(Of!W)YqNw(^M<290-R!l-JI45 z!sWD#spbjV-o-l<;I)8KmSI|3S1?FG9m%#hTJL41h|HMU81o*5E5_mIq zo0hkx(U349%5PJ%$$ zJt@JG1za{X0cNRQLaA)sH&jt9<7YTfJ@!9JHKjy#ZZ4&uH z4( zH73zf7{)ohm8fiKrc?oA-l6Y0=nS|y#F$o+HN`-!}9c~4E`{`qoR;&X=g z=j_B@46n=lL_WB9zCd{I7M0kAdBn7&M0@6Kb29~Dx@IT#Hg6i4c)c+3zPT|of%2ST z(t`AXs9loyHluVzpU6GGq%x8F*7OyL+_$_Tk++PmS0-}bN?$E-uyt*sbX+)jKvD|y zI70H9`nGK!Cq^;{^KM9#I2gl3!W=H)$xvE`FOMc#EYXtpv`BJ+IbSDw@jwgYVAHYR ziNtz|m54wp_+5@|i>*INbhJV3`9y!opGyX?xG81uoy0qAz}o)4ptau~2r_l}Es?vD z>$5~Y@%4W$!0-N(7|X0M^>rd&++S#u^oT`;$xV|+Ggn&Wl*C;r!X*hAUMr6z?n*(v zNzxC@h1Sv{$sfs!q}QSmdxe7E9BZ4j*fjh{0{p<-pySXa?j|onlDM0E`EC+-ldU6? z`ZMF*o|wel;Net(kQBZq&wy&NJYQ+Bn6{akdY*e zcCwO$(T*xf813XF38Ni#k}%rIOQI8a$^D9wq(_mGp#5lBGie@NuS*i6O@KCO7m z`ma7nn!?l{{9BUrLwK&ChVIEzq2qUv@8e(pB!x1~kG4%V-^|bt7!pRwiC|BTp)lW{@5aU zGGn51K=Oaw^V=rBwzLc}LnGH82aWZfE z+LGjF%vuFy$$VFVvLc!9D#!#u%;Bq&d6RWtlgxJ&G*pw=ggXZ4dg8qAj{HB=9cNG*KNaisy=1?-aMWeuOpPR`%!aTc`%p=UE+sQn_O#3yN&!=i0CQp>a zdy`WC+fMU`)^lSD(dUok>&za1zDVXHuhTCDQkqxE-$;tykfr27*@H#nu%&%U2>qcB zb7d)}6?`PPOfuu5*Cm+ik0&RI@^Gc1(&h zY;Bv=91c~a(0!7JBWGdS$Q0>PsSyvmk4vd%gsx3YIV|yWj?g$O#SI#!W_r;%(;sHx zXH!$8XXkPT3FR^?eqde-Z(K#;DctL(EJ!J_Wc;;~$eq2B+8;MWr(CkA3<-LdQM#Kf zP}-d;P|8hD`BBpFIb%DPrO+t@Q#e`eB_MH6@%~4Iw_r{+o`FMA0 ziWgf~dAUDDGQZ{^p93kE;t(0$j6?zKJW76a=)A$1GLEI}kxXc*n1F(WV$az4 z>Ou-10BpaQvYa{5yH`_quxoxjg*Ts5jVU`>zUq#U|Nh;Seaz{c@25;)`7@rR8e$!RJe?iB6hlKLSVr<8f8@*p?gHP=>uszs?EFbzM5PHkst2l(d|sdQTu z?Ppynz&ox^SI(ocT%WG)vtD?MiS6C3; z`dKOuq6Pa?xkL3ikQyLuj!Z9&U!~Gn%!ZX$C^)yKExh+}{8U(ZB(>B+xeONx_kv~B z+V9u2!~rK$ZKUy)QD*>f9+v40PaM+aF!#O84>0s}>Q9pC4H{$#F7 z5g@yiy4RBLz<23G)H%w`o>+99q_g0ZLGi?m)KoSS8~RXCs?%dZ=@*`)@@}f)H$g2U zpQZ9{>d!w?`QP5XUZnmc2@ljw^{p&Xxxhi$TyLmPjG*0vP1F9ew<#9Be%kJww!u`r z=^LX8m$U>)TbtZ2EgF;E(|&RTP1{@#m=lmzXe!2_&?PWUhGDJJ%sw+^#Rw2+B87zf znZzyWH4~S0N&C^3Q^v%gw0$OQAg}@k^-dEHJHOa7?U`A<=WmXm3>L3>-f*?X1KL7!@QoeiNn6TbQ=n3I$hK)iZ4fEdF&(3-~uO?V_3J zybg{bhtMH2BJi{5v~?!aJ(r^MuvWobLa~NI03IivnQ<$4LYM1*x;H~X(f_9u)GL?&)5mIhkc$#C;KwfVXrUJ=qpB^{Ods4 z22tLvhmDM^JCb%;RC3wzw131Te49q6D)M6UPp8qB$~@WqY+9X|yml^)wx;pinLnoW z6O-#Nr~M~VsBbh<$hw(UFBTj4OPY&_JN=#!q0NJ|1OtVqX+Mg%#lNSyin*KqPMhx_ z)aLg(O?uXVK{FoU-YVT4A3CIeW?GQ~BNPd0YcEh}-#*=-o#!3W4chslQ@TMr30>2_ z7kT)gTY8$Pv&%v0pNO(m^-4GBEWcm+axu5l;Pj_r6`e<<(}&(%JAaN$pD6ju*Tm6| z&~&Tfayoqj%UIYPotiFMAS){!Ol?O{Z2h1vA>!jT6|rLQF~?@V`t@kgRPVCg66-Rb&RnH@BwjO`BI zThdPnqW?xIk+CydNkk#HY`f8L^LM6i6>|f2rQemrAFcyaWp{R^2jYf3=|z^!n^2lV z?x;GtuX=y_V#~H>gaSeB@km2@wP@w|uhQ>YU?XAQw?cmi_WVAbj_c&s{OV%*36bNq zKc{aJood>Z^im6IK-9WI$c=O-RNhRl|DRAGr~~e~Yph|^BV!GLPmDEO{4G7#3XK4G z@?Uxjc+p_*1&{Wpd!yU)bjiU-@#>Bu_Xrx~>_% z=bYhXrAj|M>z?t2H2@I68|iC;FPaL$f+v9JnH76iryVc^2cGZsXq-$ae zJk%~@gk}3Defog`Mcf}$+&|-)Xqd7g8HR8$KP1Bt4%)w)VF(95kH|2DgM*_o4B=qJ z*oMgG}uZiQ&HH)M;B4``B2$H=~6KPw;ilRLFVypyl-!87co03IwI=FW84K&yHs7 z75(+|<3@kgePguItdkjUgdJ85QZ+{;D@-QE62MoO)#g0Ppra_cRPQ`9I;hj1Mh89h zm(fA<{>d;5E7JeX5PPP*3o{L!d7NFQq2cy*$TYZ3Q>RQi^?=uK&^go4nfH@t8anel zpG-q%u5DqYFtcT*p)+sMD$~%J_i1N9*w-P`(3j_R%{27oQQa~Pefi?IGYx(D-~BSB ze>t1!!5&_OWcu(OBd~gC<_nAN#AGf)oA5u)h1*AGdRz5BW@;d48*m?%X~$bs*kM%ybgN!OLu8J;!s5^;D=c4dGx?UZx=&G%3h5goE9MnGZ!qb{1z! zS9*>0p;w7G34|AmXj6M@@U8%iYYvjwX*blnTTLvaA)NI`ke{KTD#Q z0f*Py9sl*ol3w9vgd)jtLnbuqVV$z*sbHu=2*>31GFRL4? zv`=_e(f=25!2GQKwlzlG#F$CR#FCxug zZEdzae4Ljx6sz`S{cBYZR9Q1Z1Ch41fZ(aI^3t8>3#}8R= zOC||M!I7YUF>&!?R%dcBY`j8khMx7;vW~N7dSe#tVc3k@Z)ZJZ@2h{!dd%FU_l~&vx`|f zxe<{4HxvBlz-&jWCQX<^yV^b6_)Y(8`uuY_ACB zXNKa<6^Z*10yp%g{A~L7 zYcuK!vqP>0Q^;0YV;^;O*)J_L%ffyq zeDFzju?=`nEExmW61qD;$w-w9#!Q#F!fWo`@6E0b~cqT3$rEN3PVCdn%jgx@%ytSOBsgp zqcHZ1?Bh*sDzVq$Y}&k3iQ|uCdrM4cK{ITkIAY@_)P~@6%#(JJ1>S^dZ-RtDc1{vhpIdUFFM#q zwUv2M^dM`JaZEo{4_1w|B2+IVI?_{~4UF}Ix({re;nhf$6J8&tYRY)JHAdiR`+F+s z@{4&944kZb#<0C-3fR|XsifOpIW~EB4_F(f^2C7)RK1;v`GnXvm^UG*;#9eo%p0LV zP&c?5r)q=il`839YGzf@?E={<7aW_aYHp=La&80^pvFQ6@29J5m=wR|3Q~NbQQfw5 zLIVplNGz(h$JR?!ZjyLnsJ$Nq*Qy+FgHA;kky3+RX-!ZODPxuDBP)UmP#~xbF0E3r zd(>%A>R7EpYsg6THD|oPw^88Td$a1M72Y{jM^tWC*;%qp%_|tH0@u=Fx zJnYqhH+VP0bPyVUvqP#%OUA6=LChglAcO{Ww8Lo)D*A@K5-&QX7;ljjVC@qbZ}(L7Xr>S(hY-uY9t##EX-K|n%6 z$~N~t4(J5Io2%WRb~XLHKAraoKKn;SJFRx3<4e_dHuSvwpNfWqyK((%)pc{udHIp( z;G8qVJWTXQVr!%=6}sb{)6|Zh_nYTPx7HfC8U*FD=?~I?HaY7hV>$-i*CnTyWIe)I z0PB0@)S8D|&c~ZS35Q z13Ys3viBt4TtD_K@z164`fkh!$aQ4zd2MsgvvTiu$^|ESJ_yd`)$Q$>OaI01#szA4-C(J%-~%Y+ju|P?<~LF73viD|1^g_=K9=7p$H!YjgKG(DU`C z+*K@p)wbNzR+`CRXkDM{i!bVP=UMd-4t=;g7bS}Y+&L2d$(_%e7*G?Ngw=<0|CLia zTX`Osd}bmyQREL z`003<4@TLmrT1+Z*jNDJVRatZ=%H?5MVtvRK2R-(fhYZf@OXgwxurgcjR{C7M?FcM z?!DB~e@9pim5m~DEytw;)z{2b zGpw>M-v!RjQh$i8L)1NFAfFcD0bvu>k_}5#tqBbX%@KD_QcJgKzli~aVUM3rR!=k6 zpOH`m=%%Q>@#+WaTJt`NV<2&Kz+5##{`EQPT63)$DaJxVj9QKpqSXtnlw>l-B4OP6 zAH^deG+XTihev8+p-;Nn3(^bKG={vM8HvuB>WOrhENKR#bJet{&6B+}YWfF&Ctu{L zUz&$ufh)}_^(@>_tX}Ud=ym#Xt9oT-yh7^(EH2ie+WT7%M&fG5r4 zwXycuFn%HJY-<&-QDFQ=^?5r8(J4J~@>Vq+hs;@TvE3-ejUDRC7E(a?U5#Vq(0mVU zwNFh)$+99)dB{=pgwpV1e`jP2o#Z?Mgf zk&rFb3I-}N+XBNy2E?o;K?$9! z_QxGh)Vb!}B1h2ySv&}P{ikkkVRj@A;>?4UiKsmUJ85Ki-BFWhQOsDcfC7YKkDXmK zH!ZwJzt6x1Wk zQc&*MM&!vjAzahff>jd=61_T0|1+y?IJW*!^MU!WOlUpEI)+0)EV0IIxinsLRJ7&n z6r(LWq#14bFkN%Us(7zUG&519)>OC%?WuK%RmqU>q`O17!*h-a5QcNhHEpcPgJ*Rb zYS-s%5XiZ6^rhNnK}yR zeWe*7s&&gbYif-GLU9x#>)+=!A6rpjG@Sdd+8x6$Xe?F^IFr$E{j$cL7MeBEOJ5Ae z5uiX&I{Qd9-i{w}2BEq6VL0u&=7@!NA@Tf~*hacMF*?z+r$$@t|6TLDH7COV{?QbP zgN)^lc@`l+aC<@t#~+;X!mVnQLvOp}O}C-}M=X=&`CCR(?t27?7C!Zf^3VI&-MkkS z>Lrw!aL}>F9Y}?XabmZ;Ue-ha!kYy{d**rI;9hx_qaY(G5oORjd0nl!8>2E4hXqXn zzGLn!D!3G%=fdlXXVbmAv`pS``350P*|B^xJtQwsh%x zk|%oK&!fFiPk%}B!bcDCz7^{^@hI=An8YV}bXgf^WW{fJ(u-}mPC3J8lIRPnP5y%NILq=Dw6{p@}(!e5h;<$aouZVfc^4Y;2?Sa*H(1y3=9QVG|NBPRA4K?KYy7m z-5f!u_P7S-OOLQKlEuRv^N(3o3IXKUEI2<}RJOin{$=ywtfAbp$!}Ej1wyYhSUuxDW1QZ|?d!bd=zn3rBtIa07ad2jGz6{(`Nx^d_ z=I5C=1rGJbh!65}tN>)tI6dD1<7VX-TG*v(p2iLn!t&2s_$AM8n4kY#7&*X+$b6+a z#|#4q!yCVi%AaXosW2NU&dJx{^Z5K2v00>KSPW&Tv*!-@obKA4L(3<-Kh7^`8AHTkvX8sUYwAZ4~gFU=FQwhzyZ`_Ys4EDcYK=PXgO#w zP!aLi-HSN%NWP=3;Q2GY$~Uyw-e2c$5}WCRZ}NB9Kx0BQUAS;E|B{Hi>TLcFx{^LB z#uI1$kl#ie8-&ah2e=VP`tl)RHNg*#IVJ~Anj7IU`Pd<+Ap7qnDwq0JBMmK%1b z4|}pZaM+Wb63U*%;*)KXVDFXUbGP`c=1Jrvu+5Cq9&qYI;UwDm>kdWxl zjssvbqRe;7Y>H**GlP|zm0{? zxMovfToVB&6BhTx$Ss8z?M!8`ZfBv5eqd{}x_sCZN*0E2uWkcS5>Na+|wFCQ#;E*uUN4T3;KjAYSVMiw|27PviV!WQ>#ZnIb@JRozi)Qx7A2)YURz#AuIEw=H1b8Uk} z#hMt?l`KBsVuB#4Mek;_l2IH3?{8fEnKgFWd0_0O#haQEUgEK(-H`0mq6xkHcBQlz zXAFuyUK{{V_m+nc@xFS*2}Y+JU8lQx+at`jC*2kUn>|j*PWum!|AzuoWdE=o^`7p5QvA zv<)s>R!kQcwvT8t2Gm8fyy0p7ID42BJJt`b=!&DwnW-G&=Zqiei(Q-{@J1U^QS)Y% zPQmWg#k9rUkoh6dds{57Elz1|%nZP;hl-~)vDt`u4aJ{02>J30#gQ=QTS7keO>z4s zCS))d6$$5#se&FLA6?Ri7ld<(WpXGxUMx28#a|bDK*Cx2>G5T;98=B|m(orQ;ufi{ z$6~b0%f$guzcbPv{%&8=6&tP=m$|^I8uGdo_lnIeJsx%Ui~sPnSaZX7XCQfo?#_L>&K4Ni#zZQcmk8W+kr;C}~^y>s2`%>{lWv1a}TDp=*bv zG;||Mh8c<>Dbm&fhOH|c19K*pG?*J46DF19HFc|D9jf8-y2{pmU9t1~CE<2e!A-`( z`57gq$bkBpB`);I#N;M|bKr@vlIBf}@1ofP!busK3rfC`V#Y_8jFGUoS%IbBNg3vZ2r~B#>Ki+i?lMsi0K!bhzq*&kN{S<8mO8?sFp8PSHfrgV zIB%^REbUiXZtfot+EDC^n*ODO?BHpNA#}2c0EdQ^2Epn9r7oBrA&nn<8K#$`L;+P-CTnozA2 zwt8aFfHDXA8roQ%+|~iy=9j;VTPK!X_7xz3v$StP4`o>oeEMOTt&=GeDbq)+fRJY4 zj>NLTbjA*mtGZe`3#O-ujHG9jwGi?Jwh!f&`N|~K())05)s?lyh_bStQkKb69pLmF zZ3q%Llun2jXtzfiCQR~!f@JL&=(MBEVsJsKljG2xWq$THONFkc`bOC#@WnE^G3r#A zJJeK^Hv=t}wXDLjE<6jv_mwFer06*6P}v|yLk`#MdnbrR+po*$A`X!*AIVYnRv$yo z@xRN$;lT|;+;F{&jt3ABkr?>TfP;h+WUPx(UV-H;=~F-tdrW&>7HH&}(@J+JZ;K=C z%R`$Qs^FFW?Nt8EJZHSD{E#n9xJPq?DILnce8ZdMKq|3=@N`m6LC11Gx^bd?34NDI z_2a*9m2Y>EygT+Q|Il7|=e3<3Qa;_)1c%~@#MH;*%IPaPPK3D@kZbitg8bnw!JIUo zFkjCrr^{nGCUY?)7yC&>GP&IB#PVdJ4*WN#e6_O)UvNp6;&K-!A=7P;wjYE6Q6@{a z6nQXZhO8(*ELO**Bg_dR61O8S8ML~bzKh~KnM%&9E`Kb_%`$PbTq&m2Mft;n$uE}6@`>CA1Ok><36`5!%JpeZ} zmfsXXdwwZz;bgN(7?b%vE;k>Ou{h&fsgt{7zbEDHbY#@_v67(>{OqP}i+7#0OPUH0 zQ!pTiLlDozrvtU~ylGAnIu;;Q`zHMkv@bzB-4VjdC(Ds2WRfu`Da0(+#F3i#da}JC z6RV@OzdG5h6=LJJ$=Z|V-dq_nNrn$ow6teyEgnwO{%2>iPLQu^3&r<<9BuU*1)M5} zPWHrrT&>=jro}s#YP;K%!meVi7d&06b)nfUPrDaW`Xlf!*0!bz-N0gPpEm1hypXe8 zu`AMv9-S3?=sDqP6UC?W9A}%FtkCk3u8)Nr8_HSCa$3DF?0|{vu?gbY zLod`CZmM-1&w+*#t)Gn!5?5*4!u4(1Hqf$E8v?E$Y1@IiR2vBk*HY?AYGrR2Tt_-uJ+h}CLGK^rZ-s*je- z;oOE5bYh5BI|1&kq`dkc$^${IBb2;#!m9^pUas%~nVzU5)luFVRaHA!&R*BCDv1hh z{nk^xoj1{|u2Sn+b$OyItgRp-Ic1bJ#3i&fbgHD+Ki3Eti=e!mQu7Lw4$yF9MgR<4 zPS9I5l-HPF;{~{!sNZFhwpgK^0a2jsN*mr+`@pUh1eo_R0ibwwE9hB8uglicE0(Tq z0Xx~Nf{77$iEdiy4D@<$6}^_N)H*=zlq`2x2UL-61Lcvb_~!NI&~+u@C9R-3Xq%%G z)U4Ewha{#~lEnf39YhXTeuGN}Z0N zTbn;#O?ZRY>%qkZ0nm93;r+IPUQZ^}w1>TG2)di;|L2UFwlJWYUVjC8t*O>dgS)FK z#dXl7h5(~C(`#vsb~-$(rj)F>ra82(C4dtXx^`Wm40N?be*Y%oYTSUugmSXR9@?!X z6c?uAxtWVw!uqv@@{-xkrH))Eg4MBlS4}54P)B$POhc{LX%|4=a!TDkP}2cUtRq0u z7JBWrUONwdtfkcU_1Z9qW;W{ak@iElQ%b4UH*5Uh>_>zg&rI9-UQH_q-9WElti+xT z+C?y@lvo?MQ5yk&GxEW9we8{VMnd_cl3vGc(kkH&Gw9V#S_QZ>%P2N$V__n5*dBvx zJ3yj=v}*3O}r!yAax7Hu@dF*<}vyEk&Q&EeB6+UaV3;r6f8_Jv!w z|6nP8^|nnErTG2ZGM3_(aQm|qzlpmuOY!Tt-(e|!C-=K7#V_Wb#8T{bZp9py;um8_ zvlP2hTam_6{EF;?C^aSdMcF!*$#2W9VJUXEw&D|(TEkMvQhago7)!A=OT~GX;x~6+ zV=1<7sd&IrY~@n%oTd1xqg^zm*y^Rilco6jV{4XTE0}6UH6tKKMVyR+h|VnM+x!gr#<{)Jm4x#8MksO3zZeS!yjy9cHO@ zEOm-fsin3l%7w|xS&yQF`B$}lp<-c zzEevFvoJtaaTOh%Hd^moDL>#|d1|L4KB(8ySsJ`hSfSpF=lkz=!9RCv>2E`xukl(* zHypU|LjG{!c8v#m?$y$V;>J?YP*y9i-1(~$I-`+XeNlx#PIcZHeq6rV1KWSDrTrpi zeC+!|+h~ym!DY40(Ep&8j#Xf|`1+96u8B}tV9j#6&268SR`1Gc-Es60?fW8xF%OMh zY??#H_~o8>?@Mis$l%Zo0;C1d`Cm>DeoE_s*S^x86v6JP0=N@g`HmpA-)IL3B&#B; zJS!W%q@iyg8#!c-U+#g$C$&`~Q^BXS*<#gCofw5M8`?{HM!Q)gYg8J8_zSgOJg22U zg1Oe1Ae^{HTkD2rzSGVSi8WT!CF~&=wDebwQN3hD`aXG^jVsLkQA=alQ(8})bWux( zC~%bU<777@%5`0>Ob}(^&)U%wtb^u6JnR_g)_}TDRTo}hBOp_>fg2VMLx)T15oy-_PPjHcdQ72;D4z9&H1*82i)yl;ejLm)*ceU z+9$dIBrrKMCuh_L4*6G0lNj?%D1SvXCbZXkVAOwFI#h&%>pmdouCJ=~#rI!pH;S2D zK+0?elUg-(f=8umJaD{??n?oTflYO;BF9`n!t98tcDnb3OhbG3h7c!LZ$YIljye#D zQ`4aC5o-NlVu8*BUpVO`@^FYNY=v59{Le*qQ>^i+n~rAhoMEz+fP^7(101-b&N=Dm zf5wANT`lK4uSMl zwVw1z5^3yjKOIfeI1benD1bv{w(hWVK7rl*b;CsdxbEc5Z3E#~ZxU~PfR17UD~O@3 zjY8D9&>y%Vi*)3Q8T`!TEMKh?MX6u06+v{pYUbvrA zCY=z{K}S)EGssPPZUB7}-g*h4mv+|Cjub(>VhXC7KbO<(W+K=gc68GvoU;MbM zj-oF|ObA-#1fc_@h)9U{L@={K)hc4QyqfHEIY>82tXfkHPEdY^*(+YPL>>p{*n+O4si8bTPK{?OLx~mc3CAYvNyN&Wd-T)qDI>Qkf)InKYd3>i`;^6 zFZ499JxFycf3s4_hBmcxzr&Qoml^YAv!~o-SNy=!P;6c!G-UJ==w=@|1{su z7iSLFnKdWMYzA{i=o~R*q|VSdO@1(OxXuN1X;d(JwC!z&6Cp-=3aLujKNO#;@}(!DK=tnXASPGdk6 zoA{XN=Ju(3>}$Uw!QL5(dD?VfZXO69RpCldA0+w)qj0T@#a!^oT!X{mq;MVeNSp!- zp0u6Pp3Y$HY43y+7U+JK&_-%)ZlaX+7f2Y2%5;=qjC~-kiO`)8F^v(F6RJulA3m;G zMGhFH8!Q$!p@gcN+Cgchy$kk;G0G7dK+#Q8W#0ya<8%|>C_~Qgfd`ekPs9p&zzN)3 z+Y*95BZbr_>V6O*hPFbxuTI$0BJUx42WZSCjbBgJT@Z1!N)m*Z4nJ!jfYeqD5E@{# zgM?3s|B!SYF_@tf`?{)+$o3i=2RA&Lr8D$$buaX9L5Q=1J;?sCcY>XX>on(A1p|S;|=85iky5B@}u3mD1R&dtO!3}~li0QBbU5KCz&VanH zgABgRBEav9b=6`y;-Vd#o8%zFb4zqLq;*rKC;XhN^F#M#x}QXdi2(w?B?OA;r8+vb zPH+ci*k5p5F&J@L+gEd-F^|9I+y?m-9}9!A=AMJF6}4Q+Ep6W z$rUZ9A`n*S&>Zf6uJ^A=nOCK zlj0(`nz#3J;f`{AyxrJFOi?d%XKfpNyi@m3kRK`db`!0{n|!^B80N!-%ujW_MF=00 z_1NU-fH(K))`^-mHA{kcz(5<~5cNG7_m@*T zok3>mZIOE0=i)ny-bm5AKrGI?4_&F3CrsMuWQSDTFzTZyMGI!1QrIbNO^V9Cpfe0( zd7!V~>(oP#Y|BO6+afi?^v)ZU-xD>rONN0B=(0(<+Lx4h^|J1wK}Bp#O__8?2pd2- zT{E^duA<<5)P?I_I@!WgM`xKZit=gH(KLwLi`=R+Gz2-@V);!|ur&5g=UO?t!;rSl z&Zz#y*hqQAk~QRygl39i4q; z-sT%FJG%*vJNCIDA^;Co+y!!7T{*c7rD2rDS|ifz{V$OmZ+=f>TpaL)o8B_tv9+FYegXkX<6*LkKP5(`RYFqsZl#7p6p`&Zg!1Qrte*>Z3 zZ4HEgw=_*>;vl5Ge!4)?6z0PlYF**o>IzT1)lt7(6qH9Kg1CV$-qi_QXVN0Tsm^-( zE0;G7G7U{u8)^fp`qFgpVOPCj(ra=-Ubvy5)>|08cy~7%hWc1u*bST;T7h4^UQdtIw#2<}>$jUKY*%%Z*a^Pm>WtfaN%hVE&0*&g(%#K?^nFE@o$ErguHdn5 zuC!g;%^AilCkYnz(^rTD*|ZmQM~OY94T&&jfc~fm;lm+AK_|%R<>tYqTr@~8PCkLR zaw_bC;Y0Lu#R~b@uYR1~4xfhTX}O0hih?U`^q@=#8S6%CF!MxW_QUmO4D}f&L{w>W zl#kReG?@r#&B`z#;z}o4Zt!haeH+|2R!<99yq1QAG-oFW{k_PWGaFwu9&>ZU$ccK% z_=;!xf%|mQR8pwkY?Kmu*6l4phbyO;o1(t2gJ0Ejy)8DIYGw`^g_Cjvr|F#`Jd{ir zINhRYGH}QYy({c^Lf{cI^>0iltJ=ssaNBIX7=~zILq@6VD3c3)`0BZO$%L0f9I!l0 ze@zry7({(j8;CRkeslU4o+YDOKo{wy(WvSK&88c^p_v2kbVfu-y^?p0uoGnBoGKzp z|7OSYbg#?~Pb&1{j9Tb;p5CRydJi6yISH}z(^$P(*G^!u3pyUJHw^a-y|gp%(gXgK ziCxfl3FZc%o?KoP=zkm~4nfNDkp4Iv*PzGaL+0H)_JvS?Wf*+v1H(L(o9# zEMFPCkF5?h=IP}SbgI?~)~33W#YL&2wO^)p37QHo|1&*e3J1 z##T1)@W*!^>D*ud-R622u|zV=M>0J&-ZY|ZF`N@0L4SwBE34WNNJq37&Si>8!cmhkoj52QC>zO?}>6Gc+)BgX#+uXG1^o zbVF*qW>QeW=0I)M1CL!Wk4l{6_M@I2LJ$4pMZI)-+}P+T!x@*1A)n8TDbo#h{#5HC zgwF+6%sUYpv-?;5Tq_sG?Mtuedy4vEZU#F&yzKEYt%!?;;2ma<=3ee_;3`crFWuB1 z5+U4f1hI$HKhvK&e8Bnm7xT8m!Qu10#Gv`|j=4vM26)Nw{#`><62`E^UjPe1Z*XVm9YcO884Tr|EP-$|I5q*w5CA=<(FP|@O@Vb{Lh~2#Z?L< zTX-4b0b62VYhC!{rGAc(X$n109lYtwMmF?;*XCophO4yPPD39FPXR!gZm4cr@vBKc zLMB|F@9haAn$bwFA%VV>FAxx%pAVZd~QGhrmkN!JR) zh}wYOipQ0svI?^qw*0ZT1HR=^VTj9oO#j5Q;!lx5KD#6&N2qV^BSg`GJ{5+TU|LD! zD2E$sX&BP1Vw{xyx*H_&$>v7(`GAcwWe_&c#{-Z1R~XiM_((hC1`RcL+#o^^11hG8 zgpBoILSTg<%<%4=7Wh5k)e0XMT;8_AuzX8#q!s9H)_P%G`wDRsh$Kl9ksSB_r>A_H z;qlHDhB-0s=jdMnIxY9Ej~(oLn_TsF*9t?6;Q=dryAPd!@h`D`zuOxHy`bLH*A1Ts zRT#Q;J|mS6_w~ZZ!4;O1Q6D(hyMj*oo#g9;=XzF{g_Oo$YMUed5oDR^girfaG)hfF znDh^7sjoZw_BV(sbR`^e{UcvDp+D|Fu!8np@^H^>`t*>mA1oe0{`SM*3b98O<}o4X zeQ5-D%-5N2DIoBLp+-p!%Le{chkYGj-UXt~mu;H9TVV=po$2;!5{XC~rWQP~QET)= zB4}o8-gpU}ylXTyaQ?r@-Z2%1h)s5)jh_C^9C6UN3PVUSO@Qj}(tlUFHqAsvCrmIp z08PYsL7ESAZ6>a`WKOCWD=L78ho`S=={x5>%^cxu7>W7+=(_H}sEX(RJxH&YLLmL< z9fE)$QX)uik=_YK)F2R05RekOK_Ex2%=J4&M0!xkf+)l;DiBmuloBi0Ac_hi<@ecn z@7?9l-#_{_#S^y>**Xb-%jNwD(cqG#^o_P1;x2hgD#( zVO-r9F?3XE%}INzEUKHX^u&;{rJCyx%-UmI+D;)EJHAx&rE4Dx-2 z`sI7;MhR3>RW1Q$)~VE_-xOH!*VdQV)WmnhcFiFX_0)L0*PK!!~wi_bn^c<}_GW4TtNgiyGsLO0_69;EZ@l!1qzT7^+N5 z4X2@ItR`PvS$aSvj_|yps9deJtAH1-RzZrD?t;nPubwH@hQmCLMo*|CPOta#!I)T{ zi4~_e_|>{btyX5I(g#%#OQ|+CuA#iLgk{#!WU-t|&#N_)17remY*+X! zHBpq=OVybttOVfP+#i^>LG2R72$$w+1OjPo@RxVLNf{afu`w;L2hR5SG@DYswN#xs zCXT)Je|qXG+>hQ?>Yp6~1u_gtYaw$d3eR@G5n*fRn;0EWIaAUiMbn+7+K^Y4N|@im zjNo6G5p1=)G(^=v%uqKX!?S7l{QSnWOogGXdrSX4A7?y}mPps$fo-^Ff2lfHAP72( zst=|$SGer;an>LKCpM_CTq&s*JE56In6YF(Uk+-^X&hz|vqw=kK(1 zDr$s09bYX~m%T*xYo%MXZZEg6z_etL;cpCkn62carP}CRTfayHAx~3krx_Ds*9eH~EPlW%D)p~QG>G;-IbhX|CQ^?FHMU~!~{%1eM++2$`%KoR zrz?8($Or!BfsN;-4XiZ2mX7H4qd@aup;%O&C~d5g?0y~VFNVjl7R5`yK*x?usVa}0 zD!pID;lY~>{KVN${N^TL&)MJf_z5**?f>U=>Boxxiu0eB+BDYX#sN%~W(x6TsWz7Y zIN0ow5o>LlQIFaV0c&T^`r9>6u4&8I96Ne4vK6kfF9iFWviyv?bm0{z&V`8P8|#LXm==5qG6!h+6MbxfM08Cr&Rf~KaDG2GiqfT8hPtIOGa z(5NdKr<=4{dYPS&y$uzP&B_o^Y;7?hK&T?Z+e)d~tJ(iiv&sco@nS>+lQv(8N_8e< zNfw6o(n*vyGO01QKpnTM%mnW)YBHEHp&R@pR>-`|A& zfZXkQ$m5GQWQg=ZCN1`XX~HU6yf@sEXGj$=P5!~9f2WOvk}<`gy7kq0rl7F^d&dh6 z4Ur;lxGBgxmNhUW(9ru0sfs3a9cfZ~G_i{;%Qon#B*Cky`})!Tj>=}eY%#!ZUcq{1 z!*M2UG{Cl!4ROwTLkwk)H`P@dr~3rcmum9|Og%^>P@D;zbH`ji$y9Tsk?RJ}F;o1a zknutJG*hJ3uv%D=`<_7!D;7Rnlf{-)^qV2F{87KsFmt@IrSf-!8fCO92;xh?1-aD% z5TdKj>uA0DSj3rv-co0dNgJulHWb)Bp-$4k3aZ!_Istp&!=~0^^%ExSwK(*mdyYKm zu!K(T#J0%14z47zWP#~volGZEk=>YJ9o4uM_NO+&*FRR7qQsbmCZ`I$@Oh~M)z|e# zDT^%=7n^$4Qu6M*ioEr_IFPeM@+IksvSp@*D)_<(lLX(d?Cb2gLMjHAS#i;XkHJlA zP}f@61RE?@nGoGDz&OX8K>9}-;6$dsyg%2NdaL=mQz?U+Q`zkX*nPDG-Ol@r2_sC- zUHO}HRF&9B z<>4Kd36nViYI%JcH5PrnrWe#axwjnn@XzN)%wcXZEv|`~pXqHPKG|x*sFbt&F)63G zQCo$XueO=6CrtrAk6IXZni`6+FPbpoP&%kwKKg4+IqJ&Ay{6w6;TVfBw8Qjw|R-NtQ1>!Z?`@JncNbBtXZW6tz+ z<3vR$z27k1tK_jBMf+9X+a!|;n>7g$N8j?-IcF1yX^>DdHt_feT~r3c@s{PPfVE3W1Rd<;20WvvxV!lzq|R?DKDEV zqOpH&YOkUfHbO4~I#yJ^^rP#s-le?!mj+zg>GL}~TH=2_xEq!|{SU;6r*4WvKaB7}_d zn%7abA{>e~V=p9wS+P)#LEIM?$RiaCFSGGIcQeM$dNZs*06ph>pud+GjEp;;;BaFJKnjHzfQ#PUZG>9qL17V&iWoCWt&rJAvefx%iv48+pS zyKCmjJKv(AIFV`oT73z{f~@h9?l@Y+(%ap!*E7jr#@ap;Dw_g_1~4YuUTYC8IyNxF zYcM2Wi~#N^9&hC5IziYD zV)t6#&G5^|TGbU%-L(1;O9C(Ji!0sDeO2mO%`qDk-8z)!4YekURS%erYB`WWBMDL0 zr5@{L#@L5BVEtqcN?Ny$5f^)#w<~!BloX~b@;3xZIL>IGsRPXYC`X6ID~^^<3^32v z$#fzabq=f*O|fD}$P=xT1di8$h60%br7bLNjj^0Os#7?`{FVygrYNgyZBU|(b$MpE z5Sd4u9A>Uik%}I$CRlH`jul5om|@u%oHg2fP@}GuYwhGs64=mlLr1lG(;WZ#)FD(h zlvI8bCYTrLWEyKrGRmm9-X@tQf7&LI%x^(Gznf^r7=*#x4FGN-E>AX>DK7oh+r~7hOWR25qC+@-^-(j%K}`PK_fQrF8*|%ciJX~c z45}EyaTW^BrkpO`2=U=8GiEKgNSJdcBc)l7LnRm|e@WX2YO)hkeCy_!5t=dyRwxau zy61IInlXN2I`bAtBg2@|84#R7fExZ$+cc59$PBN{IH+_Ep&Y~p&$W#ay`DB>UXUTL zN1}&wIeB~AHW!YiQufzhx6V<{0k}GQ)wo`e-1TYa~F%oF3RFU#KDo8QPQL*{Y znz7vrNQ#_tuI6AWRBGPC8_igDV!ASVCqN8zN8c`m{%MZWY>pE18!DJhIl$S%z1f`4 z#V|2pFq==SI4otPo04HsJ9Pvw&T77|CR2rjYU3D+969`8Gn;BKl{=tz7R4;k@||{= z5w9|5+$X9x+>@T* zJIx4Wkw=knZsYbD6rJ5ZMl{(i6-N>i`n~2hN~J_znd~@R1WTUrvz~6BCcb(}8g7Pg zsHr!#Z&QB2j6)OruHuxe^ZE7>VwI4_k6&^~V!YZu4L56hqr}WZY!^@@2NVF*7dH<} zC&<{`lku`8bzOp3vi1=(hBOi)U_@13X>vIHeNjpW19nSDpQ@BIT?*@bdu$(?&>=!Z zzT>CK`T?5h;>x>bY++$^9?{@sJ*qHu2o=v9ldgdw+(-(_aK-GcN!_S|qv`0A z_o|_F^WV%Ey)sGkqo$O*<=#Xgu9`8x=a*1;>|75A$@tC4V|e~v#9V*MD3HO5(tLJr zOOb!wj73F1Z*t_-l)P`<8!Pf}_*;gR29?C3Mq;OMQTvt*w>VG0!AP*EzHOeO)y&`V zIpdu{ox+4oXVKJvdzc2%EB#?xZ40IYnJ$~!+ouWkB z2+MFrS2}*xj!w(x7tRusFX_%BK+mk_XDc8vKbVdV zhwZ>I5Y3XZQu)E6dxiyLU`5`tk5pz^g8B$!7LM?SQpx9?BPl%%aq^D_3x)|nyfhYb z8~SVNXG0)&(OsCC<;^UwXw}o^C%BGOmUSQ2%X{4yN!U}CDC)Mb1bGXzXo|HE(CrVv z9&Br6QQRNwHMA6fB&DUTZGy5{FLkd+d808!nKTR88np|`Mngt>la%gXr@cjWY66~C zvDQlK%Ytds88CPL?0q;d(8+>146Z(Vv5Hpr*Tqg*4Dw^USTLc&5bilW@RBy9c8LV$P@$KPQwWmsl6=NAk1K821BDu zd$)H{cP%#W?I*#;D}TJ#Aa?fkD-GK%`I0f3=3>+WaS_~;m?23a<{h<#( zP1N*3pvg9H5vsG7PO5GDt|{V?sTM3=$g;OX8vlWkEQ)7Xu&TxEN#7v~AGN5CONqd9 z)^=?|P#m1aFR);w<;NsI>d=sPyTZ#nZc%~_HEQ=msO0J%~us1^t zvE0?>4||&^{0yW(pORfL_sJf5aop~&19w5T&bd$Yz@30k_J~qC<7Z9_rfnr>0**y< z8r<8u+j>OP^0FRLqN~q>L5z91c}|Vni;g~L8A&-Ma>7Ec5p>>ak)z%cEEwkBu%uAY z)gJNUyXP$@)tCD3l$UksMmXwMd%H!BY=ADxUbJB1u={JSIsSW)!f4ShOFw*D)umGZ zewPJfRHPF{;T{VHZSpU77HefL7Rw%mU5;y$8>y^0Y~3fjAfw0_Rzp!o)bH=NVB&_M zpp{N-m*pl>Uo$uv^NPiOH)%jK6siNu*^#w#r%~ml&5;^a98TVu8zDYAXhF!sRAnd? zfR-K2RTmDveAR*|n^AaHqVi5|J(2gi1#<%OCC7Vs*FY(5@KFn{*uqb-Vf@LPg=fo;ba*YHa}vC7$Am7m`){7Xn; z>^HI}GmlVS?8o8EEEV4zxGc=V!@}`PE<0~suMlzWQgGQh&-6+X6+ivEY{owEiv_!8 z10>@2^$Hc!u1Gh{FI7&HD08k?t?``Sq~%ev$eFO%hpjl11F-n+s=q}r3zo?iyoM<*+)c)pkxit@Z)*#J zx?7f&xO?wyEC{k`t*FP!8R8G@sA^#E#&q_MCGtR}6=5txm8G+Ry|c-< z^1*OrT)(!q6*CzO=800|%ciO)yoeFxRK=!H>nRn?aVdj~LaY&V=g@h? zkF;iq)=^e$#pSf|eXMT{8E#D>DzJ`%3f(!XoEssoz+XE^9wNV(=@}1sTqb~wmyrxdwWL+Lsk%V%6kg# z2j0FWrif_ZuevrvnN;4$iftSLYF&Q-wcCxY2vqLkE#`XfXmP8l6|tAXmL^wmrMX|& z;3%8gH0-0g`&zB6u#O5L$klqiH_nfD>Jut1wYDPkQRw)qm(#ybm^jxqxF$J2^p2&Y z69DnD# z#)=_h{k?}fTizls1hC8-E5?rhH(#RPL@QRZl`{QWaiwj)Fwtvr5W2wRI?Os_`b(p# z<&bRKX+hNzFqGe@m{O=B`w=UqX*eef`E}}t?(q=7bP-h2Dg#n^?perc~%g4 zX@^s2&Z&OUN^IR|PEfZM)rD4UC{p;;dbzkc&u=7{c_|ff{mK8RyRSk2FzOfubq#qc zNY%u53;mkOD7SYO}I`1m&Ei1QEST>KEf+M{6X-?Ey~VYHuCV zx3<+24cEvfVlcKd;ZEcxHhk{S(m$IvowFr~PV1}(6>xd6H4N)0k|ARVB}*JVoqY`# z(%+bfm4Sz!wPKSJgR#L2S6!^}Vh7Sje49ae$r}&zu34icq#myDp@za;A}x?ob~eh+ z?}@SjP8Pn+)^Ak^wl3i&k?9IodYW~)e+*sT2-Z%Uf=gtEc0XuK7hhZaRSv2XF7}BT z5KjeBSSYzh(j;=(et9Z&YP-&>7q{(JgbNJD38_di+2t<`TSX)3#Pg8ig@*=2iJ>0r zCn_QAy@to|S$|g3!I+f$3@p%xr;X*1EiNL*0fiq1M^oW9 zxa|4X3s%e;F&KwnR5>X)8wVs%brCeJ;SMVnei#R*SRyThAuvYCH4g}*ssli2zsoNc zsR;s_ut?>XSb_QOX~ z)^3!gfmL=czHEI}#bI@jVC$O$!UQU|I3Z)B`4CU-gH}xFF^*Jg z0kziDJiw@7X8%w+@~l@+t+t>&Ew5Rp>FA9R5084nY4#E8qjVxtTjslQ#JXB1(}}`Z zVZE&Vebd^Y7Qe-Tb88pM`(SXS(rfCyBmKO@C+u{JpxG_ZELCsA7hQR1Ag()m&-%Rz z#+p_H{c@ij-{@F2FjB$sJv%^8hR#@I^B$A-mFZv>2cLWY(3)JML{W9zia1@uF`&TK z5%g;1iu{ZlXfacz)uZOl|BjN#cnFv0mz+Wj)%Gli8$Xr}%ESx%Yv5M5VN!N~DlIre za{JmjV`DOYN13APGieDKVpwcr2)5mPVZ|IGzbw0{ysR(czw*~nvQCn9>pKH+>)Tmt zwDmWPK}VgFdMUGsoD0@8r5=du8;PQ?t$(TnneoaS1F_vkw(Y0iTCr1%i^4txEZyy~ zMq7M?>WfJ~NK?tg4416fy2&`qWA2hc^@;1X;V0_}jnOHPd(pFymjnynFV>4H1PzP} zlllxoTYUi`es@{gZKlRS?o9*Qib{T5+qMlHx^^`_E46A@}2tVNn;v52b)(|m>X z2V# zn)us}_Sv!Lpwa>wlT%1lE`oA3BBpUi$c!OM24~@}+8)UDt;e z=wupqipW@P&pPy^{4L%T(l3Orz15fC#Uxn3Mn=`*zX4mTZ#T3KEbwosb|7D zvLi6q@F>+6^(GR`6w|DpM5QVXztyF@g+mQgHVTg9%oK8|G`LED)TaxXLql;mkYJ6N zI!5uT!3DSlm2Dl0BdxMKN6nBOgK^l|0NhUGJW6mW3R@Sf_%sVhio61Xx8s-CuoJ;S zN||#gZXH8YmCquZM#e9DKr^hvsII7<9b8QbAjADbu}D9c5M(OF%S9))?+o@g3TDTH z+f2zV1wVH_VMkej&+0{l9mrBB^%oLmq#5F`x&Sy+MGy3Eyu{t>{uWubgfQpH88Td|!tiU_fw1PiSCVlgi6wrP%XKm6`B(ERG# zrbZ%bEn)t)va1=Jpx4oxI!lo}`T;#7=ovJ&lu{IjSy7CNGZeNkiS&EC*)>}3n`bpB z#}CNXKwRDk?m36{uD*yh(s|{bbTtBa|0qenGKm~B{iVE9I>jDLc5`65(n_x@fEs!) z`STLapRm_7+oaK~Xm3uFaW$Otn!LIq)(P=5AO1olpuQ5H#kuLQ0`)5rfc5C;0eoA9 zeNcv%j;Q(JtYp@DqVATO_2753{L4JGCym&O{=y}~1}ZruG*aYmqtE|?m3p-7dBlrc zg-zS3S1pBGSz6^jZx&^?o}+q}#yiQQ5a3n-6lWfHq525pl0^O8Fw>lu-6%r~;~r9@ z_AYy&_zY!jVQ78>KslUyybO+-q0+(&gb^_c8*B>#$kjtBL%jNm*4zO$&L1E(>ONZ@ zRE4T>4`mTYp-&tN;vRrZn*FN6J-)bpnBJ(tJwqq&*0_J>b+`|uZqhh0H0K=(BWCE} z(IAE-R2+SSF4d@SAP3hs=Ix;R{`3wtuSEq5F?5E1Xhbi(PyMLJQf=ll@ffb3lxcr- zjVmi&@utxg-8{8vE`2~=1%;s7xUA~lVX5N7j|kzt%olh`@rMzb@Q^zGBw@(MV9hcl za7Jp|YFH8teh;2xz$qEyFb;+m=y|P%8K|hGT@A37e0@?$oD16O$o8ldD3ge_cH_rt@~__e{$(oy?M5OCDEke$<4X4q1d zN`ZAXVxM|NMnVh@7K^nKDBOb={YF^tVU(Pmpiq5gSbPmVxpS4Q8U-nvvPr`+gK`)n zdRB=a|D;1I7>l zO@A|KLobXDWQlpNVeMf0ZNF|w>vv$V?S?{8i)%0iFR510@F>bNQ=)L!vSD_H3k`UQ zs^Sr8l(7Ziogp@j`x^SxZbV(-4YOgp#9e}8PL?$rp|-^b5jIV@nu%uy^pxLW1U5*@ z!0JMj4MSB)=Pn-G_8SpJPoKgD=f7fXL0y7N3G|pc@it6wD4fU!0QYKG-z34-Uu`)l zdxGq-;i`N@lGu}ELqyMcU|L(#q}~JZ!8SckzrS3^hRtaV3GiH5fvKmmy0$76f}vnC z87jOjL{+K{6PJw6jV3Xv;-n^l|e=3GjfdeU=RaGKCiz5CPmm z@sJY?HcUlHhya(XG$lkZD~>nvXOe6Rj3*IAGLb+#R!$w6uK2van)zjf?f=-*GTnyH z5;U{vscQDfP^GOyTiSwpF>W6UC^V1cpgd9Jw$=D0t#_-Xw22?3 z>cqHqeu*dolT4r#wLd=H{$Jv+ukcurL3PBYjy4Q?6nXmVQTFc0Izr#swnG&_pd;r- zjgn^>Y$-zD#a7cS$oL(q@Gfc?5J1bWHjHSPxHcbv+wd-rY^4ZbTz4DB)eL6NId{c1 zRGw|u(p-Owu%Tgapx)2-{Eyt4=x|}>gEkDinRuXMGy4JA{Lv@49~d9BWm4twkvNtt zWs}t3hPgu~k-r*kjL9)XOx{uTM9DzgZmnW!0FBBo7?nivy+)~a$~4%oA#w~)`Gak# zV$)FD1vMjv+R96+T0BZsiQ^9iSJ_ZBs)1!bW?=sq?r-FPp_UZssBx5Pd6Gu?)r}n; zgNGjTs(R94jK8wb{ZxhBjowjFB6pnajLH-{W>h3Yp+)>g3&8Rsmg@yB|c;$v?qv`r4Y*icc*j*f|U|hN# zhPj~mGyR<*ppeEBqf)4C)6wdva?>oo4A^lpxa=b@4gt=wVdx|o*34o9sw_k=VVCso zTw9P!s+v4HP8s+QdeUZ8s}nGJ0AtC0zDrqfn4 zP!xK%-$6)f0@T9QnleYo-k?UHv385r^yJqOQMlFik17LhJuWh5$QY&R-`(ctm%B@j zS31dIV^l}~?RHIP1;QvTc3?WypLy$u?z?T67f{;B@2vC6Y|uqHasBAt;OcUo$z@uv z*Ln#y8p$lxYsN&2r7!v0giV^vLWcEYB8Bl4%?40Fn*qiJ%yI$g)p8pqm%_%I=hXPh z+P#NtL&*53wo&TEL$>8QndZF{>J*y(oiQ;q>D@7y2|jE?l+R!YBboG{j%gs)y)GI0 zuRI@AA&>8<4KX-_16)=9Ii@~M--0t7Z@(cOFoU7v$&_>Zp=gZ1#-@qNw`6q~qKx1E z9Fs^HXCTxo@7OSTHYVQ$-P zHO(C8yNzv3?t6x+Bc`z@Y?x7FbaasxBB#=JSxF0oy4kfa)6_tB~^Y?y<6cC0$#cj+^K9eFCW^T)P!l)rgw0%6G|Q8Yi}7p=DL(trxj!Ex|n z=8Ufba=2n^u^kYV9URQXd}}3i=1AGtc=5pn+t(@=3<08Qo9cceI~4P`H`K1?>G7>* zk{|rehJzgpma-9LKghr^P@U=vV{;T6c=?jQnYBS;4CSYcYfL2<$Ex11;m`i+V{o_^R5E&24f;G9+U$Hj?TS8W(LDa>K=Szz)R$5&)p z;Cy^r^)D)%rT#_xVcM57aAk`wj*X`!*D&$i>W;Kz4B=)%y_#9S#o%m!&OS=b!ks!N ze0(E1^7S~(1 z?}l-8XybKTqIf#Wj=3;}3w4>T0abkGHHaNCc7!Ypfn-$TOOILWi>q;Vgn$fTizgWr zcl36w4)IHUhP^daeUJE^ZSsI5dyV$)A|}c<@P6`v5gJOQP~eZ}S>e zS=z#m`Az1Hrz!hgK~L288_%Or)uBKaXy_tG#`%DxsMj?W&FvlYpY7Q{H?O6R2XX&UVe9 z%3d$9+KR2(OgCWe3=sn{k1TcYOjmo5fhy~6|5@cy8Z63xZUWB4G#RF@lHAO-YZfWc zMwPY+INH2sg1VgDwpUO^g`u}SPT@d6x3%t6*x#P2@)d~g3%{Gt0P6~N3@Q~#$Ov1$ zq&Zj6pY9B{!yhsP**gkDo*mmPyw6}pi$8Js;xKzZnp2D&A<4t-g*qC#0l}?xgcJz> zT{uc|#(zhR(ca=~EiQaXXq+96hC$gA?9b?E`abRRYQFdJ(bIHGNnL6)3G^Q*1AWIN z`#ha)2hEOjWQmsfP!1$?9Xv_YeW4Qf1`<((5F#r?DGpGw%*ua#tq)`j-pWn#-SxMIEAJhU+q z^-qB*kjLhSBNIc#=qK%8afUyTA#VYC7jSf+mt@lJmG&4>xKJT6cP>UjOBO@&65Pp@ zDSS)pzerqEvN=^4CWVT_%V3M}W<@3VdT}L!zaecVMTvKcxRL^hbCFx<*1-HI8MEle z!ISjj>RS7o@{N=$H6Jx8MpQi$cq86euh5MhZO#_!>-d)x|fhHVuMTtQcyHV281Q}2H*Kl4ao}eXo zoqZZdk8auQKWYg=B3i^d?cd5bELFW*Nwm8N@)aY{uo*YK(IV4pKh2cE0%e?<6h*h+ znUo+fm|!&s6gcN3B-C;%GtaGyD_YQ?+1p_u;{L|=shn+h!31F6OWINwYG8Z*niMO# z>8B<|Q>%XvTviyd;bfe!9|5*(6H0%>9zz=jPmU9LhZL%Jv7b47 zax4w~1lgt^w!b0^(O-n3N@nHXzGQs`+ncEoibh`+8BTw6f|MhM+B-`za(PkJwWVr#(qG)W<^i=%Knh7(8MB8UVF~|f`n*I87c-|P%0AW2fL&4@u3w zQs+|@Wd3jV*CmWQTHaMfTPt0#9=WGWLKs_2{8MQ?X(DAAkz)Kc`zJD&UkTap3cyDD zxn279#t7_5c{Bodt>FsMbN?tEJs>Q%4xh)|w=Q43WOd&y#U@EEh4GI4vMfN;&`<&F zZ{!=c)1KOn^IC$Ch!rn}I;8PouzV9Kyx|VnzycOcQ4eVnueWyKbBFO$)cshmL_4_l z{tAndSjP{Nj=x~+T>zW6Lws>!SG*%&TrY+Ca5A#%lsHkI;NU*W0{6lJsokP zu#1C@ENd)qFm6kk8Yz}^bts-$s@UxAN;9yOmPnjt4X5Hj$sv@rHP>-i*4!^I0R)yH zH?qVQ%O7;~<2p)f_d_4YR+&MX9r0p61(%KXdk;;;f`}yg{s3-C0j9X8bC5AE2KwS2 z;y9%WI!kQKb4-?W<0jZsMc8l$8y(rl1$>)SD}jt`@Yz>y9KR`C>>3kL1cBJ*s-(sp z$veUEhfJ_4ZWzBQf}Z|xYKk~HNfDX$I#!&_4`}Ggsg5gJCUJJUBBwyZaFJJLC>@23 z3QEB}U(=_Bh&zuuq&Z`U12X(JQKZjQG?Gnz>@3GLSwRlrO6DjU3z6se7<9cXROR!PkdAgby7%b8I!~*vjcO6vK&!ibzoYVi`t zg?PGsbb2)XvL0W}O?IL)DB!AP*wxv?=?oXuE@-Lp(zg8Kko3%$^AD&PmE5S7w5UyR&dCnt@dsLYyZ~+Fd zs^oCSI)e5-p^+Oh?crpB>5b1+aMd2QrsC(9(IpfX{4dMPp?%7`ynN8PU{vW?%N-#i z?jX9M0+mae;?^MtCbhT{yx?cs^xo?=?6XmG;}3Xg9s|u)0@!iNZ(~WP!1}k735YXf;!EtkEs4f2d+y5m?iQ`*1BSq|e7kySK z4Epn%O0DFC1E&~w&IlK;e1N{A6ydM4@O|XhKVWK^kUx!1o|zFV4pnMI2`{n0aB)T` zU8wECC+I$Qym~h|0=Z}!^yiESI@}aG`thg#)={psIP{rgtg5IQGiZfOIPb9wp<1KQ zI2Ezy4H_2%jqe>H*78SEls+=-oC6y@0}c0i zrY}w8UGVo2R5@N$e(k^vCnKSI=;_LjFhNJZb(~dSR;<@vp7`E@tsRUR(7ww*Iuh|I zp+~V|eE}K6FFCM8$~aJ7T-EiXU#jTE%wQbl7<|~Ty$up-`3u};pl}g?*->zpTyWX@ zEp!zaAFR+Z;ebd0Nv35FJcj#jvgU>>#^;6KgDNf7|KW&NN#eX}1ogY+$P|@-X&s5D z#Y^Tw|3R!F-Dr-oQvZfaQ_8~eyaTIWcX?%EJm z8pThXskY{Bz4Iu86U354C+@6ZOsO`K1DulCJu_0YspH(G($H9END^%b$H%#w)OBi2 z3{_Gy7G0iMN72zvsm>#6?kZ_Qm@dH4qItR#Q(#=;-dAz?+PZ?rlc-ZG$i6(&X;$+D zti`5+$73n0(c|h@)l0LT*b>3Hr6Ll*@l@FVaXsy52!U>|?*}ti8WXQ5PUjjLkl*>(xmL!iHhXUbpMYM_70eh&syd>{a#6)0Jv1Ju@2pQ zz?m$5?dd$P)`{1B7!u#wS6A_}4SG9k8XZ4FdS!RaeSQ5J$chILt zPN4C)I))3g!$jwSPE0Se=T-eak^CqD>NX9 zls(oNL+5MbAalyNf0+P$c5#9ebEiyA##D4U$5&4@pXB^YeJLle#eMnCRw@g)0U|;y zpX$WQ24|9OEYQX&Y8tmIV2{}hC(f%doDJ%=@y=Ay`Z4F9t@ z>!k4!2!Z}lF}deSOtEQ>6N?OzrnHj+_842zxCp880&&iDH4hsJrvB_&XNtHo--&g8 z#zgvATwL)w!I^*nK3Mq~+^Wyq z2(f9k(;rHy0aAogoAayZh6&?ZC+-Phrlg+G$@R`C#TeEpcG?wo1?1@$lb=SV#5~f; z7b$+-;8en0eBxn~6PuwFu^|8y2mm!BA~l_$=@BGzieF2exY0vm3J4fmwKx;kzlRLV zd%Q3YAGY^<-^rwQ5p2k^`^%7>OCUm@p;kc#=K{gG62T`6j1vA(DQgD34qYDcM7Tht zt@Q`)V%2*vo&W@wV&3lyQ9`jZTb){LDRT=1>zanKE?(K=jFWll(feD`2DM)dZUYGx z)jRyZB&2&$YzAZI4SzCJEI#Phl3=j45YVNs26wf> z*VIlK#8v5&k=8^+u&*4c*>zxg-f))JY~Cx<9q)VdNt}*<)6XBe-whS1h7Wn$nWDIl zX7AOMZ5G8gn;$MRkNK?-R{CMrC3<1s`SnEa4>iIvyvCkUS>)cL`3i%RkKbk1CA7_f z`D$>o;N*XRtKOL(FR&-_JC#Y?>KY*yed5G15LR5p!Ae5s9`LDl`n}Wt(K^hEp{FmD z{!WFk-v3;h`qoz5-D3FCImt?{M&h|IoloKq`+I>0F3n84LLA0K@E3alQ(dreoMv_SCfzkt83vYjEjQIpJD_2r<5a zzxwDq5#q5%t|wGDSHEs+SE`6_>Uvov&Cd61GZ&UfB|Y}DH(LZ~%8@?u)DD0N;4~_1 z1lqYX~Jx$9m|r4z8zk@-IGQfg|8_ zZCn`ks6K?{f$V!-78Szhkqf&+wGGRWTR&%U7_Q}mJnnRI!7*@de5Wgt!t2+@#Q$JK zry*TjaMcXq)6M7acP*@?q$M>0YKZ3;UQ~=z7W<~UaQ-~kbwztAzn=bRPZt7YMv_O| z#j*!oOI0FV+~@Bv#$7Gl!AS4EE)2sJax&-N{akP?oW{pfa0+~&3&xPse1`zoiK4<^ z7b7Si>>97qlqcKCmk&mc40XXQF*?3d7%5(R$c3<#(|nZOHQaSgP0N$}V$Vny0yT#F ziBRD%Uoy2_zBp7|812GU>Jlu!)+UCGb78R0*jnAOxH!z0qKNLX2`=n?WiUP`A4#2_ zc{-i+RbB%PY^}^Hfl-;miIPH57oS&cLvZ`75^EgGzz>s&Y3j+pO41dWk zVhv}DqvaQtgweoRz&Q4V3%5=&BitC-3tR|pI4#8|Za*d4n$vs{f+T@Gp03C4W=E7Q zalz~>Ii;3>fxp$X)Dq&Hz9QMD8HtrF)98xDCt#N(5_Sb)C2*C?uI7uAg;LNON@n#L2zt$Bd?qBD^Kv{yVkD$A7d1b|}SJfsi@Rm?Gb_;0KGn8>LqH85Lj@c8t@Kv+`1@7o6lC2v#un5w+H_fOcJ65=m}bNemsd zy86+%wT?!j5xJhw$-fEI150$Yuoy$S@G=;|FKn{e7{VO<)5MK!o7*8|kHhtq3Sm(p zPYT_RT&fQ2-*UMyHOm?06$;jJ*lwARHjT&Z)>j_c*%^ut({O=^HJU7KK@sOM8PRcz z3$p?Y=1y{Cq*^L1YqvBWce}YTyj7U`4Q@Smyf2PCJ(osM=sO7GhHsNXWiV^wc)c6v zg0{O5ItTJFFGp4^jT8fSxG;&JK;*?2S``y%_Q9p$V%#q2OBjrA+CJ)=u0m6y9> z)ujBct7v-AHD3c?#L{W`tFC8s)Ng}>4}*o%KLeL1(10fH7&`SD+Ont;4am3Ob$i{l z0Jm#ZV$u(x6gGz+k-m%5JUBdD;flo7S`yCti%=;XlNz>MPriA}!>GsfG&lEDYxT-LH27xXpAd(k!oZ?NA8?G6Iq=W`FF$bSLMLwII}j^CXjTx=%0cpSp1E zEra=N2!spSpI(kzw?3EVj3K!HH=_KEtB#6@8_jU!HxfFR`;}}8#^D{*`R7~)HSH@v z9OJm)!o3y}E-JouZBRjhf(mn&V}A3JtB%<4opg*$N#-Qv#69wtTq*Q=$D%sI{eyJU z3ZUcsrGLDr9zl@U zb8*Fm@io(wQ3ti!fvWqK6x9`Hesf_Gt58lDX0$|}{F%OZI{!PsSB|5I&#p=fqhyq` z3a|YsHIUOX?Bi|=I@r~=t0;jW;RMm>x(vP;1^lPcot;IvJZmN<#dF>PxbF>Du1X=$ zuobsfVt>_}K+N8=ES#3<-BIH6o37_nI)T>I5MwFtv{vAm+tOunfig5b@VZ-5EZ))m z%tA~sfp#p#|5AkAKegRB?ws2hLPAeYpv$v;3Bnob#^k3`O*!EUWz-s5YJh+SVD_2e z0bY_l2-CFkvbQgd##NV-Q4EQ-C&ojc-U@BHg%gx`c)`gF+h!%N?Zp5ex z3t8?)q%VYlpOfrH)dI`{Gf^x^ai7-eD+glFWVtiw{QMP(WKDyjK3~r*G_br50DT*u zZjeQ6PIJR928zg;>x-fm^^xbL3^%4jB}5cuxnWZniO2i#^)-$~RRcGiDTDan4UAX1 z&^LBtIzqB2AkV8hzy76D)~ywB^pqa-dp36?;*(k?pk;`*q>>6KDWVZSJpp>ZtLZ?$ z(Z{V!rahfkMk%#h+0NaC+2h`TaO9ztv6OkLC_+)1unz9hf04)=w=#v|=ldeWnT}GP zTq1|_5P!9rM!i!dH7qKQUKuWaz0VDA9FY9pNh=e@!mj>y<{>cpV*<5$%9lY4^q5)M z*4?dYzF3y)#+)M;#JglQ%uKqyVP%SF-peiTVwCok2bE9@7(a9Zv8A^gj+!C3<_nFx z(3eF|Zo`_)%YEJEe^t$}2w=YA)!yHY8Tdd)t{Co)#epcdW=jH{EpIXQoA?I1VU7dn z{IYDQeCZdDqMd*wi+3M#V+6wxXhEs~bp*kjX2DgDb;CE@vnrIDti$n_KSyf%L=v3< zPN8jsA)}BnZY;Md^^?al;8~y!e!>zHeX`f8Fp)k%(^eiq!k=I(sw^gRz$ye&lVrZb zMe2S|QxO48`VY3_bx{2s+f zS4f?v18cpwG#yyho0d6re1`iGs>;?rc`@b@cf3xf6UCxO-4CgM&pzfJum0^n(>+H= z-|a-!*VnAdqz7k#f$C!x)zy~Ia%bseI#K*E+dW@L&5GfkKPYrRu3JIB-8MB8 z>vStb(LDFl@_F+K_e}YGbiR8Lp1cQ3{JB8pz4tkka%Q2sfIKg11w69IT}LO=n15aD zZm<6R&T5%DzXi>tNRk_q%lP zaYzfhZ^zT8vo%3YUIjtz7y8vwoZ)S;9btnT+h=3ey8Br>Xj>8%t_4z=XueJ&&0Ps9 zamDT_bpI+0B22~ZraJjIL43I0y;}X7zrnpi{rmey_hZUmy3)v#A)YC557N=PW1!;M zvO128o{}&cy&0U|IRPSNo837&`8QGgUg{pL{vB_2BL?EPe_GtL)W1)X`$zTf9J_mz z`uB5(+ob+o;)1Z1Y~ddF4E67FuY0cYcYCcZ?piduiKmbTc3IPq;y!SPk#j5R-de4@ z2!GyvzYa-!s(G9HfbuVWyW69qPx|A8&BR4(GU&k_P!7Wo?Ql)`4tFYy;Sg+;|9Yon zmjCAOb}v-_{T>ry^>6q=D53Ip z)gj3lBj^rGEo?H(K8L=4%{_~%huIs61+TmBfrbym0O-&W_b~NuMumH_@|OzVc87`5 zH)M}ttlMw8r>K7cLde2zSH0^lQr{-O?|wo@#|J^jT0K{iMadt4*&%tFpo>0mcht#r zqImB^w^jW+=eXOb{3ZNNqP@%4C5z4{-5pf;vPvmR&K32s8)w4!Z^KWeT=?&<)9y#r zzl}eaf~d6>(%SP}Nj5b;0|p|ut1=av&$#c!6>i(1d1t8C1mv|00UwMq6j?tIc)@dZrdH|_yC`4=}Eed~T+ z{rlYa?oI07o)_Iu>1cc*7;E;Udj>6^r}6aCkM8<9nNAen|0G+9|33bU#Q)R?{Fk3c z@e3}a_^MJ(Ilj3J z)W6UE;hwGjjs8ov7b6(2x&KuE(%ahHfdpWO$aVZ=cBW zK;s!V)Zl@k;lIz+2Y<@nn+-e|l=9o^MxIA>^jv>*iE}TM;EYKV@U?P)r;(V@)ML=; zo)Jr%dCc;e*upbQK8sp{I-a`L9>lVTE_;OU+Zk}1> zdqMM{72TwCkWLhtJv<+(e{bY^cB+5NdwQ0te|taZfhK0Hp+d^(=82&7FP7ko<9)z! z&PzDR&TVkGj|V!4bfSpq=dtQ^UYc^QWHv?aC}~bz1^~CLOjTWaVSuMh=M|#|O0r4s zI(MAWY>b1<)cBtv+@y9uv0$t1+U1*$^yH5gcMliqj3SrM{dC~`N%FPm5*)(>*OP| zV72mcqkI$=JTD);3!L&1R`G_poCm$gNMe?C5*ruc$@=?3Mt-SQeM@+#=`G_po zrKFybkI;g>@)1$+LP#eYkPBX}DpyS-4TS zNw`6{IUZ(d%B-?gxJ|f4xIGGFYj9gU%rcZ{{f|Waj~k>wwg%@eSeq^X%7)-(;6~sk z;0AcOU_IrHKp)#rv*e?U*2~9k+CIXQqjS?2BRutMqdL@jVM#;E9_gvaidKTcWD!QL zPaq|=E|8MS7f4AR45Xwg22xTZ11YJPft1wGK#F8T2a-}SG9}f{$Px;qr1Az*QilU6 zDZD^RYIGnar6^NUGmR|HKx$RUas^cZ%3=dRsq}%A6nP*eyFef%dqN;3J47HQ`$Zu2 zg365SAI5?gk3=kIppx7f1l%2z`r;#{7P7k-3%&|UoexTV9h4e>T*)Wa4C;=6FK#+@)$pfQ`O32&16oc<$K(q zaxmXhipRhy{5Y>X=1%2Q$TWV?G>=oan%Yl?<6ceH>7Eiinmp`rMX>#j7&3&uUNNmV z#n15Qbvwu~!&9hRD>l#YJSds|>=8IlpBVP2r(uL{k62LX>7diSOuOcKUeY~Fljgxx z?4*);o-w*t#HD$j(pow@Jv|?G#7egLo;P$P#x3yl)9IGc)~7sMb)};3LeG6V-8x#a z$YTd1>5K7pqd21XhGL3v0wgOpS)Jho8BV$UG9%f)Pu zi`l^xvxg~W7gNkWrkI^fF?*R}b~DB7XNuXs6tnp(W)D-$E~c1$Offr|V)pmNYz~Xr z_7`(o6c3c*;sS+&v{%I} z^wrz{M=zVu<&P^`3DtM!YKcUl@Mwji7eNJgFwbdVTn=T~YsoXQ$cE zdU~Rx?0?qN8;@(xdivneeFLXfZ$K|H(yhysn<9-BQKV`QXQ(7B;fp|2gDhE!BuD=ZnB$8}o|*>5oUQ84~o-8nb7xk~OO}vL?5o zs=dgX^LI(zKxqaG1mvSfl*e9+=K-XuEnN2fR?kC7ZM1sw@HlTpOZcchLFhh2^Jows zy-uFVcx2izAn?&+HqT%@gbgj>qiZ&_1h}zt_RV&NU9dCh77ot{z?M5aqwx65;pwVy z+PV)oz0jWujhY0@MumjYoyNwf0MBEc%%#(bv5b$dJ3Zr-%=-r-^T9!iPzzfaV`!7h zlK>Q-%hMN+OD?WY7q@3RQeL-bxRUQk9`bE|NQ$RD^{5>hq3S7k_b`9t!D!S+IxkE% zn#9Y+yS!YJi(W?Q?&Ioh@Np66eV*~a?6So(5f9rI&rm!rZSjnaWj)d7qri*#|D*ct zy>%(?N?0o8RfVR~Ne4Hh=Q)<`&(C>ADfri?0{`T+|ItG~ds>t6Rwz!`Mu){v$reup z2s^iW?#JWvt=#Mx&wEBG^>RFhY!4P#rH&QN3^N2Icdpg-iAzOR)nML?DmAC zh-c;=k z+&iA;*04}q8L^MM|Dt`K#}t(9&jMxc25!k_RJJ4{6W=ap2D+AUw_jYwP4Y$=_cHx{ z?pG6($BX+}8n^dzbB%h5yO;MR&oG6@+BVSs(neo@fYLjKgp%QXtVeC^7Kt;HFSBCx zec96;jIVu}yTgf>SuL|(VaY!sa$oGo28I?~nHl#DZ8rP>Im$U{_uQA5}@%$Jq-;bbS05gjeGcte9MmcVh7(H7`lsOMa|2BAMXX~S(vOdE z^6ht=7lp**%t&U=5QmFv8UfjNn|v2n&m}ou%48S?bk@@@=R`g*y?orA1mRso(SZ=x<_86*u5D zbn8?3dJBBX_bw-Zp2eJ9;){8uI9tpT+Fr!@LBZRREcW?}yqMJalR*OhWa+>EQ)iWn zO+mj9j~AG4?$~;Gz>kRneCJDAeCHFe^N%?1F?bz=MYrLvp;L(>BEu0L#5d?`buF`t_^t z$&$SQvdmi=1bmo=0Uf@gHHTOiu4wy7UIlFcx3)c9yaZCqeJt@pRv*i{H1;YxI`S$9 z`2MTfE)qPwJ-}ylr&(tK9#mjin~WD))~#B&I$dLR6R)v_uV2%dW>hzzg?E?Ilwa4@ zuT!;wq#4(>L#1=q^#If)+!8H2q4lQn=azW$;|51*!y7vLMfw2djGwfhXQTRG?YH>` zXVC{Ycourylo{bB2iNhN9I%aUangvn#o>ULv(ycq(QVdo^lir5cAIDK``bKw1Mg^i zNyWW~sEUsw?@QVi6kdX4<=NN@uby-e>M~k#hiQ11Fq`-i4(u}}Ov?VQZW3-A0~!a% z$pA^d%K@_QF6ZS}cUh#ar99~qOF8;)lro(rW!hoVKt)qPAOepT^^PF=l`?Hh@cyHW zfgAqC3P=3KYW(~c6MFv_+oaz;wnEB1c1x+ea{Zf^qNu;M{VP>m0P5k3WmJ{^jhpe< z``u@hp!-Ztd!MJp6M5C?0jKxm2fT`jMI?MGo61{Zh#znh=T7S zxXs%)tWCF^8(NUh1(v?(87C;4=eQ}MQ1EkIWUSr-to>RU+sTVkt#k+_&l$n_h0I|u zI2z8q(9OKVKLYRkPqg(Mv@VWIt-jMQ=PaZxXaE0Iu3N|c-42w;nR50m|GhST$5z4f zbaDl=+FhYWwB}#lFNXiCogl-;GY@F>^7Z7tJ7%zbV~W+JT2-5ajxX6vOI~vDoOsEZ zvE?f~Rl+&w6?a~H#hsmBbEkMMS0{Nj^bH>r4!vP1YQJUvliu=v_4HegnFjCpYSBA9 z{ZXjw9S5Y_d)$D*j`BTkJKwzLPT&7@8(fzn$nAnReYWOkv1?4RM>&KUcKZ0TfSnx` zzGcmgKX5RGeBi^)p%2?rq> zwi#e9ePS}5K6A9K`K*mX=bO*k8E7Vb;pB1fi+Z)uRm{d;t-$eMV}($`#^?zZ?5v*J zNA@+jGqEOjzN^Wd{$*ZcHqWXn)cIFjS5zKFCK!Q8 zU%Y9#Vm}g-kDWvH;EFXCs+Y@*g?hN~GZ6!1SVo!xX;i(Mbn&Imz3cir;FZ7E?Acc) zLJhxAQ=y)*x0?#}KvvgGOqSTuR=^Ix>y6A(F%yk3e8`MhIhr%81aqOD#EZ>^>VIzw zp`L#=7D7F&|82q42i6l)rN!nsg5JocRL=u;uxO-@TA-^PjjPQOJxj)qv}8+Mx74Yz z&I?OrK}RdbPqz|kh}Lc(0;D3b?!cerT~m$n zHgvaR(<=M}4LDq!twk@r9GYq^Mxr@tEy7K6)VngZ+5zz~ULwQs*hbS(xK|0ALrZK# z1c2|@h)EJS*GH8Swb+*Xs)xnN&AclY?HtlJ6cbFC;`!bHavDgEZB-jgZstO{pPLz0 zBOBI8Oq8JJg8+Ixm}Xh(K!b)hx29#&gaP=v*@|E^v9=-<%?(?zSW3}+II!&S)yaz! zr4$Xx>u7WRY8=w-L=aG(*}+RW)U~k~A^BO30p@`)@^uj2)YG$tsa54}hXub8hS7WD zYs#}*P`?(Qx>Iltb#KBH*EJENK=Dx%5rC$nJsWeqJztf`s}2qfnc%>XWw?@3&yG=f z0?l9NOAUjF&cO9Sh7uu`)!RFXqGnj`#k z$hZY-71~0KlnNYQ3B)Pi@m#?xq)x)2n#Di05JQ0!>?8)D+2Vvul|#>+*c3gT*%X_d zG5K=nle36M6V+0LN`WS6K==FaX^$zijXBe@OO-$_tyqMGt=P=Pt=OCPE;=)X2q3Q8 zDm4j;Y1Opqh9bLj=T;0i+9q=nhIMyFa;RZzmTPKjmg`t+(HTz|KD8D-(R6pkbkC=F zS25UBeW)09DF0^$066AIC7{=R7YEw;&ILbqaYt^>Cj$>L z$b{vIJ_10yW2#zhX>sS)=A?Kqtt@~5@{I=^o=<~3F>CTE(-TP+=w4zRnn*9D*%XrZV}gA@>fV6F?(72wyZiI*4{??sQ;$yN;p< zoOh$&mCd#Y|`rlOJ`GfCo#t)Tcth4x>k)SGaK?AinuO}+~7=2ItxQN=4OMj zuD0Yo9AipPPbUiN;#sF^K4sIg&REa0>3L_Qz-;pAA|{wJ(PTRy+BdEx?`0Ie^T1d9 zmU7CSds)2`l_UInzTw-{r}YCDDl6*mPyuFelFi0cknq>kqIz#(`{jd#E0uKXAkmF( zreUx<2604&W3F~^ppxMoOul*`YOs#t`N14?O#;Li$s#s@Bl=>17$-a02O@Q|v7@(w zY}ht+)_YK{BOdORTXwXR5|;*Ihgv{xK_Z0F43oA4_{$T?ICQ|B5$OzBHj$2#;)FvEQpteaE!gT-Je!Mr`dDBmk5wZwSZ(U5vtbgDF5 z>JawxwINt}3&?pWPpkz)#VD!Em7zT0yoO;ZE}+<9VuX|=rx0}Gepkb&JuUy#$%vW^ zM?wOH;X2f~;aHvu=wele=Lnv|^GE2W>jiX3G2_pJTy8O~7y&~Cj6{Jhj>YLCbRRvX;h^{==CTpdB~8VVx$x&Jrqk!0X+zJ`8l{O zdMSMv^h;M$x-fL3A=!@+_y~eJyIjX`hFUg;1wA=N1j>HfvD^_cRww!XvFs3|Fr6oZ zK7e%EN7Vv7NQ8+xkR&UNvq43e2x2mZF<$^QyCy}m@!ob2{>D_%gW$5n#T z-EpFqG)-$m{TfjP#`;uo8Ntt3%U^agpzv^AYRWJI#CGFqWX=4$S10>hxQ?uOgpO>O z1&|(DRVS+?bw>g3ew7wCyj~9wH?1Vu+@kJ{tJcE;dJ>_d*mJxtQ=~Qmd}DikDjS9m zna7Mr@|tPcqb{d7BNICenqiQ0D{IlSR}YK&ay!D)(ajzp`O zI@c9gfxh~*Ck-dKVxPK{J4MtdGY=nmXVHYAj&%prd>^Wa7AW{JMYIHs>r)Uf8giV9 zS+1d3Q;{<@^xIVAObuB?!OV<#&<~h)C^uBL3-M6=#YcBy(9qT>=%S$qQP?aqY~2vR z-V4*Glpw60L0Vtijj_E<$RQbraSg>!!}du-$EU%x8ZwTCJ{lSqjm?yXw9zcfgJ>}f zS6!!b=i=$2zZC!7G!TA2T@}9-&A8mlmXsJ|IStv&V8{_O7+pI<43h{~X9Ho-97>rc zTABn02kDk34SCOG_6uh+`*SlH-#A9cY20EU4qmEqYDqx}z4htBKO3=im+W@LF!;k5 z7PH$dct%6ZW+7E*= zFB?$+%NLoFXwV#N^@y}{K!oW19PHVMLgwO7LbPcv7Ga_rb3vKNVIE{43Y!P6MA`Fr z?5S+r=JVLJ`4Eg~*L)b9=%4va#chEcTfkR8FW|Aq^2%i)BSbG`VmS*L<-a9hNX zQH%I0YY~qFut>SzFtLhn7{NQ1sl>=;cPthJHg5VKFz)lys=M*~stJ8f$-~~ypz`p+5T8#2 zBIvAyuz1$TgkE_18CISvh-NKgrn{F(DVH&C@8!&NmTdMc7rv6)&P$;6`7-IP6i#G1 zU1O-*`!Of8D;N#GiuznTF=2AA_c5iJ7yXQB`U-6S86xH?Ab!90RTkTkfrA43>0*>& z{=5d57B?!X_>9t+(WluOeE1$zVDUFAL=Qn6 zL+=1^XGtZ+HP+-gslK)wiM>nn~Y^L8h^4$Sy7eMtPY&`J94T3pWn1 zAorC6P|52Vj%~5@?ptgFVyR!8@R#uI?g9SXJ!I5u3EzOqe?fG|(v>)5l~{894ks@r z{q#OSpFYsXgLZ%heTM}KbsjBsTdY_*{T-%QEZN5+E5*{}cud+@+7*wOkEQ?Ok&9!g ze}d?W=Gz2hp;-DOLG(srvWl;QWusYzSsqJIRxz=jiAct=l$gkJUrR*r#ZsfyNPn>u zwHos;mJY6FMzz*pDUYRqHJEX+v|$ZHUR@*F>!p&(TF^|T@U=L|q|zbT*e2mNT`Db4 z!fmir)pmnx)UFZr0k5eX#P+2)*1ryw9@p68b1}jMaNXB2^7reYNGd&C2kW47Jw!;Q z_3Oo0G|$#!BbiD*$+-KGN}G~J2%3sy9Gg_!-}h`r1)e$AZpa;uG_j+yGRRN9_~+asx(4a`1d1Ix5;1G6yQ z2sfnCsEx2{D(%_`1E$iKjV#j`4en5;(oqeIWsYbMh(BmT_Tosr!!;?Z7F3%WqEtG*e*Ucorp+GrBmOF(Gu>jmVmSK z)F`4k6~9;Oxt{?T2W%>>+Jc+7sq}aY&c&%TB3(>Ib2yzn*Ww4<(@v%2A6Wd?Kd^?r zS{6#9Wep!{S<>EuJ2wf|_qAYzP(_TC63pui2_|;IqXwKQ%6p;Is!s~0Y$_RT6>ab$ zYS*pEEeRC670yne;;o2)1Zwgl_IC*s{UdyyKu3PWYL-BTKjC&wf*MR=KA`!l59#H> zQ>f_OgkEfilM+b#6Kt43&wqks2{bSR=3<1rUO))%EzQLxz+?6Y)}dqpNfPLN1_CC5 z`fp=y-*3ZOgU)SmaRQCp4$CLduI-pA3G{9|%hf+qM>yXPg#89!vjItTRkiU!uGh~UQ z*FVF+anye&0x^z$*a?;6=;=-f7)L#F;NCb|or7EvM@2beFvYaRe!S@}%=b8&ybHJG znE1U>ApUT4Z7PdHn&OhuFLpulI5OIeD2Su6yP59KyAjfH^kz4)yyx;-_yqBGsyi;w!SV*s~@$@u2!$ZXDIGWYYaD~Q9ZNXR^Kv>~5~ zmgh53-vZIbG)cAAKhYrC!3ghAeG6e@Lf1Odh2P-tBsy9EBP5Z{UT&uEg~OBR++GB5 z61nVyoswwDJ|4Tc4<<<>YkU_H&BR|21xd8)7l@Ta?|%XNBpUpy7;eH0O&5aUj|-{n zhOk4W!67zkQQvxUEKeQFTO^YYs`a+frS>EW-Y4=4?HUN!@5b- z?>C%xnAPZ|fZV&3nx04TKh)y2prYU4<|MlM8_U-80P=PcO*w!-WrTuwAnZ;c-;+T2 zT2!|*Uzh{V`XJJ263slw`t3i6Nti?ihY(sx6mST4GnvNewV*L5jhg~pN zubojl<^rZ`p3Dlm`lY-C4wIs0P%b*ERu$#cEGLh}VF1iHTshMj0wquJNt8rk21<3#ummAzu*pcG^fPSF z$7gi5vp5dysN)nMR4vqUpQz`FSD0nAC7fkPU6W1AbGo2@c@kK`r(~AaVKoH()90AJ z^?B?&k|^Xn2a`C@I+dTt`p!E2cLwO|&q{~MYM&^`Nfy^QNK!7afA3u2xb!UIxLjPs z^ZJh>c7k0oXMlypoDZ%QW5G`%?~7QnlPK{bmV+dEc#*x<<4^3gnQ7^tVA|}K42RsV zAq~~ylyZfY03KHW(CZqN{RY>d{v^uHs^uxe4{#>3zobhZ2d@Dx>Ut%iOw{b-qPD8z zC85RF0dV=c^f3tG!HYDf?PWH^w9Bm7q04Ms(<^MNz$@Ij^$MHp(G?_e7CYq*h&{bi zTjoZt35jZvCY9UdBwBuz?Q`}j+o#br(a9)7&8bcPs!b6cah^U>h@&_cUqq$HMpSZL z7??1G>tCQ;=bnr#uA&%oXp@cZekFr6x(5*RzvXOZ5Vi8-|A9FC4Un<-RbSdkHrk_` z8vGx~^!oq_c%UW?9SF)m(w*zr&oP^@2LOnED8mUAB)J-7W4#ROd;`IoL91>+xeU6B zD~XW#7znMNFhz~;DCbIRWYEH!h=B|$zKLZggIsSRJ~C+aEksKOJ-metPX-OTjmLQz zcsD>qNMbcBKx|b7Ex#jtxT+#W-$5W|(7Zc%pqN3|?_iI{a^CnCkZo~WOjX3^ij~PXwDXck@pev&MV%rCC^Hx!mDeF#;u*)lFUo9lnQYlR=IDWhWVsBQ z`H($w;UQ*h2DN%5rb^u7hQOU|WI*L5!i%`{A0Id}sNxZ;I_$9+(SX@ZtOL-O#s)PK z=WbZBVeLR@JIbwEy}#l+!cY>OP#2K(j4L(fnts(~nehahwhX%Pgtc;cDxxam!4zn@ zrgZcf9<~=h70m(k>M7eJ%n=gbte%ST?g>XaTTrOIn36#yka?u)BKa~r2 zG#ASSe)~o5%CSAqBG(Gh(IiWq`ft6!b*VQwzD99KwbC7}tH7d!+FBK&lLTqn1|Zwp z&o>R;l|}w<@Jus{;@;q{Miw1^gMbr5j7uK{Zk*=Tkk)z zN?kv(xtGf3&?nJek~10wa*?B`*cb}lJut4pS8|@8@fHE7er69TvbiQ3voCD^-d}_( zKxTenb+W(cg6LEjs16>7CsBwq)GjmDS!JV@0Rd}vgLy$Mrm#mgPi5nzuc*@}L|>JeHtRF5 ztNM&!Ra^0?wBTG&e>YbOytWQXLB*ns7Z6t0R@5nRp|+yNrkR1F#%7QK6H75*QBNBv zmD5hM5L8+$QbQDhZUnVacB`6ieGQp=tRYh=G-M$@%PSuvHpVg|Wgs}5F;diNW>rT~ zr)OXthD@r%HaS#>H7c*eLU`9@rKiX26n9+RF;SgL^-L9SX`Z`lpxC9gat41iK}C@$Q#Q|hQ$?M+ zyG@zPfZv+)&@pr7THAsZ>SV!Oqb*pk91E83p}cBU zPf-)pw0dlvef1Q7T-CHx)WG$yRQjWtZ^;O`mWsD&yqYHsc0g$L*txzPYTX^)fOnlcj@nl;c`0*53ADrSTvp%GVr^oWDwUy#$!uUnIfj>5vzS!csu0XF(FZNEXt=sxA z$n;!*e8{C0))It^CYeyVm0|#jZ>`{kcxu-Gc8{lN4V1oU_B4QT;^}n*X4=sj{)(sh z)=)2=_FF3hByYq0ApF;UjkSWWdj5<;H{ER%LqPPkfv)kCWW(4+HZTX&X{hu=6Cs-& z4dLH-`nw@49ZxQeSk-xrVDNa_+XyCxs*QNe!6I-TrM(>@FP>uT znAlEv_0W#TS~ccoYGWST)>!E#h1TAJ(D@~_-VxS71szM8*@W$F-$WS&Vhfuv+e1xQ zTzz|%EXbZ2t+7{z0i@Jk=`FqY-6IgI`OE-s-@toZ`35y{jA>nGHbj&ItG?HP?eWQh z?dRjjwvBUS!3rIf;UH<%Iq?ma_6U}${>slY^H>w+18BZ`_fDaz*RtVWiXob z<_z+3U{bCqfr#sjKM2Yec9QoTCi3{Eu>4F*q9TYm}#yP8?3^K zRdsV#hJyZbXQj6!Jia9eo4Vl!4G6D0i3&ShvZYefx-Hpt16v~90;?sfc)X?3L)t0J z6UZmL4Jp_LcG8trsaKh+oomA}WY?DcKdCJn|L3+GO7Ge# z1En<)e)Y!q8 zy3!b^%~fA9kO1GS05cN|>8JzTYtd|$J)g(GU`z*gP5UGY5KKFA3K-N;=_^h1 zBo+8W($wg{+ts$SxvGT)(2F|iCg{0M0BN|{kdhr$A#7(GQ_oI{IbZ@iv7=UXVpR$| zDZ!HHegzmgnN;Qinfyc7n^BML!1^k+`;P#4o?%FZRv@|T{A^o#Va3y3(^=^zHJiE( zFe1~Cd>W{1E$5h0Ko`z3b-S>YM|R=B*xZFxy55CN*SITRjqb|c$?nQFc+!<4*SQh0Ya;Yl~9;?|wbG_^bXKf60e*(2FF_h9G5^iX`IewU6xw8#^*t{wDq%$i%Z z^2gJY9!h@+6n6qZvA3lWVoT=9vJVY(&)7J4O-})4{Tbb4Ilcw2Bv~tl(g5NN2DhIz zr1FL^fS57Qj7t8Siyws!P)uR`cRg9RPCiN?u2%W5;HP~!n(O&;Gs>3}P>wIhSh+8& z=-x|dfp19+>4mj8k-qDNRFz1DviZ;pdM8rn-mq69&Figrq1oOW_DZC?vT4|d$A0BJ`CyJ7x9otllnryMB3IDdy_=E*%ymrBGu~$ArdK|A55A^ zoBClcCDQYLm|%(I(;rStr1kyb-bA|HAO1-sM?W|;k;eHk+bw=dYh0c5W69q7DeYuqRT{0M@PUK)5}Tf(NpwD`c~0pwd;MRt#kMoc&?IM4Idm z%O%ooe?&zhRmjdZgP8e@K`c?;AeQ~(AQp4LV5CDBVlZFb8q6RL0T45j1_l5xli~wF zER+5S0EbMf6NpriNr8dfnGy(onRFu%GG>xv5RzjiMF%ltP7rs#3PNhiq@KZ;vzh9C z$Gt5+eU#spwhmDm625=mNHYX;CzDPG!&I4MGz1c5(%>PA9~zAHMssrrVjz>63}tqc zhGKPKT3%g1Yfg7b%V*URTPhujWiFE*N=VOPj5m9j;(vPM9!G>oix&fAa>H|Y6x^lLqR5`k4c)U`rZJD+cl7iN8&55(+lvW_vGP0dDLVy#K@zt(Fnyn${npl znB=J(Q%8Vmi;*;I9*oVOAy+?YUiD^B9)*s9G4d#V40Ow*oARphSSA`V77-0bjzcwVa%}AI85U_S~w09DUWuILp0^lhjEyr>Esa(lcv+GaAh2t zi{YS>POTz9I-M3oV2Y>H*$5z{Q^WCab~=q2kKIl>{W4w&L1QriOKm!ZO@P(YY1;&4 zESg#qxifeo6WcKnvZPbRL}enH5tEcLX!0jvr%jtf{bI zIz5%0J);mS>9i(F87XN#P6o{lDO45)59q#bZAl)}5U1(Xei{q3Y8q=-G>xTnk7l*v zqLE(G>1MPNgvNC`e3DKv)7dJgr?UZUX0VdcGZ^963?)D^&Ho-uf7?RO7eJBR!7Ge) z!IVxxGua(!GnwPfnTYUoY8J!9C&$2zuzU=I{1=18fbG(HE66?Hsz#9`fBl)ZpXHU`5++JZc&uy*GxS)hbR3Nus*3XmAq|&FC$v z^q#E^s*!*6YZU>$O>)_@`l$A|s!`rps7KDpSP%zt<;n=k7m)Xk{8$G>sw0gN>ueXx2mSZEak}fP)BKz)91zvdCs7CyTsHyl= z8h_L%YB2so$KxV&tWzNl%Z^L^>(t<{5=FJ_Q%8kp;-_}dq7{mh-ZBy^lpb~Pe2u?& zwuc_9Q0(ng2FYs;BVwj{%$YxV18@#h0XVEwY}+2xT{57_KO;wlp}AR!SxL#}aK`0409&I6p#T5? delta 21 ccmew-{ZD#>KO={6MRJyDfkFP}aK`0409^qGwEzGB diff --git a/v0.13.0/.doctrees/index.doctree b/v0.13.0/.doctrees/index.doctree index 0f2511a2453ddee0a8b87a30b8bdeddf780296be..4ee488f7f6b153fa917f6ca633ddfc182b18e70a 100644 GIT binary patch delta 21 ccmaEt@-AhACnHCNp}AR!SxL#}Kt@?Z0Ai8{q5uE@ delta 21 ccmaEt@-AhACnJY(MRJyDfkFP}Kt@?Z0Auh6wg3PC diff --git a/v0.13.0/.doctrees/tutorial/index.doctree b/v0.13.0/.doctrees/tutorial/index.doctree index a191836f94e2a69c9a53ec3ca7d8b48938627e16..914eb96a81e9e75ee5af41b6c95a377acac043fa 100644 GIT binary patch delta 21 ccmca4bxCSNAR|YGp}AR!SxL#}NXDPs099xQoB#j- delta 21 ccmca4bxCSNAR~uyMRJyDfkFP}NXDPs09M8aumAu6 diff --git a/v0.13.0/.doctrees/tutorial/intro.doctree b/v0.13.0/.doctrees/tutorial/intro.doctree index 6d103ebe7e66da0ff43749b4dad38e0525034bcc..a0b328f56b57ff9b43d57800db0aaf942a8ef315 100644 GIT binary patch delta 21 ccmbOeIVW<15F|iMRJyDfkFOeDaIyk08#b^?EnA( diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/basic-types.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/basic-types.doctree index cc825baed5258679d913420386a5d47ad245fc1b..533afa692fc056892082ac0e4acbebaffa57d96d 100644 GIT binary patch delta 23 ecmZ4fn{oMX#trU_92JJIm8Z diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/entity-linking.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/entity-linking.doctree index 857f6cd2d1a06f65e67952b814033738e64b5a70..fd77d0abed0fd01cf84fee538ad928b75de6302b 100644 GIT binary patch delta 21 ccmeA#=r7n%%*at;Xl_I&MB%*at;Xl_Z@VgLXD delta 21 ccmeAQ>I&MB%*bI}k(^~(V35B#n{mE6092+2b^rhX diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree index 0c55910d92a8b7116fcb849ac3d08fd8b9f64e0c..10f75522a998940b3f7bb50e1f316a645ba4339a 100644 GIT binary patch delta 21 ccmX?San52xE+a>Up}AR!SxL#}QpTH709!i;_W%F@ delta 21 ccmX?San52xE+dC=MRJyDfkFP}QpTH709=^}3jhEB diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/index.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/index.doctree index a5e02453aa11ff4c054a94b7c80acf0f7be50a6a..4e7be1026e2ec91107abc72c5f8d8f98e5b76b8e 100644 GIT binary patch delta 21 ccmdlWvq5Gy diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree index 0beefeca248dd4ba56a349e59e9e15d6232a4219..c4df87f8932df8750d35030e18cefad2245d82ec 100644 GIT binary patch delta 23 ecmZpg%iJ`Vc|$ZKM}?ueS&3Om$>wB6`Lh6E1PBBG delta 23 ecmZpg%iJ`Vc|$ZKhjB%6mT7@O{^n#x`Lh6FVh9)j diff --git a/v0.13.0/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree b/v0.13.0/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree index 13effc7d06170b45bb3a9d69119470564a944bb0..46888ef44d46c0ed00a9a9fbf91197503add5724 100644 GIT binary patch delta 21 ccmaD?@UCD(EF(vSp}AR!SxL#}R7Os70Ay_J(&B#$_08E4i@c;k- delta 21 ccmeB`>y_J(&B$R~k(^~(V35DLm~j>_08Qct1poj5 diff --git a/v0.13.0/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree b/v0.13.0/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree index c0898d35be41682e342b051292c43f75176c1789..aad198132b0a99d3f5d80dd2f96ff45751f72483 100644 GIT binary patch delta 23 fcmbRFoN4BBrVY7_92JJw}U*%|LVV%>ZVi2%7)^ delta 22 dcmZpD$<+FiX+td|hjB%6mT7@O{^C}~%>ZZY2(JJD diff --git a/v0.13.0/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree b/v0.13.0/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree index 36cd954e667238678d3496b03f444cf14164b006..c9f3442173da1ec11465cb17aa2383be0626c987 100644 GIT binary patch delta 23 fcmX?khVkSX#tp@c92JJ3Mp}AR!SxL#}LPjSg09VHcNB{r; delta 21 ccmdn&zS(_4CL@P&MRJyDfkFP}LPjSg09hpmTmS$7 diff --git a/v0.13.0/.doctrees/tutorial/tutorial-training/index.doctree b/v0.13.0/.doctrees/tutorial/tutorial-training/index.doctree index f77446b7047fe9a8586f83ac80864d6605f6c365..eb6f4f095b0eefdf12808e1e397910c55d41101a 100644 GIT binary patch delta 21 ccmX>reO7uyDI-UPp}AR!SxL#}TE+k#09Hi@Gynhq delta 21 ccmX>reO7uyDIjdq#FcCL>3Mp}AR!SxL#}LdIxb09B9&DgXcg delta 21 ccmX>jdq#FcCL@P&MRJyDfkFP}LdIxb09Nh?J^%m! diff --git a/v0.13.1/.buildinfo b/v0.13.1/.buildinfo index 4b74efe29..173a62b7e 100644 --- a/v0.13.1/.buildinfo +++ b/v0.13.1/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: c7e02d03149b2535b90f0d126c3a982e +config: a6f42afd21bf0cf80868baf9904a901d tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/v0.13.1/.doctrees/api/datasets/base.doctree b/v0.13.1/.doctrees/api/datasets/base.doctree index 15eee6198691501fa6e9a6250cbc46d8d8e1d507..19db744819b2dc9510eff12a67ce242418fde702 100644 GIT binary patch delta 768 zcmbQ)&N{Q5bwes6M}?ueS&3Om$>fW*TAQachA|_HBu##x$hA3}^K9N~5R56axz;QQi>QlD z0Gj9q2a(M}P8^&VW^eBI?n6@xa(h*P;O51FrYLSN-y9z0f#T-!&2owEEXZb-PnJvM z*!(7S5lVPeZ05@lLs3^TnJS<783mi`54&+8L@w4QO>Vf)v)TGw z0zamx;5}9((}8L?H{4%}Dgx9kG1+!G|K|Mjl8l?rKly4a0F>b=+5i9m delta 768 zcmbQ)&N{Q5bwes6hjB%6mT7@O{^X0bTAQachA|_HBu##x$hA3}^K9N~5R56axz;QQi>QlD z0Gj9q2a(M}P8^&VW^eBI?n6@xa(h*P;O51FrYLSN-y9z0f#T-!&2owEEXZb-PnJvM z*!(7S5lVPeZ05@lLs3^TnJS<783mi`54&+8L@w4QO>Vf)v)TGw z0zamx;5}9((}8L?H{4%}Dgx9kG1+!G|K|Mjl8l?rKly4a0Kr=cX$+4*MGLm&TO0Qn*a$U6cs^0@de?fL{N%Sf(Rll0n`^nNI*ndLg-aMB3zLc zLsKb1BOFmMp}iK6Vxw0e0rHMl>2RBLCw~4;Qa6$rdUZTAU)yl?{^o6vNi{CUD=9TBv_R4(rwjhm)FhTR!uF=uK9X7Lbl?Jx^e~j8Fkg-vIhN) z`pkRD94n>iEk#3NV%zx-*wRplShlF>`%+TU}S=EUiO7iRH$;CrP z9(9Ozb!lSpPZR1Ht@B6Eyk%4yJu|>st}si*_h-Epr+a>JDF4nZPqDP%Rbz|A=NJDW zLdg!+vS#I9Ds>d6uRJHkyvM}(=_{q;&p-NBMA-;A*1s1IC2e;WKT!0yh_r5@i3^LD z#y5@P{PrbY_R(^mulVd2T?E;vS(W15JH}8mhiOdyS512rC+&GzgpD0Uak1s+4kClP z=-}a2UeYgzX>9(I-`wo#G?Oj={wxPOKGjsG_~eB{Mpt9=zx&Iba*&uI+keUqq(!f>_<%Zgf06R+{4)THYOX( zY-y4}ZDjg^xH6!}ggb*=fgNe4rD8zEeEOK^|; z<;^6o_&AYunqYFWFOQp_fE&4{0VFmY_0BT6SjjH)Am~2bWD>d6Mj?DR-*i|QXd;Fp zCwpLt$vD8c7?v+J*+dk%hbo1pErJmDfT9Fe*4yb|**l~+;p{5Y88M!s8bRo|&NP68 z5KH8Bmbnwt{KI@xFPOc})K@g66`PL2;2oxwqQMwY1J>_0ec=@Gj#?yd{@ygF0y*a4 zr0H7%V6;ZFx!1Axm#3)RVe22J=Zwi14TwG>lEI=DDm;6`RD+Px0JwV7^qYvSu8cC7 z72Go=ZyIac5pi8_U2&zrjw+QJM06-xV<*C&vwiJ4t_!~AiDG*Tv*tCF(ey-Io4?1cTZ&D-PR z%`|`^Ai)C*%qo6QpYW52mO?B8G}TL%_X0aR&8sKo%yR)K||ng30w#Zbun!n}*H ziUDlSS7tXLt3`qk^xJR#H&MpN8Suzq^W&slF1voj{4dfP$|ke@i_ERz=5ceD(ZOWq zUTt>k-GAj*bCPI{Pcq&+SWyptZs`s^u9;hv2am?G&L^_WyXFR>ez=FUnidTpXg z{L#&_UbM})EV-|x3CWlyV<=PLT!tluct&76Tasys%pBkKx4dX{KZ#w=vdGMH!15;4 zf6elTnCJj)7aQAH#!7oyo58XXmfwV)Mrb@convvaE7ME^A#be3Ba*CD_XJ3sYAGgN z;IilESn3e>T&B#kJSx}&%IcGq8y_dK><=tfxVPAnZS=>1R6YZCU1`ZDGoWS#XcZtc zAeXs|EVBhscz=uKaT1%icUoq^D?2PT1V=#GCxRYBiwUg3Zi|EMoo{IZp06x}i35&i z@3XkUd%!Y~u#Ex|+xW93k!6gqw1hr~4V=rXNU-?0x*15jhRh$$ey=AwBmBr~9>z*<+dughL5w9-`s z^(M1@YphOwj)Ck|)-R1-CbJgB*6Ms1hl{LB$S~GS0l{RFa_+9`HmghDh4ud2TGJRN zmUYM~vyBI>5^Edu;{vqX+V=m^P@v`kt4HwXUDwP3&A%75C*=2kwr;LKpP}3hEst26 zh_1zqbkKa(`h2C>f+4`ux2*wIr>5Kn>fW*T5FHg7PLt#TuSNQw=!L$2$gL^K>_AwG zbo7EM(Jd#=cjK6*0;p17kT%*XFh5bEl^!)ySWzX(&N?=en!wyD5}oBV6+q975aOHY z%%`!nrS&B`;9>xKtBIt*$;Q%ygi8zsMC*w%)py+JPl2bJNsC2PIRFUI##4JqV_{6X zv|JDZl)XtB!pB^w+DGawvdU04lBK;Y`Ph}!&ff5Hf2j{)prL^1v!wB;g$fBnr8#0( zp}VR#SqiXOg|??*>{RKFNG0p?o-~EMkuLRuj5$&!nT<36IxLhL5~f_{dRJ;LxB$vp zl0^|8r?Pp462CwA56oXF*+kE^!U45N`cd%awY1@L$ptTcCjBVd;;JZji=c4TQ>9pO zX(iHPK|#nfcSxC{Z$kd`H&U6$Sm5YKf{jO{73K9M*mqibl!QX71jzecDvFnFEGu6z zD8s&7my!iRy<*UTl@>!1DYX@0AS!7lTVw*6c~1%$gU71LHU}izZ4)b! zR}0z_j1lDe4COZ18nT^=n@Q1`!uBWIoUCr4sXt6jvUL-rdGv$^-gtP~7frm=;Gb%? z86pryHE=&EnD}SDPCax3_&-0pNvSy4Y%q&TtDri&lbR%!|VA z_rOkQcTwC3 zJ@hWM(JeF%@mzM|N1Mz(eAU(+I_3(z& zth#6GX*6PJB*Qq9+*w4(XbD{%ayyZ`7zl|qJ$z$NqB6(fBOj;$U(qX6ReXv@_b4hIUqwQGcT`xPJ_gZ-m;SvK_ z?|^eTbS;uMk-o)HSO9V#QDlq*+52T5%P4WQhHnna2gEWAh(1O7hL1UH@LAc*vf3$6 zL&-VWMA|Ujkf*TBFYsz`#U)yBfWU{OTlhE~n%j;2Y9 z3lhyrK8f1LBb6*RzPn3yl z*HX@k)rrOA>{v6!uf@^Eo}HmM*oKkj0q|Q3Pg67ysC5&$u7ziuuq4F3hiWV0My$cGN_s5u}drMk@@r6 z)plA~8VYNR?2|=9JacJZ+3m35b2~X{M&&N}YPa1Y;;+d8^-qe+3qARl>=N^Qiw*N- zr`28>4xWO!IgCfqEOx)C zLt*cYa&(8b4IEDzVw?pCs-kJ^G}m{++-8mxQC3{Oq@_dE!}!CK4pLPy5YD%EY!_#8 zO%BQZ9Y+kI$$}xTIaZLU@cmx)Y=;#VjB>0cp@{)(2p$CCyF3~seQ(Fj5UoYRCCtW8 z!kF<};+|6sF%v5HXGa6Kc#h+uf#^`U^RDBd7_Hcyp$tU|JX`3fZirb#esP6^+&F6b zaAS>QkQh?j1&VxdZi6H4tPanVI8Me9SoV$Mo4829?>{-{;M2MSp_7is1R)+8`1(}& zsBFCHurlX)hXcl)b^KR!O%EnV%Pu>TS>^~!3#fj{F+qq;xh7t=$K@PPICH(-s?)G#Xz3im>`6{HOFLp+0{;Y@^GSK2#Rx$3IWcCn z)<&??4V{tgVx30LToF=0G>3$ff3~nJ$7zR+&pPR5HwG{SB=$>p=SeZ?8bN5+!x<9e zME|q`eLCQDZ)aZ;;i#E|A>f96FFVO)WXvo{U!(4fcdiq>W2gh_%yi1e9%R9X3!L0jtH63v1mtDQT^$kEgo%0k-r3yWa;M^3|TFM|5v#wSj?c5t&V zzI7((s-8t`cLdUbtH)wfi4I%1e=@*@LR_#?&OPGDx*++C7 zuHAChA;HDRNwCJ`dXf|rm%VOr(RCPQx$F_E%cUR0GiV2)s-RnakF8ba~@x zpbYQ1d$`I-h`HwtnXa&Y?lBE;y(VIXn`hTl_-Ck#Y)Nsq>{>@SgsCQD1(Ps-`~!@%DX!{-AKuLlgJW}DX=3-MUCRz*m6y33uxyEotk)a>1n6fj zTzT$Bmsfw|oVmi4L8?=r_|C-5Ja4=3mGf#>EfNUM03EDK7UPwheYw{a(yLS6?|LiV z!hOW$AOYiE=ACnS$z+4O?>tuZrb~wUms}ew030yvhN~8dsb&Fa(TH?`dpYnA#*g0y zq~3N7C(-5TQk&bu=GAnMgaWgB17U^V0*rwJs+(TzYchs1JGc_uDWq`$K%$$DfGA*v z%qs4sr12QQI@NHyU~Wx!C6Y#dYp^WMZDT*F?w&CFQ8)cmD~7_*Chms`jTpcXkfHX! z-L%3us-4Yz_>Ncz`+T;;M6>w&_ z4ae&!3TXQnS>2*e!;tloyB&#(0G=A+_Er{k6$M-@Wr{nx-b{C|QY%tPU*HbFE6n{k zNhmrP3&|_ob2EYw_$hK^sm7n2dH z$r#FH$o|3YH?|Q096!1J#${qO%Rc4~>h}ix)E+qMK23_6JB_NehCL_TkH)=)$h(LY zI`*P4iRaL zfq<54La`LZzZqtxafITOAl*hNTUWN8Lv1V1LY|7Wgd2fu#0o zKVy(1fcaU~ExM&!lyy_xY+fhT53ADE{|N#yGzIGSQ0df@x<(zzHe{#)$j($VNJ9e1 z?62MuQD6eNFjzfK7;qqck}9!+VX6$BhpRo}{l(Dyo!`C)Ge@Xz$2*Q`z^WYe=L)>z z{rhC~#R?p|;g2cmr3(DHq2FBfXuK=zGY)=+ME5LEd&m3JP(bwWcz;ndJ2ZP=Jt3R| z_WrEV%QUv;Ra+1E<3n|k(aSXO7pq5vtrpT;mbO)uVB{8+enu;R-e0I!jb0)aKkrhv z8C{KJ_xEBxYwl6|7zvF81Qfb(X~{=f2;Tddc1F*!rp$^?sWz~jPLKAdjk6F%@d-qVaw!yx9c%q<=dEdI>1 zlMoWX^-@nBX_5nF+dY-QyUVke1R@HkkoBFXgtRg2Q~!82x6I>&(!-t|q>UKB5U@hx z8P6Ef5JyXX^@Nybm*)w1<(y|OX)TI68MZb8{<-XFNt?V97|*iIUYV5~#!9Sl+e5!$ z9Y#?J5=~x1yAjmK)LoeF0akAgZ8w4{kmdFklP0g#_0G^+Q!9Dt7j#iT0#~Y`Ap~Z! z%pD$F%e97j*7TAN0-`Bm*P}1EUA$J9^@MkvXjaH4wD!IrN=C?^d)n&}Ge}hK*FK#yu{+Ix++QbQrHi}#?IN1{d&?0wa{S4ykeZx!N${hsnFjh9(E5W!t z?*hS_MFEA)pXEI-W*JQmXrPh_9%aK>&N6T0i`sMZy@p?@#8Ccrr|Uv5UFLublH9BV$7VUtjX>6Rl}qs^vhHGH+**Y+ZKsn)i9)K+|I=li<7C z-u}b^j?-~ae8<~~IN-7=_q@G`11@{X<{Ln4@m0oHc*gGQNNl;RveTDNY`N^R-`9)S z;*HxV_&Vf!hS+K{CT;Qcg3AfMt7P-Wm3vn+IKb&_EHtfdXq?L&H4Tk(*@-$nau2I* z2D4fAfPfdKH1O>)ZucX=;U|3^2sL4`uC;G1sYVVIeB|@OsrJ4%jmMU3rU48AH(c!D ztMiDcoR}GFFvFL?GQ0U(!i}lEabj%hB)J2wlFdR2B+T-yB-2mSi;v~b_a#B*JH9@~ zQwL|Dqb%i=&jte*`BqoNo^@X43&4lVeUJbD=%`h`Ar+uCS&cnv3VVO8?|AwC)r3mx zeFMbI#U`BeO#sZXM54}R`QP{+B=v!^iEPL|Um{D(3ATXu_WCB0*a*}+%O}I`1HO+) zSP(5_-h|KycPpC^5O2V3;3??qS|^nW6b zgW899IZQ+0WKBQ$>O2C}@>gf+C;iRge-HZSi0%_KZE(N__3HXJ6S}(7T7Ek#Xz0h= z>vw!_f~}GNRs{|sD!ihKn)=U@p_=-fe=;Pu^4}430c8awlK6Jacla&K zzdqWo-Q5%_P@NorHzvjO|;)3g0F2h5+%qq3=_k_E*{96d27z(ZJ0s1u&2TGFA ztUwJ!sC9D%W|0`gsc?R?y@6uEPg`Jf8G4B%G_!Kx&k7vWU_7BxwZIWV+|(p64*EY3 z_=nKtvNMeW_}xqN6CglY8#0&U<0AOId0-i#fwCNSw|yW#JxcIFl{q9u!d0M=;=3+8Xu;P zHv$*pZFN)|rpreMEM)4#{rGgYqA1V@=1vG~C1KJ4IQDjc{>Y8Xirxv_B<{HblvRW0 z7X`j1tT=F>AdsR@Zmm}Y$PeV1K(*rE{6WA&Na-Vdd%y>)iUQS0|IY(w8Y>but7!6_B!9c|hbQLX*+kTFZ<6L;*WWX=j z0`_q)p@)w%VgI$j4P*3XGL$95@SE|`o5{-V2CDMtZR!{Fk`8H}bdb*+4@$wflul)t z4TDzL>IxK%J_Y6_y70FkZW>MmBP&Mf(O?1LqnQc~zF-7S z1>+_jO(Rv$wdF$4VH`RUP)qf$%RyTlRaSN#HwGDh22)6?IbRM0ZK2jAc2NK?p`D>b z{bcc^Jrqw^a~e_MjNfsG;u-5IWtBq7`T{dKAr#M>sPI+h>7dJfOj7c#busbB*DDKq4OljQHvzT=|0>nM3T;;sKip*hpOmduHGg@XQ+4;E!Y>I z37ry)BI`0Jlnd$4h3=E`)MN~0_=>E5s1k`Y0*m#5bl~OCXu%W^F#O16P-r|GH!{j< z?dzdmgtFG8jzWV`A^N_856AQcAscKMAF`3q383Y?5PcCC1tj*?f@tE~=ZDBLUfmcV=a`v4eRR@z0uDxW#XK zEJU~XF%>`+y2XzH?CPaZBBWmleMJ&wMD-%vaXm!$`9j5G3a9Fe&-^89GQtaCWUE!1xRfy6RwGKc)%dsq&ejW) zhRYq0(H|yH zyH@yaY`EM38BsfHIVs9{)s%3#1F}%zoIA}7UlZd)zjP>lI~*p1gm)EXUieR8m|Q06 z`S5-m#(&VTCYtj%R)y(#h1&`hp7?bihUs}lQ-RZ;gcs0NN4w`hSzW09S=eym)PV6P z!wO5PlF$pTm4rWvF98k3pPYv2eGR9<&F=mfjvN{4{17IiTknie;UVsRC`@l|gqOTu zFvR@4T=h)YFzjReG!@u*K75Nrm%rqgcMsVwED865xtGHm3Huldd+vtmZ;N68yJt<% z_eYyfCcHz&e@p{V;|DTp3ZRdgFq1?$1~3Ft;hjLj--IZi2~IaiutRc{1eMf+06wpi zKwo`vAp1$Q$gP*~8=)2h7y?P)ZJ1E*U#y^6ZGA$z+AQIpI9ot;zqq2qd;B5rX~%@= GzW)Q18h7FV delta 19729 zcmZ`>cX$+4*MGLm&TO0Qn*a$U5L5&K#aD%w5a?bQY2?dLwAnBatN2EdTd5(l-dfK zCwSNk^@D0jncr-UcV#PSo?uZbO1IXiQ&G2IYYnv|C++nLglr|5_2f$QGwZ1(nIR>6vuhGPloT|`mrDkZ zIN}iP>e9rLpT^fWS{IC(anqw zgpwVoZOtyYSmr3nSaDX0d5?(;GFC_>pMUhNh_VrKta~pWO4{Zuxv%(d5oz5*6Bm^% ziEkRk1?@_`?4xBqU&)y-It#KKIF$%*p^jjqNNeD{}wZOJn|Q8N0^d=XpC z=NNX%Y)UOzdbgDJ5#@mL^MWa$?l(r$Y4BjsbTrY(M{{R|Sr3`+3S0IuxQDWFtxYzT z)xso!`k3hl;>v&?748gj1-7S~mWTlr^XX%bgVyG7e``}ulDw#`4_s|cZ;(6)z}d;9 zkYGjunf>0|tn#!FH1EJeAlS$-O8-?)QJkudzpotiY zob0~ECgT9(Vpz7sWD`;39;y|YHVZ=B1Bwz@c`v7f^XQy3h@cO5~V_ z6Q*wofYBPo=3K+xUz)6TgDroUo--z66d?MLNCt~qsPOD{Q!PSD1K`RH({CcSx-!aS zR(RKxym5^AdopIYrzlvR-8GwRaLZ~wFXBe*=c;DpIMp-|PB_g~L`K z!HKZB7wLh90-}$T9z-ovn3-aJg!F&|84sIf)+rVJ?VV?N9A?!rZy_CusytAz^llSq z_>lQM(jnd$+SekZCu$&Xdcs^pXloNMTl%`$!Orb7_k_Gw<_?vi(7vPjX~JEYA)r9j z40Adyn5a`Y`n%%}&@i%e*Zv z-b@1+0utOe-`t$AkD2M{-wVu7#fKklLu~6Yb7SzoXMT%xA!_Sl>MFB~mF+YSfR)S5 z>4ff+^DJYTXEQclw#h89KlYis!M^oovUOlF6+o31gjx*HY!z7Wnfc#@S`3A(FU&g$ zs~Es$e`R(9vRWtzLEnAme-mYVoDL5iGCxY%<+5vs&Ho~;p==V{x6s@QZX7db8y!qy z?p0>D-u+j8H7AMI_$1@KjTLqO=az2J{i?ZTMes;0>wF^1x?^rA>W6zsPqWzAUAM)} z8Wfo_VWipeyr34Rkr{9IMB8 zSO!(ZY^=q!TegzmrVg{@ z!5>{M>qOg(%aZ$88k3A^GKMk*&SqLth-U=GvBg=I$jtFwKg)|o_Y>KrY>Ui1`z>!m zgV!v7h=~r+c9F4-rL3%nwJ9teZuw2fK~xA z19F+W*fL8Hh4(jG9wo7PdxvE@yt3U=OK=2~eIn>Fv>4AC?y@-8o_UtW;Q7ijh&bSA z&R&Zfy!$N!2-_$iu?;_45?SVOOAF|I$iTUxiUf;}S+0?&bCtQLEvmL}{143h#o`j3 zVekKip~CX(31cr?hLIZ702ui{3tfD;tnr_gEYUYW*#XM=FUv%hZM9ZmGm31!jrUs> z+S9)*vzS}9s%(0Z%@4mQ)~fNQ=Yv)^H-%MR>oGEG<0>#>Q?iw8N&!WaM9{T8_bB-J ze(S@e7bqJF`Sq-?keq5VhB6ffH?mG68yY@K&uwXyApa@r$Ano7U^yMFHrU?YN|LQF z;@k|;1|l>%(6E!$!?xy`9*04lt!qgzxKl)}>|}Rqb(V6-(hP3*u+oZ*Q{kJ8W|`J2 zB)eSY)BtQl+h44H@D-~_t~PB!VUG2PXqAh~M_Fr#xbeviMJjuAv^5bf-*3$|!2`M0 zm7*tHrEG}R#+pn;Jx^QHBsiLH{YCJIX#i?06EOwk*Gx38g=9Ju7h3Cy_I257MOM0s zpxz|5ceT~Y&oPj*()y**%Ouvk#9EUN<8ZNcF&W01DIl0kQqJ8~-)eQ~yRcrLThokT zV%Z0+GTU&#DzP>}KQ2JKtZn`u4F%HnTRnn5@499VX#TyZJt4pMvvpG?`V8f6XmQxu zSadCBq=V)&*5|9l77PKNx@8Tpx@mH2sCV1iU364vI8BlVycX$yq8Ix9Aummm+5WH; z>F9Y?qFYX!@5VAs1yH4dAZ@f&U|ym`D?Mtau;MC`opop`HHJCWBs$A!DuA9DA;dS) zSx;kYOBzUYz{LReR%1zl6OT*x6D~0n5UnrDRNrxs_gt-~uRX zK^8@PoWkZ7N&NocKQM2FWD`Bt3J26;=|{nv*V6jWB^SK(ne?M*i>spCErP;TPnKcD zrI$*J1O*|_+Ad{@z6tr$-$>;iV}YX|2{s&-mRHo5VDBmEVG;_h5+MI~sW@J?p}b3UR#y0z^3M#$7333?8c?+Z>Q=w@s)_ zUL$BrFh-E;GnCt4OUQOIZYD)%3fq@#bFz9xrhYIb$<|en=Ft-xc;n$^Uo`ekg@0<; zri(xr)xiCL?V7l}iGh&&r0p$Xq>uBtU2JYx)Xw&4C4d)x>1?YbI>RjhEm{hOF)s?c z*Bv{d-9^Fs-E2ciSoxHJW(v#c6Af!1%a$m@$1l;?h5ayaEL9v>lP=d2^ke>H$ZRDq7W@Uk?mZ(%_Ut#? z%hd=MUIeoT%Q8EaDNF3jk#aY<^@2>-@t6vr3SGxzfM%;eQD2#^<55&$rTw(7=9wD9 zvX^AKj%zA_jTaI^d@ScomSxyHQU+3T0{AE2KtliNtBoWiQDueo=p?(? z-1hPSs69t+NEp0-R2~fn7s_knWztGHl@2>i?}Jq`o=ak*A8p4l?>gB5z1GOP36~ha zdIg-zpi8m5k@PKw!hDc>iy~tj$k`|RSZ1lC6?}6*-Y=G6K=dinH+;-xgU-lamfco) z8cNT~CenuKx;&X>eSuel%P-P`0|Y)K-NMId(By_pClZw9vkrgB4n2)^Z^?87b2MF2 zT##s13P{vG9-(BjaorR<)O9N#R0?!SROs{}EN)a$wh>k_U_os~W&FP7bds`+^e?8d zskU-PtWGQ@XGfbVel3nR_Uv@U!Pbv3_lMt_D}Ry@#+0E~TcwTB`|D6WL-{C9#xB38 z_~7~O3ONO7O}-8qKq^C%F?3*OC;KXiZ1AV|Sg(A<~pKjafRkZC< zpmc?SuPNlp570Kj*pG40X`GT|4BX;QDqkte4x}J?Q-DcI>iGSYZOL$ z6a^%<43x+X__Xwd-Ex4;kQ^|oz^Ig zVay(dmN`f3A5w6)u3b4D_(^Fd8t2PF%5}vCGfpXM#l@VEe{xA7S5HFz;uWQ{NQNc{ z^m9$bB&r&Dt@7n*1t9CDGDajNs^NvcX8XBnvFRu(m)X}zcE5fys9M9mrlO?`E$i6t zl5lIQ(1JF08+`SMJ$^^b<#(Fc|3wlS)n_PIU|Umr{2LK8lHs)$_W2bX3F@~=ciP&? zZ4&sp*i~|8gO6{rrG4yMV!dOU2o7i3nFyaI8^*Hw+nxG6`_9XDx+9IDuxhZq1(|0x z05YfA7l?(NyMpZ5_HvPB)_J*oGF)6}UrXzIxqTWuP-G`-1EAh|kwMKYpIuyGkIbLn zuCmj@(ok4aY@Z|=;+aeT%5I1CpWDevGb(q%SG(*M5r0h%sDDCSUg*icXqTAhTWpvw zJ1zIna2Pe<`5)~sh>%3VBxrWo{%3r}T(qk!`8G!RneMLk;J#%qs;D8sgBAyn6mCm& zOn^Zi$0`y$lud@E365%_FMzTl5P!&yMr@6ip<}`Jrh_d4H#Vs7F9>yP@bdaiwfpD&!W1BdW zYjQ~L=QwN#O*RaE&9R(Bh41%rW;v`df23m#2~7-OgYh5;-{sRF>3chFhG=aPE@3uq zBF2p068D&Fh?!8iH!B*rMYA0j3`B>(?ROmq#AwCt3}Glz;MpQaO+(Bg@(aryPryv+EskXLWd{)Nvw?z|wCV-^4`(8Z>hJ7Uh+hZ zv5#9gUxyD(&eid<-7e=i!kO#sQk{k^Lks6{W>0duS^8n?V)!TEoJYz7ErtW4&xtXs zwKklcYUGS;7wbOe%o8C6L~}_v`DY7DbDehB@T`+=c4GiTKw`gibDj{Bt`UT`-JKyZ zPV`SJ(5C}V^>X$h5ssQU7y@qC`?8Z_IksINwR% zCu2j|u)WYpuN5@e>V8E|BhhR)yvn(Qj2umkp)90*zpxOtedILk_9Cbsu7BdBYX>*` z;#+5ePTuyNv(QK$XMuwiI5L#E*zI#pCv-UDe1n#U))1mjmT|#pXEk0mwSZZdoV`WI z;p$CiT@qY;oCvE;t|v)BaoOt@7hQ)@md75lx?K7}Jk#dtVDys59IDF&%{{JRgb=^J zXja>$K!d6-vKZ-i9SDR;yHRB){B)m-e&xV{eT`f`Xi(QxhqS8!fWXV7khyG42bVXV z2FmcBySuBLgqV9?pXCbc=N?mk*J~nHxOsL>fq#a$$d(j$%dWMAGd@m-%OhQMBZ{)| zP&md_M3`zaRyYyk$3MVGpX{nh_~G5`P&hirl`eLF+O_OZR&}Y%0ZSLV$a>8IK!ASc z!jA)4iYf#W$sy*mrORe`_5<8Z@6S=aM87)62JjNue)lKm}(Y)7LSoGa4-A+!T9mp zfYe*AVI;a7U1D>4*xWSt2q-kW*ArIwEx>5lue#~gz9wTRvx6(aokAKH03^EU2#5k! z$g1XELK=?&tYa;=3+AM`tB^GETZ5(PZX5eab@zZ-54-87S}_!cGgRsT#!_6?j~O_>i40j@-*SXr<>A#ZYSH2<(A+`7q?+;(I$^5s(>@o zZ8%;>Q9#>A$m$k#8iwqb+-*r*1n|^gx3{XOt0>@NDU;pN^=6uTrCOOv#(Z}GUSaM> zNkY-V7)W03Cf|u@GyNE7yxv`f1d+>rDt6y7(k%cyLN^sMK)q_>WufM36ms=zw!(b+AZd z31X>CG_I_iM1VV8==Ftq#poqs@$*h~ ztI^d6c5e^nGi|rp+el~xAfV8NOG`e=Lh#w-p5w!pBY7$xMv@JSI`Uh>>kMQ7Y{c^RP7|={Z0ns6(wWx&?ym!=wVy@!K3u<|+ z8%sU(J(i}giJ{o;`I%l}qI^>=&qdPzs45#$*Atn2OCRzqu0#WlJnr%P$oPyj!p64o zsQUYfP3=6}NLO$n&SP^2dSupSga=<4clE@*GS*RO-`n$V(pzDMfC5RG9{LqV6jktY z)3ccbJqm>MTcGy_dC2z^Ok0;BeT3(8k_f(5qs#@<@;vnk0|7jh@1bupV>fH4I`d%i8Smz@pDQ zI|v~GTr2bBlO{P(zRgnwygNO6NFbts3fbRzN=X|-KlP7ebILtVC_CiYPTGh83;`=7 zp7x9;4RN&eS5Js}c6y$GSI&Cokk+E8lVNMa;h#&M7PQIBfpIL`?3G#RA*{q&w>QQvOx=m;?r-(x(sm=L0@-eF32E|bJ@0hAHMNSDenA%nBygn~8bV+O z%i8Y2wOnhcN1B&(5D-lfyB>YP?d-L}%qP5KMYBRazLoa{Q8GgQ+|yo0+a|9`1+!EuV_vCQY{y%m3uphWb3jkSG~^@2bvy3nFQb6 z^7bPRaGZ{XlH1;n!~vI0zU%Et9B|o7HeY{Yi?1@qz%zDV2V%=*Rh_;JV#{Th{Jx&V z7H`}}!q*|+GsIStF=?}}CtOPKT_Kw{uH37J!2wQZW1vY*L*rcLNHa9fWykCK$UUsK z8O&ih{R3W@+|ak%xZRHcho1DcC)9+++E%_bq#8L;_>s>GC)@enG#*=WmgAYC-s4{32g9QUm{D-4K|1O_V^}{*a*}+(PpC^2N2V3~7??qS=^nW6b zgW899xlBXhM4F#`bshm~`)jg{6aHrKzx(~OMfVAsJ}6*=`t|&q2wmN2ZNHrrHuB@` z^*g>d!SJaH~1~v zzg{raBc!PSsyswEM{QH|z&4oZpGMjhC=YDEss0V|ft_36uf;aV{*my=+x~0uwj527 zf-?Lt-+zH{#*NJcXuHHO(-PHWhu8TZB>YfsnO>M@H~1$D_kchrvh?8NL^f_qG`}am z^j{ImOrSiqV|N(2T<}j|i7ov-q5W?ES`xLP2*8A+MnV^`p)1Gyk-6=y6OqNi+Q5%_P@NqfRyz0MB;)3g09>YVs%&N5X_kcS${hJA)7z(ZI0s1u&2TGIB ztWXU^sC9J(W|A1hsc?R?ynzzIPg`K~7Y8Xir)#`Anv&Xl+}Re z7Y4p2tT?d0Fp#28ZmpIF$PeV1K(*rE^g+NwNa-VdTfhe^ivu-Cbuv7!6_hfk5RBbQLX*TYrv^;~aS5M8GfD z0`_qap@)w%VBgiibz}5qFq9?3up9Bwo59NO1gi7sZR{KLk`8H}bdb*+_e;UJlult; zje=I#;tD1RK3dEpz{|-&`nhftkXTt-5UWUAa_6Q5ml%n1TM1C*tTD|TsI4!#yXyzz z(mVx_OI?y(-dc;%K|5>zZm=7S{C6;}?xrwAU9k7rAU$t$GtWoC>iVK^wPQto9Oa8b zdY9m?c#`8j3t}y53t7G16-Y82)iQg&Z?Hl!=FblLVa~u{brMcqRvdV0bg%p91p|UGQ5FHx0*wkrkutNU)Ib(M*K~UoZkE zgK-m&rje@W+HyYVFbrh2QHvzT=|0#rM3T;;sKip*g{tXcuGu<7XQ+4;E!Y>H z37r&+BI`Ublm{8lh3=8^)MN~0_=>Dws0xWQ0*my4wEyMMD8UpEF#O16U}zj0J0i+z z&Fi6GgtFG8jzYtcA^N_8566u8Aseh87qXGi382N?5PcCC1tj*?{Al9a6@*2C6IjL%p~%_k$lj3Q?1U&F>LUfmcV^|cu!H#*@XzX-xW#XC zG(@-fF%>`+y2XzH?8?PZB4k_+eMJ&wMD-%vel0}z`9j5G3a9Fe&%E0qy4jDZ0IDPs z;t$sePk@h=Fx}^KS<5P6y3a@1L{?li9GQtaB!y{y1*px8cRwGKc)%ds^&eRW+ zp zT`PPyCS2iwjHsQpm>A`}a&oxB0a>VU&K+ljuZr=ZUpkb%9S)O0!n=wxFZ`z{OfD1k ze0V<&<3DIv9nJY0E5r1>!fk~LPyE^s!}PqOslcgE!t?2>quq0$tRB?-ENnP&YQVS? zVTC1COXvw#OT!<Kc)ew@dKGP1<+efm_Z^O0~i9S@J=A%Z$gyM1g9D%*de)Ef=X&Z0H4=Q zps&6-kn<#3X`1j)oGl=_Ph8RAJ^o<$v_rx) G-~Rz^1he)4 diff --git a/v0.13.1/.doctrees/api/datasets/document_classification.doctree b/v0.13.1/.doctrees/api/datasets/document_classification.doctree index eaf3f487e74c7bda6148cce061482db20099c7af..22910f57ed79fe6d9eb46ad8f4607bf505276be1 100644 GIT binary patch delta 3524 zcmZ{meN5F=7{_XQ5npnKl1$N}B66}c-=?L`_Y_GqZgJLrjx1YVoS2%QnxF4}uq)Yj2K`7?#p6o|t{7xc+zG)UzLi5_4Ld!$njD`* z%&|f4yzw?)U*heEXFDYmvR_smFaJ9Uedz06-w%TQJ6omV zd$8-9iGdux$}`JC0xQvMA@3ND9PW&NgMG&?{}lBcE3Pd@W;E_Q{QauqpX z(MU8M!Qm-rRp_(B;9NEuGG?I1r+$R&?(DNup=m2hw*>-tVlgU*nq8>cYS1d+Nf8<< zYXlM3Ee}WA=Hd4bpb&TH&IGtwf=ps^CB=^*0UWN~`vnBP!1h%IPCI0^)NU9c&=FtU^ZRBps2aAE;QvSF@k zZ!gEA6q>HZuEYiMGor;+LB?7wOi91QgUjHJFK~oR4?@dRGK-}bHkIOwGBZr` zVwap47t1POUt@5{W5f{Ue_Pin+r@WXVHhTzSg z@hmwu-3DR%D@p#iQFrkQBd!>dJFrI%UXSBKbHM6OTq{A4 zXeHk(46!VOEm35)!qBzcXtG>k2(1M2T%=TCXc`w<82A!MwPg6=wduqPPsWotg{F5Y zj717f)40$=;rJA?R6#y9DE}u*FvL;rSKt8`gnLPWi>mg+%!TA7g{x^?Xkn1Df~-~G z(#TjvHY;%5Sigo0g1YG>9YN(fvRxUWw3{}P3ub!CZZg?S7n%bi_K`Vey5HDOwwdXz zJ4gt>UrwyN#!FcLRocqQ9&;UmKoEhalwxi~(L#RcG_gZaEwRei!8HSfF-$2&*K+E} zC?);V1Qu?;Lc;jitH=&xFOW?67WGsb!vZ3tPkB3X@4R;6v=4?XuVC`Va8o2ACsG=CPb(Owsn&{`PTI+HJy(})Wr|>k^hWo z^gY6hQa%Wxs8VRR(k?kl5ZWyxt{m3H&`ZkfM2H(2V(C)jA-TEG!l3yDS{x(Ul{vHs z`qJnv$>5sCg~nj}t8|4zlg5tMXphnG>cinPC(|qNB#V0GO98R1L-|^Yt#EV`?KB&UH`7r4&w`&Dzm=9ruGYt1u7$w-?KD?bp#3&_s%a#w zE>q98Uyg?0!*sPIY4XWxI$Zwt^at8`Zw5bmmYIrE4}_7(3O ziSwX7h!raX5Jol72*zahAhh4*<$?#%Y^9Q3ERTVG7|V_gq}Q6~IU86I-6vyYjV0U3*0byNGghq!E@iC?*$tYS@M2<|FuhCNTNs6STCgV)zD>4Uh zWiJCQ%8-$b2IHD%bkKZIrV&HqAH)nIPL645;#eY#K==1s+^(Nkqc(zkKF7sv8@$$cu&_}+mb@kx}+4sRG(+xkr|DLvVO9S{3^2FgTZq294_P@hKl8yF2sj6lmOn(rkeMo>+v+pn4~&vKq8>(OWl({vE=t+F^hbkuJs9K@NuWeG5)?rcFb;*5HC z1hzp>2O=huvTc8qS6PN3oglS{_k`3gIso2gP3vmN<+HhWwAp*qC_nZMqJFx<| zHyl4SPN9Gc%?A17@I2YE9_%-ACg8L3zW9xXsW=J*du^~Oy)ZJA0aR?j#c*N)MzUe9 zYi}>dBNUph#jeEp@-w2vRYLk2JYOn@?=OVerE=l8WHX zpYbd?Hr)nc`{WbXv?AEihU1N-BAE0So-0ZIxDj{p3L~xvlH0LI4qlJrLUX|C4qPKa zkZ2{}D-5wLh0Rf9w!+Z0oM^IKVF;}la$TfEVQ3l`S{V2eNR?#x;WcT*3Qxw8IEAKn zDU3x5P1Cs0LgDyivQ$AnH7NflLomcq?pNRe7leCBfs3m4!_0+byu#HqF0?R6SwYq) zaA~BkBAXPrZmi2D1E6*qNkdSvmTXf-DDB1#-E^6a2X5hUy6+jo$<6B z_NZSeect*U7RS5m*bkqSGCU|2Vi}cT*oMs2*GS*PJJK*&udtdQ)yr9m_@<1(u-v88#Sk-6mc7mVGIc88rM{{!0I3`zh1 diff --git a/v0.13.1/.doctrees/api/datasets/entity_linking.doctree b/v0.13.1/.doctrees/api/datasets/entity_linking.doctree index b1be6ec641c8f54c80e4f9158b592379252c7209..3a9589af6efc539348de71b601cc8b25d14490d7 100644 GIT binary patch delta 1592 zcmZ{kZAep57{@v1x;b^z<~Co}*6dTm66S|23?wLJ1br}~7cDhQ5Y%O&SrZ+lwz&$! zOPxSOOb8*U$q61w2nhsHsKBUimCA&O%DzMeQRiOeo_mk^@%;YJ`9E*x-rhA^@0u-f z6X_3P>-aY2H`@;07fBf8Q>Bf$oX7+E>t(GaV-pN@y#WEe?G zmxsHt7+I}zu6v2sNhhOYVtr3W&Ev~sR?Ta@4n}F)V?Q@s$C2r5#Z?ZBPtebk>D*bB zX=FOfEf^&h&2-1xXF}_;f*Y64i~fnl6gjb+CWnLBa`U^dv_9FGy2(%tq36Er5?Ue8 zJ;)4ssmLv4TNhr~kxj^_2u`IT(riKf@Yjj<3h97FbUF+r#7OG_WP9jlj4IBJsQZ>t`n8{f1oA49$>61#}INGc5cHLju=>&)V5$dnLt84kAomE?_4#0d{8#t*XNId0Z@50Tb>DOmQiYyMtM>2(%$$;r3M#N` QmHd~*UTp`Q?T{Yge`XLaXaE2J delta 1592 zcmZ{kZAep57{@v1dgs(lo7;R@TeD9MOPGWZ1`?Dqf<740iKmUmxieX=Qao1qdyFMip_wL+e| zkqPork&DZ=DZH>DE0<3e9CAaX#f3~Ia+6^VdNa!#UVbPCrjCo?f1TIA! zvdWOhxXw6X%mRxQ$m29P4@3Ms8WmLr>;ZW))uTM)ID8Bt(PU(VF(=&VMANqIf=KSg zShlqR^etsawPO$+(TbEm3R3$3*`eYgN@z>gc=Qpf_NZ<$hq^g*R2!ZW%1|yGT0rM? zZQ6dJ2;{v-1G(yTqA=eNw4$vC80*S0gxrO_yYQvs1{Nl@t=I;6)p%alI=dSNCKPF3 zy_`b{wvf6Y&LGVrxB$xAaM_L_;J$*B#=^s7qYszlh#f`>6gvrY#?0{y#u57MVMcBQFi#aP`!hMd(E(KC|APbgeu!tc46@Kkd{owl= zKA;^5JNClFPi)b-FxCU5zws@O5ymWv^JEgc5On>)XY`Bm34KuG5T0lg0-H}5(z&o> z1PTj1)C(PD9S6x|@T zlAC`^gkurCELCZMZUX=04PHE(&wFp-M3w2!;oSTsG)WXw^muj-6S}C#=Jk2a!kD7# unkE||i>7W~x7AJvRV4C+1H!z`3r}qqK$b7weEBxN91)C(PD9S6x|@T zlAC`^gkurCELCZMZUX=04PHE(&wFp-M3w2!;oSTsG)WXw^muj-6S}C#=Jk2a!kD7# unkE||i>7W~x7AJvRV4C+1H!z`3r}qqK$b7weEBxN9s3Ade~n)GfYwrIHyRx^A9HX7Zco8gAi0mH6PnHhF<7 z>*n`X5?mNEn-{ohp&9?dLuhio`#Th+n?HE;pt<&g2m5555c$b-4Fx9O=+E4|E-Z;1 zS*J&l7H+s3Ade~n)GfYwrIHyRx^A9HX7Zco8gAi0mH6PnHhF<7 z>*n`X5?mNEn-{ohp&9?dLuhio`#Th+n?HE;pt<&g2m5555c$b-4Fx9O=+E4|E-Z;1 zS*J&l7H+rF+iJy=T93`Sa{=_xIb~Z@=$5 z=j>eHf9LxCZT)vG$S7@8I01>|WIiBL zbom>RaMmBf%W1 z`{Yuu$mAc}wL~cL$)yecEIV40@YmG91WR;>ZX*I={2?pQ>FZAvc%xc-@T)Suh=>KG;?xSw>8BAy8(~vmDXIL7z@sSB&A~bfOL`dFIH+7`ue}5PL}=SOXPCQ|3VrN^u%4;(eI?5 zta8T&{ZC0D7&cJPhMgy*AAJD?Zn#>sL2(-ONYu58}k^N3TNt-HMnhrJWv;ffJjsE z$q#O>ZV=U;$4xbII&0dH~QgJ4rXDDbHcbLHS1}sjq@Ru|4ICfJIupH)eS5!Q!DxD(pawLE;BRMyTr1gzCN;8{Y@>q@2;e0iF3 z3%h(>bV8XDg2JA5Hm-bHxs&zUO^wh8S!!cDs8ts+V9w`#= zWvaIe-0aUAY7l$aD&P4Ya4f7Au=R)m7IbE)Cfqtu&x6Am>Su|ZQ4cKYsrF%q8pT&Z z$8a?TvkKJ$uL7r$RY*V~Dpu=Bgsy0kKCU>1@@6J{WMM>s|E9R+{>=YWiPOZV$m#Y$=0LM0J zt*UxzNPZ7-(sk;39P@Yekhi>$vR_>RW&c!F+#OM`XC*iQ642A*bDTFsSG#SGdW*-5 z1XQy(I(n?aen(Y}-H472$d-f$&#D7OQWr4rrSs}`R#7a%00KgI;b(Op>w$}I&((Ci zzq@vc9UC5SB1^m3CxjHS)vrOeFkZS*EASl_*f3I?&PLKbA~xTteZkZMn*Jo~-m)3IZomd|D~ z23RnnN(|SbkBg!nOYFGe5-YbFP7?4;NR_9 zu`dBH;8eW=IPr*f2fO7ci&`A?lXh8L#9I7V(U~@q->YIOFE~{t<3om?p6N-tx5~@` zy4jeopJSYH``Ub6#ia#$CS!BKmO?#@^eU+N03=`~Qy4qcE{E1hx{hbZ>RD`6JYf9< zJ(sb>fYj(4&B8zFEndP7h(uS;n&RfuR;pXk%jNEcdW3C~IEpn(^vg^q1{hGbRJY;k za--`sYpT@w+nMNxYijgk><9`J8_zUu(lgn`>zLMV(v$Gb9YWu_>;_KSsfSr2F*}ew z2wCMuGUh~dE6b~zJSt&#$WXEAQ~hhUP9D(rYrO~Gb+HHtoutN0aNd|Mbm$XVW8$%{ z3!Xcro9qaQp=Lvk@rqbnB~mH_#RA;)3>e=85GlLjs=n{vqI}yNr!qYCw<6QQK$qU}0o?7W%iu8gzKS zvELJOKqPP)J96BBrjte*-ujJkfqe+N&IEjv;t?Fx%?jA9nJV_YWb|UGH~mVrC^#eGc^&*hnX^LoIGeN4W2;{X)(GcS7S3HBg#6za***T~WW zvzZ;@BkwU+!5^$Og0NGaH-bc(? zqTdSqaGH4^o9#W{nPre%ZU&*mkf)+qYL+n;2Sq~p7)2v$&2aR^xGh)Pi1RDV6mO~^ z8dhtLVSRPOE;pDuo_^Il;nM&Y_;bX}VDsv-5b&9g*>MizW4p~kB7Fr8IBb3=GFRZ{ z<0gBbLn8ehn-qGi!`Hqy?+~dLLro7$gU+y};@?c`8<8}MBB8!?7bAro6w`H`)9{x( z%a?8$wBBuLxcgSimva;V0#qC_+Di7fgu+@y4L2eU2j6eqBGyp`vlm!F$QW!)#c8vw zgry}kVQFVqSYh`U6Szxz=qW2@=pP$bmXuqXh{jaG1zl&r{f<2TQd7 E0|-lmkN^Mx delta 6186 zcmZu#d306f5kK$l%gYNPc?n?5rcsKrM{!|QdT=WVJzA7Pp@LzrSS5gBgMmbYBmn{p zCju4}L5>CSnT!Hy0FNFp5@V4bTp|I{1F{4wQtLtK-23w0o$o&Wyz`s+{buHy@B8k( zJJ*E3z|iNft~CSLUYG=47gok=n>`0usr|d`P6| z^fw~mtf`Xd|5onKuA*gSZeC<;!IW!6Ywd+*wRXXDJ5pG*v0EY(SulOKkJ*WcG|nnZ zPxP*BoRt>&a`CA_2~Z03Y7b0_H163E60yjI=2rWJT=FUKhZ>f+X=J!Zs zxeoh|3oO4)0IJ}ptiTj}r#2Aq76oYr&WNSI0BwT)(p)p{;tc*mXnjgDvGq|YEY=nUfB+Te z{Z%@`5_iIo!s>j>>`+;-ty~IY(n87bx*Hd=U>Zohv9(&VjKnl7By`F3B7k%DNbj+F z-JHqR6OZkeR$rwU3od*prDFJybcyvZR%$2u#=oQvmi-fp8?6 za>oY!zLP>QWT2i6J5NbJ`T_{taII*AqIB7Wu7ix}_@N=c%Tjjf92C=2<$S*m0pY05 z|I*|`A}12q#s=PHnlwZ*0d2TBC}V-b!T zs_=qb+bzSDBC(c5aO{3188b&K7e(1lV9PkAmsphxBw_IcrH*Y0hu)z|0s=z#%2efc zcKN#K_);YV1>NmzT=A@OH|w>V8lexf)W)<^tJ>dIG}y6G(cw`;o`&yMDa}k$biv%U z%JnQ$0o7p9D#q$!vy2XC&wUcry$!G#Mrv@>HCU%Au>Ik&GwzDK}gt zgCywKuh`L@I_iC;t=CJ=0U^BjvwDE_z(u#`YC1mH zRlCfN4G%b#rQPBaLWsjkm}1DqxZwBNXRHw}S~y!X@bpBj7wfnOY@4B_v&3Buia6_a9AeJt*gjXwXEPZC zEEra)1##O_?bWM4Q- zmw*@WU7Z3r;h1(8yX7d08oc!>m6-!{ zvmswU&p6}uHTk-VOZw}XjLij`3-mD3tDxoskbo6TVa#B=3|c1YI-VP&XR%fBfOX^b zT*eXuQloD)3;v`xdkH%r5?vWXQCgjuGUYmBPdX0JlC*E&tw;`V_LIGPr|o$2z~3c8#r;N9%hNe>_GM) zWR)4om=n>hEU#+vsDQm8L&e5V^sm@Dc|f19^lp6D#Udbdni@0Sd1JcRu1{c%iO0Gw zc>X)xWJgF0HS4R5SHdt5o;K3(j<1c2>_gCXCg8&qkKnj&mcw4nRI&SIqX$dH0gwRpF^6QE z$1SLOCKF{Qv*8|q~Hu>g_15nu4yyT@P*n`kspeILPBTM?5 zP3#aKai6&gR&SNF@xndkyl{?hNCaWt-0DpoL6q9cvA(@ zuo`nT>#G}frQX!>%xmT;p9Z+VpCe`ln^%{GfKPqQj&m3v-)r6~(wF0aqvp3Fb2)B4 zX|ne@B+}opNukGDeEoa#E|F>xRClv9=m=XX{>`+$7D=Nh66#BL5mMM;Fk-~oUH<4_aSaZtS&otakoZa0v z>rdD++q7{zmSoue(*P-8J==IO=Wz6eC2v-$gnV*|1UU1}IS)ULn@57<}OP3o$*PPYv_JJX)SG#D_?Hd%*afCjtEYzwQN zwhLLWeCSh4?9JE3Pd&`tYQM=g7(K4Q84){=)sfp^uZ`ZAeFvy26xG`YS$ug8En>r#oGS? D4;Gkc diff --git a/v0.13.1/.doctrees/api/datasets/text_image.doctree b/v0.13.1/.doctrees/api/datasets/text_image.doctree index 4913487be827b1f6f454f430c78e299b3ed4d42c..f1716befc799df3a570a26ffa654d5197a4e5493 100644 GIT binary patch delta 141 zcmaD5_8@FSAtOhHp}AR!SxL!cKUS^Hiy0@Ph%{{8!`y`s+3d&qi3?dr`Q!vi_RYrx gwAe94%Osv7bOKEWsTJG&NvfU?S#9p-XPQ-v09{Hi+W-In delta 141 zcmaD5_8@FSAtQ%zMRJyDfkFOcKUS^Hiy0@Ph%{{8!`y`s+3d&qi3?dr`Q!vi_RYrx gwAe94%Osv7bOKEWsTJG&NvfU?S#9p-XPQ-v0E$#FX8-^I diff --git a/v0.13.1/.doctrees/api/datasets/text_text.doctree b/v0.13.1/.doctrees/api/datasets/text_text.doctree index 158d97f407133c8f52b56cccbac47c22bd4e9686..6bf85d5ded851a760dea926b2cf770ab186da427 100644 GIT binary patch delta 1545 zcmZ`(O-NK>6y;uj#*A zA+8}iFV~an@yJqhhSCphQK3kK?8=E%?#7TU9Q~GDhI-VXOgU05VW>RiFe|>@E|b70 zuAE_GC{iuk4kRg6g>S6k==0+a;jL?WktUH4w*^pMXKR-_e@#KknJ>MIo7BpX~D|sV^}p zCCbS5@Lt8|Kes;&wo;uLTI><e$V!fD~am+xUP9cg8 z-0VRGn%TQdzVgmW)U7SV~T$A$w}P7zE9wi_!q7llecp6`cr;Vv34SYnaCcqDIHCtLh2Nlj^zK9dYr?o%eZ>fc?{6ahH gt4A-rSj9uyLe+}y*HH=7g;BC_#Lv>z#Hca+1G=9br~m)} delta 1545 zcmZ`(T}TvR6y@IaZ*BilbK59WVj;C;BbE|M3!)Ii5C!QWg@PVT(OKP8g4_tf2Tf&^ z4^k|VUd$+*@J93}saO~+X;B&W5K4lTL1C?-edAKI-|Y5!&b{}1=iHe)J7}66G~KC! zxV`mf%H7qjDp_jEQ2L}@8dDV>E0k!iWzAH{mxz^oiAvZaO2 zZB%A!lZCf7DiH}f0m1@k;Y>$9nbV66SjFmmi0n55$A`9#QnoftaNfG*aUAZd)K2Qa{ z+FID2-6+vW1FUTPR~y9KEfBATwT>}cE7#7M!&I7Yg{(*{b+F>))5>Nv-VJBzFy43I2KEvP9cg8 zJnTU!n%TQdzVePT)U7HY4o#lFBO z8e%9ff9k6BL1|(wAT3#NE)DUC6$zvXSRaW^HO)nBw4sFe0<{MUlEj6Q+g$df-eYgA^onDvzVVo6;yYQ@8`2YY zMBrJHqUcoAvO|`S=jGFz#nHxPTDZ6+LRO`6+RluH?XGq&|1d~%L|w-UO?-7rEZQ2> z4opSE_GD*3_;zg6v`EEd=hH5oWgqPFis84>x!HV62M%`C8@jRHEb;zF&$)HBr0*T5 zb7|XnZ;;Lx-Jm%trlLbGk!A1x+9&QGT4xwU%6}-KLD6z@I#v0U8EY25eW!~hIsJX9 zW;8R_AwC%2pbU!4*ePva##KJ;&WI(JT&!|yfDjT^Mr=F=zf%G}6`q(DuUrg3(V#zqNWZ?IZBE#|W zf&|Bx7Lpo6l~PJJD~mEbjwp?1_n-?kW#p1_!P#6`OMFi0!G&6)J?ZQw9DkBL?7oEm z(m=eheIuziZgO}iM2Zdl?lzLbm*mr&H|NnLsA(sK#z857xm(CG_dz)KDrs~}0d|l_ z-6}rD@$}1Yk+p7VoUeZ;!JYIzj9LCosO%-i=LFn*%xxb=jwL+$Adm{Tid#ciGJ8%C zy^LjbAvYe0?>me6D?XQyKZoBrLRJ~3N5|3hm0uG~BY)hG2F?>7M9-U2E;-N6ph5U& znp|`j0o2WqR(I~8g3xMZ8jhsVai!q6YzM6B5+%WciSW;Eq8_`bWBw=e=yD~OTYy_y z8S%(w8ito{r`q$zS^XWZ46|pGCto16H1)MrQ`(YqUFY)WJ1B(*|Wx z4o3K6l&;iN(qP&I^}xUcHHKQ8+kaB6hwv{hVfw57b)_HK31w22as;k;nC73uI5H1R zc$ra+(4WoB4vQ!a`sOgLaRA9>`W(Pzt9`Vq8sJu@eLs#o0=L}Dv}DIwY97-*AihZ$ zekx?{2_5E$Qen7=J)$CV@@AJY?PoctrNS_1!9!1(p}^g1*lNv|EOlz>$#JS97G~Nz z!-HE`Og$XOWd|I1At7^Cryiy>#1VO+b{Erzom2cUw~J}D5NDU)Wm;zhoR)fqad~yp rdJZvd%*i5%KwFeGX)a2}k)`qor9AulWRg*rF+W;S*VQ1O@5mo`b delta 2736 zcmZXVYiv|S6vs0&t=ru`wl%hb5oyrIi1@@3Y5Y)2rBKD%=N6Otph}^od+(xPUtkms zF%%H5I%<7Tnpg`+O9nifhWNya1kwbokHn^$W}`OR&_awNp`N)*I&)_~&Tsy6=A1KU z&Y9U4oY@x~ut>_{mioqg`%cS=VSc*vhXoq@t6alZ5xk3FgPIa{mz;^?YxeCC<>PIgUWM#7E= zK21^-or+pc*b49^1@uO7qCsuvfiAxoejA;e&9`*mKv#pI8|%#$?|<}+SLaCj-u`-z zwvG3O=zP%)nxkSWI^+>q&hD=R;@+WkhC!tKhf*36EhnZ^l}}l*P2#ujbg?9-zAw{^ zX2m+h2jh*(pva1y)b?du71Q2~SR(&IwO0d#5L+2>@EH6~2?Ufkh&ZA&Sdc-EC3`qj zUqiyi>4F@h`3ZX#kTIp;xNPOuX3`oc$s?00W?tUMHbVbhWW6Sqj3Y}1zL*pnj#m^W zIKH%q)EcUkGO}4&l;Lqi={%a7z!)*AeYWXE)*4bO%Uc8lR&l_hAw^8$bcP*uU!16K6&E?nMm!LmYO4H!471VqQ}sBAw37lo9I(28-VO9O@bZ5hJ)Ma zCMA(w!{*4+;;rMqm+2+%lkwp_cv;J9W{fW9***Bq(bwtU#-X$xJak7lH9iU;uTUPj z@s0FTv(XJ6rh22x`jn1pF5|KV!k<%pw8`$XXqaZg%G1>7%z%82b|;QHxaw!xq%6w8 z2!D*ym6}Q#OrM}W7?_~OP>XZtPpb70{>4R1fAznf^dmd2Ov+M@z-1rP{Bs#c=7R}8 zGpZ5#bC}s-5v4=l9Huo6AbCum1GsE;j&#)k+|0D^$B{?irhAx{>^MtZ!n6;FZ(_qw zMa(;)ZH_1vhKt!lDk3*;PC3(lmWx^{4TBau@Pru(+`Wda)@;dArn}r)7}~G z-@;<*;W#ckVE^+8nX@|eFr^`m$Pab9m^SR(;)l6iOsj=ByYw#8IwRn;)H96BE0flD qkZEI17C{8sqU>4CMaej_RQ_Wr4#pFMY~$5x(ns=|;N#Qm4ErCOX$!mn diff --git a/v0.13.1/.doctrees/api/embeddings/base.doctree b/v0.13.1/.doctrees/api/embeddings/base.doctree index 712feb9bedc583d2baca4958e63e740fd8075ab8..792b35388ffe6f72c9acdcc76d76756e773fc929 100644 GIT binary patch delta 993 zcmX?ej^)fbmJOMV92JJFm+`QL_hYN1P=8HB@QEceh>}4;EWua`KXNfz8dav(fadPUYRa zB;6cM^mjh@=J-NaZWL2C%hpPF%E zD&4F%cM(ePg4Iseo6EO3bg=|4hAESuY&eM_xLIY>96?M`^CKZherUW?v6=fc6Ov^h zk=_d$NZ}3?ncRDUW3%lQ4JL$njdz+hzrWUn(7Czs4sx<>yi+;3;UU}f2P}-9n^hmb zLNTy%^MvQF2(6PR{wtlF@Qrn{z-hnDOW&?UNFm+`QL_hYN1P=8HB@QEceh>}4;EWua`KXNfz8dav(fadPUYRa zB;6cM^mjh@=J-NaZWL2C%hpPF%E zD&4F%cM(ePg4Iseo6EO3bg=|4hAESuY&eM_xLIY>96?M`^CKZherUW?v6=fc6Ov^h zk=_d$NZ}3?ncRDUW3%lQ4JL$njdz+hzrWUn(7Czs4sx<>yi+;3;UU}f2P}-9n^hmb zLNTy%^MvQF2(6PR{wtlF@Qrn{z-hnDOW&?UN1_+ZWIpYx88d=lWYAzf0yzh(myw7|5`F=m2=kt7? z&-eR2&&0HQV%i;Rgp8d<#jBcDH8pAR%7^&Zuz#Ml@`+aFckltnxL2w2GXGhHSE7B9 z>*bpQ1sPUeRI6F;VWA*;v|Z`1@xAwzyA_z%EI*#7RJ4|GHt%`bk)Evbc;&-3QSavY z?2R6LiVs(>O-mAm|0p}X6<^>pukLUp%j~0Gct;C0dbMjKTln+aUU#NKyu4u{rj!G0 zSrC2NhT4z$-nX))qdSTLUiAJ~IVsDscum_G8IH*=?aX1pGw5N17a^zxI`WM#?rnF< z2H2Pd9by`8dqNv~RPllx#HRDIW%Wf!aO_3@6uxXnKsUjkYD+Q?>`zF8k0 z%d<5?uluxtgv;m#KX7%CZJ#88KRH#iKs~I1vDzNo$amk`WowEK2DG6Wr_mI4J00#Z zx}tg8*R?N&{!}TGtv80Q0N962*YmSq(&4Anm3}I5!iKq=vz8pl)W*73(<=*LVvbOJ zY-29CS$_pSPX5JEVQT`3U88dfpDqF?yPk>9P-xw-(=RkJ|s5R9oYL|E66JHc%|2Gw@G7@rNkEe2CEcoG-Jv`vX_e-8&N>;D>t zJ*;2|9NLYMD%$xYSHVT` z1XNja6}q#)x0CR$JOndwOB@ z1egFEG}?yq?pIL~Kihs85eX^l?CQ$Y636qFkr6fdE0XvXSIPu+D+Wkc`fynG+O(KB zk9o|~1%<465HHz`2=Fr*j=A9aMe*|M6IT8+_RBFb!4D>Ib~t~X#24koO;7xd_on?1 D#y>l7 delta 2208 zcmZuye@v8R9N+gV=W%!3aT2E;NL;lgrFp1pwy;5l%~HQx^(vDmfI)h#|a1laUu)V>By9fK*doa0*M>LQ^v(Lv zXuhoxdfl(}C*4Lj`2MR4Z2P1L{K?6hdFo*ejMaAI2EOaoPFquSFsKbqyNsr=+fKO0 z=!)iRd#Y_Q^rcIgY`rmb1;9RJx?X_&;)I{lR|crW1?y*X&YE)}OB?N4MX$_*@mWIg zvkiIRVSN?&I0Y6$g{=uBc8$#{e0mwU*!3)2N0DNfR@>0R+PC3mTD}ra&R5*F(EAZM zs`emC$1A}VPJ_7U~w;06lJM)8H*N@4YhWth4B%0R|7M!*4Q-crSkeG1YOD zMK0jomq~(RkDSRT?IEK zl2B#IRp`zD-%h}L@(|1bTK^CeaIOMN>7PI0gk^9HG<*}hTC%HzcK-{%$)zOB{cbtG z!R_~;n{H&`Wf_9FZ?{v~U05fV8l_MHZk6++m)Ncq_<;Ttka!ASmeN+tPb-V?f;*L> zAtlx=lBpT=hLQCuzKQwhc#9eWJ(XW7uW~3Zf?URIjLhY9V7wnl@aN+C@cO9Gik6H>-`GZ z1egFEG}4N5?pIL~KifVT5eX^l?CQ$YoWS#zkr6fdE0XvXm&*ioD+WkcdT~hh+O(KF zkNM2o2}P`F0592$2=H?mj=A9aMKmX@{AcWwV`73Ij^oU5{yKp#%8Q$x_#5xd_#ZoK BLOcKf diff --git a/v0.13.1/.doctrees/api/embeddings/image.doctree b/v0.13.1/.doctrees/api/embeddings/image.doctree index d350491e9dd863e06337e623aaa266aed776226e..93ee05c90d3cb4065e9c0639c7e3c6a38c9578b5 100644 GIT binary patch delta 997 zcmex-f%)?V<_+1592JJ@kWI;)++ZWU*~|GTicf*+T=$@u znK@Y?P+{_fV$R7m(-by;^E5$K50~9n;JTU9M+MCefk2JT$AT=_(QI}VpPXR9wRu8R z9f~V6Cg0DM+B_rS4~i)eQMruEC^mycr6@QJMndRjiMBA5c*~d!l99{c*!-t|Kbp-O=8D5z zJaJMGnu|Bg1&8zInrXop`XDg?3gfjiwqilL;#jL9$=<9(4RF$|G$2@kWI;)++ZWU*~|GTicf*+T=$@u znK@Y?P+{_fV$R7m(-by;^E5$K50~9n;JTU9M+MCefk2JT$AT=_(QI}VpPXR9wRu8R z9f~V6Cg0DM+B_rS4~i)eQMruEC^mycr6@QJMndRjiMBA5c*~d!l99{c*!-t|Kbp-O=8D5z zJaJMGnu|Bg1&8zInrXop`XDg?3gfjiwqilL;#jL9$=<9(4RF$|G$2yD?#kdP&ux*pfB5!G?dbfE?@O2`5xH7t3ryGrz$`V6uZd$7F>woYM<@85K6) zP|(IO0HGw#pV4*mZ6#4QRGUF|{IlShq`|VeQFA&gHc9TyOY}Ell@Z$f!t^o=x*nOy zp4LZE1UEO>B(S510R0AX8vkV9dtsZ8yU1fPUfzdubAeYkicJ0FrCWkFUkUigg=|{W zX8#y1gx5DW#`>UyZ`EXnEWYV{%#6I7vl2o$k+oKBcF3A8g(5Oppq&jE_-c$rH~mhldNQGO*7j z&c`AA2XnwZG#wwVh;NR+7K%tYFoP5}``ufFsh@wc%`?u)1zz5p&px?{D&4SI@3n~t ziunzjU;Xbxq!W0Y&%fwhdL71mQe`F+{7@(w#j-Axj~6|yOA@aFOnQk zXXE7BwOo^Dtn=C)yD?#kdP&ux*pfB5!G?dbfE?@O2`5xH7t3ryGrz$`V6uZd$7F>woYM<@85K6) zP|(IO0HGw#pV4*mZ6#4QRGUF|{IlShq`|VeQFA&gHc9TyOY}Ell@Z$f!t^o=x*nOy zp4LZE1UEO>B(S510R0AX8vkV9dtsZ8yU1fPUfzdubAeYkicJ0FrCWkFUkUigg=|{W zX8#y1gx5DW#`>UyZ`EXnEWYV{%#6I7vl2o$k+oKBcF3A8g(5Oppq&jE_-c$rH~mhldNQGO*7j z&c`AA2XnwZG#wwVh;NR+7K%tYFoP5}``ufFsh@wc%`?u)1zz5p&px?{D&4SI@3n~t ziunzjU;Xbxq!W0Y&%fwhdL71mQe`F+{7@(w#j-Axj~6|yOA@aFOnQk zXXE7BwOo^Dtn=C)%zyWjW8-g|fb^EglIro0Y zzE3{(eR5rq<}AHql!Kotsi(~X!-#Fu|dG{$5tkA1Uew9@#jI%F(=8`3^=xYNp#+YEM zlHUrbXe9lOJ+GznYmS26*f7e24IEGRuyG)3w1WGr!rLmdXSi;?>59kJn=1i(Ktnl{}boOv=*+s0O82KT+GIW>t#+PSIZOt~gi# z7iMeQRS|j%wLudUnI9?|v^eM($TG1%YI8-iATQUs$RcI!9WL#{_U;9(hDMQA@eWUazVHo6Qw!yXlszO7ic)C?&TJx`ktp}jU0c=wOwK%{4$ zOq_Lt;E_XQreu5OAMz4}rgF2?-^tt3D0Bf1%sNGOiE{uB1R!{tST_N-bP$iI4RUab z>U{~eTp-m_l`Q+Mjl{D(mQITFYsyzOum^BxJRK+}(Tgs}lOF05r-a$PD5!)3_;@PK zmdtpp3aD*nIr!`#x?k|Lli@b6xVeK`h;sPt3;u2PO$i|Lc9 z&vM|hYXf}pc{*Im#Iyjuw38sk$C4mFOUpsm0{WFSot8@eB6?7b4P2A}ukU1|@$AcV zL!?1-6~73qjXGl)Jtk^|6RYWB@o7;u>A8^Kr#X@ruD1}@WUz-ZP(vRP7W_q52%&n; zm=}67ez<|27KbdrKA%wKJ!9LTe;fTt6vtFY?#nMWSC@x=_;n*aA#Up~xf_S>r|U(R zh2>CtfO=NN(iD8{AiZ6UVe)m`3TE#vYo$%%41|ZIHX4UV57V>J3AurT4(PmS z=3rTZU>KEJyUW0dr`)VWl)}_4g?0~fSW9(iGFvKGA_pH7H> z`;nvniX=?$eyAGE;*j@Ud?c{9n&#rJboRaoXTscfWFG=T-`HdJL|`E+k@V6|$pOTZgq zyTeNkd4Q+I`nBWn>mwJ3f5)VSW&v2!%p8K8HF2Hoymzg~i@$}r#BrM-a`3#M)uo>Z z<#}Wd?mfa9qMaq`@A&eu;4dbg)$7rI}Y|0deEQPX=vNA0N&B^gAyYD^Od+)A)zVkaDzjN+6=iYbZ z+tef9rZ$vn&RfbKS&&uc_3K)7hVizxkjj!0y*}qEV~t~0QjAo;Fvn@s^x3HBk1>M% z&-GGuL%yr^+yn8tw>`xen09mg6;Wu`9C5~<8EaEx;qy6tjEvmQxEKVw&S`E~SxCIb z{`_n;tP%3nvRI2SA@R_ZMGK9t;v9#JFETdGP^mAnQuID@uTmsadPp{`&>QB)!=JS* zO|PE!MGRu){m1+yr-}^r$LaOH@y5=waY_ZN^qQxCmQ|~aQ_pdfU&s`64Xye&rEC>?aE;UO*Nj(UT2kF#6K52>+Ngx8FoJ8&s?1?v3n?)2 z)*Vu+SD~-m;DT4~AY+YV8@DOMmcqk8XBsbWIjmAKx<2_`_<-85woqT=a6)G`z28_L zZuLZRwlTBcE`HZvWGBRL?oT3$cEId7!`uFMO03v!wGBtvC>6uZLE1Zlx#>Lsb?MsG zIQKfOuV`Bv;H}5=9l^WFEISU*)P}3f0%mtwDid&oR~s*qw;c=&&;)25ttDc@ZQ3SL zV;jA6r{=`5x!M`g)i&V2Pm71o3$(9Q@?gp_rBEB98kA$>L~VzfRXP4UReP?t;$RV+ zou_S8Md&TjhD}gp0jO%y5}<1+%fZ2@EfCFuyj-WFinRnVB17(4!-mOnJLvWf@0}MWJyf0eVmdxV#r5KTEe!|hRf&# zd^b#7Ql)L8H_$}z4x>5v)K?@!EmQ!~c9Uc%O{dv7r-gJ!qujH{yj7;)?cbCA(VlrS z3DymQhYylDlI_WV$g>ch&dt()C9g}P&;vLy_c+-h&H*?OgwP3M-2~XyMLeQ5$ibV&!Z^o(dQOP9;{N-1*LGP6@*P!6re)_dt_u|bi8fA>@DD=}0`rKbvTl}g;~r?XU_ zmB3|}2l&{NG)v0Fv;e-eQy|U9QlKbT%SYEDx>K4?OQmQDJ)p)0E=q!zwzDyK>N&bL z+Mu1f6RuB9i$Aq#N8$5eUG*ftp0LVpm&G1Za#3W&|s<6#hf*-Vd$+qy^Y#*zEzd!oxC za;V==J*(qs8oqdd-l)bf`MPZdvv-%b(-v_C!b3_2O~Bs{(NnPrxq*WY=)Rsg?Gdm0 ziyn+BN~oI-w70{!Q?yYuvk1T`UT)})GxVn@3f$ad7kt$vS|ohK_5o}ml%+6-y^6Ou zSgs%#L8aF2F>vB>H+x!?!qhE?P7iZfOLb%_ds(nV4o+612Ed=j`q)pAF9$LCDZ-Tl z$kBgA5~lY6)C^|{$onoa8rV}y3vfp!dtZdKEx4D+%AjE;b3@oq)A9UtcAHc*frir9 zJ(&6+J1CK~Q1kJMJ7%-~0>EEN*r!o(%@{89`dO7UXI$@j``Bv&Y`tWmZD$p5!NoU! zVvuc>E?*1yZvk=QeXp?I5>pOTg145%BmZy6y%J#lHo(Oo+lTNPJFNPw#Ea`#g(xI& zcZ;E+nK#LR6CE7DJ>eXbIfj7){ zMV1`$0FR3GYscf)M*(Ji!=!~~0a(|{9DRjFDAW2gyCD+Yzkh}&3cIfMnJ4T&FZcs|LiO)7p)M{2QE*> c?V4kS_|b@fxZC46FRp7YpO0DBIkq_d2QNyO^8f$< diff --git a/v0.13.1/.doctrees/api/embeddings/transformer.doctree b/v0.13.1/.doctrees/api/embeddings/transformer.doctree index 0f6f33dd81e71d9dc3a06889ace70c7ed2a7e2af..4409202a3669247f665f65d91b21223d99b8c346 100644 GIT binary patch delta 2194 zcmZuye@t6d6wbM&SlR-wY$!-(*=CeU7Hwj{Wc(1LEb1mq)KsGtV`ifNjKnJbh;-uI z++<+A-L7U5J9Kl4im;pIB!Uh$CYk8cATx1WNU;l123zC83@Xgq_mulCeSg05o$s9Q zeD~aUPfoc{PPu!U!SRZ(yewE24AMd0ZTv9&Ma+>P_u5CCN`&_16z~>p&5~$kVIi+5 zI^tGx`3og=S&I=q=zH0<_$B%UIj@X4)X25kmDec|dac$;FK=+u>(^`i_(MNus%Yqu z8+hqs-#ldr5|G+d|DzBoY-)7Eh=k2ZG3^j6eN7SxHF7B>2 zsR;MB^MOd8n!_G!05`4s*v?n&v#H6n>9CW1GfGNW5{R32A6&_Dej=M`sEaFY{?E(e z=RPreBKiqPW3QbjH9Yb8LD`sxdy7qW8i`rF{_B33LsQY>V@?)-12*!xfwvVXL}No5 zZ3{fjgTwnxCmin85&p&KpQepTMYUuu)yA^usYo?{^GxHCYALk)7Z+Y5HG))yfICRm--hxeE5%xOQbjc%sd<(Jo3eZ^nYFj?`dthC*`CxRgm_=v7k5|30N?AQ!HFn<$Thk=xvS=w7 zzGKl^s7O!186W&A9b}u{gH{%OA6)d^KqC&_1#_~O1o7b-n3Yx-Kzu#8*rodfbtF=W zH{T0SEUhat3b6PA*ebm;QN{Y^vpx?j!>1mF1JWE*%J{S3!9xLP@+`U|QT(zAwk=hw zi~6b=GFeY2Y`}t7VU09Fa#=J4P89pO%?ic2Rv1%<*+V-5PvUnw;VpU7P?)#F#INas zF#C~$$2hpNd!XDTPe(gGf=m?3c1juwz;7zL{}8m9XyWrjJlz8e@+ZPXEW+YfAkSzt zdK4N|Muc6ShX!2!Eo_pF3|f_q`0?=*utmx-2D{@tRUX zBnf$S{u@-o;WDyM?!4p-R1g;~RFmvmEDGx2XU~!H&FLU+`GFi!4Kq~KofQ?uWAMDH zLV~H6A`3^xNVdgrOwc_j9)kN-!wq_LlH@RP!`ESFf=pO-FPK(7#%}zmNq0ev(x|OaQG-TTOj8s42NF^Ih)}V% zwo-7NZAVjyTh!V{MYfaXCW01PDye8gkeb*wWN{m!6xxjqHKxe-U$}kr&yAT}p)ZX6N%}ZRMh9prC;J z3lDpgT)w5G%9)Dr0pCmR)R*Yj$a!GIp+>G&F26>J(5sa$dTG6fUb{}?#~%JUQ$<@I zy^fbY{=JD4itgsSg1;5YJQ1P(W(UuC?S0d9$vl5^pUs@t&f8l<8EWLnj)+~2T-aT1 zQW1)_^ZszJn!_Hd0S~SE$j(>nv#H6n;gE}cGfGNW0*HrpA6U+^eDrcf*|QB|&_o0%oNZ1`t~ZZg%m0K^+bU z@TU9V$;EX=Mm`ol2wSCBCaPH9Jl5-lCHVAX@ToM%lrp{vym&AO4c?SH62&hYVB2D~ zx~Q+3Ad~fU!g|bq1y)KEB$q{6z=dKzw^^Y$*9v3mFnef6@G1OmC%h?d8Vd7vnD`Z4 z5Mn=4@EQkqW)G|}$QN0iNoC1^E+UA{J(`%aCg{ z8a)CvDkID;%|i_?{T4RLMh30SMr!ei<4`Z>)9=a1UzbbCr(3|)MU=eGfu`m4);oJsf3;hDA4~KSQdvDEj0E|LM~SS4u4zdOJYo5 zcAQB-Mtb$Vge<|1Sva1qOotNl5Vd42GbHV`5r;};{WHXcx4FsNC8-Tf&Z5Veh}&_) z9V9NV&VPeyICK};CwE?Q`u)U>3*{v1W{ZM4_}O!0&E|9v>wh4JRl^JwRcAy+@fbX> zs*qsvrEuc#7|F62jtROK#Y6CbYPdmHYl<9D5;6M z)A|H$lB*sv38S&moZKkw)F zIN#sno_jl3sDp*-XCqH#cFy?ajmv&0bc*(=+$!c?8MKUZI~Q2pYTALBdu|P9pCa_d3;c zg{|`w{$&C$_vC%y)9DM=u{mC=XjG%bE>!Si3<3$K&~thVAre!loX zFlObEvYYX-Co596(Art)<-IFbsWu22=I2%=8e~#rs^0dpu+?9c!oS<}4@b+w{K2=r zaz-gW}`FE$U=u^DwKlyAAF}1j@6U`y^$_5~* zGM|05-|)6(UQ6Ol-G5WVmPrJ5S@ZjotfuY&d&Y-W^U9lT39(ujdKHD?uP!u1^-jh? zrVp)D zLb)m_h;CmsBdROV62(BY&aXxq?PSI4=mTSBuqlEzYJQPV(Q{C~9=)sHYbMzu3k_Eb z5oKR&Lw#!BZB_)2)SzWbX_O7rqWvaw?Lj+C_U!?br%I5qEaNa5%KQgWfL*OeNvv`% zNo2cTqxs-Jf;zRS%EM_DKwQDKN}jDi7)B7v0-LcHUaP{t@tR@63ey>$Hkg6cy@%sq zU^o7cvxH(8SBGa92SMi%?01%5%sK!kvwR=g3fDivUN!Wnw2tH04~tLYKWp!QZLBUx^VO?7~6V(S|=Y`|`;pTw$nU4`0DU;r%Y$YD(MOEmEy-!vVIs zoMyq8UcBFo&FjNmM!y6KLCp=kz)W}h7EXpGcknU8099@>#w^^P38eeTB4q$kU#5DL z4T9AB$V+OIWAhvWefN`i;~+NwA<}B76)3=dFqI@lYrHgyoH5gRA0=ju0)@1wJ&%zK zX4GfniTdq|>Jlgj59X4U##C7OWReOgQ^{fN zoeg3+npBT0bn!X%@XN%*#y^d7VfsR{&S?Z;q)xhL z<&`7(h4;vP#;qv0n{C-myeumL=RoxyQlsg-o6*f0_lfDt`>tg_`K_iU=5g^a#1Hj# zC=^AI(X0eg~qyg4cODDolk5cXaw9ATGVfaThUWw5Rn;U4C zb8a#s$d;a_Zsb%7 delta 4143 zcmZvedr(x@9mnT9c3D_<*~L|9N{uiHu^1Xr6EL7r+ccv|lq$i%inf~6RunCcmefSu zX?%h<$yE=Tgwa@a)Ko-InqLF>N~-PDFk0zM2nmrHG~zTPU^b+ypZD{7 zobT^(&%GTi)WJgavyo?9<-)~}FCVkailk@q^{55wB+MJ>Dvy(F_cc1A=5n4i(yjZ< zwK_sBoW2 zoj>a38GQ78iQN21!#Z7@%;M%-PsQC&trLHb=ii;Vs!#Er|KxK$#MI)pPBw?wvW+;v zkDc#xn)yHr)6$?z^Z4!7%?|P_e!bnR)`+7^y-E`McMdAyg;&<7v}{Tl3R|PP60L^r zWIp>^zu|4oyq?6Hy8otzEt3fBvgY?ESxwym_M8u`;gz@A5@NM5^a={YUtMU3>Ya>( zOdndM#w8hRNJd`ph0s#97q(#@bfltG<6xMVfi^k)O4zMz zM!6~}h;CmqBdROVQpG^D&aXxq?PSGk=mTSBusMP@X?~GU(F;(%0lllg6m@D-m50x4M0cFU6v3fW=ws(WbKu-rRHqn-*aodHGS%A`&<<@-l2x~& zH75H_2TD^6-n@#^v=YQ)F$}qmQnl7e_C`1QuagzRXT9izQpJQ{AscfOC4JbBwi+C+ z-9d*_S3jeyJIBVP=J4-kHhxMnT7W`Sus0RDw;CA5D(Qh zPb4S?VaWZly0~n{)~(0GKwQDKN}jDi7)B7v0$Z>bUai8v^_pSA3ey>$Hkg6cy@%sq zU=RL}vxH(8Ux#NH2SMji?01%5%sK!kvwR=g1~)#!UN!Wnw2l+l4@*wrKWp!QZLBUx^VO>cT)-2qf38eeTB4q$kU#5DL z4T97M$jfSzWAhvWeGig&;~+Nw5z=a?6)3=dFqI@lYrH&)oHf&VA0uXs0)@1wy<^Bl zGwQP^i2Ch{>Jlgj59g9q##C7OWReOgQ^{~rz^}@ zO9s?RNUuYGBoC=OUkaGFfrLQZDyNlB=~}vta3`|Qc0t8%<3t>LF*f3(8Kw&fFy_?A;Y~62#vj@2if=BX{hiDXew{4ZxF_HW@}%kWJkz z%TI%>ERKGw-Wi!UW`xf@^!XIS`uQk29NtNz9nLlsfiQe*Y8RbKu(X_>Fe@EhK|>(=@RHiB=ozxg z=T}od>t07)tldL>>YoS1KTo?c#Aws(2oMoJQWKYp@zOS0sXkv4jemnaWO&ur(sEU- zTycSduyG%K+*onJ6Jg{5y4KmXS#0D#X@E7=(uwf%V^q68?Xsd)82%BBS7J27mIm78 zoSTdYvgK!}8#+(ZPW2whFc7EhQHo=!f{=BAeln;b+)9_I*2x+l{E{Az4eWao2YKx@ bqEg77g|5)Al|YGReM28nO9&C_njiOnaY(u8 diff --git a/v0.13.1/.doctrees/api/flair.datasets.doctree b/v0.13.1/.doctrees/api/flair.datasets.doctree index dd3c5e867d6e4abc8fd82e7ef98221264c336fcb..e38201b231157246042a5d69fa14c2e84c3c1c09 100644 GIT binary patch delta 21 ccmdlXu|r}*G$Tiap}AR!SxL#}WX7vp08xtvQvd(} delta 21 ccmdlXu|r}*G$V&`MRJyDfkFP}WX7vp08;4(X8-^I diff --git a/v0.13.1/.doctrees/api/flair.doctree b/v0.13.1/.doctrees/api/flair.doctree index bfcb79b57870369cf3949aec89c7ea63d6c38a60..99c2b8fdcba23bf2ae793cd9d7eef5bc066328e2 100644 GIT binary patch delta 175 zcmdnf#ki-7af2r#M}?ueS&3Om$>u=D940t#@H!HGKaKJ@3FXTz&g7ZLX zHb;tcvZ0FXl-zw--0p9gH AYybcN delta 175 zcmdnf#ki-7af2r#hjB%6mT7@O{^mf&940t#@H!HGKaKJ@3FXTz&g7ZLX zHb;tcvZ0FXl-zw--0VIMv AAOHXW diff --git a/v0.13.1/.doctrees/api/flair.embeddings.doctree b/v0.13.1/.doctrees/api/flair.embeddings.doctree index 56abcb68c70a5574285e6ecd5ac4467538938511..9b19a3458b38c5074ec412e200056415447a1801 100644 GIT binary patch delta 21 ccmZ20zE*rgJR?Vip}AR!SxL#}bVfHW08ZZqv;Y7A delta 21 ccmZ20zE*rgJR^s3MRJyDfkFP}bVfHW08l*!$N&HU diff --git a/v0.13.1/.doctrees/api/flair.models.doctree b/v0.13.1/.doctrees/api/flair.models.doctree index 1c6febdbf1fe5e526d759063715f059347f5d1e7..02946774459a447fe85a7335bd9221393eb88744 100644 GIT binary patch delta 7556 zcmaJ`d0Z4%68_Ch_w>y%sGz8zMpvVP#)yd*C7ev6}(T-;1QLG=I}rRI!gUK z!MG8RsAMOx5>Lz~##PrNc*VFLIZQ~D;2QIbiHZAq#_9LE8TZer@2je>>eYMwx@TEM z+_H+eis3eKZpSWhd2xAp?xVjy?OA4vcd(W&?#iaaJQ@7Xpt{zQdOrl?hbz!Jylx{aIE(tcj-Hdd(PnycmHzD6JKubY=OJ_0~Hn?P&Lnx-7b-J zEbvr+@IWwGd`XUqp4o@@n;KEzuKl>4=hP?1%@K%|^F*Kam;@EL%RYCxr&V1xhbBhP z_475RuIp8)o~*08E!Lcy^*y`3o@+^#Qyc8re>>U4ecgTMuIAZ#uL0$Hj{Y8J;uPRQ zyRD6>PbJiomJocOSWa^vI>BZMGU%OyJjK#fCaZ~ErSi=zVJ;R z+63(Ii*2060|~(F9z%-@N>8d2vCMA2K=+MLJxP8?vV@-+Y?pCCsQoNGOnjldz_n<5 zeiN%l54(ajJ?;Or2!g3P(B}pF7-msAzG{CPMyzx6!qwUK1u_lg1^$>zx=}gJ?zR9( zfOa%I67oDcJV1U{;Fu-$6%9@CX2Rxeb{AxBwFf~l?})b^)`<90RK%JS_EpT98z>Urp0px8 zrPnQE-xv1oTHRzBC0~#c{PC7Ogl+=EDF#kow1>h-!4ZU{(7xsxy>WdMB$R#3gd16* zeVF5MwJ&OpRsrhCfE$qx6=Rz?k^=_NQHak{MC{z$v6Y!BJqMC@IT{403Z|twH0a() z)3CTudDezueHUHh~XBhNd=3=0ql)V5qORBb0Kac#VF zIIe5W^{|KlJ&>1&%VM~j%og*f8HXV~xnicn1^@(z#H>WFmOjqFkIn=xlY3BC)J&`x z$<;7B*6;8d2$@_Id?xbsA?hWfyP%BYA$l<?_NH*mhp=UM7T0=&b_J(Dbwm*JZ`Toi6; z$aiNpr$NDjNPbNpYoeWw&T#lP=faJn`82B=8F3#91P$^%zbdo&#q`PR8xG1lIe`zw zFDLO2t^GDAI4YOFXhq37XTzR+J{UILS4uE{4xbiaZnL4{O`d~-D7iUqe3S2NmFtb7 zQ`~oE#A5kU{weFa5ETME+ReM50{Itk^4olsHIIdI^*w%`Rjolm66L5`x1}`4Fl_oM zf5AG|MgUz#q~3oKbHC?DS_=xm1HudUt;G5t_%!Be>s@G*M-mp-@EQL%Xc7>L0FzG3 z?eI`7-`>0j7T|Qrxx-xk0^AVneBT^2AHpZd8fg0CqbAfDZ=PB&8iF4;a2{cfXCgNn z{%q@vMkU6%+gwLJoQZSRgSP#h8jgI%dE0^_K|f^Ed0nb?{l*G_nzsd-B`0q|-k;SjYUvHclNm6CWxRNR{? z++voDjXT4XgFYuaLBB$2nqTvvuw@o3TrWXmQYR`3%U)6 zEdm$J7v?ehkN|7oY@wjwrlmp)CNc#ktQ0)vHWk6(U8Jl->12*hY!Fs3&wH<29mSvD z6@F}C>P9g%x+sK|FFz+Rry_Ci*|GCwVI*_Y@dCv)LOqQCUT`q0O@W$fp)J#YB6$|W zBR{u5Wro%r=id`HGNtJnanG;9Ul_7(17ZupdA|v^XsUZgW3dDqMvBRljKmgB&r9;M z)CFp$i^;x=^oTfd54|rNAg=8t4y7WfeO8iqj>h)eheA=ZD3+v%yzi{2?I)Vw|GX)E ztbHlsEqaymM~Hz>(9$p=M7crB>3z&rj`z zF-ye@bqntW#2$>R-Qrzy9KB^;FbG3S#875fj}DS2Lv5-Q>TBq&4dPd{abTc0aEo|6 z0N{dGcZs3;YnBG3~LNq|9@q(tnyPb{|6Y49g^ z!QKx=0lvP&MMLYqNn!d=9@c*(7CwoK75l}V%)T}v;k8f1blMuDJ{J%m2CI*WOPK9q zxRnf&I5<-!20@3jq5@x4i9K=1Y4O)Uh3Z@++~fdFc0v4AF%l1dA+8OGCR`I6;oa+E z&p_J2i~hS>jAdSf{1U@pkRZ9xElO@WSw?w}(L<^r<$dBhq|G=c1Al48!qM3J)}2fI@E$Bmxts^%;VayL-8W%CzAvpU$=`Wye7>y z*EI^_S4+VVyqpYk{}ee12QHN+2B6f(*p<=_3xLG8o4K>ok*GUwF43zX0#nMRmt#%R z9w$$@EQR2}OH!ISyw^>E_$!hC^Fr+|>~>Y!6=n*+P;h#!v@#|TdgCdXLvq0#W^VFh zUmf+{ZI?8Y)6JcJ1<1#%?zpL|jLd_Jw0Z$t9w^^5av?Es<~EGNb}4dqvn>w_$H_88 zPmnp^QT=GRyusWl9|Z|zMjIo%zUZTX#8Y5Sk^K0$8NN!sX5K7$@a{HpVf0?ZPOg>5 znI-2TK_|5|15QVb~m0y^zrWVv*syygM2h5B@{(lq!$n_`+@k^xx zZJoJSQAl|6nZ-AvV9tHzI-P0nZKATX+8fU})d_Tr3_B1zj|Vk1j^?s}bA#0t7O*%= z?E@hps)WU%>f3b9yq*+1+&~>cZ=n9LiEz8EDq>kH^@PQf2u(x+uBGduJ0Y<%-;Dfm zhTyfX>h-!cC1QMUmH8O#=O+TOOIVturdqC5dS1v(BjBq;Rb~VYPb6SJvnU{CrXl$} z6K?Je5_@BMT+t9Qx#}+g>IGug&@)T@j(Ll?Tcj?*Hm|8aQlUU>%W>OVY9h^t#MX&9 zJ;~3-uyB(qLs6(23WHxKQIbp4RA#$U%Ap3Tfbpg34(3tpMWarrqPxd#7p^#<_M?h* z0gFKgaeSp3OS@qJ-_WV{b3<^`NmXP9RR>C{$xSjij+EX1Yqh;a|GsMV4xL|L?1MI~ zAr}9pPNAhUz~+Z)XKM{HjWiV}MQGhD9;gG%)72}dpGN*fxUa0i$pf^0bm@F47LFk3 z;B@VRr8wP=M>4d&7X4T}S}U|<1!9YW_Va-cyA}koHw!?R3Y8mu9sXmq1vsgPR{0~rm B$bA3+ delta 7556 zcmaJ`d0Z4%68_Ch_w>y%sGz8zMpvT(i4hYoPz;`{h%5>TDtO=x8m}lQn!`Jwqtwq6 zj2rQYN_G+}@x*LmTy;I-8RL57Fd zODf|lhuXvrvqw$nm>-wtKJxq1o+Y*f2W#o%u4+2OlgaN0s%tH+_d@`#t6?5*;(Dr@ zx)qa!#LV{Gd%B{9)tcrG8O^y*r#d~I2K90VM)zd!p78YXPe4zn@}9<7*>zD*$mj(Y zU1!FxG*#cpQ$F!zor=;tkMhi2(tDETev~J8YNwV*uqx+!!k4||GFu*Oe8!YzzURHN zw@j8I_sA=pJMQnI=iKJ~9P7QnUG|RRo^>e1-M2#XBvhC?TjZ|(K!y4HRn0SKmrGuDXXc@OrbZOGYd@~%Ir+&ka|B}LJkh5-CP78+^3PrF$>%PcLldLt z`uQ4D*Y&DYPxjSa7Hi(k`ktL%&$cAXs}1(-yPaae(Xqm6;Hy=-q_MJrqLrbb0bY^`XAbPCDR z&&D-2C|(;7TM#zPwbdpW0EX_g9i)p3m+Do>YljL_KOZZ8_b{Pvo?Pus=;tS;ku0`7m zn^--%*%hqmZvUr65KPj6UN725F^lrdJp0=)Y^|dQuFA0&$TXA}_+vKdM%84y+X5f~ z+R^Yx$aCoM0Qp&oqZZkhH#EhY2Aj6pU68fK9t0)4BMP@|wzpvxp1AoaNGQyv*5hq~ z#69*9*mPf6gX6Z_SA>`%Cqi^PM+QWnv-7xqpM3|jM#Pt*BGw$YuVmKTK#}-%rxocb zy>6L%zp!`J>L$x9{eq0(kGJe0bQ2g(F>valJrsrujvyq3_BPk(jq9Tzq3mTQ+{g;; z!yJ#ReMxh)3Q$ib+=z6j7~8~=5-@;{LPEA8V#nr=EzDHuIgqr=(I7xoFge|!LDxo_ zh9%3C=WH0(%kg1o03s4%-<}k>o8^1~;&wR3V%A#6DrR+b00}UNX|C5+wZ}2Do+Uu# zJZ_XbrilbM`iQ}}WSt}5hB-$aPG$kTiTpfw?bA+-JntAaBtRfg+j7BhZW~#NYh#^5 zacyg^n?(fZfxJ9i62skOwwOQ77!2vol`tJP03bjlW+!pA^l=7$bQ*A3+=IHJreWo9 zu7=sMeuvjU$l{{lGm)7~rV^37aP0I{=x z02+R~mD|glnEu>3P;`!yq2@hK#1sz~8K6llCHf<-S%8wglzPy4q#6a`pL0j+%F98L zXE$>uSOk1|hx;Lbmror5C7k;c*SV2}5*N(BfpcYkx}|O;z&p&`Gsz-(8NRv0Md9X# zd{<_38Wb#w-LQt15?INT0mE;h?+|xqK*o zIi7!L?YBX}5&8T@D@xWm2X+_o!LaeZQi_GM`1AmCn*)_^@*EUJ$<1-Yn|w#BTyGSe z;=VIA7AqF>Pg&Q6s1V@MF5U%|$iIja-saC)^H?ZX-{a?4)fyBeQI4o}TS{{b!KR<` z7p!A#1khzf>irin|9gJ8wV(hzAiQwjO04^VPiLOC-i0=KBx6YppZR}-CIg`eF#eR> z4iDDy?ah0j0H;XK?dI|eaDA}zeRI%42+x%@(DcVgO{g=$Jhfgl1V3)zJj@)=L~aiJ z+1442N{n-txsF0O9q+6MZTmVk9R95Hwgp9ke##u+Boy)ZtJ8(VBg&E-36NtxAeO-V zP@?p7hO-eRBZ=Z*o}%8Mua0pZGc9i+9v$m^$n3ypRy*C8HPv~Nt}zl@AKElru-18@ z8I3}IZouF6JEx~m8}XQcH&kIH(^uUF#MT(ey>Si|3M4=Y-Ut&$TWmmV4e-AaLM!Ic z;w4wM5;j@M#MTtKcESrx&6~RjfLA*R2dNE-?ay$kl*B70j~+pQ=%IoWQeIXj;hr?% z7PCYaN@BJmU}A=l$#l(2*)&d2;qU-O!+xWLgJyljNYHPYWovd!{Wu=^uBC>xTc3Vn2MnG8Oh>V8ryFl48?!7>uZi;L)B`eO{k;giL|W=|xgR?)-HPwjy* zi^U6d3-1BM9*nEp;$3qby=7i72t!N7P-a+<43H;4ZJHG7Yv`@@;#ahBV4&E4vv@23 z;DUKO#Zdh;R} z&xfJ_U*F-Pq4nRSF#RVF>pl{fJ&B8z`@|j0zBVG^wNJzh+8U!i7Z4x@tB;C{nC)V? zl@5?NIDJkGg19rH0$-gIyW^l!;;(@U)wxKxDFK@7f`qGLBp&)gToVvYye2lnyVu3; zfwY4c{dct(%e)5pC5FKOL2{v6l-zW(jPf3%2UTfkpz?;6mviIg9xKTzC8YJdZpONRqVL4v*>89)YU>*JTSuE|nQ=60la z0LcJPGE4CebwhXU)OHv)R4Sxs%s0B%`2+5b2$F*UHk_FOFCJ8>iZWmE_O`2)0 zYXl^$l7b<4DH-Ozsd6&*Uo4FaK&g+hE2Qlf0EurGb7!X@QFq>4qE|r#rdCL=#G0f% zPM&yK3c>!Dq;zw5ubTo1S0n-EgxX!$<*KwZ%oKp3;FMZvMNA;{##1tfWjegFn12q}oRY6FH~!AzD?K6>q)^w4b)-u2I>!+1h?C&B9^yOk6S#6&?F?_8oDmJ6B0Y~&Bz~T z5MJx7UawnI5+?LinUBGKei9J7gk{NUn&n!h=Y_0v0?r$(G9zesA_4oDMFA-@9m(gJ zaC2{v*c;R1iiU{ESAPjmFA%$io*C+Q%v;3WVs#O=c}@M13I$?Yid)}OlW0C9whqkc zNq#Pb`5RRkibK^<82CDgl2WRsG24|=4mMB)Oej;gGml~~8g*P1-Q9M%aQS|<4^^xS zSO_|ZW2@9y+6@EvhEBDg8-g28s3J3{I#60oZj!G;=*NR4Ahsw-xF_)VuN-YGeZ|sKjE2*BS_n*@tjVx^r>z-Y zoS-qsx0P}-Na&3FCu#kdGfuApi}ST%*1W_fLcw6Q9lkS7%cS2)^{K?}CE5w$e=7^# A=>Px# diff --git a/v0.13.1/.doctrees/api/flair.nn.doctree b/v0.13.1/.doctrees/api/flair.nn.doctree index 81a1618086bf01bba16e21fe19a2c6043c35ee5c..840674c5b444567932727f2f389b2134ef4e3c30 100644 GIT binary patch delta 2069 zcmaJ>ZA?>F7|wfckDNJ#ThH4e&)WH(BnucIP4B3xGP%0=3j6^5N z1Wd#YZo^sBAH)#jMx4&$_LA_YE}3zeMu?HbCBtnoev|!}k|1I3+?Mp-vva$j_j#W8 zd7t+^=brI?*Lc6{;s;>ws$9RWV_ipw)^00fJ@AmE5!P<&bEdyIA7in6yHF8hPu<&$ z3N7MqVWWk26{AW=p8KNNX@o`m8%!P%f2X#uZX?@Xa$#9o!+S+Fd%&k9B9-jas*u1m zYI{TZtai;FyIHTJ9xYIHR{+`G(8s2D?KWNJWYysrQ^X}ys}8%^$(kY~Dvy!WYijMJ zV5^&OFpur4`%}mkW#2@a1mrE6Xd|WC%P9xzXt*YLo2au*abX%0HQL;4GdE9DPSzDm z6j)PQSIosO_8h9Vq`hqP$AvtZVlSt@e?x|OcqdcmFIiO3zjB~}9*q-KdsOelRy&lK z&bHl_3X5Dd>6497eI0hLka5cKB7CqB)>|wkMaH+n*ICw;Zv6IrSZ%R0z0!?4J_I#` zt(*Sd2r4c%z(S_-l%jt(goHmMHD|H`J<;;DYPpD{<`3&{In0JdcG*9F4^V8g3}@JCLD#nZzl z!H)jZFlTjD^zA1Vlq<3@J_d!QnT(E1LN@xRAZl@&mbT0l!w#sx6}RBLSMn*t;1lSR zf44I9{tZ9LH>V71<{>0J70Gi_@%94TaY+6uZO$PcT$xRt$q`lLc z5BW-N62y^L$r_K;JV-h2!YymbJDUU&`CB7C(8(dfSbcz8ko%U?@Ta7hF18UBhdRl- z@+9TR6|?dhgZO0+>66zOq#Vz|-aayvD#D^O$li9*_L6SgDd}N%WjzzKVI{D7H`ALj&tdO?eBo3`*RVA&;RZ8)f zN#ZajO84>5&9{kNdoS#!beiPjC)4DS=$4F=lHqT^5})yV=q8<%=X@K_-6NO9DY|jy z2^llifn5BeSePeDAI}jl{^L|`7^g?C6ezv8%dIq-YB~1#a-)`i9>hdIc||NcNI8~^ Q^%Y95c&pG`qr9g43xd_aBLDyZ delta 2069 zcmaJ>ZD>$H`zKKPxa5Y}lMaHhUEA7#;8yHF8jf4V<1 zDzvb_m5t_4D@K)${OyZmrVtkPuQPds{axDby7g>h@udYR4eu4v?4>>}9$v{#EDH)u zqt+J8WwjN}cC%hbJz8nyv;eZU;4V|VPMa=svZ~M%Q^a{xs|vZ;@#+F2Dvy!SYijM7 zV5^&OFo*4~`&q~qVduh40dXSr+8c!!e?2Gxbhvw?nb% zY&&hqu*g+oKG_)6C9u6v#wo`O@VE8wuEkQ4Wb8vYn_*q)#*3R_g~iVFN;huV25K5x zH~p~@RD9h4bLq;Hios7HDEt}8ITH=&!FDL3{ymUEZ9~wEw_0IJxNQH`BG;Cub>oQ^ z&{MtO!O0$Y=l^2O%Z_{wOrB506NB(;+8pt(Am_#q)TH&-1tUXX!#hXer>r!Krw5LM z9sMWah1FHjx1Uf@uE@aHdB`tGXLN83GSNQ{5sTY2zh$l%almpcdo@asM@Ag?h%Ii7|617tW`NT$Dn0Xz^RTjVAI%JEFB93fv6SQM3BAk=tL z>CsuzNWZ*Ce7No!naxiXBnafh4&xMcEP{3S$ra<~CosyfeA@m4acHf}R?^CBr3Akp zBMxJtR38t0e}dSxO(8d>lOz}SO_CYWEfFUv!^e+^&-gublP=10uE8_EkZa-;J^17) zId7~3x%ky0VV(&6;|1~JKThR=aeDOIJf$B$b}LP$T8r0y%;Z5-V)39QjTR~ Q{c@#WyjAF}R^C?r1u(tFPXGV_ diff --git a/v0.13.1/.doctrees/api/flair.splitter.doctree b/v0.13.1/.doctrees/api/flair.splitter.doctree index 68358628463db8b5f450706718032d343496de2b..b671c841c5d6d4930dae69b9d06235bb35b35f13 100644 GIT binary patch delta 937 zcmZ3{&$6PQWkWP0M}?ueS&3Om$>fLov^MuL-eW=*iI|+AB{2EJEso8PSu9yGWhNxE zZ=TG>iAB$ZWRA@uyxBbHdIUFrkUY(eAv)Qin{D#EpSqjl)haRUk(q4!*?e=iPBt5= zz5~|MlkJZ=Y~E-bjUgj9xy$Mrit^0|tX%GrJRK1%Y1noz&R3Soqvci1l&5==s?5HMzWG<{=o9v!+1*^p78Og_lP-PlA#6V8l z{GjXvnzKMM0)gD%FiB`Sfaa`*4mDJf$p`wSCr{Q=-0ajRhZ5Tnn-BE=WkI#|K)>u} ztEq*Y$fDW6_;=l$Jf9cEQ`wV2G5mU20g9Or(Q7NBQOwPO2QtsPL=@lTzX;3Q>wI}}4kYBS3t85HkEY;JhWg=W6PM`5^kQ(i=)csF9Q!$-Nzwx3@hyb8>A Y5tBE3m)tz>XC_Lv2;ZK@%IL%d0KLP92mk;8 delta 937 zcmZ3{&$6PQWkWP0hjB%6mT7@O{^W=Iv^MuL-eW=*iI|+AB{2EJEso8PSu9yGWhNxE zZ=TG>iAB$ZWRA@uyxBbHdIUFrkUY(eAv)Qin{D#EpSqjl)haRUk(q4!*?e=iPBt5= zz5~|MlkJZ=Y~E-bjUgj9xy$Mrit^0|tX%GrJRK1%Y1noz&R3Soqvci1l&5==s?5HMzWG<{=o9v!+1*^p78Og_lP-PlA#6V8l z{GjXvnzKMM0)gD%FiB`Sfaa`*4mDJf$p`wSCr{Q=-0ajRhZ5Tnn-BE=WkI#|K)>u} ztEq*Y$fDW6_;=l$Jf9cEQ`wV2G5mU20g9Or(Q7NBQOwPO2QtsPL=@lTzX;3Q>wI}}4kYBS3t85HkEY;JhWg=W6PM`5^kQ(i=)csF9Q!$-Nzwx3@hyb8>A Y5tBE3m)tz>XC_Lv2;ZK@%IL%d0A1^f6aWAK diff --git a/v0.13.1/.doctrees/api/flair.tokenization.doctree b/v0.13.1/.doctrees/api/flair.tokenization.doctree index 54c1bdff00222152052e1d57b80625a8243c3d82..32bbebb4210209a30de924be747cb9f58e052abc 100644 GIT binary patch delta 900 zcmZXSODIHP6vrE8%-p#yzjMz2gWF`dP2TJ?*(Rjwsz6mB08+RV zmrOTFiHZz&{dRmXH(8A8iv68*$Gs-u$jW*-=*r?D60*SW6pyVrKHlKKvO;G{qN+ea zt$?S_3qsaaNG*RdT74CgnN`!^@X8(q%Q)>$v$NG~6_$j3cv(uE2VuMn|Liw4wvoPno+xNWZd(JuU2e)Z(o3=e@$gG(j9IEq)qu`2E z;Hu%qn5sx{H*CR&^j4EzUAMfG?xfcs9Gh7$2fcYbM1v;yo#nBkz{~3#SXtu8NL6L9 zHwbvr0E zeS0@qSw_YEK@KK^;*L|h66;Dh)mg_-6IHcOK(QxCjv%Axi7-UblM55xXF7IV#Osko zItGXy0it6Z*scb!+2>-QiK=rh8^2}`2vh?5TFy$qgyO;p6Pi}Y#PQ{PLee^R1C3-- zO$2F;$CK41yHEqB4&cnrVXTHGls*}gg&YL06d-i-x6IBmApNJ^0|{sjm8g$v1ICF TSEYpHN8#R24&RTDFIC1r`;%Or diff --git a/v0.13.1/.doctrees/api/flair.trainers.doctree b/v0.13.1/.doctrees/api/flair.trainers.doctree index fa5a48bfbbf8f2c4e5ac664eab637eaf4da79d28..f50ec01be6168464a1b2e009dfe74a9f709cb1a7 100644 GIT binary patch delta 564 zcmZo|VQ+0=-w@5nQDJCqR$^9CGI@fo*5+Qu`%K6pC6oDiSvS9BS;mecx|yH%2#U^x z$p$(+lWisWHiz=B} zelnjE_w>tC7!@Wza$1U_6C|^l-{mVOs_2J9tee~XerckL_Lp#P=BSiXM-}~WNO1Fp z1&0+;L^pppG`p2qkAP4RSxrHuUB rYv(h5LX~KnuD6PjcRSY##%ZWVwQUDVWQxLF08AH_+i&b=)MWwy=zPop delta 564 zcmZo|VQ+0=-w@5nVO)`%Wm;g6KY4<#*5+Qu`%K6pC6oDiSvS9BS;mecx|yH%2#U^x z$p$(+lWisWHiz=B} zelnjE_w>tC7!@Wza$1U_6C|^l-{mVOs_2J9tee~XerckL_Lp#P=BSiXM-}~WNO1Fp z1&0+;L^pppG`p2qkAP4RSxrHuUB rYv(h5LX~KnuD6PjcRSY##%ZWVwQUDVWQxLF08AH_+i&b=)MWwySnJLm diff --git a/v0.13.1/.doctrees/api/flair.trainers.plugins.doctree b/v0.13.1/.doctrees/api/flair.trainers.plugins.doctree index 938b5de90ad77d4007973f586565f47f36cc4256..332b540cf1d87f396e711a1e1f63feec8ab21c5b 100644 GIT binary patch delta 2933 zcmZ`)YfzL`7@qemi@Pi9f}3Kl5amFnHb~CsBm$buD1otg1I(Bq6*Tceqhl&&j@YP# zN=H4~R0xJQM8z}msyTuenrTYHXv!upkPHr`jh2Si4?5qs!a3)Ye(v);@AF>wJJ&9T zT)P-@Y#}(_iyJd~+301b4sYn`)^3CIC?7R9tfl_z>d%b}UUgy1_*%~If zeB8ioL7JXN`DW`n-ZZ4qp=m^9KF^Nv>N*3Z*)eXO_`>!l^tm)?q?2Y=CGj8PN<&n) zeRR^*8GL@y-98%1gC`Hy{P**gls-B_TT;S#b!wrEmLK4Rf{Webn3xqnHHOUAX9o#2aCZB%jygz|NN z>5@6?uPL3hmeta&MP8adFp2v=9Hs1|wd@RS`8b$QDGt)~0n}GA)2aH_@>u59bhR{= z4WiYl9y)e+KOVdLkSvV1mVK{jFVV3L9?mNMk<+B2GM-*VwSA@0&~uBaJIBxOpByax z#Gx8Y0d219kVOfQhn}0SBnrqD(DCQPY4x5cnt$PuCKnzi$zN$0t#sEN_Q9nPI;$#y zFaK_oQdMa?#Z~iW=4M{`WMOg_iZ9k#~?BX}>tkz6Z+4vxsPSdXX`5XU! zs@!yGdnyWQs&u0QGSnG3E*Q30@ksEqJuYz3tg1vj;eb5lWXwPzz&bBDdkYk}vBMl} z8vv`cibcjqc$;qbJ;Pp(fG^c%MSYPFZBhGUU=H&|!>_thz;l&Ri_2!&Qy`3$yb9^Y zpA%1ygg>@t;!F@ZU7dM=#RiHe3Twfd=_C zUSPew=s6yj)Wp23sI zPqJ9kPC)(GieciA4o((5mQ5x@m0607yi4onxluf`af(|H4l_xzd|=t-*bdoVMPe4`k32L;HQd~!=V8gCcg zUP|uCh75=aXam-+Bo(r7Q+l|N9I!|Qw2lp5Pr`Bh1~NoWmxX;xRXqX*2ow<+%HF!gQS3oE`Au%72gmpKk`q?=J0kAyPmv=9d_89 uSZ%irQdTL7G>K5Q;yMY%0++3?g++(Q=Cfi)y|&vjuUO;+Y>Tk14EhgMsx9LH delta 2933 zcmZ`)YfzL`7@qemi@Pi9f}3Kl5amFnHb_o2iGUU}N?>f>05fJt1uv-3jAJThj@YP( zN=H4~R0xJQM8z}msyTuenrTYHXv!upkPHr`jh2Si4?5qs!a3)Ye(v);@AF>wJ6A7+ zT)hx-bRjs#ygz%vO9i8s(7351_-Bx7Q;{?p<(tb-+jsVV45jXYcl!bzyxx0Wvo%a| z`MAMbgET#l^3Bq9ym?rYL(_=Je4ZWS)pZ6+vt!&m@wsh}>2qn)XeZ6APU1hrm4&Eo zd+Ee0)A_ulJN-122TvNQ`S0VcDgAVWwx)#hn$#j0$>XNRxTQ~7M+z;N6Gr_@(pie1 zOy}?9JRjUA&0m=}mGs3#)8<7_(8&CLeAL2o$`&43bN`YYmyByGKh77gSg+&|2<2=3 z(j~LkUR642E3czlioG;_a1!@_G)CD+Tls0)`f)IyToR<|1E{ZbhEw&eFQ`K z8$xSRJ#_4@0X%lsL0K4YEB{{8UZi6iJ)BkkBd1A4Wjwu_YWqr~p=TFUcaERmJ26!H zi9N>ybYjEgH$su2i{zwx`YHYAPh7i1;8tmCj2u#;cEy;3txW#fZj8cn<6=WqS{ zsdCe09jPd&DbkG!$WUkCxM0|9#UsJbcDukuv#JyExC8Q(lQ9E@0PDTr>?=^<#tw6^ zeGshBDi#?d;a$4T_Y`|E0=`t674=0zv_0QUJDu**~?#sucTX}NGlCn|U3fs0+PBB5;kOjwQ6=fgGm zmoP$21>P)#Kjrrq1%6sKY06k>v6y0JF|_wKFLCTz2ghWCSi1?jlul|Zpa@5O0*&%( zzzmEnEr;vU&V(-ShD*H=3g~sEBk^-R`?-pE*y2)n0UP$f0^M>IJF*{IdgF~OCKQ6+ zgD^l=7$Ei@g)_PqJ8PlEDl0*;_bDgg?LLXu8{laxQQrhkmT?l?*!>m6D+4#`LBZaZ z7ig5ShYKE_3? z8Hkf@>;exSdjN^bjfsdN_P|Np?3XIy#?3a;q1=MOqF|r#Xp?*7cPgB?u<}W=K|U@< z1x0uyf>c;s*pO$5XWxzCM46tc%^N|wl(m}m2y7tUizO%YLN{PSJQ*boP>7?gd4^6T zKgnWEI{^(~%SMPpIxtD}SU!miS7s?T@*ZuN>qha+#wl*SILsi)@_}WSW{IVo$s!JH z&Lj_I>nMn&N+*U6zs@1aQetf1$YsY(b4jAUBNJx=_h4oo`9?A72?~(4`Q)Z_G~O<} zRY2~_h75=aXdTuqCzY~rQ+lX~?6*h-w1$mbOTuydIx)*4 zCDBky8kFNU2ow<+%HDd!QS5#N`Au%77sn6wkmFYOE%(SUY^oxe7I$V4Ob~8tI!xjt zdi_xNePJ!$bn&;4)z*4U7eNGL!8Nk6FBZ3Vl9d($MOdeNZUO@`b9lRnT~A)j4moU2 utg+jMD614jnnWmDc8!E$q083a!lJ`t^I5SYUfV61S1fV@wnx~O2mJ@!aW}gF diff --git a/v0.13.1/.doctrees/api/index.doctree b/v0.13.1/.doctrees/api/index.doctree index a5c26d5826eefa1d49a0a1fcaba97c75c0a99dbd..ac2f60b12fffebc444f517b7645cf42dbb5e74a1 100644 GIT binary patch delta 21 ccmX>sepq~iKO;wlp}AR!SxL#}aK;=i08v{8<^TWy delta 21 ccmX>sepq~iKO={6MRJyDfkFP}aK;=i08+UI`Tzg` diff --git a/v0.13.1/.doctrees/contributing/index.doctree b/v0.13.1/.doctrees/contributing/index.doctree index dfa50f723ad9fed6ace2728cdcfdfdf3059acfbe..5aa78b18f755e8024ec3299d98d7cde047d161eb 100644 GIT binary patch delta 21 ccmeAX?-Ab+&d5<=Xl_7+z07&HqNdN!< delta 21 ccmeAX?-Ab+&d6b0k(^~(V35B#o>7+z07^p!T>t<8 diff --git a/v0.13.1/.doctrees/contributing/local_development.doctree b/v0.13.1/.doctrees/contributing/local_development.doctree index eb9ab665c050994e0f62965d3cd743d09c8a814f..92edc04ae4cfffa25b6c270912f00fdaf9ab07ca 100644 GIT binary patch delta 21 ccmdnvu*YFTEF(vSp}AR!SxL#}RL1La09acG#Q*>R delta 21 ccmdnvu*YFTEF*_;MRJyDfkFP}RL1La09m;Q*#H0l diff --git a/v0.13.1/.doctrees/contributing/making_a_pull_request.doctree b/v0.13.1/.doctrees/contributing/making_a_pull_request.doctree index 095a124baa8b95daac02e5ae458edf2b2cc0e6dc..f85b8e051278108b5372925ddec819e28af208c9 100644 GIT binary patch delta 21 ccmdmFu*qOUDkDdQp}AR!SxL#}T*jkf094-xhX4Qo delta 21 ccmdmFu*qOUDkFz+MRJyDfkFP}T*jkf09HK*n*aa+ diff --git a/v0.13.1/.doctrees/contributing/updating_documentation.doctree b/v0.13.1/.doctrees/contributing/updating_documentation.doctree index 9180c75ae52fe93b986b4a6bc472c91169dba99c..0e8dde3bf0873fe2554eba58f43f805bc8780fa3 100644 GIT binary patch delta 21 ccmeyD^Dk#ZIwMDgp}AR!SxL#}d`5m#0BC{;1ONa4 delta 21 ccmeyD^Dk#ZIwOa1MRJyDfkFP}d`5m#0BPU|7ytkO diff --git a/v0.13.1/.doctrees/contributing/writing_a_good_issue.doctree b/v0.13.1/.doctrees/contributing/writing_a_good_issue.doctree index 58d06f9b3ff752fbd0492fa26bf9865c3faca4d6..fe024e45bb1f6e6924eb8302dfeaf9accd20d157 100644 GIT binary patch delta 21 ccmX?Ca;{`UG9yQYp}AR!SxL#}Y{thH0Aq~^g8%>k delta 21 ccmX?Ca;{`UG9!m^MRJyDfkFP}Y{thH0A%Y3mjD0& diff --git a/v0.13.1/.doctrees/environment.pickle b/v0.13.1/.doctrees/environment.pickle index 08cee4967df8dfdd239ce403efb9f200c5f04385..7ef7bef83779bf5b9c317a8228fb6565694ac8e9 100644 GIT binary patch delta 180606 zcmdSCcUV-%|3CU&*xm~)yUPMg?}#;OET~aqCw5~46%D9>U1I?|Dk^f6Ni0C@A1k&@ zj6EhMv0{sf8YQNgVl2^UG|}IjIWuQx4}6~QbMJGX=id8=$#!!=}SVG{_v$AZvJ&VIwk!zxGQpzGL*h$=k~r8!r8(t+-rSo-2U_=Zf|f1HzGaIWSlr@V&3@d%rW({b4O%N<-#11 z+)Ia@^LOx~?fnLR!wH~^RCewtWJsREnXJvYz0PE=O`wg-H)_>+le5N8&d!>`U9d-^i?Q4% zK{k*UGB1$3Xl*3pIk;70vU5ix7F>E{FsBcTktKuhgG)lV=22E|dU$iLB(y2#?+E3x zfcn~f*d}5=NsZxBgs|t4EZ2u%E zft%=dMitjePOCRtCyvj|&dnOn?a{kSdk5l*vB4h5*DpTeWD2g@;1bf@=Hv@sG}qSQ zBDK}R*B!3D-Ns$CM{*5=({Z7h9v;c%_fl|`Z&|rCODrlK5B1K{K6X@nlDtK#p3Dv| zrl;B2Qp8tiz6|lDt29z5wR|PF*u(bq?_>2ZI3WL@|5>c+->&|?P9e&i<+#<{F&Vcu z;TD)N8@E>C)jT_!O)SB!rMT67@n+mwi(7+7ZpE$bxHWmzPTVRj zz|B7@_T%PW-1;T`Aa2dUt?ycVfm>y`wXonEZWZI!@{QHFRVB0{zQL_+xYgtKZ@9Gw zx854}J8qTW*7Oga;MOX60k8ej%R+M}Cic7|w6@@u(;Bp&w@eXk-G1iAEe^NdSsRL5 zTXE}A2M=zoz^%|jQMe^2XdRt^Tl+C>QjySFE&rbaH2k-m&|HLxEe{HmdV{A6%>}sW&j~GnTX!pk*88}%y$ZEBZeS-BpEJu>#&PxEadTfz z4B$4*a&ggv-shg=wBddl+JvhbuG5v^TtcYg7ToMXjk#}!YPk7BBe<`I*m%5OaT>ln zBty>~$Z&Bh2lwD&2EE6y&~t5u#v^uZxgRrwFx%5ZbefVJJ}ISxBM$yaDJdYlLsSCy z!_cO@1PID!EDzl`Etxx(8N>Z2i)YBor$q9Qqo=jn8|Q8%6VWVaFz%(fE9Apc0-M`4+MeT9X|}Q*b4t zG$L~^oG%{I0W9x?Q==n>rF9@2Q`&NtcLK^Lzo83TS(3vS8N{U6oRT6eHtX@rtCaj{ zD~tPcEAqN>{jsJUU|qPW>PF0RSwFd6Qr znKUtb%!GR5(b9EnUL@|_XY?o}6JNRb{)>kV;WBb`+7aXP^7AH5L?dz*We4s-u7%4T zt4E9iLG_zG)cz}r2jfv%=IUev(XW20$v)B>;f=^7eD$oW-Vi*a4ud`+#J zRq-5d#khXl2NROHk=d=dKBM2@s>T~Q*_0s8p3|PIn4;%aPqfNLBUCziCJWsd#{xiIK7~=+__)PFcZaj*CVq z*B%*9$t6#oi>#f7WZlDcnc7sv*LdFE=QHZb{`V{+(Pb#f;R`;mV+_iq@3xPK;w&?5 z;6mSQH}}VkX#a3@wf^v|FmCn?kADbijGHtum`j_P#8u9S<j3%JL%QC=!df={X+mlbLpI(#(b^Q21Ge z2+nzC4Z!w9d5RR<%H5b*&cOl~7dES_YhvE$tlaE(v&QoVE6L#}9A0iWVtuh{rVEXd z$P3%BAf9_x5RSSRaGeX=a=m5;gPMZ{I#B*sfsq?ACk9<Y+okbF(K79m?IGJ*ccfp%VpWGREa!EwrIVD&OF0=BPpIjkArim0WsZ zELSxr0BOQcLcAt{bKl@z&I#fM%pD~=u_2yj0FAesk zERJ!3jLOLtE^A|DZ912-SiNudrXhZ{NDaBOyEXd;Z&mu^?)xTgzbO-bW$rX8>wpLE z)$O~#Z@r%YTL0n41U~j7t)dQi*kS#?XGg{p`1IpfYfIm9--XX66F}cDF4P7zp9Db{_7)t}UX0hOK-^}d{|QwgU(uN|)omG-n;1KRm_aqjEkxqRoTvQzY8#%lHKneBAHPYqM^|9lCGYx8)(V%-fHtWupH&DlsHT)yvw0k{=^% zWzA$A_MQBLPm$6#W4wdzkiifC8z|m1MEvWhG4JQm4Ci7ECRP%u-K}iq067I~FwUY~; zk>$z`62qU#lacU(W#eS)$<DIgmE zJEbtzoTakP67f)>i35c@WO}c)Hms7}4-l-iVVl%iUOcwg#_h815{r2etDl$ac)Q3! z`qf4$aMMoN;r|uugfDi>`UzzZ4nHj$LCo~^d08j&v%zIqAM*3PYqC+~r}?IAH2GOv zBTFO}`{GC0DPpFIpGA}Q{6&^V02}_0wGqM+K6xU$AqO?rr&!^g=d#ZTvyWcMD#_1m zxu5C3ny==0Imw7odcT2$`(=w?SBXEcc{1#NF0el`&;^e;{NA(VS84@6%@@e7mvVel>7yo@WN3t^CGHsH)a}7ks%)1n8O(X0-9U)W735+1rIbNSXu@VLs`%a)RG=W<1$tO&%z`>K6!~PxX7qXeJWCq8}q% zWxG^8;rG-1mJ!R$p2u27#KL#y`}Oi2Jh$xMat-Xd#IL?iFzV7WzcD^W6%bQ_-x1%M zkPFQHOVps^JwF3HzS<8>lDt#4v|Z=t8wdgp9^c?sAV6S`&3;jJVF1FYK;d@8P_ff* z96>MG?We2*9RTeg`W+{jpFZ+K6F)yby!5eOh;QuXg1ndIW;p2+za?s4&A^U9B@Vdk zj9-C9=p1s@ueZcL@aOA(`&9yY`yIb;e1j+#^mtWnh5DcUIxx;bP8A4XaF)Ll{(0AL zn@%$FvX_1iP;(bKHtmVu*AlrPqFPBnRQdaV!H5)Yv*m%bRDUhlY4ulwwNs|su=7W1 z{W}R#f@2ncCN0Dc5Ov69TqqKFPDZ#b&_6*!UFE3=gc%P1v6Aum>i}IRH9jlU|CzsF zps^AD2F6!-i2PK49e5ezk3v7*|5rv+N_D}74g42sy#}(BDkp%-bbphu$lzo9-F#_CbFj5ei@nEkEL~gUgQjk7UHd zX>i=XLIeImX#=O9@!v*@Oyg^;4}EY(*!OGySjKxI6(TN&nZYSR3sU_nw4m~Le+BGV z;~&LDaczhapjD&|Jm@6n;0NFPPh#TH7Yq@>ph7gY6?8)4X+@{PpLmwU;XT*U@PkO26wx4aW07f*nQ zaDvGb3Rc2<1LY;ss*Au%fCvGgGT*!&?#_^BOFc;;79lydXUl1FTp25;$x)ssr^%5s zPEL~}c!HcJ$Gs`?(~LWD#-)~)C}Gn=`F$a4z-tTSOu-c);6vUT4HwD_8R;oC1bDKQ zN^otMatu7OMBbZBK;f(84Wtza4HpjYuaO@nm_wW7iaIbVuv}T8gWYz>rx4(k1M+GH zh+H`hO*wKUOgtiw&=o4gDV^{F>}041ovx9^o`f#Hd= zGwga^K9EETydodt8&Y@>6-cd-M?q91zhV3?@`8x^11URE-^*W@aDYgYViL169>{Mq zie|nRJ`1F2DwJT5LZOEDpURVown=^pCPjR3M%c?=F_Y0&q(a0+$+(abRPer9ag^wI z#H5(cNGM{!afc!lq%A~~C7uns*%k8`ZENH7uqasZG10qcsG@TnTm!(dRP7RYB1-WO z8U9?N;zz~;cxrvH3;DvmL7@gS?klojWkba+GKDT{qhQj~2W*6U+A3BsX7Htg&pRqC zz+*$R`J*=!QH*R9rvt~gm1w|`Rn1+XWPpAf%<7`}mzmssaqwPWMGUF3kpmSpE$ia@w|vSJdM^Aigc z&+AYl2=1G&c#~js%M^bw%&^nU8x=b6M4N#MPBM6)hQoDH}b^+o#w-5+dS|;w~fb?8nL(AiV|&99B&Q zR-RORMg+cbmKE3sY=nyQiY1KHA{8Q5CPrXN(8Hsb6`vDXS6x@U#>mQJAd=%hL`=h;=rz+A3j(7a4bbV@xqlB!(_HyM;P{q_VXFSGXM*Z=9Gl?wPOSea%N zDs7JhC6jb`dgCDgLDayUtW?4=iOO(B5nl*IknfqwfvJU~QMbGX%8jfe_`xw@c@yPs z>2i!G0Mx@Q%!<`*m2_78yMvOZ-^n+XH2s!$R?_rK>#C&bXMIaaYwxc9N}7I~-d3(= z=1MA|8&7o*O?6M1IzXu&fTp$_cs^G-tPZNOY>H9`;WXs}ArfG>c}jNGfu_?1AgOU+ z7JRuxxs1%mYgZ_}^D#t_XN-AJa~51)rd+D`Su0Hg8K;$svOP*Q+_pjKB5`+Rr;?d3 za1aof5kA?atQB@V@xwjJ$I=K(HCI@`?&hja@WOuO+a$!A9a2hGT384z@O+LUVzo@Q z8ZJAbe2ZDv@B%+;#a#@Yxxq4V=BGG=dpPvQco_Ib|~A5(-v=R+mv2 z<0ai^SCzjLiB8;9e#M6IW94k<`9T>+tkM4u)*2|8X9Gl4gZsNs6wbJ>oWh7Dp)P)? zyzey%MAT-a2AqDOZ0=hk=D=k#)lfDV9xLa7<<<&z9(|=(&1AEIh3H|bRYj-J=K-oV z68@mtp(4r;4pu!O$`6ZBvC3Oa`We8}QKbN;#ws;HL4g+A2`X{1-B86uh6siT%tnPs z;JFxK;%h3#3;0E5 z7cR>VtF-XmPE{q@;H*2SVv0J2nBhkstA;YV@&t(bc3>Qf!T0PH1`v|g%*pRaOQHWs z)gUI{y^y2=y&m2_qoT#yQLUoI`p!iaE!Mj(t7x$vdR29TtgBM5s~#{l052F?2URHG z_B*N=lG@+>&W5uW^7lQ}Tt*L(01!bB2K+(X1@8T1O9AGWDg!+5K-GD4JUEl>$z$?V-5W00U8%@{!>fGr8?Sa|HPYJm*iPgcLj z%rcnuzxCCz(r`o9f`q9TzOJU;tZA*L-rUwkO}#m}otkX%aYA*vGOJ1g{{$7XFOcxkwL4Dn(2 z9CfW-4@N(jq>dIgJh$@I3z%v|g;7ET`H^gMew?bVwavk7j?X||#IscI0`*HW=&%Lq zZ!s#}s3mtk!!fATnpaO0%@qzsJERiVDY#2;mE0j;+pGoS;e zx54tlc5YC)+D`{CKka7qt~&TxAnLJ4x&T8xFe?=~v)eC5!OoAwD46oG7zOPPi&60S zh?*|IPJN=DK=wbKzEINzSlVed-T$PVQzsMaj=rEytHWMu@U~|KIgu*;O8o;U>YFTAev9!cW`zob{Hs<23HI0r#J&`pd4jShN}HQUI**Bfdg7%?da z6)0}0F$#4mq`Br1L5H=`u(n0hz&J28Q=@>>-qds?!Cl=~!xSqK0uBw(7~z9{nr@6m zMJhzpWJV55I99Atf)OI*Kc8XDa3vovp!;9fjeLxX$vd<_lmydq656MJ<0AmMoRv*nua zn6i5@GHfQO*rGAR*H>%kQg*^d*3%SXhif)z3K+xj1c>@tm?*^HSIt&f!MP-P7g)Mo zlSkZU*{fk!ZWO42)ll<3NtZMmMPFTR_4(84a$1h*}|?dw2rh zjcooOy`!b+89Y`?)APq%Eltlo`C6Ku!^UfAdN!J(ZA8*@>J06-l#V5pQY0! zF+$<}Vqv6C2bNqwr!eJq9VCv+^5~fKq&N#)7_OVd1UgTEh{1ElUcx3cszMI(hp*6p zvzrxNVBc8XVB)xw$+|Gck`!$b=25>!y88qudtJv)_qdu5Xsbgd67N<^yRs7Ea*e1u zxVxKj zo!_kJ1ef&EWe@>h4A8O50u0^*m`(U(A4gQ^}Q^E3F9bNPO zHbW<^F+2_;+%JqsxQb8)1~6onE*x}wVGe=2XX{olGYiG3;E@Ho?M$eO1b_$uLcH!< zqPxe0h6sTnK$l83ql4GzXrYN+r=x}D&vG3tG#e{*w9ri6q@$twXq%3P>MuKV*GQ;V z?-oPVuvb@Wk&E=Cw6e< zFZoty0?61|@ZcrgK@#V4Zn9Ct;~>Hz2YMokYpor0dyRCvT0{zY9F0^lEUdz>ozU{q=Xq zO*HLDJ(FoX4k8?DQQ8-s`(^9zFj<8N%Y;>$B2WK@H>)5bbZ5?`QFDn590%Ww5;38rX^P=X7;*V7U_=U4q5#y+@wq_#3>!It%D!T1@hw;t)q9oAK? z4NPo^P}oamSipuhe+0_&fCKyuZ+lZtSjHXyfRAdqK?CyYr;?kgGL_*0V_nSI2S;{Z zMOFiimpyg^jhE>T1C5uCE(491XTb&Who2i-wV;UJ|k=bs4b3^TiU3ewak}Isx)5ee}Rn5G6g#x5?LI$et zVhAGB_R~IwC6X1dhyw_xg2sM^X;L%$LI8p&p>u%YB$Jj{1&Y(aj3I`@-rN*?;-yv& zGsKcyxRz~rCbfhJ1ocuXTySi@!9{K+gQM}c08#PAqPkSn!@G+OY=NNy z>j5GdLFXlga2T-EAbFJmJ%G7;MF@7wKSLbDU8~!1Pt?t<22=l zM|CJ@fU`Cll8IV}b{O_CYT>2Kta=qFS@#)eX4gAvU?w6F0;PwH2#~X{ve%sFs^jP`88ACK9E02ZLt zDkT51bIXktLp+Q9vWz|F+DTXDmI4t6;@&8+ViD> z&Yy!7#+QsWv7;+vj7ne*H>%-nz0qtD*08TajM7R&aYh&tX7sry$Cn$P3K16__duGR2hwz;N3*yDuX2T5QH3Po0}VH&1u%kNNbLNnvvF=3vGVq=M$5!HFCn5BgP`>seuTA_r5gJM{g6QFo zE{Yz`zASq9^{+(_!*4|o@478|c-0-z!Lw8_M{880q*9Bg4Wu^tu)01@b_czhH@Y4VjtqXexnrK}ZKG;O-LgQg3 zS{L?=GSRxQHQPk%!tyaDS{KgdntDj1h8Lx59S zdPyM0ViS5$%J)K`_TE~_MZGqj7 zo9MCS<0IATy>EEk%v2fP$vhS!tkn6GhY{9mWtRFL5fz}IwOIr7Pn2EY?`_P~^}XISOI?q^ z7WlH8nR=v$Tj{$kc2zdxJ#m3lKpMXN@+mk}jx! zZHDSt*YUAVSe0-7Lt4Et6+hjO@~)YdiGH)pv`mB-nrWH1H``3hMEP7ZEfe`gW~KCa zJh?e~L8WkMKp)t*#5{w#5}40QUAbrtT1VlNpZVqHc;e5aTg>PIEHU{l*UdAaX16(% zED>Kj$a)Y{-~8CjKH0)w1L&F&Z2K7TFR3#1g{Kdjr!kWPg3JU}N09&U648C!+?%Wk z3Qw7bGh$+3sJ@hWq2$3?b1q|K5%J+A^XKGX?AjG`11}SZATNj&+;`0E`WK%m=dUf5 zgU}Z!T5+wq_KW!nIpa9=l#K!(un~U!%zTE)e~}6iE4O!aAQHf@dW%JP{{lT3yb;cn zStPd+^8hakL^yh0m|(HcP3%HrV2VxA~4d ziw2GvZed>#@}&YqRSV}y)p-`0Y=2J>EqrnkwJ=;h#X^%UZJKCP>nzcx%jSwUoj+f+ z>6jwXrvF)NsWm4f;q{<gx`kSH$a&L(q2&)l2 z@bCxG17m*`Juu>T(F0xXiykO?Xlc$AGOC6HqK(o`!IB4BSbvh59gA14v`!>D`v{Zu z-?}gWVN_){s~+wOv<@U-XQ=hwe*-IFQIs`%xrD-oi+t9L}0*Vhz}PdJk-|u6H|1()WK=!VJ7@O-;54c`aJGWU9D`{ z@}h6|wUS4^!+Tljv$7#?TiKO3Uozl`Olw;beIMponUux_W$SpW1zyUx4rK(!-4Nj} z6K)u6oNP6KF5_d#x!>1Qt+$vk@jr17>?67O z_{>_vWE|3LI{fvOb-P(Otl4C?`3A*o_=&~V&l?XA^>~j>pG4a{q26qB+M2WV1`%L> zh)rV@7b5?Z8QqLY;B`aaJ-F;M!}Xh zY%~gf=wNG0hG^2omcy>Q5^WQ~;LfGwfwK9%Z1YJ(xCYuz`>He%W@Oq%k~;8Jj_qp+ z8RWi!c5F?@+5TeAda!qnzfqxrA5XW@$9Nviw=rcwgaG#zHVU+X<$u}UhgaXX(bx8xZLmp-*)&i!pi}{ix7p~M zc1QQKvZCrDKmdZM!7XT0!rKRI>~o2}5QreP?j52r%wTu1tux$o$VTg!=@VN#BQ<5C z1cm2qIo-X8^e(3?r%gh_x_$0U4#GxQG>#tkmyr?u=$)c z^7q&Z5f==B2*TV@6mHxhsuI5X#RiG3Pd%_POI8tMh0Ff3{U*qIU{SzBCcF6g3_ef= z3?wCYpgn-eEIY5*v71}I@cP=Jqs{81=Rg^1diDZaFu9;CR@X}tH&iy|!GIa7ga zf6;`V|y9I=k3Her^0QAKjeD`)=Kk;YLfPh`(YKMUVc8OJa%jn^) z%mDPoC)_hXC*U_J=IEOhCRj5rfUdXd7X~o7i0#8e0D>q%>$%7WJ!S{gI)D-(5J8Sg z9f7C@SXdM=x-J4hgka&u`g4SdGEHCSxWKEQgVw_<4+27@M~WDNmpSwQp{aFXSKvt!zO(%TX=Zhk2hz-XsR*Q*Rjmzt zLFTL*ra&#(AwRJMwv^@&8c7YSoPiUWX@@GJ1|QETwL49p9-bp*`6lVQr-2sk>E1M>nONyg!?gNj*!N?1NF@GLpA-j(W^-nAkC zZdefbn}jdm37}hJ>u5N4QQ!c=`1h4k#ux{+Wq}i=oHKR?I-#LF@UE0IA_N2UX@M;G zTV>!t!nyAbDQAdqOC?N^8a6ojK;T~zp7{C`7mk5$G>ffhPb&u!Bykw4>npmw~xtpsrfGG>AnooT#(c z3K2~8bVm!hcWw52Qf0iIP@TUG@JG+@FQz8x`9Np9( z>t&~t|Dry2TB7>&v(pl#9AKv<>g&OFI{Eh=Zl{xfmn=J-{2RPur;~qPj(r7FXvMKX z#_CctT%K`Mr4<^ucWx){O>#r9xfe+8eH+5aZ>*8hFG zo7B*HYwQa0^Nn?OH&e1iso?Dm_8w$rZneYCK0t$4)8-4vZ#(zdQ^`i|-Vr;qh!7zF zLDZn?H}plhz+-my({*(~K=v^^Idv^RVPDC_I0mP0M8{9vAKJV4xeLLbmaehj>(A{r z;5=nFfphy!nYam2Glx7T%bl^aCvKF92GpdZ)ydF{cKRyxi?8kMQW`J3D}O_gg90-P zeqLjzFOQb~%4*5uAi}L;0+aT&!?XA7>?V~G)S%$43O!7JXs7Ru>Yv%!O{y0dwhL|3 z@k>;_UfStPRGEq(_SJj5rmq(qq=skpK`F!;+MpoD86pHA2ysSzM-aQet_zax3aa%a zHX6tVZ-)fYC$Tq01=V^I8)48RI0-@YNo-|^cRet@^@yPM#E{W>tVsB|5kw7yUGjr68EJ60)QLggk}Xll^dR<2 z54d0DC#5dX`dUyioHskjK!*RID2V;~$9JE)3qWcWa?-2y0b}6ok|6q}hrX*>L40s3 zIBiW(e?}Ti%|KjWMn%vmB2tshL5&!*P>c<femfQS$(UBR0gI~1V1+Ce4-ymtNlpP-*5 z%P;iOw?hFDj!p_o^$t2I^fNl>q!4L#&`IHn#X%>9&2~o$sX#vjJLqc`7egGUNX^~i zanRN5i3mp%sp4418!-+uF8E)^I|_(vM%8y5Vtk0LguqteM%eS$96u4@gVqlAR09Kh z^hc-cO*=YXCp(C_eH>CtVn}IUM|+7S0Vee9?+B5K`eK+PNO&H0$WTWt6A9P>h?zb0A5Ura&NwlteifG+)Q$_1m%yiHxH+ZgtPPx|k4m#!jz0g6Y z+$M`1wa(Gc_NTWP(^oj?EykPgId(F-;e0k!I?x7)uM*&mZ4RcM;&et-9n9G7=)u@Z zBmhJ}@5FC+2(uaZ}9-(-u;~k2j6tuVff)|pWbr3L#lU+yN(s!(J-~=FODt@7gUO8!0>yH?-(xl z+JgHIa;OOYdB$?VRLgTmM}`YB$8>N(>r{fKM;fPq!ix$Ow7+z0Vwh5h@aXrZ?M@=% zA&rv}kw-zqs5QeJ&An6MGNbcbh8uqkpleF-&bs(OQ1w#R3l6Y29|(&hFu=t!6~Qn+ z*y;1I=40h_usj@bnX*%s0yDy#JD4%h{5u^Y>IfpKe+P%z z@VeNS3J{fiR&rLh^E`R$aL`yMs<(Kioj2Y|D`@wLPFg`-lby7Jo|)pL6?EMUC;hNt z*c>O#ar-VU)9Cpe7Q!v zTDH!4mPvlEUe)WJPLQ$QJsOVP`fpA$JcRylV{9fmDh zz2E5u)vDliun}~&{_l{Cl`izv=OfN6GIzXx%-O9jG#vYxGfui)#3Lbs8|+T^SHf23 zobn0;RCRC|8HK^CpGIEW8Z?<-gVa!?^XN1GwaM3vF^`@v}LT4Wx#g1iqj)Y0rTRwXFBCxJO{X|`h z2e`r*T~QsK2~#s&=y(8or_U5tO`Zx6)eL7$b=_gqqy#l+kx}6S=?lVgVBQSZR7S(v z5G6Q%B~%Gl&lc5OJYQ5ZbD`@P<1Dc^+_}`HWpYp?07QraX|3H#n7dL`@B1>Bfl+Vv zN3H@mrQC)7xDv0Pf6j|fgojLy?RO3IMjQ_VpN|PP!rcd4r@eYYM95~OLd^<632;> zVq>;x#^BhpIl-&oSaon02@xV6TDVQZyStexpLQ7c;6AcnyB-BN-&dI zUL5wv$$G(;8O1QQI*wC;ifAqfYX{RB247|rs|_*2lTCwZX62=K3eb*` zWpSZv;oSDYZ`MTw8Aepn3%Uf;;_`0W0J`^|1z)cYUPi+An;%(4c^pKzON@H>TI*kfe_)it z{Lr;Xp`4t%FY0sTPf?$hPl7ix65~Eeer^vA&`JLUH<1t_BCa9ncTMg#GxFoInLi3W z5>+1QRtieo)Vs@w5_2NlOb&`*h``@4nqb0%cy|bP6nHzvZG&a8?!Js-J`h^*liW1@ z7N@#t`ein7S1}6Ej_9$)cPc^vs+enF&t~qn{~dyBXNT5qnu&+nxKkLF(LqKL*jDaF zpJ`s`&VqM4xwjE**AHd2r8qOZlHvZ1(H0Xt!`$c%aJ13`TSmHVVBmN+$;81~?pI7E zdcimo19C)_<+-BDH}c%)8GUe{nx0%3cIe~D?u@#KLd7x96!n~6;BL<7i40c=3OBh; zU}w2o1(C8rBnRiMWAzkq5aHyE=$PktZR`WG!H+I4WW5h9v{L6CGMEgD8wV^1XDxUsPs~C_FZlgLbLD9W+80$A>d-D zZWBUdv0gukQj0;evJfN8>>tAB9O||WFPK52At5$!Hyhp7#uMMKgF={eg9ukb_5&-j zL{;7yB~@h!xV=5(BfoJEz<0xJgJDf>h>XcG#03K)g>~e*iJ~^vDIv9Tta>{V2B|a_ z_9zJ1OKOQ_6{{BxW*!HTatdjVdB$?F!mhFZ>X2ILg{ioBY^f0a1U87u9OzNwqHZoH8@Koe!KKQ z)U)HCA@wDx1v35#kwg89kZ_V;EiIwa{KAmo)=>7PR1_RV=o5LN%pw|ebcEW#tH@9i zl>gd8{iHcZdl=zI!J#zWwuXh$bSnrCz33Z)MX)9|G>ma09vNMW72J3@C6p#v{raJ` z)Jsbb)xm$8hFXYvp*^JPK?Hflcuvr4Kxm|pX>om#QZ<=Wsaw5kDFyQfglb5-EgCGU zk}46^;A|l-$So1=q0SVG3pqpEZc0<>NN`n&p#hcJ%#!-}G zJ;6~swuz1k-x;c9;t(y}&<83eR>;A$hoPfk=z-8ul5odQvpR}6c>PQ$yYazEx`_N{_!jx?tj#kDwyq9EPwj~BxcKxi!c$j79Y6e9)N$$c&}~dG;y$URT&Qq> zGWomE7IjkbVtLrlqPEw531#-%h#ni>VD-S%!|lUrZQho33}f5`|I;aqJ^A6g z0SYm~PrHkv@9!y!zNB{;d$5K3m@27X3I~R<2U}h$_RG}FFj_9|4G&{a6Y!R&YD}0) zh{Bhn!|0L1w%M#^UL1--J-j+6>?@{vV5)guSg0_SeY_xyJy#H^uzE?@J!02$%SFvL zt_VBG#1w@q!Sc0XWHb7~dtvOsf&_wf{GeRa(f&ag8+#~((O;rC7KT3Owl(Y(NwRZC zS@n1bM37$@rTA-Q(<&l`wba)q!}6HI!4gTyc>0Ctwx7?6${juL6LDCU!W&`9IPBn6 zHtg_+B_SfdM>cG6x5C&B8}6Iu@TlPNAH(P&hV zknj0Qq7mO!4G~d6D*F!_4^5pzIuE-yqr4KaB0H=ec2~v|A>vg=6bTIWNKY6+734JF zWizDBmk}O%5`3$v$G0q?*XIxpA{_f&E0mv@pawl&_Xwx%;B*U*4eDBXvKXBtI9wPa z+j(eVuyqu*`}Ivvt+PfnvKpN0XH*E&7zldTV*~wXdGz44&65q!PWRkn zDq-y&Bt%CSinglX$M z22v;o?~^JE^Y?os@9j(j=|?4tFX zl?SHq2xifN3g-e?85C|JUOAQ=&g2_U1&E5Cgxl{ye~~FATyiA0S-5d=t3mj5uU8=I zR!ki7@9W{TUR-Gz&K?va&_ZzgYfez&+c(15zrZIF1^IvJEXqHmTlgGCest?;EbP-K z{DN7w3823v*%6Ex8D8UE;UIbf|2K%Ouw+y?`>|=ulkhT-@iI~c(ndurfQsDkuCB6< z%gi9ND1557zYk0W=PwFpACQ(%*Dnb_!ekw#DuH2R1bzY53XAi?Yh+Ma8h*lFdk_o^ zf^+^8{>q=11+Lf`{;>@I8n`?Bu<$E(Pxu-+zIN$A_!BMub?tcg8R6RA&%$pCzsgUC zM=LP(@&($r;$rwEfy?a6;oAjji*LdWN{kzD8~F+9cdLJg$#e!Q2o;9SA{gifG_VSO-FFk={S5nhb+1 z5qf40Mt!{y2R!;TyhH}42S)S_!J>WFAc7cdd!q^2d^IK$gToE3Vs?htWHz$JH%AjXk*jUdK>-6Du_ruK+vF5o`t8Nq(~0Lz;< zFhcm#so+2TB5d$!|A<9`?MsG4sF^q85qJ?OoKxWdg=53#!&9Ro4hu0^Iw!(6CcQ8v zJUBNZ+t-LJ_2T@94ZbnC2&4^uI)5mWD1fsAF5`wAGR%+Lm|DpCey*;9t zpoVP^rGC4YTBLk`#Brf-?!kypP1yczzl``?xaK?`u~+zY<5I*j;n%cl5u*$eF)Ck1 z1c6;o!WTl*PZ31{ILfv>mqghjKw)Yj-fp~zU|-U}W|ctXFC*I2GE1*W2MDu83V-Vu zRQw!q7yj)Rsjy0fN@H>4sf8nfkt#urE6zv~g5|-HBm{FpB3lZkf)SKDJ1UX{PurMC zVk&E5BoMe9tQUDq_*K*>l4SJ6W|72vU0OvF^BLMjE*5ZGI!3CQ$EA3sA(FJQklXVI zL>_0#CZZOBdbyEy_*-VApAOsg-!YNveKakC2(i>Rv~Vvsd?!EB;4S!ovO^z^e!?%} zrbH_FKZ%?SdrXQ{`(`g@AmAXv4HhC}^g?Qu#*3&~{#qRQLdZhdvdC_Nl0!-(*&Dsy zag+Y$5@724k(}9A1yC{{-E$hSE%G-5R&>fdbwd zC48X)7O0~>_ZD~TS;Sil5h7a-&S}SODxmA=T_ymM5EecBg!gmFTU<6~+qQc?Awo%!>saymR#8k(K zXOrs>e6HY)#c~6qecnN8InP%3B#huETJC}C1dJU=J@DEpn86k z9{e8gni{-6B(?z7A0HJb=$Ac<)z1fOgdY|}u`en5Qh~M*Df##8s0wBoNFjFEx+v;5 z#$O@<^oV-R0B@B>kuXdHR8#HyRF|(-Q%x7HrCvMr0rlF|%~3}g8zRod;J9I>7L*Q& zT>#kdcvK_Cbz*;L|0GJs9FS20`UCc-&>wzFy4J`A?|c#Uhp$$c zDS`a{rO^Pk{D1=B_tL1TPn5 zs=>=AaOsIegB1{A*|u%vl|y zHG<5ux<+UD%Df5|_K6-X$owKhBJ(PMh-%n&SoC&Z!36>+8x|ca2(HhHW_PhjsLia* zveD7~y>l8w(8yqVoiCE6OC|A|Ee_*2ABGR9r%6 zvO0PcGZkX%q8@T^baOQN%ujrLFfs9_%IFNQxWE?(w{MN^DoC%|O{KqFMWsKmmr8#g zMo;lIb}77lJi1VjKJTnV`ci<17I^qv^hsZ16GB3D^fX`TF+l?^EJ1gE@aLO^0NL|Z zbdj(0EU@LlI6eIHR`fMt5q$klbPFLiV(wC99{oaf0CZ;=WSJN9lTPk?9~xo=^?tlS_quDJ@f35@wl z&>+?sLo}EW8bk86wI_z;Yj{M=W<~=%p_$sopchw?V-5>dF{ybBld2*DAcPv`y&fZ3 zvKIlqKc)giMK7+mjOoi1Ny-4-S?V5x_N;v74yYGnmBEeeV?JU6LIgqtd{da^`t^z- zGj@0%s?5EXSurD+@DT|B5rRRzUT<)IL*{_YmEnWo zZ|}tX#e8FvLKPsr$x1nVcXCVv8(zX3UKF#*>rx5q`QjK(x@<)D!Awk`t$!C6?6NH8 z3uZ#}VW5CJSJo*oW}pCwDo70nfSCFcN0zl*sRN-^$VSxT{BD=jnLG+2)J}<6 zXm2B&xHsk$lUclgh!_ZO!x*1WVUz0sT_TxTYv#Nv5<@#ggE9td7kRf-Bodsg2FCB#(luu@TG?ib!Y_liaU@smA#r5AS1%%N5~K15AH^*L zh5c75VC&?#fxCtoT+R3+%tJT4rJoe-A;K5ZH21~o+s zEU=@x42qsAGK~3;9oho^h}e#a$8>DYpDtI`bVM>d=SrFcyk(GQzGC;!aDoLR2GI zJ6z)eSgXy`;?7I8!jM5NqYW^6PFycRwW0-7wVp*(wa~>>wF^tAYNi!&1AJ9m0V=j3 z$7t5Z^$`5`&K8L-7=ivs{8p(hDP)aL#M-ZNh!VmA;Q9h%+3#xX<>)^0;@o3YFl?FQ{qY=nQyW-hLNf2j&0Lmw! zQ;qY-+&ID4l5+r}>fygl64*cchq%lE%icquVXEwqpoCS; z6Z-kuRG>mc?dorG0nNYCV2Lt;q#DG8Do!hMyX`<#^;u%>%*Feq7G zuM!TLp1}T9Z!8*OKyV2KdL#I1bprYd$AX0Z%xwsat5}zyf&(fO%7`qlcGi*wL!x%q zmIV=%;AT~V1{Us37$H?(qyj`G6XlYl3F}ojhG5H63Fv)8KAfQHiv;w(A^v&!%LMek zA^thAZb1UM9G}-(NWc;Hf7G+PWYRK_KB6>z7zYIG$4`{!V^=sY`4}BzId9*;~gx z)#xiOrl7?B%s#XZ2tW`ew1y^rBn<1H6ITsRoDXXREfI+hU)3kWE%AxJd&3GLfk}Xbt7d-e+q5(9&(Uw%ql%m9a9?T9r+?vR|)69b*0<5Apl9n=O z2E0V@$gfH76E#OFlcjb?R6Q(GC1*&O!W>QVuaav3T||o zFMQe02k9G=HK6m=MvdU9;^Z}TQ^&^!^H%i8V1trm^!MMzhh$OJnFM2YCEt^Q4eN^E z1l_FYyAOjpEjNI?s^pDcoOhwtZ%;D&$oGni$+_^tfn-k*IKH{q3|^g0W*(E^sQ^*Q zy=&R|SX4dI}j0WgkgSg#=~S(PI%U^!=K40m+?>QljMDV!q2Nu zlgE>v{hlW;CO;qklZ;*j!`QX2lIN43_5D)n`3qO`6)C84U_eJz3aU-`=W}(+9`f^$ zHYJETgF_;r54jst4B$bcY&1AvO0j_{juazs$E1#eoh&KWx0uV$6*R)ItW-2nKRvlew#^3FPWh9@AzOy zNggsJSDW5WPAkrfPjQyYj z{q@7cDN69$`qnn^?dK>W?}wzcgqrm!tDJ%XcO6QZ>!ZHV4We%BM_GA(@ZV!8=Yu3* zbj>c@%kJ@Y3c8(vrJZ*(g@#)9TPZZuTs0|ZHo|~2-~AuL-a8gy6g zT)x7C0)V8osO6({!Xe(vcG9z$K){r~Vy z=;wonnA018?d2}~whRp_DzpnA@Hbq1YpKrb@zCc53tTpfz#~^R4V>~3yiaex42ZB3l>_sPp2WuLXgE6PJZuFDc2mS*`#rOjVZjS zcUkhERDx7}VH6EHW7 zJ7+Nsfy%Lf3%y+V7kDVOdWmZb68{Wm-grp!9}ZHP8X_GDge<=|&h=jly#??l%k?{b zyl&5TJwmVL#jcaNzQP)A*htSE9`4$)BO?B0sp}T0bi(M3%UsL2G@`C(Mgr?y#Z5HB zM!Kf!LCPxEEN+sdVFYCCLLn3%cKsQx4ZV-Jo}$;cM_m;Lc=i8DC^tAMl>c(dwT{xK zo^fqY>Fa(K=z}f_bnnXo{lOL25K8ZHQ=q@PCD4yF3iJ_wxc-l}Tk@ytE_!YA#Pu+} z{`SK4Cwg7?%JnwAPI>Eknzk4J-gPB6nO7@dKvbJ*Ovv1OpV=oVu1n zbwQtBsMLogeJ0Xt|FS;A==I9bKBMV1Ze*V(tp?cIE9#!oseKx`-pAUi+g#I{1bx@X zkn1{G^ZFe59L?&uyN|rW7!fhA59&72wd==`pRic@|4#?g{YKw`aYM+rARkAWDqusSUqFJ65 zxP78NepcefB5PlNHx^mb2fDSP@Yf6#%KMiKYIPmq7TQ6Er}DHLuE#BL%Xdb+x!<`- zyTn97=>+NGgn!N+x39USScabBy**uKGSy)>pL5>_qsgxmMh z=wgIcq%l;_0e(2=c8R;UQ44K_OSXCzpm^rim3njF{{%JNUkd7fdgbOq)pvO(l)rf| zsK5WCn-wiT+1x#fUR#*Bv*`HU)ZLo?|354DRCA%2nh8Xe z?QR3EVeX%3o^s7{mj=-UK>A9l7bf7GZ&@o?n&-Yro&%9!N&?#~Yel|p)64_cp z8rwZH)|~|n8Sg${-af1HVtY+@xIV@GIXB-y53rW-dxexbb%A>WwNSss?vv^Dhidml zRHxL{?&oQL>ay1TB)$Gs<9>i%x33c{Q}DI>Ci=hGdiONiuM4*b{O;QX{*T)QzMXaM zc9ec>ue*7Z7*#v)i0}iyy4w?rBZkJX>Y%%q)Z!vq#%F%b-5h2fb6-HAwm9j2g+h38 z%H5?&(a+j1vxWL!-Ru6FYIe3 z_pc?LZ#p2;Q0a7HI?1b}TbV9-xIxQ*-TO5~h39YF_qW1!H(Pr!7ml*^VEtav!h?;x zf3@^@O>sSF%zQVc6e!w9cE@Xp;M z*%sSK2p2HeM+zA3MF|+HV?0c0Zdw=b@kokc268wz#Kf;gC&4v(>?G_2hEZSldIT;X)I=eM=eGAWTg&LM(?=V<3~ACB;c2mTLt2( z-vE!@5M1lgU)rH&5H*WAByRC|MiDA@3J6Vi3kWZNCm@`)S3r2P-osjoa4HGB;9)LA z-0L4b>?us^Uu7_-0y2$}`g1C2f5pQNaMdPMMgSx{u|hOve+pKaC`-9R*m8qu%^fdNtlp>h`Nbsfu z{ZB1D|CSnf0tDN8zLD`0EVG1@Z9V7EmQuQTnsIl(Hc6iI$Y6!1F{wD!T%7k0aq;{K zH6>obo?M5ZoPeA+xhAn}HK~mbJO>9tJ>#^`1^@{|jIp)JS)Qy@M&)?2PT4ZglXc4D z`JODe97{YO(*$H(<{8Vm5UbCIyCXcKXsYNvO$K8&6ioNLD}^ze9IWa|q>G;OB=%h zSV3(YamLd|YTHU^{M9psYT3wH z@vl8uFA01vXlC?L(Coq|L9^+4UU{?^-7)lHraoup6)e|mLEJKP;(pN69WL2={m8`+ z)0?Bt7mF_2Brg_S1Jb<$ zxu{Z0F(kc*d09cU%4;*l`f5m1SPcQ0Buf&a609~Z;X#cV92nu1$>m&010u`8NnUR$ z)_v0jtW#$SSmS34SU=4Xu%<5b@{?f&r{!J;D8d`-1uCbuDF0c3eVClYfG3XqZy3y_?S2$0Sn_4vm0y6^E8guTbXCLE&-y}c>ct#;n>h@_l=ocxQiY7uRSVs0-8C41T?qH zz4`Ymn8pjMy$y-$9B*TAoZx*82N&|sEDjCPFaa_hkOv;tZY^wDd=aI;7v24x7-q!h6Rx2 z9nB|CTKce<+uPcQ#oSbT9~N`&ZGBkG&2jc&>3(!)pA5M{8xGXqJxj2UAq?s56Gq|g z4)T%r4$1_`#2=%^44tVLCKUlZum%XdA6deTn^Dx(_&_)e2UMS?LY5Aqcs6z2r_I{haLv{m?Sqhrg@ zi2}kU$pXUsQ~{xNy6^Y&e(_|c?`Ao|+ELihf)V(KjV&_^d{5Jfa`JE;tdtXwbGi%& zAc5Z~%@oJ7*22>w^CI7RSoVc)60UW?gLwkNT?+(+lNJgHT^9MW(Qoup-{#!tN9SsL zSNlfN{v5THM?@*rt9@-?#x`GmuLhglRqpg{BRr=5VTZ3L2bWR-sfBik<<5@+mTkuc zEaQF>uyj8uU@1T2`z^Iv>+`;Zvl?r86{ZTs6<<0eA57J3+a)1G3KJaZJgGt!{*&n6`#{8%@s@8ie1$zXRsmc@_y`1x?zyI{Qk6ylQRXAJZD`X%Cu1G$;( z$8|<6{cVchSk6dlf-P92`weP}K+GF@JCMqLehu(6(=Vnqg7Y0NfNMTd0C#Sb0IqV3 zAB(@^q4W@c99>qSf`~YF7`XeSx!SB4eR{O;LtL^DsEJf zQpvM419SNIYrpU5{BPF=zfm+*e!fjW`qy>=>A^Yy>Cjz%ttovb`0=-wR3sqMBh-SQ zU1$oVH4MJ!H(qKerX4=a_|s2ZlluO$U&w#6w0jg}Px>GA+Xq9g`bFRhIPCeK0CVz7 z0cOl=0p|OE{Mho4(L29&v=eRmfRUxQV2{cl7|{sOMQ z1_-#mDid%$7!ts*QnB?g%P|3Mg>R@dj0`x*NoFf)NIirw;movv=FPRi$7+5#Gr$H) zW(E8!t3)V)xL*&!#77@^51t#)iON_+0xaY*P<{(?W=#NoY-N?MAW8+K(gg(=yCvW~ z7sW>|1k5Bujt1b&K{K{Y+!=6)cCdgWyiqA9Am>@GlVBMUZV5IW53uHX84{A|lhl^i z1ykO>A((Q@Ey0vIjR9;3*>x{~-3Y9G6u>VqVD-sFbrSbqylEcRR?z?VzXepa%>%iJ z)NsNt`hi!Z(3l8uMVH;Tv@!|gKoWIbTfjx%qjbcZ+AfeqWUNyli^w(|0$D`<{8=D_ z>(n)n!8Pj@=*{&fDhPh|3=E{>icz=@J|tN}a6}-#t)11G6CL=M)@lMEEEC^JXrCFl zm!i6qFQBR^5Ks*&5>Ppo2&hJs38?ah1?m{F>J%=9cNrV#OQES|>p)}lMRNjWUY$&k zz?<&O0$tOoSMJFmHP$z9XhE45=oZu z`joEy6z6p9hh?JuF5MJR&A%(4O1m$h`s{&#>cT?-Rk!B?s+KQx?bmP`?RWEiUQK)Eu)sD*C;S*k&&lTI5aJxfy#1z25R1Vd zx(2ZrT-ZH`#h{{R5R1X;K0z!7r+NkHc)RwmWkwJk9K^gmJwXR8qwi4$>3EwGi0TYJ z&tlI%Sa10&MHjAw&m6uj6foxw6fl22NWlE}U;*Dy@ zpm1to+r>>`wt|=?L4U}NTlM#{HgLK+$b_3Tur5sr>}?{LvOefL+Jn5dGJJct3-C_w z5a3PRDZsn1SAci8KIj++j}177j|7=Qt7G)8Z2?i<<>6`RGwua_!KH6C!Gx?e2o~@A zPW~Ard1;zX0#LTV0&O1!?dqW&7?^-6yI^Z5X%&3b5?k)tIhYGQExo8qFn`CXCRmZP zUDYk`?;6}q4i06DEbJhOwcUePwnRJmDuO%FscT-pU>1X2!-821z6=j$F}OZ5m`ypZ z#RPAYjm%(`9Nb7pjTeQ%+`NwgLXsue76cN zRWN%}IK7UyFeBCP4CYoI0L$)ihQxnY2~Suj?G28g_r%9f3e8uY7MjmFD>QF$UNBq8 zh2X=S+1T*^;#sg6R9y>>qtpFcPk7sD=mhD;p!Y18e|11h{rDF;lkMg9eG%-%A=Iz{ zvTUYzO`A*<%&{ZQ6wI-~77FIr7nTa<*v__!81Ake1ysP__KIx=daGfblfr@%j+^_s zL!+}o^4&bYzClFQSrG=Y9TjIe=3kHiNSKBv!nT-U4S)Aie9g^5D4EvtC3S%cD^hju zGrQ{TM%JXm}Y^$d#%t(13 zS9>rnSDfT_vgvS$r^XGNuIR>X1J$q*)rA`2#6Td+6r&CFwt&Sd1^<+Sv9@=vwuKE} zDK1j56ZR?A$-pxD*WW8fNIg85Ai-DuGv+sR|6U4<~HqiJ` z(aa73-+8ZCAOlP};hzuk_!taGurfsP&PILt%}pqND%~(w1jnuVR&+<9A%1i-P+e=qf=l9+3JiZD`D}zSse`fMR%G?0{Rqd}QBJ>V}bHh4R4h zeMg()|GQ`Q-ED%`{#AW(htw8yS6|!#g?1u+tBvsbZf)NS`glF}b>C`wE#27n3wph^ zweMwa`4xeV0@r_)`;gP@HaIPdQpqz93=`-X9= zw^S};1Y~S(j19Li2>F!){L?UmDYn}u?%4fzp)BgLKR!!7}A@TALtOm6q?g9 zw7;g3RI7uat&QAUL5 zlV?RC_^um0CW3|s!SD!%`sk207;fZZVaOV-hctBn>*R7l%?K7HAr`{xS^A|R+>RTf zrQY%mbpYo9Ay*w`La$%0X$uQxgxulQ%2~DZ^Fs{a*}{+xZ4r(279BK{PLOT{Zd*e# zQyE-s z0C*2Nof>W5-#RcE{ld$Te0lRo(1#tbL-sdCAV|Owi@sWiMza9Nn<0jJ(C%$Wf9}N^ z29b)v?Z5q6k%sCnE1<4bKN-Z)Q0Uxm21WP4r=QfNqoJ8!KR*AU#OXp}at!DET{C5nT$?n%EwZ;heyi{mv+ay_2BjCr$@}@?>+A00&wXM)_89}fNmtSR?o6qQ% zERCEIaCKcjK4|)$=r>0{0M`@^V+dFh8 zx0hcnw2Kh(N0UQGaPvV%tthUxf$wudJKJdcG7<(s;?PjDW@MCQw@89>02@-b3%|#H zxIA=|mQOt!uv;?8$r$zw4>jRNi6i;pLrCSk(9h_|(upW1g$2XDF`=jIi1nE6He~7C z&@Z%-C^H~)XD&Od1vn6^+E5dsXy2kOi60w!8G2WRj^fbD_>_6QEjL7d6{^qLfy{41 zztFA3Au@vC^D9nHkjJ)t*6UYq@)E4a~w307VV#gCF*2*r2XahgVRs}j~9 z3teN*YLnz&LnlhrAhZTxjeA@~GEr3*Lp!tW!zA!T=uxP@68eeja#|L)hq&O6&^98h zx%V|Hq&(25;QT1`lE`5AJais6Xs9JQk_m4@%}Il|`(Rl4I&_(Vps?b7=n<)(hLPGk zUm8QDUKsz%CyEgW1PKQ4sd<>nQjkz?8`daQZWx?s8D=0WBUolhx=#u#fxT_QUgCjD z)b#aT!uZG7v=wmd9%d!4jAeEN3d2jlp;y>Pv2r*6F#Z#;4C2$F7>eCRLk2UjMN7Tn=E+ z7~$H$uspGH)L5O$P+OsEI4rXSG@Kgw()qe-=PwR3Cj)%L& zh%Nt88^-U_W9X1T_F$AA)!am9>6D{@oZ^KGNF)n+;uF0$fmHWaz$tz=-8S!Zm zRRX2;Vb4V8mHZqg`SvjNk=5*KW47C^`W-6q=5!dpE@P{x9X5hW=!hVt|2uK_v+T@^F zxZEaq+j^R3;krD_J4B%Yn@N`jvw@0{+ zXK#Cjo533Ia2=;ILOZ|kLa}mHWVpO16Tdt7{I%rw2sh{$8~(FQaYlt9@!_I7;Cc?P z0HE1NNCRX7d3YzH1RRUP|0l+Q)9`SePW)(0xH(K370$n#PhAK|P&+AShTPEQ)w9tU zyJv^<2e@H1p}hON@ElQ3vO=dxc(giPPYQJy!7_6gS`(fs*1Nck*N(8DIn==$VihLOADQQM9A%oM}$Tciz;98kI*qy?_eFk z1k0?TzHfxuRG%v&bmDN~wrV3X;ut!2Uvh*zp%O}kH>nX>V#~$Fx)NNz*JtbLF2Q^Jvx<1LOn9Z_(k;w>+d6U5++hhMXMeEIYK94 zE;tuqM!pyp=>{ohB96+E4j@%M_xN}-LMPqj)mNL5aK9*TSoM3v30Y;rsK*1M${_x3 z#9LAO%>VHb3w>WjjN*b7|D8zYnMamD&A$<^#VX$#M)EraX__Go4{+{bVHzpVKLTNv zd89f`zH*4viM0mjNPYyL**;PpaDXgDqSZWHbR~T9Knb`DUYr9QbJLZ8ENTfO`$fuT zUQ7W)xE>zKe_lYXnIS;}9?KmSsgAlk>5)2~3qDb8Na}JU@!Z1f$d_{CQz{@;-DBDg z)|GH*Xrv*G7#68BSTe$c;hM_HmAaLKAK??LEz=?;&y(rQf)dEma}fh!?###+q7UaS z)it6Ei8O+HMDD|3gb{LAMydyqlN%#-Lhrz%8gnvoo1Pmv?;WlW{kKNy#2;f}Kpb{N zs^hQo!AL&oC0>ji4ig$8`2mTR5iBz!%g^BeTKYqzI%5v{g|7_A$d9@B?*!uaFIL%l zMN?(xy-0bEB$FT4m_f^jkvh{>Mp*JVQk|&`-s)QI{3i@OmgcHI=tdn<2a9nVXBj28 z8qT`S;X9kC53*>X<;3t|*g#m*B1&zkjh{v7#N4p1QDV06>Jp`sEs(0t7L8syjf1~m zlnK|@>6i}n0a3$5y#6s!vYuK_8snl2VOe~XPB&)+i^M2(h>XwI0Sl)JqjcuSSSHSo zca}t{gLBu&C_W|_FrzP`bTTrQS-_X$qSSW>|IX4;lGM(PGK0K%Q93g~M!2;gN4uYbuqU@XN?GhdU1ecCCBB$?HTa)YSqc&(~-t6WdKM7?52fvN_g1c`| z+!9?%UOYt?Z{Hk+cNmvn;8Tp|JELZ3>uOjCvKSJTwbBqQcSR-XF=i;=9d%s%8NMf~ zh;vp`6|oRhIZo@_=!n%9m6pP$#`{O29?4)b zj)3gcj--5#VImy-A&NgxoB_ht+L0G8V)V(2oAJHj{K=@TO#osn>5z9eia$PCEdbw_ zIvQ>3ctT+7nGKycxldyCocRvECenXw?d{_|-5dxTomc6`8dOB%1F#Y0^0 z==DYdcQdbO3z;y&;^Clgv?*EWA3q2__(y*$Hod#AMumy}qCwOqG%Wg4lQPcg5!?w7 z6TN_2l4E$zCq=g<0SN^T_>6G0!QRwp{*4#p7)C6HL>t4q{Af2*hLZ%AMbD6gEn~5S zh(Xc(5y77$-Jre<*sD zyqhA~8A6U=o6>r;AzP^XG5V&|Fbsh$aa|f?OKM$Whrs+Z(du+ldoKE!yrWSuq@gxu z0F1eWannR2q;YTd5HPtB?ICaJg>{@Y+3KI_z$xo=H@Z<&*6NX5S;A@@7?EH>%%4W% zYlDxY<3!!(K8ciX0f}e3%oKOV4O=I{+p#m7Im==&@6LU${ zb)d!}=Bn6tXMYw`BMp}lSlTV-oSxoPItz1%u-uy ztspdJtyZ25&uuJ>eYIgR(-9YRj)>u(PZo^Jo<@`jF?K}NC&m<7HwF~X8}Kz#$0TU($+R^msm?O_)v^7_Wct0wk~FsIodho zpv=w!BOoLHS`aqE2v(TDi7{!2Of(jf-;Swi79@CA%rcmFG=?9eb!%8cpEEJzs57?w z67w&0-8UCvp3v)}OEJIG>&PoHc$UXhICvw*fL?$2JtmI}N3BTbw>4sCX!$S(q<&>M z@gv>CGyF-uD$#@tdlQ56nr2B;!2fwnD=x#Tj!HEVwvD{QP1}49Ynay=Ibz|1VDvX#yjee|46Ho*yL8<{cGcltSeld*w zD2*D?4^^#V&G0yu^aR*zgCB!KYaO+Z&5*{0+GU?1Yn6X|88|w}UZjTot8*+qai0qH zpT{1j*QwoND`iyy<7E*IMq9VoD@|C$idgu@ngWK~D=BpWi?3n*V&9ozd<{y7)%IgR zBcyZF8~k?$smhBLzZmf$Gfvvsr~l_b`(x_5LOG+z>HOC8s0Rcwyb`ZI`gE-@1( zOQYAtUZKjyZ4i9cdXwO@TbpC2$!jsSs;PIA4g7=@XNt_#zFrAc};z-NBgz@}%tdAa)KZza1 zJus&{fIKa!A7@&|vHm~VI&Q29{{OFi+_zN48mBni@G%tzcZkCsEmL82m$(|rAJ8Li zJH0-3iMvIwCq3fuaILA3;~O`XUT+7+g>ZR-wzaIPR?HAB!s2#w?q^{0C&%GPNi#(I zTk$4P8y&ZqivbCXm=}WM;wm^hGM4g`ID5!XjVqAXr3B*iPZVZjcQZVZk*0%J>2dri zUnpP(vD%8cw9YAZFq|!nvkk;)Zh`SHlzskI->(%;QlN zap$#20l88+XR|b9eJRd@D3-+;v93B~e%vM;yh!V%aoVm*G>m|ZmE63C5mdD(;YD?v zXyaYW<92X1Rz?(JOH#_i%vM5%xRUdUlFp~E(!YZAQE27_{Q+}~W3sfFU%w<3!% z;0;kH8YueT#j$*Lc28V7XCYQapA?NxE@^iXdANr zMfAY3({Uf@_`c*~+z`2ZMBPf5#+h6fJYabP+Hq)5%MfMf|t4 z*Ld5;kCm#;M0X)pm!kW_F8lbur7p$!T1>nP>ozdMDV|?d5i&@(w`h1nHuwCs)LK$wLxZEQw_)PQ5i# zNeC~DchrN*%J?zdp>Jp;)}WT#0+y3_JoIfUEMFDRGUB2&@%c2+{`w}KWyIy1<5@;5 z*&6?r`b@Pmo@GL-z40s)KHDF^o0fldIG)ddnx>%qczlf1$s&fv3+h?tu`}^3ahyCC z&m|5aY?*R(*WyjV^|$!;Qsaw)D(}YIvV|PLg&cmTuLcBBv!uiE#&|xBYFS(##ctB{|DEfw3&6n<9Nvz@o0KM+=FSLS$v95X&QC&1QV8e zNvM8;9gH?eI6+fGpjiS7IU|b%7IJ4T6J%X^2$;7{c-M@C{;@EU-c&YdVM_0MAhm5m zB^NAs6XuV1JP840Qgda0sCP=ZX`ok4R&-9N){4+D!S*f*1$uhbVBIz0T@zBm$@!n6 zjfADIXFU^?TryG12!ul(2|W!_#$!LKRW>j{Fm#gXh0nfH$z%^YQkS!hR`%iYBwi{<3eP1!b;BkT9(G83F58F*@A@RCcyV5 zb)yqn38u0tOPGyd$nxO{t94O}oM}URS9**sOpWc zn^INeWU5-PPng_f6mq*+hs7 zOoGy-*2*n9N{ezjkz4jkD-yeMydC*qr!*s`>A37nf5B5bWp0xJfz5XUtoBSF^*GaB z>7ZjSQMjKlnLFH3d8Da`0Tgt!iKN1?_Yx*ZKlW0x@c7w9*-~aoni&~uC(e6UeU$u3 z=i2C`pgG%K30Cs2$E*2z!s19}y`J8D;i1ehCtU7S%vTzcZPCij+C(Bt+iPN!YdITq zxTqWmTb0UsE(v2<8L6$n2Ouv7D(QNP9a+6o84t=-Wj5XfZJuO94wNY8X`7H#u!Kvc zN`4hpLj@GqnsY8Al((+Mb4-@U^@rz!m5Zdv$_P@eN$_x`HEF1bb%(GK%B`Gt)B?0D z2EsDO^-;=l&I4*bE7Dk@w1Vpsm7BO&l~B#VdZzNoe^K#q05$MbrGo=Z`cgTN3kbE8 zwxm`+){T6-O!-n~Ak>8s^@XL6MMP=NO(50vt-)!Xa!NC1X4v_)lAoojd8~+Yn_6*z zS+q$xR0?-IX*?ph4bW{}tOSo;XpnhqJRsXLsWn+uOECCRnJe|vJYhMkY`1b1e0@SW z#$2NtAgE>r0$h))%9r9#-`mQm;?L7}l_$lY8y+cfeV;}UOn#zVAXUEt7QR;MOHEoq zYI`N(Ce?e%#w4&=c_n=PLD}}dSS%q$KM@}dF!{+wi9d@?^)gBP#4UOv;0mH}P87xn zq1*p$pU9t;E@4T>H#QO{O2df>z$r0Z-Ztx!i0k{TQRl9SAEY5%0jR(Use{T$Ww+&c zXPl5|3C}$fZE>xU_9@$-#4j~wCCt|vK7xG4;2NA*EA@+36vnm##>Dv}G4|wqNFwf# z{xZ&nSotLO2g`nm9k}Eukt|kgG>JEdvyq7dq_!2r10wzWKLvm)HId(GArp_(RzjzY z&Pe2^LNdO_wzc?*nr7Jvmo{JjhcOVc$h#0m6(+WlMiFljY+LlvqQM#;eLFO)d>SBdu~|gmTW|pSK@i%+q$eVBCggkxE$@4jHmFuS!hUx zwM*i*_)ACFCAU)yz`K3YOU~^(4Uz{Cr`bvNBzROd_WXefI89uc;RkIyCWTs)<%bvI z2X@?(xVMHSH7sGVN78gX#s^)zlH54a_&{ipAhlgg%s?pgOPZ`NF#Z*kG?z<8YKacS z)jzo-+14rPS9lwmG?9BDMZzL}5ukN)(#7V2z;|g$Ee(aA&bdjAVl&o-NofW`>6rdW zgSZ63#05Lo_JT=6lO}R;rETZ=ffR9W-F#dUW>IPhXkC%iz`0e+Z80OeKm0T;=`&}IgQ;!1MVMLBlXHO;g+!RRMHNqJVp>Z*Z8wZh1{UW@HPCIWK80{ z(}uu>D@k{`D3nl5gqYGJrV0 z%)mL*sB9xHW**xo8?_Z;rkQ85yq~ITSb&39GJkv*wx*S5L56xI@q3EgtU35v?b;C$t{SBf3j)yk*F4=;Y3OV1p6lQub45J4f)IQ7$1DL z3kv__H*K^drG#n$XH$}Ui9RsPNeLmFekYUNPa4IZ)@4IqsNQp6{ylW*YHWibhv5a%xOCZr)cZZst9NNy?Z7TOwO--z9r%-<|) zVJbhb)hBiL@tJ%6p=1lF*q{7LG+yPATHHCP7z{ zO`!bOjx?C+IQE;{tjz?32}AhSYJ+M5W%X2+!T;EwImy1}v_MSOZZzbNH|D5GdlinBa= z5Vs9+8HW3q*v_plhNtWmgEH`o6m`ln8kd4Qw^%ft9iP&!2`@U3obF@XVdLbK=5p_# zj~&RV9pg-ib$69DX?&w!2H#Ifsp%yM9IzwhZ|?LKrUHhi6ZupZI}9=pr!*H$H26r$ zES*fH@o0H4uDRa&Ic1`prOqZ5zr^}GDySU*!+uRMvt-Q^Rbz@gnb8`6HD<{*QH!#K zS$9$_|l$^Fr^^ipg zAa}gjJ@cg#r);%gc;0m z_tbihYBM!$ASv&OUDqlj6?fHZrjE7&si)frUVN64%6U;z!yJs#Qh8TusDSdead(rH zP`x45iUbDWn`rC>?W(}kyU;Hu)tP_HBVnT-`hqtjQZ0;yaBfwRI!f$7D=Sk&#h=e+ zq_!4+ww#yRM%}}zQt`fnbt}hZsoTY$*H)yehp7##QUkc;qycDcj1x}f^0-1c`BmyN z&hC^0&TmZJC96fS%n_{WQeTRl$!>S5I-A}7F7-VZh0Huvy=psXH}8`24d_JGu~giq z7acbW{Ew&di>ZEQQMDu1A}2pZR~7G{_TNoLkBsf{v#%|N_D?4p|VhbE8~-%b5e9x4rwQgLjfyX4HDrq1E0tOqInm)eS0W~B0Sn<=kS%fxi> zu6Y_4NRk>jw=qa7=i-G?UA@y<0s5mOr;vs~YMC3pgw$ z4D8d?KDz9XX3QPtqHO@35=w$B(pq!w3G120yGO#TUWw?PHik1WWdYQrLY~>N>~mo* z8yS$Mp39Euo2JeHihgN2qbIcp(YVq*IxSMx5@8&N7iNf4*D=XysZCj>`j6B}a4suN zoi*;{r0tWtlZiqr4~7LLXigHGsXO(o+O!s8>6Z1H z(y<%T!Z{#VHUUL&K)=1UKG&5o~A;W`wc`A+H21W5PqIN6Wq%&z3xM7CX zw>-Ms9B>EubXmJ(TWPwuXD#RVw0?5U5vjOtRr^5W|L-29eJ%AcLO7vbtqT7;Z30JS zQUBuPavQokxD+GCel_~@Qs_{}W62NwxiDQw4ZPxEx~_T|v#9^&nb zDk8l#^s-FnU+!bo8b%`XWY1dMLuZ{H&V`MXO4!O{Zu|5<#rw6C&(hUHf$it%zlgE) zcaQWf;?M1_>GpC>Sz}ITarKK03p;$$tL1%}u~`3t7HP0g^Z>J<^lfrYIhG21sRB1l ze#JSI;jTM9&k-g@r=RAA3^f6}{pq+==#-t_opZNZU0XO`l)i=Yw3=W;5S8fe@q^OU z-TliU>HG)T)ZF+20L|^zW6}r9jo^BBxuwwO3nryMwh-K%GhfHujE{BvQ47-h$&H|) zlAji+-Q8X<2KN|kO~-wv$I>lGx*l$A$A4Rr`BQL7YfW`}1SzXZZmSBG+oqqzZ7T1;p|D}%ex!2O0%h98Nwq(-(Fcc0QPHPK& ze^2)o=Vr4XrrXMU1>>H7GAa}XK1<&xj|EDFtuNA#%dN|*J$sEQmu=Baf0te=4|!zi zEX;Qf>Ss)766O1{^hpq6o}mu;G|POV8)Mpfbgk!-K# zo!J>)T2BKKztjFJEZ0HfAi=PBS!8@FjHx z-kq~|Xm)SW80^HhjFFsLYFT2cao(H3-w`mX(qV--C9XY?v5~u9(AIs?kYNVD9?giA z2P&d;688Nz{G6fU>_Y1TQeDLx!}HfN)`=t3l-n88#GfthX8a=;+4ul^D0{8!?&FM~ z#o5QfzcbcKwdxNi-(|ef*V{~n+kF{H%=I!)X%npUkpr}AmKnm$UGSN}D7bEr`2-(a zG^?j>!XG4pgEILu%2>lyqci!pGW+X^rrDgyzvZhH$f8%VEpr;zMH$uAZv~E(^bWOQSLQXT>XS)%^DNvo zeIU~qe810J&Usxe*-E=p?Z}Z#{#J!?u=;eD?O4>Nyi5_kT;nKtnFuT1{y zaO%3^pgR9UCMJ9qm+L-d`Zi%4v9sPV$l}-LQOq<_<(g$q653}OvRx_6mn$u^hFc20 zbZnQ!Z7*ZSc3xe>FgK0ilcz>qI%50*p8QGDTWeIb`v-o2bwE`G*b7Yn&H{WDb zWejd6*&3PU0HZRphD!S$LuF2^hGf~n{L-up?h|;dZryw|;^cxAEnwk@tY@~8=$}TA z>L?`LMKiP1p89rn)-O_r3pN6aMOk4@s($)y!eB^Qp7o?jtrde-m_p;)EPkI9V#D+5 z9kVUCj{1H>)=D9XkPW+J&J~$iC%m^it48W!k-D`s-CWon|0QJgmZ~7IfbwvbpXlLL zC$b`?+K6JRPG#Yd>Laq+66@;|jme5r=(NLUv-G4XOJx4=Tb3=9Ue7Wx6T*DL{j49v zRHA&4^_BRu`J*g+M9=!cxyM;M#GebFX7R5oX>HQ@#R?nY8T)51HE!{KoprJ)orvp) zEb;ZA4d2mqMAQCXAhDNScq!&3S0UtMtmR~-Z@(xec7L9-){nf zt?*Q+uWR;G9Svu%Xbb1Pvfs(8RYqmE)8>wA!P%7}@CVPP_ji}#IHNtM5y;y`btv0(t3yWYw(};CiEpCdWFG@SC*I3YH zgKqQZ*Womd4XS~4*@jXJ;>b|5!j5R)hKPe~S8n|3&^KoeSRTn%`3fV&4c+O4SPeNsEj>~ZoOCKfWM2bKAW#mi|e_qPXnIYz=L8UpkHATo9LvqfF zD7KHtxh?)&`$djItoD3DjylKGPs+guvaH&~${bvmWk2uC$ibC6_Vel79K88qKU1r6 z{uO!i7Uv8SORtd}e5lG8cCW}O5KBAPXi7iU=JXXymEYzZ5P92e%yAM+Uv@7To!UlN!=sn{7^9 zF6Fcnmg)ze%i-68wajdeGx3+47-@{K)~tj%&cW+B@mvpJb?bKFT@t(H{pW6uN=|k8 zD@S)gwtOS-kp^^=CyTrwo9 z)`Hw=X+U-Ty-ocdgfjg{m|Vl_ngRJ>XExd zEZy##ds>t*FDUm0XK(DXBjJzm-2CR`u47UpX;?hHE7=*HJ4O@YM0;q*_d7L0)YOZ?|m7NF@+V7o{`v{+APyz40%-w^h z#?qfhs&coAKPN5D#S<%7X&T8@H6f@yF<+Z|iFB@?7D>9*=o7vXpW^;M+$mo0} zdAB3i49tE)iv_E$$ zr9C^4yF*4JNHYh$A9BZ1hVjR8zn3wU|D9z?hlkcCHOMH9?gIr+&}(ne+`jQQ=^fn)er_>1F3# zZNeC4WLSQ!0hz9JuqU;uJX;v5%HwA(T7b?Y^7KjNkUZSIJRt8mmkl&5fGmr+G>-%& zIs9Fo0a#ARJ4QRx#hH21$Q0-V>3D?otUPb2Z+U9soVCN(A#YDjjdYH>?fZC>Xlsm|Xbpi>+2j!BI!)P-l;^Tx@0Ct~3jyeI-V zyg!dWGzZHvN&BDjjF*&sup_R0iaqeffIJm?hx9!mGfXBR;}EGiSY=Ci`*Yq+DXc7V z_Dr5Bskc-`!-8M(Dy4qTBDELuEMem1ym3;mWs!zL^nKOMJQIRc2dKQAXGc5G(m&;K z#8_L9(=pK|r2KZCHL=#i$7%}`3T&bLXwLM0Q;zxPjZpmRPWk`H^+PrA_~LH)C$TR4=$ijg&d|$l zr3LxTG2ekWcF)g)O zYr#7{pI^a62WOFr^nA>Z8TsR+fyFGS4~JCw{kWl+)nM@Z56(~0nh20^PR{4iVP#8V zekET8{io&!%0s}u6nC!F6&EJMz&ZKn zV$3lc@{718*Imv}1+(q>@irK}S%>qhv;z(!MKt6O=c1RE5iGMLn;P;vK;o&Sqeu{3gcfZCS5KjwoB6}i=1WdTY1W0!|^SU7WJ4M)zpdKk~BiNvcn>GIG5P z_mf#%$^4#r zgb9WWsNnUaOn^+1Z(P!f=QpWLVb5fhC+BS@kr85NsLGlk;7JkLD_cU(c`6^ysp@Jb zWbj~hKy+QII?m~?VS$9zs#ZJLlQ zc-jxDx!Qh3>45YtT)$G+u_XNm;DMn(O;BaR)8i`s;BaKgBt1{4Ou+eP)d_wXO-&$3 zFcS8cS8l5C<7ZXy)om4i{HzL6e^=obcd$3zQ5~h%yLVObG?ThN z7Ro<8QQ-khRq*>WRZw%hI{#1AgI;4_srFO3M((iP|!wJ zMl$o!DPd&=$6;({fg_zoE-Nfx>1bGSL8-jWHRD!VLTFjReahHll)z{(rXWSj2-s9L z)$iYF1+%rq1dFrClF@~s&}D9c?f(xG%L>4$RqGu$t=~%&D$U1^V#i z;Q~XcpiJ`ic!4;SW&B*g_cqqP^$2)gN()C| z0*ZcG;6^szDd6@OX^Ddk3hjkcMl0?WWNXDz+h&r+X9cYx{%JuUY3IuXB;1uVTaB!> z2G4&AddipyC6Mqx`-u$&yeW8ufcJb}_>W%w52gxWM0U>puw=1Sr$B~^iim*}-LxbOhIcI;dDo*PP7g>xZ=M&$0hWCvIiTKEI!R@TzN_`)UfvTYfK zd>k_=gEp?T7v?!;`GtHBXVhMWg?50$m4i$XQeReRL(Z)zRKlzwh5WW(H8caj9@3K= z>ye-&<(mr)z;QxhM>8~nVwTJZ0-Ye;7+hw{HD**pk~IeBjBIqfIj_))>qzPb3`xy* zE3JeKr*8HZYTu)&PRXd6d$c~eRcqs6hLQ`%{NJE7$t`(Xz zMIhE=YYpMvpN0FlVMbf+{ma7H+~!gZfz!wr{ zu^E8J;vzO9__U;GFV$)9vLb!~R?`r%{tDkCu^M070$Q&r>d*B$EsJtI4lysjF2e7r zR>AvCMf^<%E;QW=M$z1+qm7YH;GA9=L#o}kD*qwT_n?+-ATqfi07jehzNZ2i5%AZB8 zxc`WwkA#t$wkRQyQ5| ziOQ^4A8uL{2XZMA2}R_#W3eeLY*oCM22i+t@k8oC*S5vn19Lz|3u@Jxj>RV^xqs*4 z*HRyp!l@p`{5=lS^MY$}I}RZ$i*ze4;AXhYT5bG`JCIRFn>j#0VDT^xI->?mqyZCA zd;yn>;BjIxo)}vN^~uHi=ygL)69#*_vo8@tly*r^t!xQ>YfFzd}R}^leRkOAj z{vXq67yd_enkrta#p`_WS|?sNvujCNsZgQI+%rU}FuJPv7x8EM;$r?oz-nQZBx^~rGu&HR%pX>T)On=t?Mi$aIHivNHmtBc$5n?QIz3&`ABY=bWz(v~agigDXL`?+Edb`s%dZGG_#Q{m@=jDyExc@H#tAHB$5P&ml%_khNEL3uSdx-dnSW;gq3hJ8x1oc^E|0yS}B&0 zA6a70%~{peqV~p=e8J^rO*wo@EZHKpA`=%yS|^VF3{tX6D!4^DZMF2$l6#_G;|7)7 zky=%haDHfsIWbKtae!OpCH#p_R1Bcz=ebFgT67$#ZMn(_+-H{LH-#6Eqb;!^w+Br& z0M`X29!(e`O2cAG&X$*0lemQ?W~6>bi0}&n7nbyq#*+ZII;KRQJa4ngaPNu|{vAIx zuqd){bBP_?`l_U{DT`350eR7Gl^N;(#pE>Dx}zjZ8^uH;rP_IwHLTrNvbQNANYsbM zA4?82;gJ{;)DeaED=TOVv1dx0@&1u^(TO)TVHt6|K>)J^7fD?n%wO?{4==mspMBZ7~@vDq>HYcXi_|8Vk_8~Sz3pC6e;+Dg{A7y z%kN+MgBXSGgG&#JKlO%}{ww}89aH*PG>PHZ(&1u9oISC$oA~qS)c?oWdj~{)JP)A1 zqxTMqqGIoWy(>nOXl&TKqA>z@z#Y9E+|d*Pxq>n_ioHfKmNmwLEhff7EHSZ?#8{$H zqtU2e%bVR#xzC;Cz2_gYw=+9CZD-48%fciccf{g_m3;DL(ZVM@!YjiqHyJV91KSt6TG)arC`;LB>+p##O4N!{8`zU z2z;+(XQVfY>J#DS+kk)X8xw)Y=$YUP#z)}hK9=k|F=9WTlueGf!YA)fiSXf@u-lx7 zulb(o=g0^=+r)|;h>5Ujz)MEKbv5!4crd}6J2ieGF+$sbYDN*nYut>ZWxFckUx_Kl zzl&H0E=MCA00%Ck$gA}czq&F+c(5yCkx4KC&kYV8h`<|qc1L`~b6>hg6fa_5#4mjA z`27)A`Q*R@B7(=kh+};2?}s9!hgT?lf_zB#yN!$aFLHb11NF2EL!zJS4IaguZjK2lwugAA|O2WGmPo z6nTlOsXRDRaJaZ`k%C2L_K39Q<9}SQ$R3j6gjhdEe0J~1K$6fm@(+_pKvD1`Ok|e# zhdjwi-GsgLT9&jrn!Imt^h?H*p5QLH-liJKk>2YxZWd@wjiNsZ| z&58pgB0usU+`vWSX|zGK-SAS;cK8zY6N`E*mH5P=SEi8OoGh~c&L1exRpP7n0DA{-RA)+fBzaQy| z*Z#`gA!uS+1etz6vOjOb4Ua^(OMMc_#W^qX(bLEyJR4sBh#b9o9(kM3ee`eSHQphv zzKO)WhD?y#vM50XJFTOHae2CJR25&Wvwc(oUvafdR9`;%(lhEUPr+4UN+nQe7bU3eR);7TKKD)6sCj&dj_nn7PBPN;92$)+b9U5xE`W9m zjrvY#!Be6n0aU%TneXFj*}s;B|Hbjr1&Qu?ir5`wkM z#;8p^%f~l~*3fN<5+d41+oHDe2yeDW;htz_!~u%^)lqNwaZ1|PQ78D^vEM{( z=aWu{L}G^yi{{FzjdFD1h^;siCAfCfxu_z%=z{vb?d7Pa{0P$FW>g)o%=`6GzwpiK z;_WEHi@ExK)GNN&#wStIje;$i!uOmEQdpNlJ^-BZJH;1kuID*}eMQ7PtnCTM__ zJnh$3@<5)C&d&0`c%eGF%C|}4fl$pXI2XR!pXj~ixBn9g2(>4Do5=BDASP*8OZjPj zXwbQfTA0ZqLL`U2&Bsk@uHRm2`II zP@rF#h;E>K7attQkC0#IMISsy{sW(EGC?jh;5Jj`xWAWi{`WL_J>QOgn}aWwm}?QJ z8$+m3?gJqTxijpYHoH5d`6+zGJV!G53%PWsn~675F_*Kk{u0A|86h9-$5ro?C6D6G zo|h*oZq_3CZ#;kF3goZ&k>RLSRXiH;ix{-kp42CzoE*B=W>iNY@MU z(|kjAxGw*f7uDmY{0;8|&3=~)q222b`AVLJgMZ5LDksLx?T7L{4arQ^;)Hjr$?eFw zXY%0<_#)FBhXROV2an2JeM$Xu`7xfO-S0(?zL6<}@V3EDahd0{&_OYg=jf5E;ys`H z&Rrq>v?WM9tISW)92BdO(+iBB;!$JiX%QK6RfD<2k|Y&D1;H-v$05nQ|!So#SeUP z#RP@m-9?iWzjL{pHB%J44fN9#Li5d>t-x~u%rY_a6~%ngDMAs!Cvy~v-F)&Bl|pFL z-th`NBEX8Jr6_{<2DU#_Aq--48U-F%VhH216+&n3pQ~tLVSJ)pqUdPR^#SJLo*_C# zUQ(>EvFvXVIuz2AR=bn7WeT&`U8rFg)MLHE9q{m{Kj~blxX_Txld8>%qkQKQzegcN z)X(-QgkJ3}QP?(U!b)8^xV7!vZUBEyGi8V){Jn2$MP0HNK<{TGV4yfLP~ zRQ$pxhrL#ODf#S!{>RWeL6`yOL8If_`;*|`@g)*mc2!hJzJOXFj@hxmg}8b~+wfk} z$~U@*PagJ<#)Hnx2_`g;#-kl9dA4=5;3XT{MhmjfYacBr-lt=0(PkYchXRP=KyJoIOCP#LUKw;a-bfS8Jw^qAmC<;ANM-bFGBr86 zhk19zA>(QP=;M3<{XIWg2rOi=C`jTGQIPgUqGj$CM+?DVZ;6NysgGXCyO)V!V02=G+zBWSr1)6$Km0h< z@U6(*7vG6BHa;DVXRcVIxcWo%NeglWo#8i&JnA45!9yQ!M`ryTy@!wIEw4ojqXF5C zXgl-vz;k}9w90`j`!!m6#KGh-6iRn_N(WJAeveMIT+9#sHl_yz=Eb&wm^LvEu;y*t zDAM)s=qBBn6fmuIjODViSb|^)VeR;jwlQ%MF4+I^wg%9NWNI; zju;^VHrg2@guT<%F~U;6ZdXh$kK3BWIP%Fs2V;Pz`$ug|fW$SZjtDBSounfb^frO( zNC$r(bIhUy2r7s7mt*`vK7Wiic+|!Cf%-VUn?Y0i>S7}Ps}R9LfAa4A`j;3X7@oK$ zO0ncd44x8Widy(vjODirv)b{do{H7J;PyDi9>#6gdP9vY-4=9DV!TP^y_iG)#RFxW zD@w4ahUcc@X-upn@(7Axj@uU8tz&J;mRB*hk|o84P)6Fumh%Mvb%>4O1xa#^#ZO91 zrU#y}$$T>2FIF)A>n5?n>UPh-Sm~Jpi%M>_#swivIL?P9w&BqnWbZGj>a zTtYg=bJQv%R`8%#-C_mZAMb&6H_&oK8up~HUu^k*>jtZ_2S-(c8@U)7dx@`W|M1xF zc{z`v$u=7?NcMV)8Rd_n|Wf% zU&jjF?67ZQv-ytt@`>1@|5WhJi?MjP_-t%<$w*OTnW=|i+_@b49j}=qzr+e_wdprS zCC#XheZ+Gy{f}7bmHbj_p>VHhb`Y8SAXfUItBA4huh=G%y){qLu_HI&|-JU_eC<)yX zhe1wQDTngwseV4nv%FXSar#$^pEM=WZ2k+;O{T8-KM^wDA`; zqK$pOQVRP|W)bB*%Sa&9>;;AAm0sK+t!1rpIB(lcZcw z;x!#iqh6Pkp^~<@_Ln&Ma+S&xTKuZyKPh&&s=UpqADY!GC4)l&mmsb%EQH^b!uR61 z+saoGK6q?=!0M6G2NX%E-k^Pz?8}W*SW5LOc{nM(r<8VpLMePrRC%6vn82q>q38Vf znW+7v&&^sd7Mu&`_NctTYp0BeR8DOO< zk~p)#3wZddIzyatL@%<6^RaoesAew=Xroa6xGQH!fO6W0Dud9R}v)4_r#(TF^LXWxPSCz0-{_`DGH}j^J z3QqS^n&R_(%D&|KW0kTI6CY;T$LUNl6b+F|6b^AC&6!Jurn@8D;H*PjAerwJ7i1nO z=R%7{aqbX&8(VSH=JE4Lnn&Cab3M)_h*D#bM~nGFcvY1XncO_i&D`bEKzAQ^GT_FD zrsPc9czYRfYabUZ`9g@Sns9KZIKG5RE)9so+jW^)&kTtZMm#Hr#E!{(5 zL*oTgq(I;)QQ@WJ>%EKCo?^7B76xxIITKwkte- zGhZxfVZ6`+(iHL1o5iTKP_nKnKr&z$93S7x+*3K>%k=RcoTI)^iO-izE=Ae*>EpwB zUyEB7FZkuhW$}Vvx~+&8{PM-h_>R1bglvcxe67!Rk$;;n;~VpH$FBQC{s(;%-@75^ z$m81hyXLWsHyHw)$?W6t;e2i9&c+K4x#E1h;E)S`j29fT<;8fxAunBu7aTJ0r+9B( zom;NOA2IiizEJ--ejztCnRYvV7grTDc^tpUtUdQ7hk;0C;O27CUW8(>F*0<7ns*e*eCNeb(q3)S5d@X}zqo4u@ag7hk1bQLCm z35B0wbP7rc>&w)fw~P%_=q=9-X{s?EDcnp zPMA#Yj!jt4+h+Cj1j%+a#ur1u?P|i8TWaD#@vJZ0^-dkil_wXW%l!V6? z$|p!i`jn_ZLJs5BM%ocYZi29TwA3Ol#*oDz@m zJWO>-6n1X??3pM;{v+Or!p^PhjT42PTVn$grQ2w!_(b0>aftaWvoBy?I8k;?Oypb8 zKRrZ#4);nFT2Nu1M4<(J+AmRPL9hEK3N2{cz(iq={`b(tc=JIVbJ8i$bwZ*i1QOML za%^PcAN<~${gV@gkJ0+6BIRMz6ZcDKu$2f+QsPHM9iCXoZ9RfUQHjx}2q~ffqBsy2 zdE!z@qqBgvicV}LQG@`U$U-BGnV*F&g-^QNsG+*7M&>c8_|he4kczZDD<||Sl66$s(xhb ziNvdt)@&k1d4PYfrB;wahc zE7l6Cr|3$7eYkLx`>k!?Bq6$A@0TRBblrfYN*-azP!YjzSkflm^Un@X z8pI%UXCw(-li%E=laeJT#9U7B0yxQ)4g~Y^ z`Dpd2GD!&AP2-Y;uzfpTlz_!AFP^O8E7 zn=qFkbc&xT@E|w2pxc<#j5x1PdS!0CT!MfR{NU-{9+B6B`$S&z_lvy797wvrdr{bt zq~W|eH=aoHwlFy8PAB1RsorUL+5Yp0Afh>)Bt16Iam1rI!}~Ll9t6%LW$;@BTmPOU z91~F76ZO#R&myFwH7!iOZtq z-$}^m*2&UOY7~uxc1mt0iTF%KnAeh)jUw?~lYf>3ScEQs>K#@1$XuUfycVcW@-OCg zl|TWZw%j-8jQ+{eAuX#{H6-~@^Rl^sc~0c<(BwGYiQ`5m3*INe@&=R3nx8%<+ZD+wNt2Uh zCC9PL@Ba5LEreWACNFhGGGAmSo0icD;?zmR!k;N5Oq=XwP9_SjFHUwK*K(6Tm3S~B z^MKV$l5g6`3P^fM^0$^H-x-sgVeYbIJDB^!lpuIwOnzn(fRUgW1Tm!72_Rq+IE`M@ zh&(7yPO?JU^Qw}gB@T!Pv!H%ImK?Y_d6qK@w(={9U|@o;*_}MpTtvR$=)K7y=G@LA zNKtYDkVvH|*?l$H~Z^SINsHCoaqp$szBQ-L_a`oPWwi#zE5*yuPY{I5bPyL*+fxB873b zyJgA)s?y4KDUK9>Yv&Za9HW3FbWOpFJPOE=;FKEr_en@fI)y8Gr;MO~_Y6pJrGJlw za`?p`rPNZqF~d`u()_5ATz-#HDO!dfmU4%}S5HU@puhJ|O^L$>MLNw*kxOhMNxckA0DkzTyO;)Lr97szy5?~*$`)}lo> za20j?C8e7F{`G2#2bKBht(48?dW(Y=*OP~l$@f!Ev_@BL;+kq&h$C1bGf%vGDs#|r zo~g`1-Mmwod;I2;`VA#t;g|Z-oX-?UX_OjBdikd=GH)MIq)TAxDoH59I-&scnvx0a zQrA#LKkk(J(h{M56n=kmZ=vuZnr^8(EJy-{lIp&xc;7<-`D9Qk-W*my0*9pH^&JJ| z%Fxs`4UlUFgU6=Y;XU!V^@nYT(T_+CYzU7aUI8V1Y63@i?Ie!yw5h2jmId@tYy637 zcIwK80Du5{vg-5HJJv`pJ0g{}nNd-xHs%6NfKf~FE9%ae)JAZrLg^3VUZsp6JyfY* zNjqbzw>QyiTmes?8puCMsm(3xq)>tfPmj~;CTUXfej0R{Y_8hpIjPc3PRtBL&g&c{ z3)7&W{9rDvoiG=RgUcj&Lw`?n93r?n$4*!VvOIG%34#e9jUA}9o(7v zh~jVGo$5n9vUYzeZB68hL#a>g@b9z}sjNA*{WewFsnA+U_4(9C=57`Rn1`<{(vRGe zE~Iv)Z6fD7C*bItsVo*Xu1{rc;_|Pltnn56p32%p-#=2jP!7KMGu0p&UuJJen+@)^ zY3wQmZ(tqprl+Z2J7Vhyf0JtJfI+}?1AkeX3(U+(^Mt1VOYI6FyR2=Yb`b`g(3A5W z;OyJfhgi>ncd2+USixR>+Ke7N7FRv z5FELgL-Z}v5+y`w9$=miTaAJj-O}7(M@DKAvG17HoqAaRE@{leJcH7hV_yqSE3+*B zazdI1IDL)>i1j~229XYZ(&Ul_B33P;9HMsFH!Y0?nZg-q%%jH4N@E^nH8+j*K`+D8 zSRZuzi!{~;J(6?P?vGAmcF&7VV|`FBRT}GqYLe1eAM`3cjrBqHS`Pom>@*hSjJav7 z587G4<);>=u|DXPE{*j;^@cRo2fZyzV||daBF)Jp9zot$OPmvbCRh%N-)>5~AZeqB zG8by9(*hw~GbxDVeVKOBoWNXy&~}ndgG@gIzezh~?yqwI^IS;M@wBJZ4w0ug0lI(B zDdOGfvjtc6S zl73$jG6X`C*^TWGIyk)%XqKn9CJ!>w3oI%m$d02s()hYK9q$P(AS+AKJ4(Dwpf!XH zT9uw|sdFqm1Q6g(hE}DIr6VEz=JdsqOCYd#4>DnIdZg9z0%!Z!rPhV&fip)Eh-V@hO-cR?0O~=w>OvMnOg6b6+cEoTzy^9rxa_(fh zZN@m_|2n-9elw?{54Fn3Hxu22>_$Gb&gdaAuNf&fsIbmx3Cjm$bRlDH zGZyho|6!M5D={i7qTRU$4-+3+V@D!fGTQTkR(fX$f@*v-9yVB}?%Wz%2)>&hO4UpY+;|TNv(vOe8IAECcWS-tk1~$%x#Ndt?BkP-Kgqxy2n=EDsEq4; z?tn2FH+diF6qXS!8H5S^H^p&UhMJU2&REMiDhZt>DlKqMhIBkDl)>|+|I2WuFItTx zzb(k38&IiF&Pe$h(9kYBbkgzLi!SS$jV6NJmx`4#zjs9IG>qens*W` zX3xu(mYZ>x7btE~#!GX7ra{oo3>*`SKG>r;qZx0IdCM&fVnTK!5oH-?r7Rsxmq6j0 zvW%AGrxh7O!~1t~yq$4^WpR z!6aj-c@vvP>S{BLe49%69t)>->(e{2cVZ%Sp=p577FQlsA|mc>z!(4+1BQ@M7c*X4a#>}q#@%$NW^&|uMmWz=$R8hQSio~5z3ybBS#m_7 z1gZSXJ8OqOGeS+Vlas0H^csK8LuWtASiyU!-E&c|cV1*Xw$LjeU3|St^w2eLGn!fo z@Z@lnKMAo@|7EV>sYLCeULuoi;nuyzc&YcBbSy@Cg17ETA6y%MN*xY$&D8jbBSt-y zWHeGM@p{$bVh?y7ppG>Wpm+rFf~+{GTcBEH4y9D^V$VSJx7G}WTx_FuGL>d1l(XwlDZ}NJVpJz#1l;@XEbU@IDb`*ciCEJCXlbQuCW^HhqrNqdok*{ZePPF^a6EO!8`vowcL+Bs$wa z)4~|xfTbJ3fC1`IGJj}hwInd3ymLwFsLUi;S%?)s93MC)bE_#DnL=~m*vuFSTb?Vj z`$5(3cueHn`pj-{V<&xI@WSm8 zD>J2^5zMFzg}$#w1%ZBDrsM;Qh(S>67bKsQMF2HNcL*AwX+Z|=%KWF_f9StE`SL-g zfA9Z-!dTyOe5R#U*5=^nP6ezQigX7H2KO7aFPWeD(b0<} ze4W*khwncuR+dwn6^c(6QqeA*%)+gnjMlMJqU_aYvhW};%T4+*t0_-m?N3>DSZs;E z7y0^HRvnM9sy^!^pH%&kg*#7Ku?>G_+45C<^Ej)DM~MC>3ok=p2oA5Z@T?e1o_?F< z#25R+O7kbrPQ8t0lRZW7AZ0F^QXZkdmqz-6n3=ovfROL18j)f@&1^{kYybs5S(WZj zps}W0vZBE7YL;v83AKDpPZ&E_=L1X&@Nzq&c>I#QfR)BeE<27 zabHksH11?!iYDN{R5F|d=4zxTszoXU752i5v*qR$nwgRwj^dQMYMsg03Qd$urr}22 z?<+O6CW*z+4j9_;HPPvr4#ab<=7zZjheG|=8WjZZ)i{vqjhgmuNbJgPO{Iwr*2N(a zL>gu80jAP!aOa4|jf^82=?XV3OR$30=HZqVivy3-8fWrdZG%L4=+DPAUClMemkm3E zE8Vx7W_Ksn=QYx;;sU#Iz)-F?%l0SDe$*UpkjmVUaz|2eL-UcHOhbPCU4v`b8nXQl z4KA>2Nc>%mi+LZw>c)E;U!bJ*k2H^*P+8|+HKZ&asqVE#dg->n8wcI@RG+`l9oAjTNTKqr8z8yY!z;iSE4i(LQcp=DC6_R=yb=KE+Lm}`GzX=t`5 zscx#p$AC28(?)A#!tpc4IQDqxQXI zR*dqBxZ|K|P`L+ay|eSl+FG;hAFY$8;BhTJYVpou0oMr*^&+Y^rxI#KHa=#xE3r-@qWT9Z&mA}|zm z%%)_>WNnstC(To-i_-cL{e0~-OZy^|i9n%%P&+^a`+`TKnGs~r7utD}v9zhS+L7gc zFk`j02iXv-mEKxyjzYGpw0A9ih1FJ*u5|+R@n~{Vt^I?#$o3r0MUwJ37a6$7(nW?6 z)lzLbHN%7DAD96_YJ#pY%u+ZC;OsMdrM8m=l+>-#+E`iz^K?+7()yC4<=P{bszhiK z=yz%zIrevN=h$Dli(~)u-5mR!_G&L$dbmfnGnsx+8%#x5a>7D{k);R*1doFHztO`l zpVUep*F?oyVtjo{JIjCrl$<`BX_7-=ual<+ow>;Yung?rh$xnuC$*a}` zt?{pUyS7o;~7kwQ(PQj*A{b$eip8MhZgvwAeABF@iBN*j%~q)B-hZN-ne1soSoS2l zzoe@%0Vez}dm-)Dzn10HnwN|LeL=Z1oV!-#j7>aeaf8L(y>r^q;=TNHm|wqdlEeJ^ z+kl)O%q^TjeA?vHIig+v=$d10*9`b6B*%?B4a%8ku9*yifFOxWBi}Lbq`15h(f7zX zOeG%IJLdu&`L*iHReZl+PL)aT1Pk1d#3uY%%pDkX7?p#MYHP@{aXGl>OGBc^=irtN z4f$+h&R_Iz-^tu>zo|JZP4s{^vk1gOcX1vxv-k=5i(bk1mV4%FbD znd1xheQmwTiKLuU=6X^Sg#K)eEZo!PtfDOD=I4Z3;DBy^a(=K zsB#=v{ z%fV}GPUajjXI=#QkXfg4Zc`qIp3RY*8$j_H4nYDjlFBfyabxs-mvSCZ2Yq-W$Gk(~ zz-558BOt)r|dao#-kkR zMU-nxbBjssiyY~9Lz)Me=R~@`%1N`AY4&c;-6_!x!j0syZSKdk%jo5kD`{U81PF2< z6Mb`~+jK<$Z1&A<#0@m^+jaDYzv8e1sGFGU3IWDkM{=W4uJi(RELKVan&etbx?`FL znCHQ@t-5x(4%Bgf>6CkowxzvYa`A07Y-2&W_|BDv1cl_{mLLsj(ku5c!|RvZopuv0 zLvlZ*eFMaB*0*}?h!<+dbwVeSh{ z=*zk&TCPt!-qhxHXR_M{{?4C<9)z`Ei~r z)E~=DmaQUFkLTjP!zEmS6Lsa@@a=cGW&c%*RDGY@ucd4?hyL*cbmzVga##HqdTF_b zFX{X+_l2LVk}DErowxhHut~U0-uWRiHHVopJg>R|OoGgx{YaL{A;lNuHDD!MGG<9$ zXGhrz4yo3dS7A?ybb6v>0oq5fyA*%|Dw*LzCSXqTdKl>{0rUVHPsXxiupZB{JH2n&R=)cLs zbz4fB5n*tsJ(_1vypQIE+sIas#FKej?PL`k$6uVu+hoo$)LkjS=XTHLHI~UL$bxfu zMRu|xiW~qgm-Ci3g#63pJiLK7L{roi>f9IgBAfomYuyq)?>uS*c-rS%ZZ<;t%}Zzc zI+OSI`O~Z+eE2B5zf@Dyj4S)KbAG**DU*EbmhWh1`puAFn0J1&vKum6jDPufqp>*& z*wh%I<&*6QX_DWvl?9aaAC!MJK$1BvJU^6V&&c0qYsw^;>DJiv8}PRasZ7n^>u!+= znAwvYEy%C%gQFh7BVco7{*e!L)EtiZ=XsJ-Rr$VcphfRsym2u>*M@kU%$NH^OY6K5 z@W;)3Klu4({>lal8z=ja%eV4np0Z8QO;gl`W5@mP{FBZ?4yvg;{QElJ4O}1Mf3=s~ z?8xM|`GZ_#JE-kOz%{2umU{uHA&ir4O5c0Bl7E~RRa+x2B~Q?ZO{{3a1YHk69(zM0 zw?)m+NO%u-)Q-h|aMN{B0BHB-4}uoI6xfr$ycR`Ld{#KechN;hX<>4t#iFZrvT}}( z-`XuY*?@?pA(L&%oA!%ZS;@*ti%yH0+sU#y56ur*WZ62I2aRswLiF7h9o`~a$03$o zU9`7B%3gkC*R@4Kb%@BcryYv>;VOP8=s`Z&vAE6&(gT)^fH`FG<_}A^D^+?sEdFBu zV)DiQ0$Xp;v|iE`XnBI=-JNBHT-DEiD%fgX7$5B{*fw02%fXKYEct-7isDu<`0JuZ z(D~mbPUK;;C8f5AjtnNi-Ihx@_x5eGNs$k*9m>@US%pQN=`YSz$+lsI zJ)LFiIg7L#SNMUssqCv8d2j|95LS5A3*0-5^MLw+x;9X8s%Yrq!p{py;pau0nlb>v zs5Qlk!(jo8ia}g+imu{gJz~L~)`dgKtimF^v%{20sgc*qissr%il5$EG!{0lF5XD? z$kZx7C|*|-2)9lZwStTz3%p^-cNpeFT=PGI=G%(~LejTI&sizTAwivVwl@(e`L@KK zyggSm)K1JJipxby+loJ_r;j44{}p}eVUZW?QheCN4?(;-Ddqg)2_&jXaVIe^7(6bG z^5wW4)xNkD>Da1xyp@S4HUT^tLIF+N79W%e07)@|&;qW6sBT)KHBodb4&p>$0Ok&E z-HNyL5vVi+^cydzT{*rn!4`YN#ss)tTs)pc#ugvrgkfsJFktN|qTuMZ_!9}Iv;@@W zBd3W4#RE*F2m-83ngm99R%vmGC`>b!2bkB26fQ6J$19@SVa#|?UTiUpB53}iLS=+K4kUarFiTopX<)j z$7TA#p&LsB$%BuUY6oL>xAKy?(&1J#hxUkp{ik+3~W5Bp&@c9>Bl^@pW4j>3;SmzLg<3I%DeOve6iX{*MvY7*yNV)sD< zMFo&rpOOxCp#3cr#~YuPM8oEQ61;7>X^A^o)U*V5Q;QICrFF?b2kv)hc}W;t3o2;^ zkJsuPNO_kM{N&FtO`|jfZ}*jCPMuv64(d-!T9IBKm*C436rEs|P5ewq1d)RHI%yr` zj|C+k@!T=Wj7WhJiTtD}39~kp!=$n{T};`bW^0iv67{d z-*i~!3H3h>btGW}bXtyaf;H1y-9;jZG*n2#75~k)Ufy(v-Tz*0L;u@gX8eKxCRb zyH@AuBU{AzFIM)!Fwsw<;Qemc{^If>#Oy_OR>+U+juNC+P_QYRwryFiOjzoD?hbyW;KE1Aci(|>c z5~dhC=tnBNVdHN)$*LhYIzXbkBe+4#H8;DnR@K96)==dQ+8gv@2~ZLyB{r-OV4 z{v8!7|C0WZB_+r!8vwsGfz=;^$NVkh;8s|?2#!C}^_FSj^&?#iSsvaYrfUwlk90mT z`mxR#XC%`w17{T}j}g2M0RO=A#|S?CSm%Nx`70Eh3oj_R1pJ=hpY_n2{@Dss=%3w? zO#kFV8U0fY`{Jt?S*-N>vAE(O5Ym7hw0lx&{JI~ zeB^>ZV_NHi;K);Duw*WdiJt6Bk=2_7iRWJDV05QI0F5vnCDcL?l zN(fj84{Q+S)eGI{kY~pcu!qq$+K0>;Q;;V_!@uie6gwt^m&6nGi8VzID8G>-9dk%rqBgMq9YRZ~BJ`*6qkgyd_%n_& z>3l5L2e!ON{r&U;f8r8Vi{&BuP?$qi)%;3%>*f3CFRFnO>%8XBN2dP-`aeh1Dw%#h zD5xOSx0+Yj;VD(D>=9LC7km8|u*`v0 zMiw^)x1I>SV2{vnstV`U6^`IO4A&_pIbfa_#hduPJhfvZ4*BobhL4s`wF^6~SQTfJY>KtIqJ{@ky_!S@M335X`4aLj+1^?UQ zhIr>`qiN=@PuA?EOOf>$Gvqp&`irJE($s63T1Hd$N=#MJln+gzj5IZwroN)7`81V7Q%agDqbapggUMo=TtYKzXsV2+w$apjn%YHEH8jN* zRu9n>U7?kqrYX8cE5AZhbd^?qo2J-e>)$lRR$SlF6kT>*ZuNh%|D*rp&MM5}7GWFH zBre7NpS&$iu?6DpG_{K64WX$eG&P#0XvCFIrzsj-! zG*w7b0W_6MQypolgr<7a)Owm4MpHX!DvYMK($s8B&6Mw^Njc5Tr>PX0s-~$tn%Y29 z2AayEsS27}L{r;o3TSFSO|7JwnrF--4G z-g@cdaD)4lHC{yPqsKkcG>OlE8oWw94!W0~sdgZ0Km8d#UlpKlNirJie-`kj8Yx~= zxIC`HldNx|#|v&4Ekwj~LyT643pl{sO$H}MQ2nD5+0a~%ccYtCM5+SyKU(BL=)V;X zWJfDKUdqpqtJ|{L+)H=f^&%(Qhy}v_;kbpme=9u5&+YURaYH;61G(^nkfE|>MAcEh znWv)KwcN9`_Bf7|JIZ_^#8-yLc5jz@5@lySK0e6G)s8C1LC96SjJdv}tUbi^)q9fV zUG)Qbvf;bRI11stWgf&aL?o@>f)^Gmqn9}{`UrI|8zzvq>aOq4mk$dtc#-g)dc4w# zQvzxc>gURua*Raw)*s^`R5A)d^uGG3eDRv4t6U)KW4#^Jy+(N-^w;A>T_$<8J7g}f z>U9M#R{cQHs9 zkY~g6F)|r$qMSvbSh<=P>;`nsL--C6da~`+&zZy#rLP zuyQ3&#_RDQ{s*wy^$2@65#0h|Etf8D1y!r8yaBUuTDINFg*2Xm7Dm{wwuY_*$<3p+ zchi>pQ}^^Cl{55sT3H9X*01mfk7A<_*)dChm*%WZ#vJ95QXjbcvsEMV^BnYF%%;+l z^Wpld!Vf5UhbI=sl%u=6ny<%W?7A{{q+WG+nIqK8^?u~`0{upc%%rN?ruSVQSm{H~ zEYx4ZT(UM&A3#~6yc5J%(I0`uhOQ9m=z_ZJsCOc3V)Q^Mbo&Fd!(^5ITy;fCJzk(< z;?x&A?MgpV5~u%-QjSZ|x8+qGL?L)gT5s*hx!Z#z{SjJJ6q}ND1>GTQXYwQkT?Ap- z@@4p?;kvII=pI_zk=S(odRC+xc3XkDK8XF$+5`R?vfPt=u14?0BFq4+$gTI*__3jx z(UWMh%&Tfdlv;fRt$-?opqX(Tt^H3pTfv}p?%z&y!(qy7-hMfat-&Y-iabOQU*Wu7E) znSL-++awgEc7;BGs{_w~uc9U9?b7$aZ<998z zT0JgR>!9jjY0ok{TX#6p*p{zo_y*QCi2Ek}N;5q@$+7i=t-H_!&$j4GX=!FFbY3ee zBC7>)8o{juTVKEk;7P2$G&eIIncbmxfqfjwEhC0QMFz@W0q27pW zYPZ=s!_ostodQfFjx@>sFEZC&BWLBx8!SN{oRqxQ9-2h>ie#N))b zk;1lJ2wStaS{;% zIS=i52D=!9u_#RmlfZNO>68u3=|R4%{V$`B5&*OQ`oqB*uI)O8JbW^_#*Zn`o^UCjvlXb zGHH&%+@P+pJ0Ln{h=Yu&@AV;+s5S=O?&eI4gZpHL3d$7g zRv!9Qx)PnWfyPmSihd*thb__#lz$7tb#XBKEQmr-kIg7i!R1)XL{)e>;Pn%lj(8JOuz;rVSh2M<^ph8(^0Fbt#ELYr#>b>R*kMB{DPMXMCTSW_GY zIM_jbxPvp%_!=Hk7>#43s*%Bgmd9o{h{LH>JGg>oI?{G(V(3X>bXWnwn;h&(LV#f{ zEy~&i=6G`LY(aAa-qpi*tC;OTW&|48Xn>ARXi+?l*tF7(WVSL)M2ZBnS>!e;A;j4c z7b)5q9EnGJ0}HdvBKmbsP0HHi7rjttd;p&5XLLuy5X#jq+I@!avBOblfTIIB)7h|t z@-R0lyI-pTd9$!f$(d zK-Fes76~)+Fd1w1I^ycc7Np5Sx61$n8=tYji?CoW2KFCh=tju})}cm~7aeU$#SlX| zt^7wVI!eg(m3Zg-Qw)u|HwcRzYG8u_rhm-A06~WktA-g4&>~ECA^Whi)W31GfhP`5 zZh*G&B%3}q45YOPuGRu-gPd$gixGxxyqtY$4&I{`h}|^{TCF}ah(QZff!K+-x5S1K zJleqe7Stww702DAWcyeH8W}vm+>k)bb8v`2(UIBPiH1rx_Iqd z2S-p%GB}V)lMOYr9P@K@mX;7c1t%V?zg{raKnJWOc)GzrWuncPU^8X~SPQPb=Hv?3 zD{;(mb+!TTPvYZ8&0Iq&Ex;I6#WnH=ZEI&65;@!6=Ws+fz$QElt`Wwy; zWN@lw6T)nJ(A7IT!(UqTj!)7h404?~MX34%S4NREyBSp#4yX0R4bTzEzG9m^sR zuddQynlglpbajC+Ygb2j)CGr7fl-L?a4pwBae~B`4eg4sFPG5}zriqoRzinR1m|&V z_Qz%rNC^kkb6j~MC0h*VC+ zV=nx>-fJ)$!r_JQCtR`jJ@4v5-1keGpX#6?fK(ok7=!uU*yo7N;>DJO5@Rr!Yd6#r z67eKw4qJ4}P}R=O4o-fLa(;Z&P(sBJVx|v;dB8v`j4Q2<^KC%v1Q2EqHz{Ejk^7!B z1s?2waRkZ`y2QBg5qZQZgK0KI+Z;Lay@5`S`8d=Ar=w$w-1uO8<_Cjm#^ceWvN6|_ zKRU}g4}zTsn-*Af8BgxH*+NAR4BZcZK&A&?FbH!q9C_Yz<2#SBm&`j4CknI0&l8nA zt22I*^vo(5HUMqUN?UUEXGvJ8=~>x#4`j6dhNYpKE z)gG#Cb8sg59|N1J3!SJ7Gz;{=#+-ysy5@z6bGm@k zqHMH>4e@=&`fh?EG^H|g^XE2A?BLNDq{^lXz26$lM!MKk`&HVI74HpesPwF}+!pJB z=T&4z)?`^6>e{~&ZwRAYl~@~1bEPG#1%}FOjbe0Rt3-4jgOjiw$d;RfaSNr*mSSi& zdF*IpgTmnHxM)>nUD^U}{pit>o5_!MF`9xL>v<}FM&_BWBi*=K#M$BU8c$pDlZTN_ zN6)f5xEX11p*ne1<5D^ILE z=D5I_d7h4BP*WotWnoC_3N)LHZDwS>k!k&=M(OE9Vp|wlG@~pMoWSm3k_&5RP&c^J zj+|_5WU~ZeB#-m{!Ih1;DDkYVQ8La%Y^bpF^1(fkMi#J{4k;0uZC~c?X<(bE@538GsQw_!NN)J*n);NJ0L>QOh%GFA5Hxe-3$Oeb3 z1I7VhGkjmb8`nUlOtDZ=|CuuB|+=_i-hS zzL2yP%yEIB03WA)5k@v{9&2=%;|kgWAAXc_N%>#poT1YhT$7#|Z)9Ty)zsBE}kIKi>CGC^K$N{x+b^{XV!hKzV)Zwsnfre`+ zg81mRQ+%CZ&KzGaGB%qF1yt)KG}nli+H-TvveA`Ih}R+`TR>-%3buZ%jq|mIcgu0x zd_aMbTcq!dEnUCJ*9Bs}^tC4)3XN>^Mg<_aIRA=DV{+psXM7uxvHuTU*BuyD@%+CB zX_tCQNFklxAs|g!B1Jlc-XS2(ASNiHQY3%Ub!6l`{&;6o7vgj+1Z)d+49y`+_El!*Vqho4z&9aM(4tEMf_RY6mCz7 zAk$w-@q{TD?sKV7gXWv#sprJ7C2(W25{F;4O_ z(2*qtz7#QJQw4ie+H@RCNd>+HG3@z@z@(JtV|X1wH3e|FYF~qxKE1gj5M}dUL|db` z26PeOjq0SPY`aAdNm#7N*-=p_tE2Tqnhe642-QgtpH(XMi>Dntuj!DUlBnqAPhU}b z88h3Sgx5wYY@HGzv6cs$T!;jfz1`NygfFI-5HyB~~G~c7Mfl=oukn&l0Cjh#7NY;eWfLM80Mzsd*^{ zSB)J;bLPLR3@Q%qRu*Q!1XZR)h=TVOCBRbvSeS-XvNa`HF)pqT>r|q0V^%DcoJJP3 zX%|a|jD7QK|Iw6q^1Y5y1|F@@!`=d6??+@!WW+>#`AG!_A8yeoab2+KZ$tz>iOBBP zM<*)uFo5EXGs5ZSsjAqW{;VR%{fff=^HeyF(*64W^NL_6O7uHj;g?lqN8+zpsWBq! zt2+ME;fb36)cb5jz{!_W4BAcvDML4)eI?dc!C&y;kuJ^n3!*Csyc6*kpKC2AMjf%P&Ax@NyS>86|iv3a(WABH1G2vsChG z8crWR+pr>o!9e!O16&Nw7b&A0H~hDkKFA8d2Oe-y^D zAjwiF@6(2fqT9`Yd9!s338e$|%@N{|!OYz(Jxu{mv!&!&)oQq%)zNS}fn%ft@oDKw zvE9PVfl;2*G%Z%V9$}V#6$L!i$_R4=b?BW2BUT?ZJsW9eRVQf*(3Fcpb(Bud^fW}! zM#h{s|6n zbKc7~bFe>ZF`DywBePxBO;h!dF&PUh=$jr!PqsnhpKofGZlyq^okP=d`9L6oPrgRQg1^+C|qoC`APnDKG2! z=SYvPlbJ0=M}3u0gJmm4Z0l_1SkyD`pm+@yPW#`{sdqKsGL5M^mL4ZcZa43iQowpu z&Pl|Kp5~jfjWYv#Q{teP^_y zznq{Hy>F7aN*1lTnFvbP&x{ivOf~Z)0=Wi~sZnM+7rlE1XCl;U0GYBfQF4dO47&6& z+A?XTS+PE9C?9dCNtvJsx*J%LT>vYP z-;dg2R8RCQ@$fvX^QYP*l0c>VT-nz5#>0O6-xVRKo;r-@@7`FU!CC|ogFJqS{0qc zV-^aeh0?3`;L!?4Dm}Zk(wafeI%>3f38FC{x&vxhPWZ8QwZzw4VM(nwph2ZpW*Dx* zc~H|}U7x9|!Q>)-}G;y`&nmJ(k^Gq4vY`brjgC&A|!`YT!V2qhuO+qAV;!4E+<34mhzl>#;ayth6)Vb%D9|XxDyyWi`lJ^2)LOrwQ*D_%tm3` zqo|{R+OKS!6Hg<1=BO6%;9m1-*^kiuyJXQ)rwMGI;icF*r7cBiEIseN#rjJ?f4wX- z$f+FLx_nQLk=CA&R`oqIuipd=R>8iUMoRX*9|UtcoATe!X(lcmGLO}Ym%De;DF0+m zyjXL@%yVE_5rI7y?HNaE&XVhBMrlZ+41qyBUcQztpzXO(6E;dTG740LC->TFa#K3n zt&v)XH$OA8r;VX~8`ZA#bx=em`V?ACBg(zS`krWf*Y7mMzQaauQxWo|d6_}}jThx# znSWOPQgLrHE^4jcye)awHj3mB`S)ibD~w3lFO)O1xhVMt16z5SH_2fX`QMq-Rix_G z4xU24roR2(0a zq>huMRBG{Wuu%#xs(y!RRa^U$xixjTw@EDh^9Nefvz{eEgj_YBRlwr+Yv$*)x>dT2 zY(g#KbVb{LZw7EDGV|l(VHeNQP!uOg+Dk1Gp;w*QlRq}sMsAsaJ zwV05gmjL-`O{Owmk{I5=GPn+=0A{sHn2`$3H^m*My_-dg>Qu|nI+f19(X^46k#5;q zw;KF%c%}uP^VC~c?QYggT+G(X=GNh*+PbTaEcsdmG?tR2LpiN1SmXV)S(tddsRds^ zWZn$FhV73*V4S;@d$yd-EkQ!hRRIZHQ_LBq&=Z6nbboJ_L{CRGk5tw|2eh$tRVz^5 z6#ZP#yLn?#)y{&?Pjbe}JoE-$Hllm`H^-Eug9RH}8M1OVNKS7DNn`NYIn8Cn5Z?Lk z9sfl#lM1?8Ld3nDb-KC$$=oSW*`S6D?1wa3101Lt0`#(2|xRB4f(G$2m#x?rB;JiG`)c)v~d0&agbAR+xna zFB_46drNhd#yK-+{F;upY%Vfq2ajL8Y=*1Ju*rbe(VES*z!E%p8!Ul#9HuF4nQs|H zH@idk@Mi1=cU$f;$TX%d*keqkJzB%&Hg6RwM3L+yhR99E0-KBmNO>YLL0U` zwJnwdi!rM{tOHRux^!P;!8T?E{OU$ze87?=cHM8;qUBMyJ{tufOH@p3Lsp6qogcDn zS1~ISlp3as?4_2ew_s+AeakH`-h$am8P@MSV#!m{v7=ihod2lhWfi@4yZVywGK@y7 zvKU35)fRkBhpVmUA)lvpxH$2+<)wdR1SE{UtZZ!*ho7|Ilp<%$`N^y@iotPTw~iIp z$}DG8aP>9^K2Y$q1tyfyM_kjY!RUoIT8GmmC!D^!*2|H^I0db(Ofrr(w`!9hu9jPH z9xYJI+8J#c3+xERwtA%o_km=U%hynZSfzXgFsqNWX{>PPFPo*eMqRQU5PUA9ZQB^J z%%S%Z^In5QQ>hayy4NMuK9kH z&7`CEYh&r%*DMbhWEz@21JtTAaXR;)Z1%-Ac{1?OHl4;%5L2jg^4)hq2n$n<9WSbF69jgjKYo0f7lclk3ICCD8^+xoPR z6jl2z{nXrrJJj5w)mxV5w8BtTQTw(frXKzAg}GQBi+hM_PMe#Gi1#cH8_4uC9H*RE z)Y_lX0Y1a~mZR!R9yQfdJ7n9Mbchx|d?-~SV@tUv$Tj>yKq-F{V!!^L9gG4ihE!gK zu#|oa50OjDdEOUJ-%P598`n=tAp}kn9fDx7%>B(N=`Iw8p&ZlC9a@NczLYwKsp+C8 zAuY-D2CBXAj0M+>OR%`RMvfK!yXPBA8?_3726HC=x8O&Q?=8QmG)EMp?tl!U6W=R%AkE)U_=PmHikxn4lG+T)^opP+X8KUqPDfSFt#gady zeuB-M+dz!CXuN&x3F z;wg7&$1E}V4{3BcTVNbW2(`=Zs0!`Wt5W?iPDyVxlEF(0I;M)!KP{hVxusEH$lpsl z#t8pkma$r4n(8On7OLEe0|a?DWM44JKwoI!B=YR(7`ZFo3X`nV4Ar&8CpK3`!B_RH zX06b=q_a31Piqc`Sm8BuUd6^7>y#}9g%MNjj^6kUn+L$Sf^IXaR-XCYD_A8)!KwA_jHP-7Z=&G#5?g; zXey@8dV!l+IOVoT(Y=8ca|DJ2m@mP?lx)4IK!hpPicbegBvFuN?W9uTj$lea#V+cd z(8s4U^vYH5KoulJT+FggRP$8zlrJlNM)6o9E2dRkFpe!@tU+rk zeT~H5&8$#r{4#$lFmvX1#>wtXeBLgnH~uZNTN6b6mR8KLlp40S!sTW3+Izq>&`76C zbMU=^y!o9~C+CT_R*WvjVY9(F`LDpoi0EL2ZD$Dk7#bvgcSkEGSQ22npj0inAW_?f17!0BE$Sx7$((Tp*3Rr+)msL!~ zJ4omX&-(E$5tP%mONhAETdx6l(}E$QCeJ#hZtF_bJkg@GZ*c2$2xVKks56YR{+g_C zL#ujp4WaD^x`d0Hck0rJ9z#s&lP<9$Zm>=fGRH4*QfY`4wwL*$Rl2co47Xyg#xJ?5 z{!!KjV)sZZd?S7t&}{|Nx;CZCkyiLQ{ks~)zEJ`3ks}=7wqo{JJtKQFc-e;h0=9PH zc)f5gC%0)gBjwn;M$@bdn9etuWQDsKT%v7D*Vg3U-BtBxTTQXTk}(R8Fwo8t+oxIK z=krSphb9Q+`*Oq^GprL-Oerm(gLqYgZZSBJ3w?OsEM3H99W`jQD4eZ#5X+4$fJ}RR z5h7%s6)vAF#kR#BLG3qKvneOPTO75U-c8-soN%`l7KtmuN}+aHw`RhzzzT!LFEQ@0 zT3FmQ0>>S?nP|BkCzqaIXvGYh!BW-lF0tZf5Kgihs=m=JTV&m5ovpP+*J*&X5Qi6A zcc|zAO(`L?@J%rM=o0JbI>cc|TGI6P-6KTN!@=5479%0yV#YE(OC3WZCCyjTJ%Uc1 zMV;$EVijtsEN;0`w}(^pqus;l_w|UHC6rp>Y$2#Osaay8Y)h%(M6k8frJP^3RQIOI(}KW&ia~C7g?-8 zua(_`(|mWutsUE({EKf-pg!sF9AhoF7z>P8oBQ@i@wCmVnPNrR%b{HQ^6iNN{fYnw zx1a4x&dJ+zM5HSi9WS%##!n#hmpjOm5s&=*x1ori^jYDeF`7p`Q=g=m+V>H$oAizqb0X$|(!%#)lX_+MQq9qrcY`_0+^;R@g^!NCAKak~sTtcV zQ5n~te5jA>K;M~My_$=uhjm$3#M;#>gQh>(D_kr%YCWtmMjz+M(~{s>#|v|{rdXl= zn^XP?WLf=*?j*3#SC8t0FL9peg_Ff6>R83*IOqfudgZhKzy>6q-UxxI{{3@n7nOg^ zAW2NjJgrFsF@v~-vLU_IaM`S{tlgA6T&ePpP|W9N|DzZ{)M&t`UkCRCQ!L%vJ6sI; zF1Rz4)*M4wtSkHf5L8yxVU)G^Tu@n}^t|<6r9Qha=vGZ*O>izoV|B!_PZ}o{3U9bFyEC7PfJA~#Lsr4t=?%e&F z6%!5?G_DR5Kq{5A%!|PeQ%xCbsu3pu6Z7KeXv;j<*uSlqVat4Aa1-0?yeM(!O)F+K z0aEz|c^Nc$UY;tmeGRrC7s~%iUSn~vzOAnJB+5f=52)4Q*bXKPnwP6jIchKFMbV94 zL6?I`{UdFdw0v|Ola`>nQNrk*XxktJQ?=75 zm}y>)wZVKa*fc@`r-+|Swq43g0Y%lh9=&qj)0O<*^3LWOYz+*$cx5a-@-q&Hf1hN- z_mr7Jm zzI>yp4e?Zd>0c-#(KGv|ih>q4IIaAWgM#uU9h-lLQr+RLY|zyVEh)xQ0FE8tfcI;6 zq|x22uxa&V8yhK^#maWJNEH){8aRF5qpy0Oz;_*N7~xDK=Y3lu<*x1ShwF+|jC5kTw{09xRCy~zf>=!9eElf=m#`Lo_qWzQlr7Mm6ZE!HlKrK#8 z9%h4O4q};!ypQ&a7QILOi)AJ{^-Mpk`W4u4^Fe@H;C(FReBUobd^P$%SjM~t7+dhZ zfG|2K8R(aV3G}?zd%!Bz^XNou&(2t_8~$ zc!`suUHaoLpw8&3vomZ*RBBkYV{op*7}G2p)F@M{U4>OJ?3~A%+vNV~V(n}ju5yT- zZz-1JwmDhnLOs;Zw=@-odA3!!$*u^|cvgZ{BL}oo=k4=l|40Zc!5fhlP;5G&8O8bg z8%1@I99W!BY9}Su18_E#-fL4=1D{wZ`$VBFgRUCbM713;yI5ar`&b3*E~btXfqRhp zBSQ5T7W&>_B>4$CO{l8(fEau#a(x6{{S1cV&c!xNiMRy+*NCHGS63+cUlj7z^%R{y*t;937EIQJA03zi}B|jOH1DCQ0+b=i|ms^7k&b^o0-u_n! zB|rG$M8`*L2sqqQwo<=k1B~>5KwtGQwITk-IMuSi85Jn7^(xyz<>l_jZ0A&Pr32v7 zJp;l-))P`%kVk2)h+AX(pe~IY=RhO&DILi)YjEuDwKmL=xf~``7<*@!_#Y!LJEpZ= z8J;)KV{)GLaqvsii9rz}<#;eZSN@DCaf45TilFM7XiL;dZH&lrFdU;q;Fu-0C8WN~x+PYsSz`uFm8wz~}UdIDAz zaD7}8I`;z<=CKCas>0YGZHo*tjriy~XM{L=PBx6wBYO}QYFd}!LsO4YhPZa#hRcu` zf@_E(XnIq^orY&oj{8IbHc8%Tj~DeWNM12cRhV7NJ;I(T(k{t1GsN%G=+@Q_!Pl`~ zrFhZ)SKA&HT>7#CPNqwJ0qJyE_7i6;9HEdj(Xa`_8`91#08jnH_NGR60zOt>y26ev zjIGN|bmJ1bWWrV4r>W%59jwr02)2xmwl@)$Kcz%V;<%SsIyPJm&j%m+%a$&7{v)-G zQtKeEavprN%rH9r+de$ES|MT5ebfLHlzaUmsko)IAy-c8bFY zJ`KM_P_Qwbd1Q!DjEo?)UW7HK2s(QRtulQ&IF!nN!(sM@-=XDmBS~eMK*nV%Vf@8y z;%^Q~#Ob;b;Z*rDMT$RT3BfNeqP#UF+TI@0LUP?CE}IBZbOxaLoG*cLEkm(&dnih1 zl1TehFyi(RwEr`TLgrM8`*a9ghistSmPA1vUU_OrBQos=WM~RJd$nB+9B|-H49!rg z^GQQ;sbnjC=o3I1Q0?#F5{tt7>4YK8m4ZDEfN^)#d0VRZF_RDhVlXC>YKJq4i-w_L z0=0s*WH16G5wx<3z&Tk$Y$J+Ps#d=-Augsg8b|Z;HmIL_Hm&lJBOLXj2U_-qk5g`%o|#3Y%>XafVd`5giWbx(eN0NKAYfO@k3)^fkvw7&BRK7|AdFtfEvyVfonG;VkYMNRIx zhv4`y1=gZU0fob(sJ7SxALLkh_Ff( z(fxj1O!SJ2yax!|CzzT(21V6_a#-_A#CmX0>9`cA9mBJz);3&i%9)3Q%gOzAcmvxq zN}$?fC@Xe3!8K$GToy97Bq(^;h)4bf!L2-RfPLJ$@udODTScjA)pC1DIrw~dd!;4Y z9wQh&rmhGB%Env(G*}1^KS2n0OYml}Ai(6lbw;-LX~J5E#1W zl@YO6bsT{iknEA=FVJTySjw9y-J*{NIXnn7+9(oqervG&aScoBkHo6_E=PheZ6|op z2X{loYPZ;C(%PLg2#Y(|ReEhFEy1==aDL3-`^#>oN=)CDvfFj@b!qyJN?m0oxc%M zVj0Z)$XKs{I2L=PA*#Pu8X^XBC2EDgXo$UJGJD$ucS(tZ^O6JYE_sRyBFoEpnW z?8@9v*m}Vvsv4o+OP7ws*9ByoUaulVfEZHH!oiTNI&@!pTdFgq?BNQygVH5u4oZ#A zkPf{Z4Mg>O6si_c`h-$M7RkaDvF`LCA#lLx2g1O++{%$T0yWs7(g-vh5Nu1-TlT>b z!jzXYmMpRvsm~e*t`4gl*-1b$zE&Y;7NKs{uaE4gDvM8~mf<|Sv9Mq!IL36D8wDo_ zEB8uWUfpOEa5vN<1iA;7k3q6kRQ>Hp9IKHcn0i`jKZaCIM*9H4c6Hf51Hbx@?yJ5A zFc0YYXVDwCRL0i3pq0Y^)Ng3(znbT7;BQT58WuzdIAA}k;Pl0)4?}Vj{OY)P;0J=+ zC@UpqoTGMXG1zO&m>opTdHPn(j=iGzzS}RaYT z)>Hmg|49kTUs8PQwFRw2?%#6caB(oVX;hNpPouT>zzj^fAytF|(G4vZl=V!3qDFQ- zY=_IpD2kgetC5rHSHf_SGOmCihfrX+{j?MlYYC{@MLy-takVr%Hf zby?DFNi^CqteA{$U>F78I!nJjUU+NeYygGfFikLu2ePCJa_orV3WQ z%;GpZTrUQrI#^?FH%e{7`gl8*iEk;pdibbJYCE?82au)1-K>Ef4maa)X8?>rmj*6i zmXshGCEH=n85}T$z(J%zwysC29YdJGP}GT3H4_ka%I-;|8cX@9! zJG{$Vn!`9NGc_k=O^e|A6=wNc2!AU(CTE(}DvgzWRW7R3v%HFa~42JDWqwF=K)2QuyO2$=UQUdj|1*(R~GpA*UUS#%{Qo`xH zlgL@VeKfv*^vr0ZfQ)GnY>dWjUYNE~Zeu?VB}wrr7-YvxTxJwGL+tQhnFbq&szak2 zi;`jXGj$47_FMw#^da;!U3wN1h&)sGg>v$y(h?V%wPoHjdV5vtpN^>sYoq9YmyvG z3}!Z%CfE~2;S@V83BNSOfmcVT1!xShr-`Z=cFdL-j#UYC`wCRc|H#-l@#ReW_bLR2 zCW#7njA=k|ciB@#;%qynZJb9lir8iJ=GauK`UBJWJLl?5$9Wcz?1F0IYgi3vWD5*} z${!|#(~SLNqG@go1nYtMQh_PN^e)n{jpBhKJ5(@(*?EDOa#<$ob8?JPJbjNH)}O%v z&x3Ox>pUflOfNvkY`xe1x{AZ%vZBO(MNKoGWNRsQ=2*oGJ#?SW#eko}6x$Y$Rp$t2 z7t3LOOQk?2jh6Rx$BQdVf+ZQO$yUsM659mM2!X@B8ZG^}IP=Rf_^!tt_9W4KnH`Il z43?cC&>1lMoQCU@Wcz+BZlaRGrL8Maz6gCfQ$T!?x?s!Cb1E~`Mm1Vv7fTCcIgdEsiY^HRN3A>UY$!!b|U z5nZoa>xQ&^COq(a*V+*WVSw(t`X`P{BFy;`#Fh2<6r~E)9mM>0Fz~&5O;pv)H|2IX znoJ?k-Hc<37_T~-7b>LPWgM&y8fpFrInaJVF)R&#TcovPFb{OjUHI-e)jPA#oOjn-7yevu*`=+=XORCFe1Z_I)07pve}J?T`CIH*aMLR!0|J;hbQ_S{>F-&3_2KOw-ociB=dKV$D*=S+Qskb@}{?y%HP*~k~JSlFOi930oy1L{nQv8 zP={6bPl%@(u@jU*viper4YfWj|AS828&mdCyE;5#j_KVQ;6%wOdyc}WP9JMsMckS~ z(}ZN&IdDR>=yTluY29{8h#2{){jBm*Kw6{Ks>*>SK=Z1KA5>MG$d{q4eW&d`Rdi{X z2!;ug`JFvh83z5%*x}D}!vl5+;5fx4Xi}pM1F4^Oe`CkYj*)eRCV-5Mqx@1CNHTND z%lIr72XdDF@E>}<{1{04`h^9ND`o1T`Sk~Wv11w; zC^o;|#56JVk{#2?;0h8T=_2n}>Ekhkog%++Vk3IwH+!sDdfASd5kmqlRbj>GP|ird zEThKa-9L2m$77yzU%X;hl=zja($i!L0W+XcXr{<$lk0W_Y8VGoR9Jbv0QW~j)Og6` zzxBZr7+V@*2F2b!3^6R(r>k$+v6q911qOG?nu)2qZaTK9rAR3k)%6^;YMObNKY1d! zD_yb%p^mz~o-$@?d;4(*tqjfd40mXjmxoJ!9}G4wd#us%Z=+P+$KOh^c`KqEw;D81 zZD7koWQk{V?ihz=7r4Vwr9|P6bDUS}DMy2-jCWw$6E`p*wB;uzszQ5r0|&w{3}zaD z;N!yiu<=~^8OaXK5edjNcbF3A+^Gt`DQvR!xi&D>58f&oK`H zNfqT;4$Ti|p|3eNFmm%e^{C9Z|6!7X_Ta*)U0$^pNdA^9f}ODP#MDW2wc znG~m-%Q)CZ_9BC|hfxBN)t+AyYqp0(BTQDM?)F;DEcw5bP<7 zpqpJBIK$Z=eVE=Kv8t5L@J^CCIj{^CD4Xd5CrJQYH@86U8~>_C$p@2~+WwlN&i5vD zmp#hF5XNgQa(g%~DrteBX?8sYgg83R=N?D%0wFWe#{o^PG@>mSTKU1GTxH0e%h#KS zP+_8|>Fa2y62huSYbqJ&XlOf4sbcN`y}tRA9IZD4pyHLz)(V_)ZIVfRG}wXJ2$#hW zAganLWtbdJ4B-hhYSDs9>rYk(Z2u9CJ5`c;M~KP-2YiM)HTO<#NjrAIv%ff6?^bSd z%``_GzGLag6ivqIqJXO2PM5k)jupcuI54-6galr;QVU}E&QX(N>HBn7f;cfHD5tnI z%>nP6OGk{jHOVqWZlU8J^`-w~gofA5c66eZGZEBVH_HL*%VnVHSxOlKeU+jXr!?C; zxdpA5i6*qYTdIkm#^utqm5`e$3miBK&k(sXM7gIYH>LeUHA(nuq2n1fBa;NU8MQlT zPZx#~2h=QA0ZSh^sl}g#v%1Kr67>jUfp0Aimag3clO+`$ScglUF%j zR5S8o+o{!#3>6)sj3U-J5)|V)=?PtQWj6~z9#$~11k`}4hD~Wh+a4L#2bKBvF-rs2aN3ut8HSqGY4vIjt^oZ8~Qx!iyb#pQx_d zF19!jf|M;2xi&|04O2EBm^gYmpHjpdcC8x-hYcbKk;EtkjH#fybW!Vcj8JlKF7RlB z$vYiOk3~M6ZXkEzc>isRS^D!CT}pY3`U{5Q>q9A&F1kMFz#aWtltm5xYO5L0$K z5R_pQNM38)nK(6x5VS}ZYhTvIoI97xu6)IzI0mo3>OdfY^Jz93urPP;=6pZYTIE+?+&`AD{lkz(5b zX~EuUCh_YLS(1`-p7JtUe0NNWCci9Sh?h@)G%Znl|FHuHpyW%@=Y->c3a{D-${C+I z;HxoyZuQ0(k@>kawn}>K#u!Tf%n>bezi?m$iC@B(S6}9T>3{>xM03wL{#4<-^EBl% z2X>WA_eY2+HBymsPHhihh?w$?v|juY{&fs}G#zn7?{^MF@%SYIUNHou7-~0WI)=v& zdOOkhIGXm2BTDQz=fHfG(F>l#%goOlk=SN29k*94oE|0ioe$2VfkWxZTHJj4?k^4; zh2z|%?ZBlcf1QD=$)miHqTMCOdX+A7`lY9*o5cBA2jT*ZF8fG)^qVwqdYZoUOpg`^ zf0u3;znrlHG`}qL#|m*pug4?kBjLR!mA*t0<<}k8RDAZxsx~-7X~>@G>9q51oB%!k zw*&i3m|U+8Aa{5se1*y8y6*2Xl@PC+i9dN4|xM}4pkN_C5_fRLInvA1#`i1FP3h}Pt zPMn!xh^I9+b{0%P%`+}ck3>x0sr5>rO%g)W!)L@RJ25&(IWf!Q+$?dZ`FCoXCDIh< z)Pzl@3F%0xn&l4>P2!y@^GJt?c8N|{6`dS2LUc&d>k;4%S{_0>X8XfL_mux=e$8xu zqR4CL#Aptt#)Z@V!Wm(rPr4I>SplDc2a$PUdW`6v>C~h_4pxN|9kQL+TEv*T;8Xeq zh-T+TdV3)PvGn(v84X226P>W$G;&rzDo6H4U(9Z%bA08K;CRY~>2dVz3TLvI(8Bqu zS`MTR8-`>b7x-p`h;FT%syqrv@=SI7L)>3d@CC$5;~ca?tmxcPud?2GqQh;@3o3n# zvslryi}RN{Y3lyNj5JZ$%?Yi{jg{3Cciiq&RRcja#EQJ0P6T)uE|rq#)mtx_2idUb zLKF2Kg@%sHa|#txLPVQ8obc#4Cu9DU1x$2byy(}@xl4uca2wRJFqSaf;zid1PWUe} zk9cUH&Nr5|A%mT8PM92qV;r>}Qiv;}B!}-F>fEV9;QHe+-fq|k853cj@yPUXSV3OWMR-S{T!XG)ssi|c- zKt;hcCqmi^^lVRw%aX@6C)O zjQ)7>?bEtmtU?zvPY6808sB|>RS$f(E~u6QHsg{~n1I^2)ttnN8naU~zbr;5@(;Cg zRq8E0AvAT#({!nlVWw)9YOHiIz zEAu*Wf`qg47;yNVaNar1{>{Q2kog7AIxRM?oCqs1J`acau%)7S zi_UXy2h3T}a46oUjZT4qHA5|5ns)J3rE`-?k2Q+#6{qHBNZmxI*Uw5)I^e)-&OLQ% zLT@@|;Y^BD4tsYyD^&<<%CbHG)|B+u=2_|Z4u%uk+_+)Czo`v5(lrEqMeFcY%0sil z#IgO(x9ZZ|S*2S5<`ZL@9`c8Z&2Q@+!ahX#LFYL&Cv)g?T8B^Ae}FGEAA8psNAG^% zOc3wA7i_%0q;(MjI6tcyd2nnyz8 zoORmOmdcC*5KUWQc?XxGeC=#NXESCS1uo;z^oc%THXr`psnW#~7GtN-M{Q=u3DY?z zwiR%RuspHizVo`>)6ON~X0Bg!W=VmkUMs+&br+qB4RmTb7QgYW?b%dWs_smsYqgL) zt9bEO=Mn?megty|e7SorMIQAurPSY@m2~E)Cr+IF-8tVtnQuCZ<(Ir?(X=Ye(fRhK z&R3n-c!D&}klp2sppiFS;nY5C4s>$kIT51fn$xd>%R9N^7$SCFmt%zU;Gh9M6P@8! z^W?9@I%w^M*`eZ{zh$Q?I9f)MVDZ5XX=D}17MF=Sgw4SgL^Wf~t{+@*J^!6AQe3L1 zLvW8z1Qo`+!bMGp3*MlDZdU6@JB)L}$hQwN8y)V#i6sWdwZX)!(CC8S%W2+oee4=& zhy_Kw63`#+Kv47eX4l zupGk3*uN7Y{%PXEbd1wDaTG!J6ju@rZ{}(s`ZU)$eAKxo2*& z*paKrgn)R$P;e3WCUgYFtdz`=m^UByhl|%byAZWxFq)f2x!=qUr=`y!PIs`Y3l{l5 zGKv?w>kI|;G_kFROPAbEE-VT+nioR*V-UPK-pd6qNYW6Xeo-Z-Hp0l<*yA4Dlpy0Nc>`SUsEFuN zL}7oQhy5X^z_QT;T`AFA9QYlTmN??*NEa-vQkdL|&mxI7CD5@|^KlK_R4^xevk-Cc291@@nKfSAx~F0OvZc!AaOZ`9D|%6r2KBd^d1( zR=qGah#}&s>8?1HEbgC*ph5FonWDN-A6vM|0OueULP#om6q(4;18#1^yIhzIDfRma zaoP*TE-XJ(6k#{zf}%)jUIJc>pX0)0MB<42c`ih3`ESYHF6_VKoH(u@A>0dG5o%f% zBv4S2n#PSC5dxI4+NhKykA+ATMQBzcW%pfxK-GAN?49@3?ff_fi{6V}a6CC!)?a9VKW)!~V zF6_hMV&%9K76KI_{ zQQ&vMH|CrH<$=QD=xmdF@$KOl=%2@*b?sMiz-An-Y;te7fF8s=fHPu+04jb9q~alP>EPPB2>Q`hj1yx=i!}`(T%={x4fjP`v58_9 z-;Heux(4vS?t<$YQ~~HOTd}G!x4)sQz(5~^4!(*W>c-mWJ{Ll5oEvs5j&3;oQ8arB z9RDU&E=&m+60kY#V@q%iVE7`nlG$&&JX$5CU><#~1g_S_VzobF4!RH(gFq~jYG0x?`f zpjtWK{Y${2Xr$jCF9!YKf`iWJFq0-p0~h*#?+T+rKQ=a;aNuOgedmJJTJefSakSwl zsE)He?uk&$?XvSOL_3)d+pxl4G%GI(FY1M}_*P$Wh0u&=5IJBM)LyH3K_sO|)c)o| zV2UY877EzXT8%PXBZ2IiMU{g^K>ur&Q4Vstk$GPfef8jd5u*0G?i=yw2;YSLn?L>S z8disM0{*=2c}aQd^YwkP_{7A0*aNK(kMRb#<`wH&$Tl9W$d!0G&-tT8L4Eh(I<-{D z?C5mA>Sxaib=UQ?34S(oV~RV5?&-TYf_gj$kLAm7w^bvdk5=Hs3ct~<8P|YTmk?UH z<^FK7Gs=x<0CP-JAJ~;Fi35x^rx-T^FbuvW_a*QB5tKF_mh00vHzI2a(;?ilYD_$Z zk~_jfsh{B1lp=c5#Kc8yqFyXBo~wE}$*p?L0`jy}+|Oy$=OGwdP~gVIRnJ7u9oXh! zdLMPq83HrCY_xl?3PuzF0o}10O@XkP212~YNI%YgFqU@wvBW4a!N44cX(IG!6y=kp zFmbx}NmQ9JdsS&l_wA`}1k)LesF(^K778gA)7`k5gCPit8AaSo_lGJbVtz&%R1Q1b zKIfqXk#?6}gxp*&GUvD(syT6W44OI54eysJVOx_?EWg_gXNJ?fcMg=2Xve~blEvW# zZcKg^Ot~R&-$FSuIE|Q|QG8S^M-rzcmuYBuF?RGEdkCj^_#|_ zF?luQ#)EDn9SeInN@Ol^!`SK&0SJVb)6B4|54$nJ<1|N*E-rIpzRqbW0^-~XHzwdp zT5e^2Ss5=Q%H zE{zgdR;d&j%#nUX$l$f<=mO{%W1L28&nQ3``zkgyMi2=>sBl{L>@r;PvS(=+#eU$% zXH7kBoM;-X1(qgz-4Ei7$6y4OpgtqS&ptPNFivyOD7;a9d|)PeSvb9py;|bRGjgyp z7`J9bQ1r`g9E`oN)I`-sA(4M=(sQ%p!MUprxHClL3vL9}bh={R7HO$u8uwj60dI9* z)9A{hYxn&`17-rMT>12ilXjE2zSvp>SiX31?@szU_54%sQvpYBk%j3?J^A5{3!i z{VB12?>&;9`XTkQ|uu zWq^dg{&MWJ)0y$rVK1XEc_SM69?JjWsMH_EDF|%#`Pe-lvuQQ3DGq(?F2P04 z3vk|*&Fh-0utO^oT141ha7T*e$K4xMC`*%sir$|}Q^r~Rr`*^UzrtV?y-vDE*W;H0 zFQFe9ULvqF_r+80G~qujjj@smQ!ugqD>rsRa+*74%PF`Dxz8G6spvS2YyTQI<{T2t ztqnjAuUu}VtiOTM_8ZA1rck&GCsU%nb3dR`L=Etb-LVEN!%JfC|KPUWQXvH5BslM- z<&l*AH#oHYoE-j4jVB0Cop(Q^QNutH85iX6XE-|tH!r&X&}d5kGWJ*ZeJVb#=Z_H1 z%TnbT=~d~`Fo?$>NXO8PhAR>%yGd#|^S%Fdx1&yJgwkSYeIKBh zx~_mX@V8WeOo4|f3TJQ%?feRD>3Ku;_OE@*RSlAHV?&a4r)Llq4!}K*9FI;ncYoWetDWLM}0>} z%2qU_Z{3e2h;Ji2P>7rloAn~Z=|~S^FEY)Yng0l~l-gEgirg3vB#9AOyxJyulF9q* z3Zv*A=aK5Acw?H#iub@m=|}=d;G|3o)E5)t-0wH0(V4bdJ$5FoOc9Tycp#3PNp=S< zdl_KU;*||(Up++H8m4)`Uk3B+;BdORDqT$E(VrxqIm0*Kk0tcMH!FgZ!(Uv=&ENdN2Ywja|_A;Lu^r zT`KpjOca+|dk_j%AkuoHE%5L-jr-h;;zoN$dxX?c1= z_`7&;{|cw^p$mLIa}kYaTAm6m9SD>{Zd@Qmw|_{bb)WA|Dqhy&r;= zKR|Dw+?p;52YPZ;By1u#3g=)C&M3=F0{ijT{i~p=Nh=V-9*sU)JHi8d#^hyALQWh% z8x1jXjPx`R?gGy#6%0bqLZdwkRBF=56C@gY%Z_8M>eLj}Yuq@GPeo_O$4>CTG&6Nx zce+`jpkux@(Gy9Rx3p z2uiKL8mE1SJ&JD{FZ7I5N)_;A;M8y)DPjU5rirZVW`S--@K?eG%1uz~Dt%KqQlW%C z$D0172jw7TBJAs9q+^@FtB)osy|HGgr$Q|w(8%&N9z@ue>!q_-2aSTsJrhF3;Fd|G zxuv??R$qrVjgbrPo%Uynr&f8ee8lMT92sF`VtkzTo5Z@uJTP4h;iWbQze{IcEylg??b zHZn!hj;X66MAAl2wF;4fCm?vxPmC!AiXc$v@3rW`8H-j$ir&^Bbj+6^GVTXf#fkz7 zG)Uh5ha%HOfkSUlVDRP=#>;eV zHj0(6N;AaZ0C%f~uWm>`cECm1n|A3sCeTWNv1&hlb-3^dy{SRD85~B(_IN^RY!`$I z-+BH2qjP4j2jBL4L+?bM{Xtr=I3$Z%|M+TL624E@(wY>;Q{fM=AsfEOa_{K_IyjIU z;CP#7b(lE+mIuKbZed^yN+_A0Ssg{=x**Eh;GhR9RE!fuAw}7m)8su5qE`%NBlP$C zo@Vvv(5tvTviy)|Ivsi2qWBh+@R6s|@S1q%BWeHoG{@{e>h0AH=*=UZ5!k{l<)9z- z_O?F?ET=eoRAP<)!B$KMt3C55_eWb(G4f+i9Cqv0rvy>*iD#7h_xN$o6!mZZr=DU1 z{TU5|n|0E&z!tB$v)fO4vJ6Njh_62PJYXR40#Mf1e+&`$FHrp1ts3H})1GDqnNARE zzVsBSe?!iACaZr-&U)snf6v!=Fvn^ajXG9;<0&FIrAi~j^lv>$2ANI}kALU6P5pc5 zd(S=U-$6f0+Kh1UoChnGw%qc}r6oe*xUGi|~t*TT7awQ7aBV7Ek|NLZfE1R~tpewZQU!Z2pA2#*`{U`mjNSqjxWM3rU&>kL z*7uHA{~itTn$^Gehj|}X|K14q&Q<>|F?ts%e>eXbiFwI`ge5` zStmv?H1k53$5n$$+wk&c6xl*H96YMU7>=Io~r&`(Zjn;{cG&y#mX$_ZQRF;fyIBf=6NA_{I}^H z-un%Pr^qnZb}vOW@fs8~b^?LJ`R8Vo&w=+SI>~-s#2I<+m3GdT$tr z`l1Ou)XIO@7)Fzac<-U&JGHTLeh4~lc0;w5+_l-myoGc}8rrvMn75n3u%2G-Se_^@ z4)@~Y>g&bEkzSvCb{yq}jQ_aE3(Qzfpx?nu1V1)BA_|m+tZ|R{v(s@eWk}(uO78X2Lbsdxr|TIL`~ego$6i z+uK|H+joJKM1FhV9xwdhHtDERZZWuM%m9z7ioI!wDP%wfelGDs;mNCANI~t|NgSni@43V6Hwxy72XGF|3sAd z?FuhcEdIvRkq~c`=(N)Nh>{j>m3pD4BuHefl1haCZdvVpQvI9%xc>L^C%mQV+q>6z zq4^m1uQDn2{P&TkW$pOyZ)?5Zs(+ymVGzD+fX>-h4&_sO8y2;2E(KM>Ul@Q2?`rjL znnemezg=VX!cy^HTr-b;IaZAmlnWi+#Z>#Pc6c(>>CFJrw}@5T=90b3e;;$pF6F;Q zuNS6||1R-)*QtM#p7CN@!Ef7d^8TZ~?ftw|T83Jvq{Cx2WRpLpJdB2JhPa)mbv6}Z zvv;UL{>9xtFM1EFe`~jTUsC^W+a|fn2t9X5p-s9(C3IxW2E?s)Z%C&6N@#(q2pr1c zNWv?XvcgDXediT97`^W!a=GFZ?niC&8Zb?_IT^D7d0+GHghd{)OKQX$c64oK9CX=4 zfvRO}Qb&R~D7;AqnNAQt?~!7}e<$okrB?0=`QQJBrW9?!W4O;y^t?>=DYD2%<08L& zL=-(EAEu&p^0BJOEgvC8FUd!)#-gX>Bcy1xd>D$>E2&NLQNL)1^72Lbh%S0nK8!_=E2*9G5nA+|d_)vI z64HQ^Psn7wB9ae7k%Q*$^Y&xTOtZ8sl0C%z!=1xj!yUuj!kxlh!X3ihF^9P+v&vrK zKH(nW{wR{Y!F@4@c_`8Pz8mpB?vNtc8=Sjn^CbCKb_90=cLH|-cfcHGyv*y9d7qI# zo8-^)_?g4JmcWmXru{)4y2@L22xT&11Tw}fs~ZjKuU^jASI!B!>ejDfWSsWVK95@hxYb2U6CMl?ti?l*I;sa%2QjvR?uzIZgs8Ia~rMIcfqa zt$|7jvhO5J4x)0|i7V?QWp@UEvR?x!*{?Ds$5c6Ya3CdnI*^iG9!QNnp`_#>EH4@# zl$watN{OlfCkFxV{$9x_hh%xtf}qsGpj2^CYEe+?{-D$YL8%92Y9)$Siny(pk?SqT za(Pjgpj5Y@)a^m3ofJWzQCoD0v%BhhZ1(c*k3A*g$y)y%s!9D380}<4rRUY#XbLubUvHpnHWmrqCkHSM)OY4q$H{g+Z%6wgBbjYw@HNId9m;dZy$rfLfcMzUorS;#+Ohh&*17N??l5o z@za;yih2e&Ek6rg^Ab7Edfzfs;MAsfkiqZ@J@>VDlVOz@^o{p+gTY3tzV$j#c*b{l zTPdo(^LDRi*ed?~!8_Anc$uc0^ENk>i&f{m-_(nfoStS;HEhvlasSWWCiM+#h%S21 z8qDFXwei^g9jJaOMOfO@e zm$9c%#vCtWhL{)W=5`(|lpby2#)ghR1$`Zw4M&^?XC|D5~ch zj>n#QzC1jx)$i94#C0d@gZS!VM<7VnUh0(vN7&Z-&8#Q4E0S>ihFq|^6nW% zi_(2fZH|yA+7RZ82gWmDzJYlB6egQZJ;Qyo@$iTH#wZQnUw~{INBxf)&GB`je4{VS zXem3PJkE!vE3C@xELts0nRI)gjD$Uo`>4LBv8Xo2g2g;#XpA?DsIDSlw z^G!giQb}EnlhQzgOk7c?$#)l0H%z|Kc#MkojaEqix(K8vEumjqOVV$L#!^kZF9j&q z;<-DAC-~+nnBK*}od1BVL@O#agkx_V0jqT`03ODRRL++Y8(|o;=@v$`K^hasF5lE$_^O%{7htl>a3&?zHQyP>T zWi(MvbF4hwO!q|qJtBiEU6{dx>ctH1ioY|MDWfudeSlJ)$%6fPCJR!_ES9w;S)A`^ zmT%JkRdwY7HD!N%&_=t++GZ(2%TQ=1OC>3ULdx#hvK!m0#`4hPwdjlD-iEvsdYWO7 zl4UaXEMshunX!zWG4|p2x!>C>zkm96?)mP^Ip>~x-#tL-;2`(_jB^lz0kjT!*9MacLS z;4W^iZz>_-ld7W{HL6X7LMOJwu#FHdbNy5Vsw>6dIv8~lG(645q_$pnwh>0i-u-7U zuqujay{*vBw9nvLx#ZWDZ z;?IIZa=N~7Hf>DnCZw5?*q%dnpdH7mUVDALs15^tOex*%ggkkn!0#6wrl;W-q3t+X zcDCm%dC;D-#LbzrWT`W&^{X?pvUbt4YE=PNuPS6#K}*tF=xgbqi$13RoCM05({esp zwKTJ$K{jTl6w#4mIT=vYPQ@|@dEsc|&l;~~Nu-4UIItbA+&f_z{Id+zk?WOwd zV20l@s3gr@*wEb_*@Z7Uaz^{Pa&E47<gn&_(96Ndkf3aM z!Q%$>y3mRBy4s0Tx>IK%2pKx9GgsyQ&O96$cj4hErV9^oTe}EDWtOX@h5M-LZzy>p z^2(|RXL$vMn&XW)H^C81BHi?p+IM$>sQZg$Gol?ihO+bTy9u#C?d8t$*1EIOcig%B zy*$|Y%RJbwiyo|?v!{NJ(mVpw>X%>5QKGYjb*&S3dU74U^%TNnZB1VS|I*8vEaw`! zv%tc*E@{_%%VysCmX+}6$|XCsE0=6hSN8G8u0n_$8UGL9*7>7UxgE0{EzPKN1jj_( zjkT@r#@c#$F_T0uAy_6W{sOYQ^(oC41+VFAX^^$t5vR>pc}%?T&0~&tch+3houwV`&MF)C&|6OC;I`5N+-mCEjO-k( z8rQmNa}Q=#-GiBV^c13GEsCu{x1w=9oNfXwbUg)AD0#RiC*7Bx9I;Rzt{ROGr^atS zTs-Z3g#=)(^yTdN-B<9H`PsAvzw>yqlJ;h6bF%7XYe|pHtm{@3Bm9H`GUg>mU>?PG zPA?Ck%?6#d5&8RAo7b8D)Q^?$@aL#3@#lzD`m;Qz0G^OX2MB#+W+O<8^^-&9y+b#vzCqB?bwDWe$biz+sse)bRp`^2EkQwZ8itqz`TD z?m!ygBZoGzm(WIz_(&gI4)ev^VTgF-PmNpJ)GTVGfh^V+ouPg;aklC$*g-Y7-mJ{R z-fY#`-dqfAg4wFLV7*m+dxO-VUyW6f!Ga-;3d7lxj`mzwFM^qgPal2#yM_S&a0u`> zVvyJEYiMWMJG6FGrSpA+p|Zk{LVA$AB~0kY8Wi=@ukhMM0{tVNI9hkW2vj~8b5u}&p*bv$>CfTJ z>CfSO*q=+tH-t+_6T;biC4{}vA(UIwLb+8Q%0u_(P*$vOm{7AGpD`Yi8c(2?lFzN4 zH8G(>OVYopoW=)f>TYa;$Ie1iWI?~7ye|J? zsI)H6ie{4sMKiDbXdzan?y(-!rW%=Amu7E4i8q^p#Sp<*M(C&k!mD(O8VdG|Af9iA z&+$cbQtlnbi+;=DJW_@Y=R8<9oa1wSIIrWJM)3M{=!>o5o3N z{jBkPZNPZGwr4!A|C>(Wd>T7}?-5T<5GF%2kBL0T%$q2Tl2vm59n##d;kn&T{i3*Y z{nm~oDg!OWM6RILrE zYzim$hRK2gdQK5$$cTNbf#`Bq9v>5DX5h?vRcj+UGKFod03P^yDTLVo`3kOqj|zze zO`OVozfI+f9i|BinPb3Xa13}tvn0`0_I8H!#of-1y(S|>JOP5oQ%N^}s$OPiK*|{` zEqXdLE}zbf-Dhz9t(?KFe`l}?lV|e$Q8rVU4i!2l3bO#VCi3|CDp8n zqX@xEm9zSxQZ$_$jOs?AocWx;pXUn`WaKGUKptRSUrw{6$qr5HkaY{V5SlC$CPC_w zg)HvmLKf%x9VbrOcf4f0@f`=(cagluu!!^g*&@#Kp^G`s%NBErnJ!_J#3h_!*Ov&P zvK|ZDLyxKWw5NwJDkrkk5!3zzcKM2>%;xb@rth(g>9;IndLtzdTG2{Y=CG23ByGzeX^p)@v|)QW3H|`a2aFokxLcVXSPAe+nd2rqq{a?q(F}?`%hr-kAnpS@m4aT>Gsx>add)9z`=Utp#Q(*R7;g;-hs z!p)Gsdn^3eRE}8-3i{w;OAi0J;2u1kjXjypGHo+h=8Oyu$>9urNTzNBi`={#6RNX2 zw5`pJ_)Io;erU*C*iY1kx=%80p*y3tLw{)%zYa^RUk2WFkGpX-pAx@@id=7MR7eFTkgC#Lt z{AXAEo_900RG9sY3qYFz_LvSC&62boJK5BD9ja#|*D`5KHsan{ErRJfG za%n@JFj7|F-#k=dE{)y6;KB~fWVz&~#gv&#xmxTys_C{CeAVQUj}%eU+I&ncYPyoo z7oB&)Noq>m2`8!P_)a0-TzWr1al;>??*}!IYr|uar#*dIJKn9tbjr=o*cK!W!7qmIIzOQ-YdK77AfzjOZQ>#FGh>R3f;N?!dSDjaoHL z-vv*rscaYSYt>}28|B3mF)^Tc7EhHGGKB?gx`N#XH67ZGSgNVs9;6s!mW%^t+wl#g z?Hu?ztO0(~WV@je`8VHSt4}sH?cIZQfts9(gm_s%cLm6%PNiNaAb<&;*>9-5*;3QZ zBJ3`JK!*_w9@C*P)KsbyqGhQWvp~LdP6N4;s&zsudOo3>VQr17Y0O^SnzDw~bAcPY zfO`D`QH~S4;Rdq!tI>&Z5*7fb+2WcAFh3wQhs>B_OlxY&EfykW(bJYl?3Oi<_9JQx zHhT-E9zS9tR#W#MvEWqGk{_{}XV#aJfZsHwfjm(pHTJfp_!V9zR1NXCFEem~0=#1P0o>)Osrf-nlxmuJ z5Yw-kE*#{PbUcJPM@@?kab})Agsou~EEa%w)h@b|k7$9KS*iM+LX6Y@EaP`R|@MX_|A*_!y5TQOESw zHopqw#n%uOX}hL;n@=-xALe87RarbghS`y|54i!{oLe<{30$YI&@{(69qu1z?|YxX zibzfCPq1@tpWwvt{so&D%*p;SIOV>mNfmHvO)n<<8qt_(zI7>i^A{#|t-xL=Q}uiW zs?@h~Amh*Yn$nDO_)}KFru|aELhMco{bclKrfFYkpnIL49U;IuhIYIb{WOu6n13Y*U4bVF!PZ2gg= z0eDB%Ft8yNo#*m6aGr%Vynt;S4nk5F(CFML`7&sNA_MK}_!nMa+)o!c>%%I!Msq8< zOdeHo?f6|3yv(F`+7uOj;DdJp@aVTWi2*@4%&%>bNzDo(hYnnXZdr_0z@E2R0C`C{2+zG!&`;tFZR6=Y)}?YV+=i1gB&;zBsYxy2aB zV`@-B@8)!2a<7`1uaE+N!y<_h1MniD;sU;y$xG8ppWZF0>}D?$ihRG-M8>ci1&lXi z4e;a$JNGRGHe_fXe-{no+<_tZ57B`tOY1{2E&ve+}~$Q?;HA zs`S|uB~gvB3pUgbE8MG-dZ#atB8F}0zW6-F9p7Mmjzjo$c4OLgtfva;!gct)kZf*jhndbEF`;I*i$W}DYq~-7Sf4Zn2QUkQ5C|LPJvYj zO*(0+gcusL1*@`WRmhNZ^1Cg>$``WnA1=JPjr)Xj^1g%3s&ra#2Tanb^bW+O)2BNS zkWL}h+_zc=r>nWI;a%vEPT_Z9LOQLv%Un+1mHYnSR_Gtxw@PlE{DTP^{mIM*{K+V5 z|73#Ge=?@YU)<{d7x%4_TNQs{37SqO_xNJSJ#MYJ$6U_H7ftW;#ew&kJXHo~?lXbu z1G(=3x70E?_kiV@K4g_59x}7_4;kgcL*`=fH-mwH3w_PfrED%bi;&hkPwrQ-hIicF z7oYV!nPsT2#B{p&H}kZ7#9-hfS(isF;ld+kZTXnNpvSCI+G9qkd@S^qC47Ga5`McW zOR#e7Yeq9Wgc{eBCw4ub=n?x@0ddo9DfjT5siyt$o40|XM*0L~ZFk-V%Evo(yevWo zhYktRKNLtO>!++s)KgY4^Qqv8cit+V3V!CrlC`V;0=?%81FG&I;-1xYHBLzTBs2z2 zrr342-7EfF?l@4EevBme*jGXzYQquJroC1D+(Vz zuw{*f#dPX93Za;+USJd}rb#c5?8S8W1xA-*GJMH>;V+Sr#kBDy)5J*fzlc98zvCm6_xeOhuLT?n*>Zq2-F}IQrkLiw5xnZ9P{A7rN}~ za8n9uCz=3p>t`1J=Cd%`l=1Uyfj@*^eiHoXc1fMI!Y_zX3cdXTm#1t97bEd^iwLi5 z_#lo)$C!Fzw5)K;w&1X^E$t1*3C&gy!|f?>=0FQ7GGMLE>x(0SKBYcB8j(U}^~ErN zh7H6)05J`?Z(jrMYh=J+jDaXQWWRwJ3t(+1N&%T*$e2eBS+=v07>|pqjKpaGuZ_e> z0HcgWDN4tT#i;;pCgONmy^3$4o?}02Ut$ zpI8xLM2@eK9SCPb7Js)PYv|ob@&jcwVrAYn5~XlPnu=1ycbJOb8cQ#YD_#d;zX%^( z!8z+qNo@`9XHjc2F$!RYnHUaGVkSlaG%^dxs;^=zRo&TGfH&gP;OP{>jo2yoAmdG@dpke7ncdTI_`0aBDFXAj=wdWYIHg_&tk48;dbA$<%=$X%Rs$EI}fk#=-KMF*v&3 z<2`29EPB%z(aNHMHY{kD4MLGcO`3=k0Twr5t$%MKjzOz?Q?V=Fy`9=r>Ta~wp3gSX{6lv#Ntplf{s-R%ih(y80E>-kjL(vnSj*%FaUrCzPz z16*u{0!pQ4t>D~L3T@3OTUxW=hjPo$jtNrj80CQ-qxjl0IoUJ$LwoVtdOB+5fb`MP zWCtj$qcRyZaTMds_%|PR^PyZR-ah*%z&o`EJqHDe#z3!h6r*IkwF`iEZvj>MBd|E} zxvd;i9W8W%=X6x+gjCXzX&W(ACJ0#sf*%%1Ry#^ZF*~4FY$Fbld)F*RuhkNnopew$ zRX!7JfD+agX|AJ9ZIL26de;`F=qR)uU)nbfp8MICa#Uowo&g z4%sSOQFjP%^}l#~0^aP%LJeIJ3>`(gGLKwWl!lJpyRr)5o!Ejcoy1|L>~QsVaP%ch zSJ8`7TcZqh)TcADTt}-qGyUbxtY51xVu6SY<;u zF+xT!)B)XpFWzN=<6qp3#*i+hx{kDN%>N%ZF$66?cQ$;DJG=I}J5onSULLHp%7YzU zCAU00*^8?^QFc1I=_&RFaQc?%62E2dmwYP@lcmo%0_hFP@n$NLozHEJ>?+!VU{Y6h z#DT8NrBOF_S!_4XN?kW*_NAK`EOR+|99%Y^r8^y91D~3z^kP?Oyjc0`UaX*-H*;Ag zgY({OQS0s~1|21KXTOwo=Pdcsog>w+2P;86*vv;gn4m{baeyp#XeGoJS5mzoh~^c}oSR<5vs`}pi%O*_%poYU`=gy3=qGyZF7QCm2o2|W#DZQlfPWI}@2Q|p6R zl^a3qMVDS;m@Hu7AD}<;mo&)YRP4eLP3if=5oUOsjmL}fUSf}W1@yib++09my%C-Q z+T5F4k9)&;1=KSbzAvEEU__|^zifn!1?1j``&a&Qz|kw;}rd+8KM8=!dh!yH>c>-u4iEueq;iQ@o<_ZJfY4)zzv0<;ccpbSBt z7tqZRmf#l3bZbKqrviEu$^_wI4ED&tYJiv^OE>!j=~bWTixDhO>Kp4!IP9?Yfo1{S z7$8mtm*8*~v?H9A{~XTpVh6IIp9jLl1=KKtFHVRMN1L-@+4YUEr`NzJ%NVOLJ}0pJ zx7cPii{t_vB*O-+AH<5i9E5x*ppZy0R;C_q4C=kcMl{P%PmW^-t%36;5{Xnm(NS3J z6i`VN#>N7&9n99w8;q<-Xql;{o6YZTH}LyJa_JiE#isJfYZ0R{8fj?EXbjvM`eC#fED?+rePx0)e-O+KpoE2D6T*>m zrhGaa;dD4t8WV>~(a@wg6uyRb$DzJ7^dSz@Cd&#A0_o=<3YrhnQGejP_L*ZuQ=lv! zBL)E+9>W^{GX@50$T6NQ6NgO6|lGsb;aw`^G#*QSn$tX~(J7b#G6p)76PG;YYpDcPor_GaDwX2gk+E!DT zcYhfylfk|z?7~M=u;$f}t%B{0Qm{kUC|G=nf_Z*Y=#9u35AhGjQ|?q45rsdXoH$i< z2gsVrE?W)FXd-aEC&>w7KTT{8q(0NcfEq(4Nrp_O+&0_5LtT>@K5^p91u^Q}DtG(8tVN*RalUW2dvq+0(Js(NOht_PhNIW-tOkW^i>j z7+jn~cPE2^{|tOb8b@0-s^fBY2B+7T8EkRTOwkX_md<2mB{O9=%w&goCUOeROXN83 zOXL)Ko5(0VW^pPc&SI5z&f;u&IE$IJpUs$)W;4$`x%FT+qd3pOOr)V%bFhfhP{|yQ z#hW?$;!OV@%9|{gt*<&Z`77(k&t<)7F3Z0*S8wn2l^|)qO7{LIHMSjRF70|6KL9e&Z_+R?A$-*i=Hy|`L&=P znu_;K;aus^B)yzr3&bumiisL18$>yC@=uR7C*1;;a9{za_@f1EhuuQ<+^~fl%N@~37mrMEiO!-VNe~~Ww6)u~+9!7!8uuL&Xus2Y?${;}{J2GOLo3oBU(^ylc3s5b zQ!L`3>{`Uq?=0dRwplC&$?~kXf&Ae%Icqw19N)P1wnjtifCWYu7K^=QAOjxwP~}2K~NACTS_< zd&F5wC%WVJcP;S_)RP!dui>l4$9P8jDda`K)7ZHpY`5dwMBARA8EDLh-E>rt&c+cI&Z*){^sjwsrb?IjrkB^7S<=IYPsZT(4mV zoYr9dt0nt1y&*q#2KP8mve*jl%X&?-$1A>^X!&Uz`G;wkyg-nSD%R52bPjoLI(y~s zbWUCO3_Y{-o?uqrm(udVY-`pu`E-xk0@c#q49=Wq8C+D(nQZagOxAE;Cj0nZCL0mF z0ZU~qWo_WlUfRIUY?j434bQ@QR!cjxaI4BL>No;&&&5z~0pu1HWH+nJjcNWt`Ih1($G@X zCaw(Y&FqTdn?)a)|I%6Dul-*3tH*;xJF48wiFIu=`_3_&c}~q{+jnJSGfGP~Iarly zX=)DJSDJ&nTedHFKA7dsr^r;;=ir{$rOrOZ7EYdnTR7$owz3+bTRDfawz7=7TiI() z0y{lMU^nLoOmJUdV_Zc}pjo1R2#a0?iLN+BZ_FBqw6Ktldw7CR`d7Wgj+&M}h|JO_ zm)*1=mwix}%gOO5mv!*?f%~TazykLEz;S%~13T1t8>gMn@>~z&_Vk-;U*}I#t=L0$`qXkDZ8{@o$eyCPElH{6yqda^x#_GJ$mgD-~71nT<09q;d9Y0d8GU&xMRKsgMbZ zWbn3-OLxF7j^DanEd9(bu^oQ!|6&&=OBJ=eK%aMBAY!}KdPwD z9z;MzOJ%Ts5BI&=gDFo%or|z+RMDs+l)Q@4ix~4v5tLU^1057pQLqjRE)^}*Ap|Na z(m@FoJ<-8h6?yN)7^kAty@;xcZtsQfRn(;zQBu*OV#Gy7WyOe+ivBBRu|0pposx>i z|Hztc_>sk)kwLwmSZvRqkXkC5{u3LP{}a+wMbCd?JstKj7_^U>t=-4!p4bQ1smO3Y zT&KbZjSv78t>4cVEB7;|+0U#?7t>2njTux`BK9?t zK9Ztv_Q7XpcKJ|Xso0#{=PhnY@rRM%88qoIyp%yZ4nw63dVCnmiwx>k3Y9WwVJX6& zK_#UuuR$3?oI$)7n5V%&NcupGFZC*sMq+T?K4N zqjwcBI*oiz!iF?jc#>O(PBP_}lgLjH{L1Xs{fgWBG`jaIB&JcPQHUr7~bAXG_B&!Uu-H03M^l(hdWqNk(}XR#z|NGCUSGgAkdmS* zvG`Haj!JBHD9P|5b~%(Z?jq({=x~t z6D}hKlr-!zid{+hm)W3CmysSy>VE}}R?_M#e6i{Z5=luNf5Y6Sq~zb2;PP)Q*7+*Z zN=ehNvMy(?vhrg_?<J~CoNfU0drP^C41SP$^h3rvM_bS$SNfkTeWEGol zbDLXnw^9AfcHmyHU0h627bMTlNiidQoVWJwS4mHAvxD94FwePnI6kF!*eHW))-k-A z1*KK9^qbX4MkRH+E6xEB?uv^6TK$1NIC%XJcFmDLIN{9xM9wQI{7-gU_Mgo9uRmE& zkH1*Lg1@ji&3bM;0zI|mP0~~d|9S_v@=26fC(GD*Z$4Nk> zB@)P`%@R=40f3RUuOHPhXj@XtfM1!p7-;Yn`}Dfrbg9k`;A1#-w1W@V(&GJshmey( z5faFvX%a}KH4@NKKEO!cRrR=U_!Wa`?zmBqZQCoc@9k#vRc}~%EqmUEd(idk-fxc8 z_G-!TZ^%(mfCMsVlmzl=kp$9cqXbaIf8%~)>CaY=#AfyCt)&i+u}S$O^?!^d!jClV zu{g1>^o=aVtV)w_R%R;3;-gmlO&LW${D%vFT*Za862{N+g|iV2ai=a_a2(K3!mu4A zU7%)9uyeGO{GW&cy-N+{PkQm!w^GgK&YL@P_LPKaZgb{O$^^yX|LZnRNSvbYIi&BQ g(kEieh9$MlYBbH>A{!LnoW!61DtR|kFb>P41wLGbrRWdUd&DHhpH9WU(-mpb; zYgZaExIp~JcvPxct5(e#HEZ?CtXjKPzZzBh)~wdIZ}r}ND_5yjt4i)m-kt6bl<@Fj=DR0P#Vflh1CP{b{nfb+aNPl6n zCsUZ*K2|spouY~s>N&%Og18jnPfM`S$6ZGigQCBf6QRi)(l>XEaG--n$O&@_UqqUO zjj=}ImM2B%5@;84-qNAT7iYMHcFri38y&DEyM?1svBK8iFq^gip#0&(dkq^4B8WV~ zqoPzE;iSb4!{~$+k-?x%9pQddknq)8fkMsp4q;eWv?@~g*cK{ew$};%9cu_HLehn6 zadASNrK2!B*oDe3EeID%!a{{j9Rh?Et^~mv8DccZ#uA1G2ZAU@;Txw*coZUvWz^@7 z${jW;FL$(19uh7T$GTJ+!4q9uIM+T>C=YcCe|CrvMpz?+`!<8nIy*#ECrl`|>1=~@ zhm6R}ACf*OZ^%H=Tt_3r1^e5ff?rUeu(e$p$mc@)1Lj)-z)RNyUI2f%S^Hm z9N~2fEj$|G-H0q77*r!o+}Z0p?7M){DX$r1jY((wv@khcsuAR^F9+ zq*W+&eE2VEtt72Lx8HG5&>5svSXV<@TSzPBD+_4}q_zH76ltv{t(;sBX(7@|9iL2E z6V;PM?N_aqn(GO1;C89CjI@Hrv?S0Sq_wh5HfgOTt!>xeBCStI>-5YHq&1hc0xxtX zttF(jZ$@|0DkiN1Yo*o(_5VzQ;ahwzHCGVgx{Fe49%}m^*=dM zYaMA74whOANGpG})S4{y+aa|kkXF4LQtKmVO`5H1UB4$`x|9%wK~ifgX+51UwdRx7 z_n%0uZKO4Ci`1GzT0Meu2$$ugRdcD-T0~kuw(Lb{Q%S4tc&Rm0Y)#T7{UbFu65{ZT z-UK>_v?fk{kF=(f)*vLc){s`8z&t`LC#~-XNv*}Cb@!6g`joV0L=Pay4@qliiPS11 ztx5;Kk(!%HGvsHfC52`39jR4HXzQOsOAy{|p%Zgv!J;JLc+Z-`q`qdM@7NE7ZQWhM zp>7R@L*3m%MsK&FnB)?VTGgkW@Jo;SfPP1q@m@QjXO2lY)Hi_ia^?gJkNYH(-e>!{ zQ07;D7S$r*t?pTZwpR^UzYXh`Hz-%Q)V&!n7SobvJmbAk7(T;4Eh7V++#j0)9n*V< z15nJ^ia?itEC9ERPL3ArIiWCY537M=UiWn}UIDg@Jjkng9IVU>nuJ7NJ7GfPSh% zA%B90kQNV!5rRg?6KAy_7$x)@)V=^L-vMi_6zUEQ zM<<%M(+l?o=TKD~x`OTwh^(S-qyP)`j{sGM_Re+-Te=4dqR_hvB0#Jy zAXaOGSR_IJxubwv6Jf&05aHk9;UqpmO;ta7)ht{d5uzGOTa|>BL#M08(3VTMH!4za z3}^|x%|g_0r-1V!g_gagJg7W;h)`ohXAnkm_w>+&}vLA zomiTA$MX3y{Jk_eyZ8XQ+P$%*cz{@`MO~sn;mUn-ql8uC(}h*zJi?n35=tf{2&czq z2npcGmg61hc&EH@q51gALh$&iLeaQL;o-Oh{{-lGZC&3up~1L#DUI$AO93t}R5pHi zh;dQz0I~dw!hJfSs$eY$6BbMe0>Re``zJ0Z4it0XQ1>v1PjNC3k+zAg4I}ag<_^hw zKX;gLtw&=)Gif*oD^3rhu;DP~$;}hOgoMIq_1siZ^s1AR)iBl)p=DtsfANZ{-_&Hy zqPdyywO8Tf4EUNZeyuavgWB#cGzm8guo#!%_x!j=66>rQmYE%Pnx!U`ojnj5q9GAYY?d1 zQ>@=M;OrO?a^w7o*FmzLEH|LW{;fi{wfy-@5vRTSn<(>xYxl*Et2gQ^MBkS48y0aP ze;5@MFmE;C%lo!%s~-~WTmD6~5B&R>!b~XBtZIsiZ^gJuYpdSecJM`+PBk0#(WvJ6 zT1mvU!V|Qr_8PM0Fo8hYMpc{T3sk$V#FL+d6iJwbjR5QfuG4ZN~uhFF*+MA)Wq0GOV48ZTEsYZw_ zPgGWYq=as6rK*XFZpFAiudUiIs(c_zRi;o`#NZzrs-`K`0YWphe@s#U@_aU66fS70 zda2L}10-KLX7LPFbuy-CYW$?VD$D=_JG)h|H36>9_P64=?y8x-8C3^)shK@h?Uk|t zwFcVTUu8sB&ov3f5xrG@I)z?75G^Wh7o^1-@>Gr0V5^6NRo{zd{xV-BMhu=YRJB$7 ztUX+{OSI)*V^l}P_Wt)(*Tl~i<5is?5AoAUs*VbMF^qFf3$$VLRPQKcfcQ*8h3i#j zuRT^SR^1N(dkAZl_V9vt#SB;__6#9JOj8R%ODP(TARbp)fD^_qjF#zf;|ByB=k& zo#;SO_5B7ZsJaGz$9=hsKyb~9a~k@c@?|v=Z))nd+&3vkBDm(j7hCy_)Q~Z7uebdE z^eu$bk;&1^g|a&P1z}@nzkDwT45u~EXur9=mHkGdSA+fR*!-T~C~p_>IAK%x$#t|4f&|>tY090HpcHErj^U%MG~o9KXsY$*A*7{Ra9NRYHtGetUfLcnGq0Db}O15Bw~6{}R7pev-i&FY|k) z7=i%t{*``{C? z4MFW*Eq7w`uYPZG-T|*l1k^p(KNSCY+i$H&G4lMEej(`UZSZW?W4{XuxiC@zBZPKhS2KS44{(oD@7)agPU#N%;#EEVEo6#7U)Yg9$=MIq{ z27c)QihiCFe?895_3td@4cs4hYWJxr&z#~Wcx7JF^o*L)hjkAmw zJ%5saMCmEJ4junV-51xM;@^);=?X9lZavfgEDhu;v;BXeN+i$qAFp7KL6{?4Br#qg z(hNCmxqqlyl5OJ(|1T(?F`xKg6xTEJpy~?;*4wiJS#<%dML>X4lLGq+yeUVW zr}QL)IHcrQm#1dQadxnpB}ZAlnkC1;p=y>K;ln``DUt4tR)5dAlVn_GNwF5!DpcQ> zvIfy%3_+iZ)~GsDUC2q#s1eAMr`4kKy|shzo;m8b=>!zBSY4SjDnm!(`%Bfk zDQ5SlYV~U{I{UMr2lrF~!=H8(j6kg4^-M({=WN{t?kzpu%~#dX3^aaZ$N zoZCwCf}7lZarka0O#)4|xOX)yE$?;Hu(aIOL&MT?V2*~RWxZTYJ341A8=zrR=AuCw zHfK%A*UWp3K}_h%a7`dyHA*v*&iQGRG*4fnMljwsUDKRm%=0yOIcCIZ_D?h>bg!IQ z_sL?-_p}b5EUOS?A{YaB8E04@E>@hfQlnD_8FULm$I{d-aqw!*SnBGJH)!f|0y8#d zoWD)8k|sp#mzrNWfhYf^9gniFg1}KHn84bDns2DUmyYrR`+%)jb4)XblUk-?U}fV3 zW&|_dds_1?m9_LIO$|;~5raXF�Kj+ZsM^N$MBBpmxO&wQ)3Ww>;$~^uby2`DdEx zoP@qql=>V3_QVR~G~}_A+40gBnhwg!MTX3@l$mx+*Y2T`chG6mImx|Di%nWH+LLLV zhd;GwS^8}a(4OM$Ew2Bw2WmC=m0O!-l`3s^ik3?{GQEiq1Q0#4r)#x%P^vbXQ^Xg7 z0dj+@9E4gp5W3}8(SE`^LL8hB7SzygQZC0t0)ifPX;wVZNXur$XK!j*`hDG8%hIp7 zrIw{%!`51sey+E)bEpqDbOnBI4Zz2SXnVhg zsx2L@HDNqfJ41>D+;$qc$h*pc333KXs~(t(U(V6ar}Oc$g<9`?i~;fwXC7!y#0yHb z^UPi@#Jf3%wVKi`T0LI7QX59&?(7CFH(&5DD}KCDTOsU39-nW~{-untOnaFFZK|Vd zfsb$3zC%N-&X-!nN^2|v21exh79wJaO1A{hKcIb!Ti1vJV1P{FqJ#;Rgnsx*-4A_p zMC(FFPin1be44619{YnfopT8TYf=5v5XNLl_sv=DA5@~RE@{tl#)Wj9j6FBCNz@u$ z@A1|UsR*cgbblj6;rRR7(VSQc>gNqnXLM?WcIWWY=dMd}DhPq5nU=f2s zj$FytY#-qrANvq=c|e&pfEE%{=jNOM)PP=yA>{-7G#re5eShTC{7F z&VdRl={w=uV|3UXFfywY++e)!3b!3%W59vLG%!W&b9y(vG(-1_vlfFy;`|cb)z|jT zehC|#i#ttjtXig9MVHSzSLwEM3X_G){M|YuzPmwJPB%EqztC|-ok8q)=Pq4OPFInD zq3@fVV+r_fP?-fqWYrE8ccdlQ|DdiLm+xLk+9b0X-#?;b#X9tajuq=0Cv~h?Z#u1G z#X9G#Za-aDRsKnLpQ{06!O$SMOoP{5*Co)@zWxUv&R)pVySk~I9x?#|!Hl}zqwYd? ze{p3X`%9e#?|7hV!#R%h$a8+fZEqC* z55{S+L#t=meMzt9vs(tEO-{W<3gP-TJxlQ>L3)1j5Ca2`j?izX&a9iP=bTBx2B@$x zNYM}Ej35)x>J)t<-nUyfLxu0B>p$RT8N&KSWqqPD+~8WUH1*;)^vs*r8t9of*EQ5L zZ;o!PXWmR|s%PGO+Cu-2(wh&a=yiBvdp+Cc?Cz%LiW4!42tfeR;Y;216^brQV*Te@O@JGeduY%S+;pN~=J<$Ypvx-ak)YkFL0^A64+Dh{J#z zs`MvgV8vl&`iorrG4>ABU=5f74w&9S3kn;Dqw*zwCPerdSLrvthMxmNk1fgt81x{l zbo9(_yBq}@cgj&PW|tfVO?Jys@OY1&Ex^A0N8wZD?lK#97WMX3{T(`Qx4W&s$a5997_Sl*>QKZB zy&i!Va&gQ9{XPRKJ~z>c{(P#R<6UpTB<}@Vaqx5fINpAYih-3spH!6K-0`_#Hw}iV zIztNYEee5+o5?`u_>&gHbBg{sz`(E5$$Ba?+`#f?NP>aO8?smestwOhH1JOicnM3B z4csxBbPfVN;3h_j!Gt~OhP8Cyi&YKLoS2M*4$ZA+uu63*qK@GaMSB_=c-z7>FckId zWzgWU%?-_HaG&gC;EI(DL0@(?Sn-3-hBllqlW;dZcwS3~sJtI3Q|ycvwP zxPfsn-n`g&fO>gK8SiBohnJKaE1XLa20*aleJhOra9$?evN|tx;kK)cpHtrkZZPt- zkYNn?_*P>n_3fx##-p74P-*h<7YB?Ds7DPac#n!ylyJsq$FV1kbGhM3Hz4?Pp+v5g z|7iS}^B!RU*Mg)nTXfm@BWEKc*faF+JwfHsZl|ng$8tVm8KQ$lxXTs9rty*DU!1!Lp!8-)UTT9 zJ_Y){VdAHIQq8+IGC_$XyH%kzFCi({KsDh_ZA^RtkqHP0T4ZQzlJ=;m-aShO%5G#b zqp$UFZCr~0H_Ex`wBxdDlZ{h{FsL67E2(3vG%fI)4yGI`;J;l>{IY-mH+47Jr8RH; z91~j+H0*Dxu;zU*(4BtP9#!A7y}FHG0_x_+B~;M z;7yZF3%Qwv;dFS<4AVL;RAmAJLVy&n+vb?=a-ktZa0D`C(#>d(r6yKrl9riRq4{gM zi4~ep%T27%jQ-TbLiNwJCKjr9)|<}JP(8Ux4pr+`Q-wt?=%+(-hQmxvZo5|d!gPb1 zab)pO*~o=fl;N>w<40ea?$gYFbl4|$$UIT}v&n|Q*tz(NQ>HKI(stS<6SuS#aTsv3 zxe#Z41M%i7raw3@Faq4Vy9#kv>4u4|7w`P$6Bu4#`CXF*m)|!{q+(WjV&a#IkPA~$ z=@8Rk?Dxv_9nHjxdb4jPPDSWvll60>nO}C3uHtnZU^YMYN{NBckdD?T$jq;{fda?s zVP-P|iRR)h;bykb-VvZOF=sv2HxPeViTnJmS8>W_cNL_QDlv{p9N72W>s;c40#^%5Hh!%GUFoX_WDOzYoW%o_L;CYjkx-FvE;B~aRQGfSX<2{dk=nI+JZ z5;IGndyC90fzBc`tM$$$=C`?84`Yu*5v#ys1wAY#v^m4k8n^q{jA$S{Sz~_2m0*J2 zu)`dPXKga?;c5UOe6$GmnNbZbU2v5z&A)I%T_S`Jj&8h)oE8=@TZ1etUdD%5SiCe3v#@x1>b9_W zIpVRfcxjekVewKw$-?3#KGnkFrFXhzDHj1u6nAN{9d?P22iQ^81l>fOP|Y%tPIf!$ zSSmj2A}X1cUgpG}hL%*NYW7VFVX4vrEO(-nC790I|8%s>Rv1^tA;9UdwX8ApINV?4vbxc@$K0bzQ8bn%?Joq)N+m`8VAg?D4w*3XDc@?j393L zw?{~C93fb0zeX0)J5~Pt zh=qSDK}2Ifmr!5%{b=D=gkrkmE>|rnY(;p7myi?#pqkN%yAUore)o}3redI0s5osO zgGWq>rdGJ@p@kJ2`#+Wn#l}*(%qcBg+rPB1>9dE%`hv42addftRg3J=Rz1FAw%Q$J z`YesKDhmyRS#d;^)#r|!SZzcq1}0$&e_|kyjjgQYbZBm6CFgh>D=RsN+F4o2+0fp~O3t0P zt-ZO~gIPs~E{irKrwUbiT8pTwkMy(NRA?!xufu7Bt$VpymaMI=jJE2~iJ9;}Fm5is z{JxcKV^&SGazX0@w%~84TPqw4imWiO`kM<{(rpt0LfbjkEi|p{C02eLBVsUM=2Q9G zmRb3yw}`e6c3920Y?ZYp-GBbNUFm-ekSJyGgKJKVuyvi%9uIC?HE4NNcseote6>(~ zb&s`3d1fF(@ZImN?19MGW3q?u9+y4*#Yx%215V2xu6sfD@XnuQ4{y36d${zv?BUZl ztu>T!4*~>93;4UgTTfM3z>6AWRP#BdUh>#_jT&+83u}dSXkj&YGVGvRJrEx3vcW2z ztV0uQHqOmtX({4xUAv9akhyW2dbp=XuiMfzzf&$3tyKsUn02 z*;qxG7jEM#f*0+nUPjM_kH^^98st>6twKl?H?^s;yRwZPNepaYQV_|_cybxP{xW(ML?xXkv}`w zSY3$dVq+#_Ganc{WxTiU-+PUHD;$t*tU@ zL{UnofyEzyA@PQhwnsD~HczmfQ>K9k{(PG4C571L+K#^tg7z-3Ii-c{S0y&H6gl|H zQX79?oTPg8UNCI_Mw=de?^fsHB`a<0(6Yw{KF(w?1~7l-AQMC`@F3=9TZKbQ7(;`O zZ?PGqpsKsw#ttn%*=4J6XbETsZoA*c4lU1oTQQUhkJ>ai^0=)&tuBLqt`JHh1OY^c zr(CvmSJoMsiq2iOCE}v1Hnq}@g|*5w$a>Re!1iA%29QieK&1iH_>mkygZ~x-NW7th zYyD%}MNc06pUDBV{W%Mu9W(4B=rNZ`YiIG}r?<2C`ORpbr3@NzczoAkzeNM#MyUPZ zYZP$dN*;SV>iz}EcBT7ETiewrsxCZ~L7p0ES=r9KZ+*kgRT3qh+iYwK( zD}4_{4Vu)zZb0V8+E)0FhIZ!qx0~CQt_QFKzieY?o}bpy&Og>b=9SI0LGf+f?5pS< zhym}}l|_U=#^l-g+aq#c1OzjlIMBXWxt_jL8|ql=VTqx5bAkPyvU(FLdA1?reLE`? zT_)ODnTRR0vodjSvYnNQvZ;1fCWaQ-HOj;B^g8hKl)`xd9dV~(`*`L`WIv*G<*cQ! zj3Vbg)0f+msXzCvwjbi+!ts-RJT`2yN75BytuJ^F5^D2ZcK*2*@fw0_Rx2*QwvXi|1%OOIoA-eK$OTs}7crK!5+T4{rf!Z(oPou@cyo6L=UHh_3fIi&XfKBW59;IKe;vd|lc)%&dg(OjM81RN+Oy%Z zfxjNf42+9MJ6NtY94p(@HBq+df~m4iXH1uEI=D!->Dt+j3R5x>v~5HQJ&wJ((6NLW z^+U&L&Zu6&2S=5_kHF%b?Qzp`$5V=Kx5mK-F+rcG4+ZR_O^$|i>bke5f>8R(F5@xf08}0@{;U<{L8WjJXd88Jh~}+V8|WW1G#_59%y}E_Q0%%j@n!uV`_w8 z*e6|*EV-ke^On-=M7-r%=Lov5kF`1feH{h?Mpx=`n(@X!=eraf7U}%szrb2t6z9yL zMfPdBlfSJ76XE+PC)=q;#aT{0ikt;^l6F>i?vT)EVgsk|tSNypfDxA=K3uH$%SO&$ zxSH#wcF%$*naGd%#=q%g599vY+Ue#*_oA1ai<5;wcZE?CHXyf1Fpij04Ta;XALK>)<4GEj$9X+U_dxo?8NS zGXBcp>g;91yMj&)JGb)ZqbSKKtmUcf;CNCEDCPD>1s%asM*Su$1l55T_aHU zmL>FQvgsXM(`iJw-*tWOtI`OZ)63P5)`9Z_T;~;JG^7b^*lG=R{mmWq5bx}7Ql`VZ z#<|!tJbzAiab-bFvV1QJ(aR_7B(WbesmiW^zU967Tzj7sUQZqJMRCvr~Li7H1EycOtxtde^?>*__ zb4)tj=nbNW|0tWe;|*SP8G-G*JQ1xC&emNB629qy(^9{8dH(%fh*t0W1r< zR0&{NXs8yzvhZT909K1T*AHN|xNTMd%fjl716URgYZ}m=Pd%!O8QJnmq}A$%HUZIe zLcY>5;A@)G+dIo&XLSwOK(97?Hy}`9RnanLe7RS^6v|}ifPgzn%--f@Hhgtx09$WW zDGcCpk=RFsAb@C5gQ?(yc9R1toIlAB43ND_M*!7=3yT5EzR;^167aAm+bx&dmx<#k$_Fo5~r#WHmX7duMC z0dOeT&0)vWwg+r^jqq?=Z$yd9dq<}Fu7G=dc^6#@%FD1$*s@PnvHiEQUWwn!U;jNU ztGMfE06z^8;q3PUbg0{n06mU86A(dDruFp-DI?-A;P^`9!@!F6-Ux_B@XUJ%$~kY) zpt={~m;K9c1)SxI4(s6%*D&;P#D0GSq$+iU(Fi0Az4|qH1wQj2AVPVfNFZdHGyPwd zT01rcenrD~ieDhhthVYvmRYYffh@C58UvrvIqQ-w&_FlHe>(!}Dsu=%(&Npcfg`wS zhbf{*yT+F|F}%oT2`!vG(*qkRIV{Ktv>;n{pdP~y(sqYR=gLpp1}f{4h{J%}N`^;JcJ_=k-d?7;y6xOhFA79v-UIlwI$ON_L1qW?rhOHV|Nq zcsme&3;Ii-2G6+}_?tplv9AQd0QsJd@#CY{jp1db!!Q2~d|M$s0vqY^iRXd-N)ENg}NRRiX1+iNo);D-oG7gSegTCQpkqIILD=w%X#IFSy z71lWIg21Nq+-fa;*f_|}l_?pA0mnA=`#S`&$$xgoAXcI}bq-=BO4l`rm8c)P2eHY& zW1k>4`M1suVv~Q>_k!5uUoar3m@BmM*eGX7i5)K}2l(#R49=a|+ z5VVMkaRSc%1dgBDJ`8H*7hZ_A)C(JoE_@s0LZOF(Z0LvWwqB%(p*euwJXmxjsKPV- zz{G&AX2a^F=gA=U4vK#-1o2C0vhXhd9U=z;GZ%k*HHiIkRJg-yDdI5T7IT5g`Uc^n zcZ2v%DkJF8q_@hIFt^gl#(c1yzTaLF^Y)y*0u7@9xQ(zLGmw zkB^#zGpI96!NHs}WC#KXbw=foV19r7I!Ja{aD~UPVIUX25)sTE!(J5^T;VZnz`z4I zDZ%V9Y+aRLe(?{kEJXX?geQVtt_T>6|E?YUgETLrGmUwveQlpX!9?ZWTf;>}lqHl0h zYRH6qUL^9=2v7rYtAgNOoHV3c=7`{*>6R#RTrmHd2hy+ntCBF(;C%30JZ*BYg$}=> zD42is$F;A+C!x&E;G|b80tVs9#lh?~51p6rg81NccPE}S%kngd*LPFe6FDpJi= z!Bsi4FpLY;KOZ~~FI*q2rXsD{=3^1nq2Pr$?aN@6=YzlD1i?Uk#ElHiS*T}Oa7X;( z;oxy}lg@;$`!n=dWZ(K)rZhYfvjEs_&4}h#qtY&@g1VUfMb)wd~*n!6uMYL z*rX6=4`GwSSw{$)6jld?q|*v?%N@dgV{s}X@3{x;BKXrzD+$YQj0|LfUb*k_iY1@PqhuA<}Gy?j2TV zAkUZ3dhEMiV!?YihpeFqGa85R&lVBP-mdTx3i9Hh9eYC9Pb7AH9rBC| zaCke$2$Y{1YCLOBsd6b42OIOZ_- zj=}S-p+9rn#A^tyY0-Pjk^|A^m!=N5t0VM*v^YZVgz-#eFfMS1`aG)nmv$Ul5Di>L zZ%}36oT$+C+!!$bj>AChOC?pO@=Qgl*jJCE(n1#~D}a4UloQQw8LGqes)WV|OA$L9 z-Xrhz2FW}ThXKdGT~Q{83@rHj)}gn!G$7Q1ZDDXC(m&LMv)&FZ=ib8TOGQAX@06UF z7kZ5TXj$ly*J^!YMQA9> zSrI-E5B@Zie-ETrbpqLc-wlUdYeTP6t%q(5Jw)YbzBzQg(qY7+C$@*e8~SzbWw;s! zp%lLILUI;`!F!tbgyzz@W68eI)~`e3!QX@?DYuJ+4G_Z7rfh#LuKzF_Gl;B2T1KRpxLgO5(}P>b*qsc1@em>ZkVhc2>tr9Pkyn~alx4TX1Jk&4;iMd(5W zwd>2!%UtP$9v|bYsxa>TaTu=6q`vHG3S&0Rw1jQtR0hx#w9gUdmdqCy5Z3gyRARaC zurOx1lJGDmXCSi7KGCDhh%3c~`BSkQ*9qgq_Ck8T5q61_oe(y|3kp!BdSM}G^Uo1_ z4el)KICeApOH!-^0s z+J7cei3JXr5;r66J;me6W+!|o2`G$Bis>_%>wgNCMK}CoaAFSnOiM741n-z~a_1!x-1z5+}(xk|b z@YJU6=C32794l1xNv+(hc06w5qbKZPCZVhuZg>E9dDtMV>LlyAeju->jKkjza$n_C zBn0~qcQ~0|P|+~A3x!W~!;8NLI{M@KL*2h}ixMxGOf+Xl%6c9eE9<#zoR6NYj~W%u zaMMb;c#4m<3J5773yWlxb#vTq&b8#-FXg%L{L97?w~5w~!)thLWe5TYyt?x<_Z3cM zM)gQ_^rwVrz5GUfBfP$A-MIQi{Cimo=?N~r(3+DA`S!Y6sI1!*5Ho&CZ`nP2iIby za`MA{*>QXSlpVMDu^V3VDQ|sApESR44++qb|GN2iFp@!lxYSR&?f;`X+{(#Ms%Ald zcp_?fY`9iZ;*vSMlqxYbCY;Mb8H@q^Bc}-=JV*|YAdW)sB!s(gX<~RMPB9+{EBI;Q zEdAzWhO_kRT_t=Iryc7E4=uh|7J;B*F2(I@hd26f2&tWKHV9{#xVvFE|57|S$0$N; zmxseEnrDXR;@d64*HUd)_T;r?I6FR*6aG7=Eg^V%hr_SGVWEds_X~HScZY@3OzfT; z{))>)FPLOvzyMig%@A4TOZnkHaQcuwSKA9w#G!wU3eR~RQK~rh39_CuCWY7bb!{Ok z{50H#HY^XYyq;iS35Nlv=0qoi2U~zacK>jAMYTAWA6XGD_^ z!`8@pn%2vDUf&S@Bc}=*AeHE8+z~$Lbwo+e8ehtKuHVD^6N9xrriuv{dBuQGg7;nu zf9UJG*=YZbaBc;L&~R)8V9{(mQcJz0p181Yn1K|yZBwTMk zQhJb5#Yp}9sjS$j=ixOt2R_V+D8hC9BSNWm{X!$SWE80gs7AanEP_{&5bV(r;gZKb zh>V!YdCZ4OopnAog5}|Ni4iOh%aSAbpd=kLszrDtop5FZAC+Dz$-dJyB3Smds2#y) z9{^`#eZvSAi%2dE9)Y5`VD=6uJv|x$5)3$sJPezE(8!OEhCqWkhO7*j;N4hC)R;5 zpweL6Zc@ZnT1%XZdA&%ai#QC*X_PtU87w49o5n6nA}XX8p_1aUx=i-d2PcM-hlRL-#~%rs`BV&8s8Bh^zXYiTI04 zF-nY==7Od_MY!;c3laR=J9z{R!M#7rs%^R^t2X0C1pj~`?Pn&w!)xzE@N00MNd0!| zfvjiqKO-^~sfBX>jZkCr^N47gU-cc4%KRdbKF&z~7pV{&MeusONNy30nuSEV(5u); z8k8@BBK?#($9h=tPIn|rx6h&?S-KTQN1pHv!6JM$F*1tV;*gQyTB78}-5HTA$*NS2 zte{?2cBBcvs1@m;>P59vs)qsciu0VLS=Y!|DbtcVfl^m{F{LiQT|p^a&^6LP(`|Nl zS(RQrE2x4B21QESg9-g2`zZAUBHJFg@*|Z2iL!>ny|=5QBHdII^E_S?(eVU=0HVcp z=121HmLb&rD2u!oMn;9poG766PeCAigBzY zIcoh{*-F)k5~^YK6FOb5nqsXoc~kgXPlGBD48Wfq;!5V z>RKd!ugXg$i{;+G%GzG|Et22sK^dBYM?Z|TQ$K#7i{cVaq@r)9L|O3xeH5=F5T=$I zqu>c7ak(|x6y-wtuqZ29pO^3+PPIh+!f7XCNx?keh+>(xH86^0+N|Ixet!pDR*{YC zwgPzX)nGnUF1A%)d;kg-6I;zJfO?W*Bb$8RK3Y)k2&7wFr;m=w`@drO* zH^d-T{B>Jd^d0SG(dWJ$#h+`DKDKh^m%?|W_;W2UmH1^$uP9b7?)8b{PZP+7X!D>b zofL&H2S%|Yg>{p8&Ad2>LNh))CF&ekJqXo4EhMphGu?4bb zpDv8r$weH4Yte#_qUdJy;}4?vg9QbI==kw+S;ydyqxjf^Acem|u`dc<<+dj36-}~Z zdwKOl2nNUDaPZX)Sf(U{pR=ICvs08Be~G-FEw^tlYk1J`qP`DZCh!PQnhK z<-?A=R1yR61A1PPd^yVITQSC>{1A^0@4pqr&LGb`SL#6^2q1d=_+OuFB7*}1cwe2y z6Sbqjb55a=*j0~#sG*hpmchePXSd12@68ymRHDdwr-$E_i9`&%N~t12ZjbVS5pBkT z0llmZ+I%15VF$riYI%Ii0{nOma2Rm>JFOr;2|x@G z84X5<8!owca*k&?4Z+M&ys|PF1DHR#V+1qG9$zL+V<`B2j|+8~=rN9jlI?i*K ztArJM&=4J1DC^#Bnyh=(86N(Og!N7$TeGV3JZ(9(Wumk-t0{O`VcD?Q!xu^sh_jY? zEVNMe*rrq#7i{+^ezr3fW$*DMNlTF082mYEr>86DPr?)+RvMo92V^DQJm}%eqlhd$ z;YlN|t8>`H7e|ry`3VoAPFr)z$7$r@mcoY~JIY?>$;G>WlKnOC0k49H!+_(T+97>U zJn}?Kb#T&S4}WUqrIJ8g^-OjKddc+IF(mqH&fKhv0TrsF!-+#i>!Nvw_#z~)jI%^D zuROFxM{^|v3g--59vp3>UfG`>&E=a&ML>lI;kJ9=uQ6prD~{w=N%t)-SBW0y^$Lb= zbE!jKz7fsp#o2n%{6R5*W}+(>1WAdXn?%3OsVNgB`G0FE%ipt2^khzcxbrj^ckCE_ z+>Q>|D>X-h`bA&$u5W;vBL0nECob+E-IC+)cpP1da$d&50}uUUW?;>b=+Rl8)+RMNPr^C}{Me~nGE2t~xMDO8}j#0J9@<|N&^{W%l&5ypS!rGGP13?uBA;4ff z<+JEl{zMpDvLPC7dWv%4ZkwXvrYHHDv?Y28{K#CqdU{9nUqD6uDL|>#| z%MM4!X(Ygz<1&ZxlhG$Bvni*e*HS>eAEV7$3H#0!(QRai%GaV-(62YIM{lNIKfM{9 z1y5g!GW`8}w9ET!CI+>K1Q7}R%tG$|AoQRFwJoNKFJT#qbj5oA zW@Jam*3gE$hvgpD8w@Wel^GrgaRn)y_6C%vNLD#nh(QgY9GZ z7l9J#^WTk;{-i4UtaFSDKj{)Pi#lXsj~E^Ivw1+zLWNVxLQvu0=;`=S|Crr0XoV>; zzCr87Y4I0RWAc2B%2Q8Hk6Gy(w6joFpO_#nXzS08NecDxqXfYa*TFQ-s;`ml{OU8= zc1PC5)S|isY>@$%x5}m|+a9xza>)N8=AcdTN#pNh4$-S&$6~h7ua{26%%fl5KOfVN zdmRxmO!>>0V6^dZ^h|8~C8j7qioi9`6cIQJF`QnC#f#5l_}_E*u%Zz4%b120Ow=JZ z1Vy=Gr9Whh%6^Txji36(YPi31OIT&`IQoFYp1@cgRpe}FEDO&vcPtCfff2EFso8eM z$bczvu`Hq*C&V(dxl&_GDYIRbV)xRov#Q0i3NW&EEHh^7`mxNI*2b~3D0WS=SRMD6 zl_)j_v8&TkFr#biKCa*bxd>Gn5*vhn?-dJg!52#adO0ZeW1j#i!T_1)8+D{xIDW4n z*5aKj5aS2$n|>^=|3=4Z#XpXmj@yll)%zwoVIbi!;JVXj88lNiQH@!$iJr`keMWQD zZ+>iRs%y`ZSOd2=_YR)+R7k;@AI1uHUp-Lqbhu~Lb#3hL7D?5PJC&+Rkhx#PE>P+# z_C-K2<2_%-@_)cd92aLEh;8j__aX$>0;R{>5`TzoPlcX+QdaQo({hk_&c?!{FQfvW zJQtfm4E>T2wK?hy-d%*9!YOgQOb>}s>5%+(i4We6htRV@D&PSz8_bqkvC zDmEIARK>Mc*b#a{GC1R;_dMW9`nYesvjTCmh`@lzqXNDY9LIt`E;Nn>|AVkNrq{>e zaZInP(Qz+nxBCfkE4b$^i4P0kjML)8DsdlC#m>}^Qv@U;5K~qhR(eS!ARt)L;H3nd-lnpB+)-9(U}ssSnq6g;Zod=PkGiU7jtofc9Y^Pw z)t0_-TxIJuEPfU`F+I+V{s^e4M<4b`oP;Y6i%X(v4w%TR=>xXn&nLz4zkKwiB4Z)w z`gC$!8Mi88kRaTkDDHR8dolsFi>qnDmrLSUY&Jx)!ln;peaC)!`3>uSgh#uiuHgDlN^>>BkBs7GePNfhaP--Jizszjq`|J^#j;@!*$nUvujK znSg*me|>sG7oSB7b~S4}&85%n@oedG-4So3YP<-F@1fv^|B8ywqqTfUYCM-ZM6fk! z@mqY2y%51QJ2I!oN2B>q<2v9`mE!ql4v2`^_2R)6@Z%Z0$&}Dch5J;G=YNqzSOW&$ zUqq_d&c;k`JguoLc)w=xdMfy&*71FP1z(H{JH`*Bg8!SN5PUHLsvbA$9ly?3dWnEa zd&ehA(wlSR`Ry`Dwu%>AH88%5cM8NnzC&g1HddB7X`C#xae^#!>=dQU3$bTTd_I-A zyi_6cLIhMZ{sk#zri2`%+%bG$MmUm#w$CcZUQ zLBB~>;ml@Ph0nLjDjdi0qkPR?g0Jk4FQh6I995`Lf`ID4yMKs3=xcULNI4Nd)>j2W zFrede;ARtfUz8LtTh7H7`KrJJ>wS@A#(!RpKTnp{PJHQld>tAniMM5y{`^f=>Fn?E z@J9yZvv06S2`V%tz%O^T33@JZw>*ibdn)v~U&7k|=wZb!b;4?;f+9Z*{P?@9;y@S( zYTuee1`kJ>Np*C%VPL{JxbwAhXgjw$8?l6y4NXzP4i`465uIcQUkv2o-m1XIpYV*hTMd{ zoUvsB0)iV=>d-{+>oEoOS`^(K|NdUW-{y+iYfyHLMQZ&1sDvsmY4x*bR>CL$iF-CX zK~OF~!AgXS4K?y_6^2{QPxy|TJ()}dqQM&$y;fq0ihwGKjk}_R$_js$)>~vkk(=vpN#%0!4&Ch zoYKrh5dI;&(U&Yk%C9BB+i}VAfA8H2qEW0JtM4c96CDu&i0}ipgk=i*k^#myTx7=c z|4Ps*Z6b0Mi3o^P$VRUc-lajd(La#|*%(bCOPeOTL>6R^^@)9HkPWcPfExBhmRBLp z#At5iMFq7=%69T3!k>B|$_`6QROA-O9e{B<2;gh5&odL3S5y)Hc6nx^5!bJp=wDGq ziHLwmRlHX(ku9~}Y9y=ZZX#>&Yg1Xp51Pp;TH45fAKS_*ewm$ETcIMFG$;|?uHPe( zg<0EyO7$>6E+|wJySdT5L5U8O{XDJ{y82CAHSwASugy<<_8PDS*(U&){FFAVTHI~i zW_V%(R}e|^5C(u7K%F{gvaE5(sj@=R(`AiM%}C6pPHjF{1_aEPHU4`+VyRN&{aX_~ z=!Xr7dNg2JGF_}4T%NdwZt%vhR~i6`Juvj(Umr#UW~{8(xH*x3i3OvkpqB^4cZG`; z^P?S!Yn1yvV32|VGMH*S{*bKko8QR_ISdH##B?dTOP?r|C$Ko&>7T@|zFvhhf@g_wzQu)r z;q324q5)oP0|hSokHlL$0+KrUI$8mvZ>CE!CiS7xeq>Ez$=uJL#FDv+Gl?bh4Oh}g zs$^cM45;o-V#ypFk;GPwnK4NtIMqMinKU02c3Gss4bqd~bpj-(*VRh;*qggD1OWsd zM6I2~|4Pf3ih!y`E$SpiqrteuaMTa0`=sS>rtj;=}XDpf5Qm83@Ph9>bVoXWXL zr|8xsprC^0Vh;>GI&uytqA^xh+ahalG)%gMPi#*5-YY!@^`BF5H|&wc9lcK$xA6g4+`qn(#jW;TQeR(j=Og>A zBpt4PI;kfW_tVP?aU}@4crD3_A6`jnqx1q{0Mu)~f|G6z^lu8hx1Bhk-R-0+UKJ4W zAoO)0@=BHK4`c_t`B>J-{zTU3(m%3B^Pb5X{qQQuHn! zF{YyOyksqYyKC}K79vH1{>j`=;(#4R^m#8i##f)I*ghz^fHM;T!!>$dlr$!JL!8fG z@1xC|l1;exvgCL>8SH}%ioqyi=f-6IX&7KE5zz9HaCmZTe=?nG>TXSb?yEe9!+^W$ z@eyDKu6sSXgEV&eBgNP=5D@kF`#+QU=e%KTBu#8@KS@689Sj2@HpYkh6nr@`<(6c| zGu2ak%{T=C(TrczNa6oxAuySO=6?XMkt%;PMTG6x+S1o?Q&86AMLIn0 zy_Ch$h|!}ej7ShoN2e&lhji7Vwo?`v(9*W)ZdAOWQaSE6E`|S#{pKUD}*tz=c~=`YLsosR*ca z0-durWra?R9$f!W$`>l~P5)iWm(sU0-=~yI-=-f)X{sUAiziZS+|>PkHW7xafXOd7&oX0{=+)liLk?d*r-K2}4iMg$Ce5k5i1VgJ6JQiC>am z>SBrCF>UJa(znB=)JBrb5suV0+@{NC3>~_^1l~Ji3r_9A?OtC4K>*QWXJqP5GNfP9 z33T9CR5k2~N#&n~f}W%B>g3cvywQ!sYY47|;*?scofCcHd=!4wGqoC5@d+5Nh2bLu zQUyu9{2{3yNJ@naPaP~NRXQg1ko0Zv#MEy%`>1B8zmFb#mTEzDE;gctF{3DTn@6-a zdbB2$`}wtq#eiMLRU_74gRYiBO^n=_+BnK9vM&_@mF_xT{gA3LOD_E>m4?!li>bS$ z09yNV>I&&w_baJ0rI3643&ZWZok~M)&Ye^ma&`YmeJSbO>R~FDG<7{moox`u*s(F~ z5RFW~v~|+AhU&B(S|WhXlt$T|Hm7ZosEe&>mn0@r0vNSz5Tn{d(w<3FcVt>aYS!4a zw-jc@S!rokLWmtRo2GF!iC6`Q0l4d%X$9Q$%LryvxMUHWw=_@N|DRL@RJf5fEHMxz z?9XtZ2XoWMqVoP}E}Y*g?LmaX2ghcnY4NXlX~k|LPto)W@({$z8EJ!*BLcyWTAi&{ z6`v^r>s4fICyO$CVqjWz70#KPwn7;Iuf79SKUkj@8%hR0`b~ww3F7ggv?2w241~vu zYY48v6LO$9-gqQ!9(RTynh)=}llGycWPfeC(&#`m<04&pj)Es1U`W5CxQ5^w{5e^1 z97(mRmh}Bf)v`9gI{*Fj^!d_|p)D#5Nf1?ArVmiE2Z9Y}v`*)L$}a_gNcae5hiD&L z&%>qr1Q_9FFct(1Rvj#?g>_H zhu4dx&-3;XNeD>v*0<_ddNwB=P$!6YXEU(+L^}5ZAPj_yQL62D@Wb@)Rq$E!&-5eW zr~l*hul(Ti(3AAZ;%D<`=^u)p*Z)mlD}K&57G#Tf_ezkNNTgA`c z^%?uc&-KQP1g`4CaPY!-Yla0qNL39)J8T&)G&&^1ioz2z`{NdljPq*f6djcD1~-90 zr#{HOJ41($MPwX}1l5<;&6w$73H9~eyKCnIKd?!W6~l$yih>#ZFiz}`KSaW4V`iASJ&3~~PgFAcPHba!Ef z5OOF%s4<*&aqr)ZTstz&7Gho9KQhrNVi&-jPVPar6ojmJnHI*; z0?Kh-QO3zOfbUP9f9k#yMuoWl#q2c^t1KjmU#@i}Zzj1r;eif!7iJw?L`j8b`R?1S zc&WBlHYHUmK@@BFv%mY;Cd5c3MPFego%;nx$!&k`?hQVJ+}r+t@W%EIzzfZ}(e$<| zcXp43Bo)WBGoaxAF>$Mdx~<0xpy$nV-z*3ov$AQyIXr@RrZ8@mJG+@w#;Of(p{{lA zU6}ZxC=F-abK%K1?zNV@g%V<*3QasN$l{mZSV`tA_ppbVrXKy6 z<%mNbK4Xd7QjeBoLN^Z+vi%E{1DV(}KnsS}9=R^W`Rl2+WKdU+Q96DS1t7&X#%L0N zV`T-u_V8d2^l;GH#U3q4@>3k$;+@TZI?H)VKrU51_>^q-0@e%Wnk>`jO zlsy^c>^WZUU4m{AC^l)DTf&kyo@Py0--uL=^)!W^uAYt#O)=o01fjNk=k>_TGth+B z$S25C^uUK;PtgM>LOs_B8dXPlj^H16#duB@3Ku1KE@Cr zjW>FJcheL18&d_&-jNKw{GR6yAxLr`c$Ql52&Z3oicxR<##4-bW?sF!bh zg@hANdEwIBVy_}MUWozUd&%42IKrV2L=k2TvvzuY$t=oJQLAj0;th4Xz1TY%B><`4 zf?a#N2Cwze;WB!&AoAZ3FXzn%v%h#=jPr9LaBkRceL=B z)lx#}*vk8{AcC8VH*O!G95UN`ivif9gSQxfjUBzk09@DETMR(^?h@{U9un>U~dc*s(;L=WPcbQQjYg%o?8SEf3AHfG8{EZXAol-ldMP zq|kelGI1looP@Ss>PWt9-OL%@_VGS%%PV?ql(!g)Uytz~rxb(|KHs*sD_ouA{frs- zp(AO1_zg!6I(eRVgJ8wfMc!4y<1e+|lLalyR(T&1nz8R1Z+v6OnR!>8H-77Y8hrmc z$#PX+dan>lo!5KE2nlG&Hxh%0ts(=k+Afhb)O#BWxEFSLzh{Q~I$5>b@pkonzj!+l zt3$@7uyVgQdwf}eXL-fj5~d&Z#y#zPRGsktNs#O9NpH6%P4%?hQhV6@i+BD1hFVF!uUq@DcM_ujb4aMW zk115S`PA}bHR9OQM=s+WKon+v0!VgCF4PLrFw}1+y!G};v*(2>jFyDz5-SPyB2E+v z)+hM96{M<9_F=yti|nV7XXQRd4-_NBA`FLbNzA3F93;B$JjLnDZ%Hl!UXYUp|#o)7mi5u)8>jHJc+YDtUL<0LJTC-{iD=&Pwd z4)XRoji|oGjGHjer%sUl?Fv2FDN2V`K1YH@38|AW%1qApDgP%(+eQ(SCFc!j{ zeE(CB5G=EX6K#BPl1CFj>1V$07&+}yedmw?DqmAleX_YQBOB=M`x9>g5*6;tv@i}C z5cxV&F_x_&b@8ERVPB+glJ2DlAYh;=U+4T>U$NO|=lhDyzGI=UI48MS*5AjRQ;n_Xk@8sGsP=Zil@iF<8uh{+) z-$@!fevmZ&^P{BkVgo<5&{qF8_7nYb!@|!)sqws|rIy5dzppo3wD&urP@8a2=+V+| zm7x3OPyF68K{zSdeJHf4tutLHgrU zCFvJVm!vP4DM@cVTavzPfnPU;^x(S8Z=WFZqxDLe!DfTseWkIH!jjbO^25CnT*}Y- z#&4_A&KwFL%6(yov~0g5WXVBE$exEJA#Wb`yDv2TOUL~>DTE|j3zk{{Ip_C{AZh9i zrKCK{q?>;1_jjr3kk*`>ZS*sTZGZT&o0#NKvUjN89w@%;mt)6gt`jdMnU}nlWY+#C z$!z!5&rj$9vOf69zCFx&wf+a3|IuSQbbK}3*xz4}ey@YSGO{^jKxFnjHI)wmt%+)8 zM<;%{w7Zl4Sf#N!6wq|^7b7CKtG^h}9lQIB@%+4pzZlQ!-2KIPe(mGGPR@@oy}@Rc zKfY?F@q8zVkr`05d}fl0|1Kas3jKwM2uSlUlrvob2yG#B2`Lqld~Nzl^4;qv$+xV( zB;V62{~9@~nPfq&zcKNcBEOZeAscJA92KuBuKF_pf!5xG@|2T@|cI+o4NM;lp-++)zp_xof|k zq#O$F(n5_M9`OH3DK0|o`Hft3#oYQw|5Bw%C<@)k<#xs&6ChU+RQx6h?(w@M_`A!J z;9IXsf;a!e|3@WL_mBQ&Q1sYeElvyG=?TuE5JWMBf8P7EcT!LXAQVk(6M#vJ8ziJP z3wXmUq)I4&C~t*q_O@k!7`sPX1&Fb`&?!KS-H0{;V(cz+3lO`dshtAily+~}w-%?1 z;Q_`luxCJ&pu^#?0Axw;0|0;*l4RpjWEdUpEwIMeA z==@Y_fH*q8l_jaPHAhlube^PA*8)kUi6xRs1NsDXQTDWJs{*Xxvq1q*6`d>~K_Kx@C@xtlb%aUsojoUkj0|Ue6j& zhcf2tfYVC;NQ+mIaQ(v%+vf(z#t(yCLIe% zW0u*d1ltc__NzV@0E#*Y1zf%waE)0Iq7)6Yml{Fbn}AJ%TFp!YnV8U_bTtbc&lp++ z*wF12#QghkOOk&Ozep7n=r@v>Sq9G4O;L2XE~>yi@Wd*xQkYltX&Wd8xTkBN7~t>S z0>uE|_DP^PuejAIa1#>(l&Q9Bpc!=R5x8Cu{&J9>@D#-;ByfsScm$Y|s<1#|t3iHP zpzHrcfi|kZtwK-udx|9U7ip5rgEAzUU9$o=3$x_QIe{ycGS>~qdgl$rKeQ*DUL1Hz zm}8U-(UYD-21K5!5DgH(Zn&q`z_M2STTsi=z`d~a^T1So4GUh+kz_tJPm+1w0!iku zg@I!4J#|Uo3r1#cIKFFDV62cbvbV4@a=_YEfp#!$YaqKBh$|-(cLcWP_e1=+JpMyQ zNAD&1SACS^|Fc;TyP87{r8D@;94ng_KNg8JW9K}?I3C;%yTF^NV5 zm=f16LBiOhOWPoJ0YX9nL@^Rlj!(}Zu?>E34-(tp3C|$04OV*xiJi>(fS}Kqo~3w9 z@Fe1%8Dt7`dIhEMt4QQ=TF^LM+t;DINe>#u7*Yh-gH={g|E2)MvZ1FlnbMR6w`-MTw@~#dg zWl_*s#<~)KG^`7Op1mQ^>It=mKDvG~ryCnUo zdP(|m-v;5?42rrGg4kIWt4!hq6ZQvhw z4i4U^^o5&CunBB22^N-_$i`N|^3a)1I23{?rf|4*@HvG;0HG1OZ+#PLqUT+M`*fED z;9Pi=75q?0vUmC@>X-|!`UYQ=b6yQq1A-su91O_$=w~vfR5U}_{Z+8FoK^s2ZwP)W z^m3UHyq_6O&{p{T2UO|HeZfnGMjm@2SlP%a%7Bx>vKv^q#EJkD7<4)~o$;Z_)Px|w z2DE2`eTD3_{${Y)z6bviEVl39Tft)cetbJv>|@*C4`y#|(=mPiDA<;imLxetx2M7F zm=qvKf%~t5&oVooI4FeMgb+c?yDlM0EfIIe2|Uh^rv@1+`Le zc&-VVq?D>LJw)j8uj*GPD4M3M)V`Vd~ zLL*H$#G0E!21Gu?G&C$D{6uQgu@GCPr6M3r*r3qys$}G+*F+=3o*R;t`!|M&J=>u> zA>#CD>%$OsT?iRYAlehSbLzk5QEhnB{PB+@>h|WLOh`+}aNaQVl3ZTOMR+|xr+|)T zp^W52q_qcpgK${rofozZ6+=4DHB=1gPuquzA^rO&p`s2wyM&55IQIzc!n9J3HT>)w z8Y*;pj?sETBh(tgV?xJn+VhNL1 zO5(?UA&GDQl_dU+^^*7tHb~;%*&>O5euuuLC+?9fefor+^>dM=asO5JhQ9bWVqW<|n5;fqNBx=VO`j&1ug_gelE;K^0w7XT9GMqUSf+(ht zV;y!(8Pf>0C-dg|JJm+|?t^*uVR|7=F}hE%w1fz^Ffmw6KMfP(`j;+YVqCB38YafI zx_g)y*XupQ#JFDQ7p501b$=~2f%xz+F<2I>^;DoJJ2hc?!NLKE_B6h_rEl$Mv-~Sv zUk4eUC45~XDKem+q=;XCNs(p)B}Kj)Bq?GxTvFuas4$hHffB6522M^2ixzy*eo<43 z*g(SKFxi_jE0z$39zAStX)9yroG353MAIs!s2|y4aY<;R85njbx2i{JR zBt1GUT-XN!H8aA+JvO~(g^RC&)C(kBr-hPMcNR%n)h-Da7ou9M2oGk$0@otu!mTgD z#TV#{>shBz=-wUS%wiH?*&W9A`0q-7bHeyt;W5Gz#>EqoKx_^}rD2ITo#2#3(J2yOYz&szV0b`OVe8sZ~dGb#uxSR32Bl`l^iJzD8v#*JuEF zz8fps_=Tzx{>V_3wXBVqZ%Z=ztC%gCSP_o~=>t^e%)1*AU|%~~WkISuJ)FR_N_B$S z8LNjO+*>(#s_HXlpSpxbw7=pxU5{6hm86WQ9ANWORf!QN61c2Xv9HM}MLV}zd)V-W z>H;tIoZTws(1{M?%O6xjYIziixxo#hKK8rTPtaA5eYM znu;>)l4?LR`t{+en&|KxI0Ro0wBYyMQNX7U$hYHQHTfy}(~2@Z`HMcF~) z164Bz4w?M@PQ`48lyKqodu7ZF0AylgOsjA=>9tuN5|g=2x215*rdM@W$~Yycm(G`f zjN8Z~U<^6iw-?<|ZVwB?d+qC@iylNC0|@<^uWZ`jUU+PibB20IuYLSen_<1Ocn3`$ zB|;O&^s2C=c!#I=`pS$xjjZYA#^ZgxwAX%~b{Oe}M?N`z=4*Q$F{Dp7zU(!Fe;To| zS6}|=$(CNnnH74JYB+f8?)94+M?oAf_mUfKIM`n4l_n3<;RFdxi0yk`QwMO{(<{sX zVsG|}YAe&1M+8J{Zb}8}U=;BqFYYVj2tnz?rV#^pWx}i@1e2KBMoi_EUgZ+u%0o}K zj}TN{)*<3&UYQ|XB4+VV<~|s9{9} zvoDV5pf~&@ox!bd#AO!+)2qL&Z3FYBMciUuwotNjb0du4>4J#%ZK&H^ztNM2!yt%Z z0$y7pvXw$16mK8d8ez^$7P&2g{BIOIROt+3>mz<=4n~Ml7?OsN+E!%lw1{Oe@qC1@ zQcz8Jtr6hFekyOcK%J4gd71SZoQ}R^1Tk|EqCk)Xcp9)&1T4RDxc~MJcqptkw>G$dBw~r;A|(^oNu|krvGiHc7(_J5v8` zlsP$A6}d@=DGoRs7Jtx~!p|MnK&o%6RwZyNHpW4!eRHw$de9a``o#< zWby1sT~9?gWI*IjOePl@I1`(?NHd~p*P;zc9u@f;^sI>-&d964(-ii!-VpmmBsM{; z2eQA8#DOM#{A6P!4m9cG(@l{bErimYk$CelEw$Yfxq|6?C}YiqNc=|QuaS6J295!_ zj$8xlk4CPxq$DKumq?~Vk|+Qv?l5sl0W}vQJJI6@B=mUXVc2^q@*~subSU%;Lh+xG ztp%}W-IY{GyDzEW`Y`f00m0~5-ea0*ws4f zg%wY{r*jnhQ9iB~aOoOlqa?;M2LdJ0<>1^S>VrVsB{+)RSV~2Fa&xUIObv^YZENLZ zr+{~=s2oA;a&^>eMJ=_D@v~VTjce`TerlBQ{{)W7h#Dp^d0(ohJ8>UhYX*gVqTVri zfQm)|SNcU23dFIa^oXIZTHkP3W({aKQS!xe_0=v~6lF>J{SniXG~A6cgibY4KPsvR zL@5?(K35l|h{wSM!Nw%~kF~}S@Kw|Y1u+Bt;p?b!flbeyQS6>d>b!}&qdqE$vCM)5 zw1_K*ioH=!1?QFh9K~*1qZYE6S!+u7gx0=ACH^}V#qJB0Fd*b?Q~@sn*>pW>r7i{O zP=34-mBL-aUzKuB5{-G45*=ivwanj@RVC~JnphB0DNjBjA*LPni#z}T(Gs)gbY23&fT3BqfDrTgTj9qF}Xs`rDggY+$&=&$>&F- zz2IdZJr00SF`Vm0>FZrJ9`!bRip0KS^>s$5n27Jp)z>+^Mqg(v!zGr85W&r!i(~K* zJ00u7bsX}MNWobDzDxk`E0^YJz}EXi--w9aXrEIhZwztiO>qcYDa&L z(My=~&c;}f&j-hPLHg;K!-}K>2o=X3@2|(`rMtqtwH72gD9#^N{tt)PvCRp*`ab%8VY&op`H|CWUl2wc&#z1FNnp9QS)M7D2>lS0ij}x zaUP)0;lQ9+V;DL(R<>GIg(6xwAKPzK8V#Dwo<_2N3mk2GJKK1XLr8ayLrx$aByTl3E!mo3jUbaA}m@RJl=~WKF zL2+hGTj%<8*c%czSdcd;Ax_a!t4L!~oG~m-j?-)A6kwGSCx*!AB0XW@WJ#Rf_!!HC z@$ruGI59YP42xr9f(mBxd7NHG#xg6IKRQmF9lV~QrzEMH9cKZBbK>+yfD~|JUYyu@ zrml)x!yGZgO8Z0U7jaI_4QBC^|L}@2CgjxJT3d2;ecT4!$eT|7@f&$&u>b40&zX69 z$~W;9ZFqj3!-^E?ze*JgG$wFFW z$&k43j`LvLNVzsVUE6|aPA89m%)N1j&5%*v{SZOQZJ35MkP_2iy#?nK;{CZwS#Sx|T;j=i*9WPoQ5 z562smaYs_qAoOxvH)i@Gih-{xrzaZ0=nEy);q8OMKWgfjKBh{rp)W`Va={3NADlw{z4wT@V4YJWoP z;~mJ_Hu1unv7i?5CLD(dr}*azNRL6vr=tkk8}0%0sIP5G9>6nD>nMwOr`@Iw!u3+!|FR$()$N zpoQ^nOq#|j1%UP9_@Nd^IcZHiUcEO9vg_i1<2bpmk9XD?2aj^cKjmUkwJm<4u9#qP z1*zE=?_7H{(SfL))%L_q8y^7ccgEjElasl7<7?%O5)gYdSCRRF_|3|uhA=mXID}Qn ziMT54q5eqxb-4j(-S)&|NrFA8b59%yb5F<9e6jFs{Cj1S;dqdSx`e(k@*)OA6E%>= zU3mk+>{`5!vYO|%Nw#E5aE3FZqwDSXM%1zPp;ARcvG)yCTM^4A@pu~cQG61oarNVP z_EHUMI|&u)p2f2rEQM;H$Geh-Bk}1_@lSlEQYeJtnHw%mo_foxeg1v?Q>EI7WlNqJ zBp4I7jp}0fs(C`4Qg@1C)1KfrU>2!Mp{IGm7Nw81HVG{t-!9>zqDjD7=Y-2#I~@H< z!ZtZkIV|}s;jDqdM6Lr$Cf)LqT9VIN&$c8*LD9I0w+nG5Jts6XA#b}SjMO

    W>Ka zM;423v@?Z+-4kS=4AdkJBK4^WZHa1Ud>ee7kC$FQO-g`Mo(W6r$=Mdu@b!LV!U7#j zJC?wd@2Tpd5~dnZWblbeh-9)}@#wrMM59h{AX?7^b8t&YcxT8XcGo1VW2{TrHufZ+ z5>2}-{^D&?;hpd+WMw8CXTQA1RWIUM!A}(l7n<`7w^SzlZNxurt4hG_1f1|2K75|Q zKY{gxgm3{~Fg1a_K833rG;dZir7-7k0^8~8Q&@xN>4edOkM^8T zcp&)oyI&Ko3y*ad6MhjMCtpgyi+ngk!>MZtuLQDR{zyG{tA*Ts*wjc|pC;CYI zp2)(O)<`jo363T3rR1i{kuc$H!c3-Fij~B*+wQzmVw^l)L_dCl*fqh)mEhu*c!9U{uFi@0@`l>{ z#HWcMJTCk!afpHiU_31p;nZjnot-^0)Gl_mPQP;aGZNsN4e608zRMF><0L@th#~=CVZmNH0~WcV*%$ zp)_tlViyHHsT-bX!nd%Bk%@cd@q_mO&&AKMP3)ivhkvRQcgnpaKpSr4l)>8Zi3M_P zDb$oae}f~}o8PDQBtK41d@YL=9mWEwiZYUlm9!jyxW10VobPR6 z%jcJuSxM||g~(tUvDt#@y52Q$0GugFvQ@HI4NkJ6v2~;}$xw)`--jlZFu@^8Ds)tl zqm#to$gWO0q+{8Tp~sq}Zy8&0P(TLHm6B1WgEyj&)c%V(`a${K1s}z*LNnxGS;GmD#N?+hI!R+Syp=D>R2U>=zfpKghbs)zYThQX=k!sJL4fSynb-TYtllj7 zrZA{lYn4od#uaU!+>dEo9404BXJT_Pz7Krsl>Cp};W(^JNOq^K3#Pdyv&*=YR)h)- zE9sNu)$)8l2(;akUkCwT=9@fCZdRf8dXqZbsEadGW8Uo+5y_(4FZNCrUAQVLnO)K0 z)l5j&9uoY|>E$oS@(KCstSecgz7OqgR!Hg;0a&~cLR zU|VN(u>nQF1K;Y$P4J2)=YEPe;TPwgc2{edm_r8C>R>Y-JRw8VJv@_Ihe6HM5t!4+W60L+HB+S(D>eWm_lJEdoEf=g~Hd}qHDZN0o zNd2Y>Ko4STTj$Ix+-;@0-jo`dJo>UJg#~1)uxzHWAPo%k7f z#!>ZTJ(Oqa-n=!AoK}}u^49RXqHhfjj~XKDs(P57A)cuti7p;@-%xMU3)yGtBz_?J z;xhS+oa>f30?yu6v(sMQ8UmgW0~hbAmnjSZ_0QDD1g)q4tv=XGeuLlRevaUky3s=#( zCwStZDQGe{P=bztWKVH78kbD2wbNMW*-hXd#1AYFcF-JZDu4ia9d07!Q1N^4L$f12 zG-9;;?yfObn3c;I6uTqi$;$zn5C2ni#>kh#HHl5|>kf-zHG2&Vrt=AYuq!V3s^)5p z$<}zyW?h1or+QeOpjpG1q5TC-KiHzt>}Aq5mQ|9vYJ8dVyq|_!O>!Wsc4(48lcCA8 zCCd&juqAuTHO!SeG6HM3SfN?Tcv6A_vTLOTRJE$ZTYZ)#^?_#tGz;aDRT6~SlJFrK zThdUS=nYXrHCq@5QO+_HBYr*S>TpdJV=)oWhBQ`dY~boR%_b&jWl#&SovvX=8Zs!p z@8AqPS>x;sGf1w?7}9u%cN?JFI@|Cb`=vqQu`z&XOXb$2q}E_`L{lL5 z(;R*!u<|?2O8D})W~A;eF+jna8S&zJU)JEg_FRBKz)j5*;ql~c%}L?$>xUY=SeYV> zf2^4=SHBt-ywVsl%?vqLle!)$M);-9G*c4VtZE{B`CilJf1y}Ix?##w!E~u6DJS@< zHgq>jVa`fXt|~XYKt}hf@gJuY_DdHslq{I%k}^&nP1OV$;DDQ3@3-ijf(@VQf~!P*e0B;uNK)W6wyDDte9{UUF5$jXG#}AuD6)XN0EU;OILd>FwFuTN z_-Nq($w%u4rLgZP6=K|UT_(JE*)=@nLlb^;gphG5tz3AQl`e0}WsU?SjbXD9ci;8cx19yyRQ*o=Sd{Zq$Q zKS{aOL@a#D51D4XknFtjRg-pZ1*&%`?DxY&Rr%p7U2CtkN^JqSbkCkolA#I1m&=B! z`AxXUMYn2?oR~#>kq1R!7ws)=Qh&E1z2XaE`B#edUU;d;vWfUHg{_@e0TT3$@@Cvcf2CDgD!w11HNVSDZGoH8I3d~>q}~*& zu`5Z%FL_|8J&fv;%Jzq}#&EZ~9x#4T>NqBr&~$ixGc7%;bwyyZ?nEyp}9llDZI*ze**{vH;dGhEN61 zY)_pk_uB*-&S14O)lANr0{Ae7-Mdn~<-VLk=h}c9Vc0XYSkV-Ip4fOYb-SD&1qe-R z%$d{@rpu%9HQY-zCCUDo1L4<8skh|;K8A=;Gk$N1=2~hy8W?sk;g3}OggkX_+^y7^ za`%lPs>i8qV9pCt#sF4t~$4%2# z$^!yDW|JnQc#U1!E;+O>aeI+%LsY}_OqiH?Vt>8?0S`WbombqzoPK)~Ba$Xu<4@V!> z#ZswDX_~Q6>fJXDzmq}{JO-xW6)N=c^{_Nt0HTj~MyHJv9*0dxJ0|drpOp3meYA%U zlhd{fr3a>_r3tv7%$90J8RYnqWQEA?RFRU9~2!(vx4e9X)guiO*)kJS}6zB3`xv( z9Z!28;JrDW_C(&WXzjKn>{6N;RQ;0Hr3u-1C_$((KeL#3A+1r~crgyU;6$qCTACp< zmL7d0%|U5z2@i10{Z7cqZSSWw2o`<%Anm%1BI1z70g~UOu{T#zt5Cq5w`uWSygO7q z)9(v>0zJ|l1@2m}^uLADQlIn}!ed{*^udBd?}w(B2mzTFk=_>9ML9RmN=Wa@T>hqW zgLQGb@Q!?LY5H-2M_K=Lb`41s&yKhcPB-OWseV2reU}iFVV|dqDa&+p`Yu7Fvt!a- zn((4C$?rPS8#YczZ?5zX`q-JA+&1%uND)if){x@@j4iyT+ z)0KRzPaF(62h*DiCK`Aso&Cg+D81m(s&HJOz43GUIAt=cx68l}RsVqs>N>!vU(zkC zY4xPIFe02X9XI#DuPAc2L1f%X_iYkoqHUHlIrVG$ zY4~_A{h%_ACU(WeL%K0))4%CoC@o#pI->?$nw@e4K%AJTUyE0W=5?c9;kTRHfk z7;4iDAxeHR&v+43+*Qv#R?)qt2oy=LwKY5 zW0wqZeDizP40iE>x>7ZFSzCStGsHV%FXKhK$(j8~Rd;N4)FrfjhoS4yDcziZ3!%=v2oRiT?Y+*GSXM{H0c4@{|;qmJ746&Qq zxH5z3)QKdZt!XBXwU#B7z=e}m;21wNgbfWfX25wi3PZ|!v$1>PeRT)JV1pSne&17BBWT_4XHOdKYmBE zM}{n}L-foX$rzYJ0o0^gnQyS{Q+_NP8|TQ z`vmXq8OwT?qR?GB7sq8LFey|AsGpFTqw_c*Ae@X>8%ehvjp59KUGmL*; z`G4ob%rE2~MiGvSYgN(zWR7K^H0qz9SZ2rVlCFSFZ!?W-_`c$xd6u$?Q#@{eH2iLn z)s2Y+9T&QLy1QkTFnu|&xtlP3(Z*!8f*#gc?8!t*)-Vi_C-~Ok-ay-|XeMmrP(s%o z3)*Gf6Xt6fpJa($fy1X+xGY7J!HaHLn}x^i9$BrGn$pT#&ny$Vh3x@ZwaT_kQEbnn zMH-w^e83_sYpYUI2BjKLhv2r*FBpeXx$95Oae;C1S*MsTLj*Vy)v2Tm=$Mz)m2tPI zu05P9&H9G%vxD3##uG5xc|=DuKH){-XF#G?*eZnqtoH9!gVxV_ApZ}Y|DvmROT z?kYGJG1JVs2k_j+`4|?e#srl2eb5s-?R?fAn`TK z!Q)x%b_QCBs#&%(-H@&8Z+D%`y2B?x^6H|Vb3_7baJrPmz7QALwIShuiE%#rN>+2F z^vIwM8UHti!hwUCZJ^g5S^mPb^>r%3( zuQ27(jmTMVvnrG!k0_n^@y>q3?6FNs`K~f+JVaP#iy@z7oqa_a)X2t#SO+GW@vqps zw8}okptN6@jf-a48SL!lx@&fd6CeEHf!R#16OpYUHz=FE2nYeyWMVLm&u~RWSj8J1 zl0AqqhYW>Z#e;ca*}a)tkT{guoNS@X+LN2ju2NF^1&!ilU`DZ|^s3TqHmxJ#Skh36 z`JZm`?=c{I1LHHw=3qDM<#aEuRu0LoS4zsEK;y9Nb#hywmR8Fx06R1`%TuNtfbKpA z+d;2JhCS8%S@>%=XiH8W8xs?q7bnrse`pAL!6y&x-5_OWqS!8(2@!Sf+S1 z4Rzd@y+}9AkhtIpdsUqkZl3K9L`Qu1}aMF%I{Wg_&Hn4*oC77gn9@Q!}C|NxuqX&5;XZ{Hf}AZk1cO! zzf!VnypJuE9-6!TDEnt&^l{*y?A3Cu`oM{|+5Z_DEG9!7=Eo9CgPfDP1S@~#0BxJ) zL@;9)d?zp*t{UY$#updOs_o!+s~mP8IR_?HpDu3&yB%__;0_%Q=S!EIS&V5Yj>avg zH8gyZvkv#Ia5zKVbJz{#6lYDhLK#dgrt@=jlc#ZI{cESHph^$y$E##pZ+=QRco~3nh`ndIY2C%Kx}`- zW4+w=b@IGdPByfdl=G-Fm5tbL%$csUtAq^QHs$oe-DcD@n{(JB$`THKvkrG^skY`! zVVWp~dIT-UzLJ}vHhi0NMXve;Qq?>cw{q{xF@?Y%a+Wb(7dhML_OTs0l*3L{CT7JbBuf<@k0uG%E-OUCUuFKh{B2;}eUZ`z2M}Ot8pMDf+g-&(u`y5R8)UfM5<^(oj9HFsZ zGs#Y>dO_@xkIdZU%Ir-T_y7+PXI`;jY%++lQuXPk1OxY z8Ud!Cf4Mm{uE}l5^d3lyUo3FRvtkgAF5L{Gz+%iF*?zr43fvWand zZFRZhN_gHxLGu2wdCU!!oaBJG_{Dnamav38_A&;l7=l|eXPwWfC3)|piG10GG?m%>h zEs`M5gXzE8_sYi$91i7a1F03rgg1FiPr*S6LWLbWd*0?PlqVCW;~{jLMasv#A-JiO zYu&##&wt2-AM#qk4H)gg{Kq`^W>9CDKiWsK4Ip?nZldQ1_eJMl$NePSevS|G-Ps(Zm@!4F-%3eE}$<~{|Bh0<+-1*ZfKbHWO)G4{qLI}HAe zE+}eluz}xn+^}eB7qTP1pvg-ER1RZ}p>IOL0;WCT+{J^`4=Hek3yRHv7D)!VY$gEl6Mt zE8@69_T&QgsFDOA2xzx!R>4Cfp26Gs1v}AffA_VA!!-rp81SXz7Zn^AYRDu7+9srE zM=aMATr?oO={{Rquu)141S{)GxT}Bg)_$~_eO*DGE`^grBZ@TS?e+o-IQM125OZV^ zv8|w5N3DaqZ7*PN`JsSECzsp7+Z_lnATa3rg7u8{90K&;Q!tr>J>6HZT>&Eqvjl@5 z3r2AWV~!U5pg@2*Ckv)=FuOAa9!#tt;}kMDqRYUx=V`0Lt4;D$UBfZZ*%rujROyJGpm8WhC!pKVLPIifU?J{b?pyeb$p;b&Aj(1})gwSd4t`%~1lD5#F~wv`Le>_<;J8; zjmdUx9d7HYE9}%H)a`2&=;VgNqjID3wD5FW;b>*+L|NEHFHQnDxTkQ4oIwt0_fw(i z;>!09#KW`92TukRYSBBS*KvhmasUwr%FRKEt>Mkjh1ca=bIF<0h2~_hwKg8+oiCgy z_j4|(yHIEi<9;g~E%#b3X(&P8*IX|&BM5bdi8l)!xCXT3o-&RoY725IA>NEs-7K^v zwg&iWZGpPj9;%)cW^+V8zbwSNl&~egE_9R|Cl^}3FT5=ej9e%*DSE7s2e#N2?K3tY z8~U{>QnEPdQgqG)*{|wY#P0AyJ5$;4{^ie#P9QBD@hD=?22g|^4lAt4?=D5o#HDLd zA#Cz13g=KCgcKPl>LG*6>MY3eq@p$OGNQ;|9#hnkhGbhAZlQnEPP+#DlZ)6@Tv}Ik zRuSgM?4r@~z!Ic9pe^dnbjCXI`wS>b)tLwoa8`-u(;mN5WqGMc3wFv@bo}-irD=ClW5)NBWq|2 ztt%5*RFP-xv^$h#A3oFCGiAlq#VMpNOpEb(s4xch`e-|%hNLlA%UEATvV$ujS~h`j z06^-4%pj2>C&sP7?;4bqq=RdO_FKjUl%i|A_O-HXOse*yqKsUv#64wJmx_uYAy3QR zhCu6Z>5qrc_E~G=U`MHzz1NS{k=|F^nb8yDO+z$eaUUPm^Rr>vFibF{Z#AnYhXjb! zoQWe!cy5!{9Cl97`ZC_u0TQQaE1Lk|%@uhoT0-|Z+5pC>BAFQ(FhC55E=#oRQC$fI z)T^|PP15ESV^o~`O1qJX3XTj=(!Pw^Xo_qy@QBtF>b}?hX^k3B`B6Jt*RD7?Ap9Gq zU5PZ-q)%VG@${#$+8lUtOv~PUjwm^#`*E!qxc#g>&Mu{i0D=G$eve7vZ`y6#Xu;|l z^1$Cq*R?0O-!E=zzvX^2{?MMJt?8EbF!y`=wlDF^0S6q_+Fvb$VdKvvrnn?ZBC;$d7* z^SM*;O^!)cn_?dYB0P61F5_@AJ}bV&;q>TM{FxGGuSan!uJT{~i?4Aw^?}8|F*wv< zYlq;9DD6;#RmB>{a|q3Yr;)|im~6^XKsR-9YegB!DMF`2RTdwEQ8~pf+$eHsNij`F zgUgC5ly$Biy}}wID~s=Ph~0+sh(;re({+e|Rn>C({X3^zu>nb6fKID28ZZ>|pwwT>ussoU9#na^4 z=EKBqiVtwrgzqT6E4Nra%-U7FifJ9xsUEJyhA{tNv9X*{4taB|Sm?^Ke=cTQ8?E1V zD0lhF@)9*%J73&G7d?PX-MC=%x>?NLn@Wim48;T#|D@Q9Y`#^@>@m^-2N;z&@mHo+ z-zm=1vE{AN__VkcBtI$klsCQ{K)`J!vdyqMTkw5d++Bf8H~@*h*ITG4cP%-@Se#Q7 zTt6#$!IWVZ%77}bk_%jVjS4Pdk_`tU2(keGkdkb!mDGfm;PtiyD#A=FO4t@op*>1U z900p3XN4kUZ)J%cIlH_>12YDeY-W5y$xt*Sz!uV->FW`oAyu0Z;4-$Pg9REvHA7(p z9!?N$3hpzN8dIn-$sLJfM%uewpHpJPxJ#_Sn5_MNg$>`yZe3Wyjwo~}r$=H-#JGMa z7hR}h!R{4C(DsWGcCDSG1(ZLNvGhW>vQ%*UzNF3`)j4#mWU8(M;XnjImhjE-k~GeT zAAc&@%=DiWp=Nt2er)GN30`b`y2PAW6_TLv`IQp0rU1ltRGl&0xmU8A>1K3f?_QM5 zWHy*e08;0(;yK=zv9{qG^6`MAN-xRkxYQ%37ZurZi( zWcc+(t5SAFNW{a}U=F2~Omma~1Obj@+xF6yaJgk^cW1PUu}3MpgH}W}B5Qm~?P0B7 z=>Ubj3AGsqB?vWvDXP++xn3_RvXu6gPSK@@ICEc(DP`Z#i;T@l_4v=zKBFO6VMJV;PL=tWMp;iF1laLX9| z#+A~Z-g`pnzuf=brEDiOrb07SL*SX&Oiea05MDD;Y+Elp^agghEW=kD~Q&j%n+_ym4z}X5&@;;rc0SQ zEO0E_#RX8bQ`rN~gC1?ln3v{&h*q3c*LEm7&Vl=MDtjgOK?R)bR>sb8sGh%il(l6f zq-C*QWyQ=0ms+cJa9MjY{BSd82nj74%!p2*A>+7!i7ERPmy6(0N*P|IOJHwW*>3K4 zct+Va?zcl$8EsE@vda!||9_QRrdSnN#C;nxq40#`jsu3 zFy8S0{%@{H`JmxL`;`w{Qm~{;a^-9+n!Y5ta-s0MPWW9U{C+R|P8EKa3BO~7-|fQh zCi+`G*RtQB(g7pN$}9Q};H#iDQ1+D_Ip&od=Sq%kCC9UpV_3;?tK?W!Zi0!GW%!B4 zMds6EiR*m4$FFQ~**0B3%9poET2)zf$rg?<_Z#E?qZ-Y^|2T~%3cp_pzte@^9m4No z`deOE!4p<;bd;!)qp0N2D>>XsL?m`+r?wyuuP^W-eP6DygBe50ni(3b=8b=TMA?@A zB_JFaS$3RhF~v{HW|Q~x%S^$wx@@OCvbZ>pZ3`S65Z=eYU^SH2l;LD!HN-3`yTL@B z$itfCE-rI}J4?zOnRbWJIi&v03Ot%R3eUZ9S7egAW6S=8#jDENvim<+JS)iAQf7x5 zLI3))wnq3nYiF6UG5*%Me;lz%RFHKmG!k16HfFrzAofV4^( z@d>2omRB=tZ4wl+D$4J0&I|2d&R&`*A&_%}$}Nd`YPmDqs48dgXW~!*bw0-ogha9= zQrB{&33yL0FKS9yydSsRj@;}&!3aF&mHRYdg*XYtoSdmDwt=SIw14jmBno!@pQSHEt-Ddbw2j|ZfN23xm|7z+JDN&b1m}b%ku5Y%Aec!i37(E z<*&M8Oj>x2;2d8^mcGZvjD;!DicwP zC3Xd48DlKOmc&?yniy*^u|}gLQDcnJZ+73i+{R@3y!=em&KXqW?OViNW zpH(yl7z)1s?ZQF!#7_1_f&FnmEF3Et0~;D(3VR#t8g0ZQlzs9r&XGAye12$Wv+6pvXe`|EO^ou-$zQ@8fHB}jKFy2%60{eVIxV8!5 z$0Ff1Z%Krnt_ru6M5+&7g|7prFT?GCdjGNb_xkXg&g76+cZExa!v-W5ICLPKPPy3~ z{tn|cXOAGm^nKwpsx8Oi`@?@_zugb;{Cx+*&$Gu1hr*@1Bp5NI8l_vsC~rMHJ`rw* zwO@rhN`jaXKqp2Jk3pRW+2XPb;j37qbh;FNhpEQpTKN0Sx2D|;k94Kq+J^AK5{n@c zaqwvJYC9OVgw_ng-lKR|(JsC>o_rdhj1=Cf);i*DGp$GUc?heVqunEXp26}g|@i6B0_p=fU#)ll-2a2uq@(06MTNi zfH1Lpj5B<-HNpkP`N=)taC*vo{BdnWFQypBPa}A!`gvmnj{@5_M`Sle2Llh>T@%Zcg9G8Ga~yjm-y$yNa^8z3=xT1ARE@4i;k4Ow&X-YUPaErR>_gR zUX2c61ONeCg?BU!1(7Y7mYj5vd@9m)W#m2f>{%8$mPrx1R*<&K`bZw~UT%n_m6~$g zy;0DjW^*Ku5xurXe$MhAZi_s`ez)$3+{J!pRYy9pXdn4`m%KLl9p*`+HgP8 zp7FV|Au>&3u?A7&VB4Y$PtffTrPZ`vDPh!qNA@DRko9lmVpGi^scaP^`KzTohz+P( zILiNJtol03rCwzqJqyl;t@cHor~FnE6$?-xs4WigliM;LgWJfjFkQ6hF6Z&}&mQuh zSp`4zl(%5A{qdIk7JI(bTfUe5F6%4rED86G71tG3xublLe7Ypan?ixTfWYFn<-1rA z89qw>kVzIeUVfGRI!uytm++b{rx$4Dcyorlftl|4Ir3Re$`V{6_ktjW+!6N9nB5Cf zeH7kc$g{_(AIqg%o*FqZpg4llnHXP5E9?lDkMp4lUu4KrSt}>x3K|)=Nd5<7XxI|D zJ=4hOe7W@WK_g{4%2@vTzc_7=wyWf2OyTRQEPq$3fd6A zMZQB4l8q=xD1R{;5xeE{*zdP{<+GWtx_lw$5zzjSoR5!h9hUQOw4+u&jKP09A&BtT zSMpp*=V>Gi0Yz1wFv@vkFPvW|mmb1nih@1P%TI9+xGJ|L2KL>MJ2CpszsPx*v%D?e z!k)MPD(}SjyZBK4ep7-lSsm!0EV&HN{wW{XgynE`2q-`(GI&(#?2YwLtFNg zahrvL2Z$9i#ckG9X?BYFto|F$3RhPDBUgp=-I0BcqNiDV zp?0aFi)8%6C89jqufgU>OA8g&<{b+`heKN8YFF$~sxZ0igLOL`>b73t3iR=vFLtX` zoNvk`v1*gzOBRIZ?NRUmHE5rL2lwAl;oW2-RH|3=C7<4S{h(rBlQv~QvBBUYip6~3 z|BWDd$+rsL5zjfJ;445a&Iz@htyAz7pv?1%c}#;hFDb4_rd*_rXbifkNcW;JzWu4f zwEK((0`w`{FT#MFSqWD1K zMAxVu4DZjLQ9vly4% z=0zPcHJ*V`|6SAwjFLx1QqYATVxuJ6GO1Pp4g|Nu8*x$dO)Z;4N79KMQQ}RF0hLj7 zzCvZxY@D7HB|X>4Kx!m?4IOoi#iR>)QQU_&Ef#oQuvFl=S%IMG9}AHN zBB`8ZNz|97KF7J}0u`lEt#RC{C~H&wiaeexp!WP(Rz+0g{{!XbhNxZ4Dwb~% zcnser@YsHbz{{nb0*{~62t0oLnULRnkHF*6y-}`B@Hi4~9EhTuL}!Gyz|4bD2~Bcg zK(WKZqft-Ta4GAgz{S+Bg<9-RMbS$S8XSKc^}QJhq}Ke|ERVJDWN_2P$#B+>QFNth zIl5ns;{D(6*P?t(tya|5Ps^+9aK+6i>E>-?69R*>{cF-u!RcS3Qp}e)gHJ~HhJf6d z_7L4Z+78zI8#@+z{2t}ki!5zayJ+*ZH6uC_I$vP>zC(1Dgg?H#z_3bxi|L4ux<;1< zH4Xz!fIvWTko?xH=y+!PpU#c;V!sC#M)ReMHHzrHtc@qBqFq@2+{9=;pc|PSJ(NA? zsH2ZF_^7PtDE7NIFFJ?)4$P0<&3=C?if+&FJXS=XV9!5(61|xHhLuOJV82h-Mt{kE zabt7}!wcFT%_EEL&S)M{4pc|;bxh5!=;aLViP667x5vTgO|0Dawb9)rEy=_~lD(tE z0}Uci68e^*-$WlZD**;=!Rzm%eL+5NyeGKTMf-sI7@g+NQv2$n!~d%gQlVd&1^#+D zn#Y+vR|TF^uSZ{FJWl&L+I$Vxq((Y0q++!6or{U9{vD5LJRASSgbt_;-a zqb4QE-A@ry*pz%`Xo}dFLyY$>i7~?PJUNCwuqa1+wVyiKP3lK8ii!~ z>m!7|BWq$tGFsMaV|cgob3hOclg-5A4%faA9bdh1jpn8eOKG04g-{5*zt zN4>v@(X;OB#POKb|EaJW7h>pp#4|CyBtst~Q(S0{ap(J(ubI5nmt**nmi&ew_n7*a zSFFy_w`2M>B`;A3hI=it0x|SKjP!O(V;%c`i}91ZZa3x|6z&RcZIb%n)4yUYC8La{ z(QKfuI+f0qW5;Q-i^So|^B7O`e-U%9Dc+dMJHmv|Ry*w7s5JS=o-KzPLcD;1$1Rn^ z*@~3ROL?7{)h%BoSMshF%C>CWeX))5EbHmkw^Q<1`f+FFi~p*$0}Sh@l;O)j<*lYf z5?qO+WW1%!U}M>T1}nMuofx9zqbL0^B_H!m7_Q_I+G2!~kDhjoRE}ZXy&SD{FmKQ! zrOKXg_N=lklt<7@WWHK`Z;~>}g}S)Vxk}0SmMhl;-5KUAR61eBJSE+aOsg;RmA|mx zx{sAZ%!9nK98xur{{?LW{>hQ;aKA$7YTgwa2yhg-j(wt!45L$&FPQm7sFfB>K6#dM zD>FOqMap&TcYnUJC(FNAtn6#v3lqJG!T|U33gspu+nsK^a7~MS8}nZ(6U?~Tt5Ur!X-=`KmN?i_RUk1)0}J5ht?CA`%29oB ztE+0}nF^*|$`+OxEjAKO3=Mz%cC`E^lw!s#9=+Ir|Mrvrkzsy=9{RLC$@Tc}7@dE&*lRL`4` z6bYjr3uueqRn28Cb$^VC_dOD!tUv@N1Q`It8-1U)a z5BpshriwG;0D{jFlf_XgKQ_EufLFs+Jtf}CG{8}iP(Eja|Itbn@A*7pRRLy*WS?{- z`XyS4IFYCt)>MOVASA1nNj!?G2!)~Ful9t;8Wo*t)h@mlUe%~1(_Sz`8Cs|qi&L^y z(z7s(O;xNTMP6N^nkQK&F$G>MQO#i5=mCNjEmjE#(mDa&af6Bn z^vj>Bc)(x3NyXQTy@2G}LIwMk03OL+PrbF{5DF@)S$0}triY()7V=EhD z8AC#aUF>L6CQ_iq?r;}4V;38M^BiIWO@me_v~Cvb3O#R;i?wJKHy2agVuzWkDHI8% z#w?E&^MKE3*+x2G-ebcZ-w3v}re+f(wogII0Eq1~6Pzq&X$ z_AZN92ZzP-QNq&Uv3;2{9eFR7zr@)%D%O=f?;9_`b0)^}nb*rHvCWy`dryz$tF8_+ zNdS5t6Dr^}n;Scny*iy1Ba~klA8X%)Fs`6{xY|uPK8qq?iK&`WAu}VEUIk|++X^d| zBek(ge-qs|qB!H|@>nls!gJQfPG&rRwlS6mghiWUxpPk38p}<&|Mpngj7zh}U9r6x z-hzFxd_>fHzwjJ>D7FhTAN^OcGPY{|$yq_BkLzOlH2M#cI;BfD^q3=bs;92SzQxMF zyc5e^FdM(ZtSNJM-6X0+uF3K6ReBz`ZlNd`2(BS5A(lus+hT^N1ae<~L#OcZ4qjj_fSeF>(%j~GF zWN(9kXd{YDFr%!&ad-HzXILCJqrSuAxN0Nci{oY#GAfQQ2!xIo;N2(2MKRT{ni9uf zNNk!G_Zy4VD`&*<#o>!{1iZCjamesyE{x-57^#T+*VINrp=e!|zoZWx8W-2r6h)A# zR2SzaSkdd`xID?s#wgT2U0fKmi@7V}xZU(EjpKIn3gWok+*uVjkhN>ThB$5)owf-~ zKG`1EnN43>?h}~o@kQKwO>uyaYl)DF`HBiBfFsU678l0IA3hVu&1T8DIBqsmzKi2# z<9;EIo6YfyaolVYeu!(wbo0s8IO)yjB+dY+e;l_^7&yqFY{SOYR`I<}gF3IG9}K-2=K=v6=V9m33keGFu5NP2c)2+#sx}m=d&ScM zmTcQ)X}5Ukv62S98&SkjaM!^2V5WJ+fOxL?zJubq<}Kci=bAq}B%W(Nc33>ue4F9% zlbGfc-iyCs>OcdaN*zBH?@owc&y-#;GhVU}gxAmEv=4-jLOo{1d$B0mX-@njbD0UT z7sQ0qhLI}!HI7L8Dc(?vDGJaoig7q`e!Rxi_&86qQ4tw0-G^gfW;W6i$4th={J8jk zx%nr@zcy1WQccor42HsTn7B4VhKihczIUq4;&?vneZEA{f%G#M78_6c)l{>v>{&lIf4N@6o&1LcY}`;Q;PAst?_>{b2_n0sA$b@;WvJ7ysc^P z!iAoOZU^IANzOMl(3}PYaD$j92{OELNodR-*W+0{B6e!n*_dX zBEccyJS+FUQv%;M@wIyb50%xP34Ghc>E;Q1+r-d-1nG7#CIad@CJd9zn7CM!7lz6% z2?@-SZ}k=`-Pt#RTXI_e1a8Uw2PSY!{&i3Sx8$<76Zm}Y=I{iwvAdu^=rJk59Rg6b zACHbsxXs3Co2Mr5ahi6zK&to5gs&yK=krocV!}J94ok?VZ3AE%nIL)pVT1$0?a)b{ zuuNk4X3(}#32h~E8laPfjpgI#CB)+_WrB3O0YgEmp1+FpPfOr|O{PwG&Q$$6BViG1 zqD46g(h`icj{187n;G!nM3#tb+ zcZY`K3G}+YCgHxsX^kb2N?c(i7k(~SM9>$4MZ7$iP|&25TTf9HbIz&;;)LS~SDNAi z355?DOU?>3XVnQbJD*SZp$R5N!m`T=-Z0L2WFQ{Dl<-~??L86+#a^;k%_sn<{vb06 z_$}dJliV^W5Y!IInZIY@YvkVve0pc|il)+yo$am#iP=~pOZ2C12&%mkC5r?Jy zYl)PgL_VAd>y@~IS>x0Gi9Bka9+=2|Q!_ZRn&tN#F67HbB<^F@duU|hc$V)tCNWE* z3#us}TYZoyy@QwM?VO&-j&P(O;R!W1(Yg zB9Da^;{=uuCM5FjFn&rESlgGL$YYx}BeAO~OF7_Nm?&c zlLN({CbmS!^@)F*wnGjQU=$lY{J2M8Yx_Qdt;GETTeA-&{>+*__(ej@4RN)1RZ=8l(#j?&-&|KA-brrQ z*(qrQ+iY;Ac@ht>pZX~GL`9~GLCDPWOA1wQ+#mO zq?VG9$_1yqHmqzU#`Q@0Q4-Jyx&W%T(`VJL{gddJh5kvGP1{BS1%lcLFU`^iB}s>7 ztPWHSOZwHcYz|PK13n&}6w7RG?zkjwOWh_UarOQ+F^P9sdp;1<5I#AHcUjG*Ch^?? zQ$I}lQR3e$U|`hzBoAAQy~3AKC*?^S8ZFH9(=FVlNK#3h!6Gv$mY*B+&#TlRyrfK8 z=Da*)hdU%@B;^`uAYs)>WT3}n4ACZem=cPFYm1ZY@M=!d`w}B0WD&4>Y0?dAMji8u zlJ=RGeN~d=2%#&IWDxr8v_NPmN&3^s0B|A<0|`U=H6{V3fWx>o&G12aQlcfN9$S?( zOJZn*G7IYWQ`xsSCCzf=;%)g%A|9hIVyxMnG~85B5io9VQjjUfvyf;?&QLH?X@R>B zC;cD@T6QeyGxK6KUnLDTuY>aZ`Q>j=`fZXY-ufn~NYcbiNIZK!DPNE;^82Kb68UyH zr_6wwHqj1j$!09hyOw0_z=ce{la$t|LL(Y}bT?_b1=rNEdr7B-RMoFZJB3u}!=&3n zYU-n;pM=!A4W>41tdXzvxcr{f2EYCzN&1O8udSgb*%1y@Q%?~cs_{kFGZ7OlaL?aK zDht?@>rYXtAettJ0|}vq(1MK z{JBsfr$_P^LTX~qtK^n{YWRSQE(T|1J*OEry)ceWD+cEZ`t8AXlrl*Kq}n2Z@><}ejwx#dmS1;G zk-qWdDD`9Mt&3}Gg%@hxO4)8k6c`k%2c(n=1f~s1`9@$ZXjsZdq0R3OPm#VEHxO+J zLnoxj=$v2LGr>0(=tiXknDa;ETO#2t5y)SfWFWt5ih+E@^ps5VV!FsRzNng=vZ^Tn z5Wp78=BM1T;x?oYPZ8bnqsWverX?o9*k$zcY-e;zGq_lx^o5CkCy&D3s+7;9Ljb19 zmr-k+fxd3ib$Al^uXi`oJY8sqnsN5zeMfznFSJSX_#rBf*R$+(e z#Qc=Ol4WEQL}zrbO!-q#miGpO!QB5eMGRHjH>HT7YVOt)(L3MWo+5hZ>76NJSNO&5 z6l=l9>-MLJ-kEqPF&uWTPZ6E#_RSR0pFjB}rBYDVsM{(20#}K@resORuvr^YXM?LvD*xct z6ZoiM;~y!X+jB2dy-aBwHGl!v1$-@1o#3PFRCj3cPf8C6+GS+}wTmds1)rE_2WS3G zdC2YK)T@*ey#Bpasb30=#95{ekc`?GNu=ssC7mjXJqf;%rP7t6cBz*HPl$C)JtGj9 z=$wi|s+nu*J|T6(Emiu}4JUAKca;YO4N9^WUPSM2mbz9_uL;UnbZe37C-G0>Y7Xk! zq$Zf<0p)q|l_GfdR;mkZPftli+b*fS1lt_bJyo>LHi4<4V?5}YDh(%$GCZG@>IM$; z>GL<;w-JHZxqqr$vb4i1CzL}%d!3w-Dh98z4^u^3oINX5v_+55RI%H%o0}?jn@>JY z6}!z>aswM*N2Q8(vLYr`=r-|PRjSx;)+VNk{ic0-s@QKf(;CX&%t{se&2>4cV!wHK zi2=GKKUM5E?RBYQzuBNq75hzRNEQ1{O+~6?cLtJ_t0nQ59^=gi{r_%EJuis{gc1rh z)u{oHrkN6mxjRx%m=Xv@f_9W_^5U9&`-@cRu633Nl;?zr$5Q_g+AZZPgD~%WV^EXJ zx2Z)!FxYV}^;=2E;zVy;OucDZ`5d4;2kdz%b)?{UTR;^wCRqQbixl zzn3cd=%8Oy9|~3Wf1D~^;pA0TJWc&p(kIdovJZr|OdA2G{!a5m^4sMtxyx4ir%7Cv zp&_A3U&ix1*EVULB+BLFD6bD>?xS~dH67Cu1jp;!B~7{#VyJd793ec=_DPe$xUw`) zxF4A20oy#Y+=SHC#4tCcJn0dire%@JUK7NP9+oSN+gEtU3uL5rZDZC5Sg|VrTI!M(m-z*4k=5M zt|%J;Kmb=9UX?aM7;aW=N=ue}g=%H|TDfzr+(b9j%3$-;gmH-5b&dOZruUeh9k2u3ivuFWn9v z*QQTI-xq1k=&dmmeYjD!sR)kxfXsK!sI$8(29wy*o~@Nna!~eOs1p zBXKKUM7wj1H`E+jBg1f~^iHCnm7eJaK{ej#51TAgcXo{p^t_uEjGg?`r3ZQ$$hL-Y zJJZMDZ|&3Dn~FRWf+nX+MZO-Ge#%}DdH(=2ksFa+uy$a&WEl;pA_)`{ho-wjwN<(s zlH8w(BF`9--keScX04a?PWlls_k)q?bRRR%ZT?<*2N7Yy*z{{+?%?t1H$)rh8j>Dm zY8brI7Bp^5S7XuC^tFPaV(=`Z(gNnBKQ~nxFGC-%{gdvpo`mBQiN3@fGSgE8i+PZoenAic&Sj)Gz6nDrW-H2;nv;H46exC4 z`g2o(W7^#W#+*b~!-o7&q9tgB5g z5q&ED8!Fs8Wxl+xDoDvpXa*3pwGdOZr_w(%m!}aLb~@c%)M577bSHBi5@ItR1At<{ zFdTa!{e?M~RaR=+>_uwEBiGWyM2>=PzoB6Ro(uN9lb&kM5rZO8`Aam`&cCJyH^xpu zrm9nGd<6@g{V4qt(L!ZUje5QFEd8;WUV-S+y(mTtUGr~x3v&S)4p;eNkWBrXsfMSc z+D*OG0!s4f`nmBQ>ivxxHpY3Rs|utS`F!w|It=Pss_D&2w0b(GH&ZL=N{R9!H+bQ% zj%g&o@R0BV=_W7+bqP?bOreYl9Tpd$K1mnX5DH#sueKMk@nJ``jijM?rEVD(_Auo8 zH4adBMJlJ-WnpcfF<28!_;e;@CL&S4+&3t<$?(T z7nqZ%ZiDla)!#_$uo307Mr{x0uBhpJM5~M>?4njL7HY%VY$NOWx$57|S?3(qFHt+= z>wNWHQQT)G#xk`l)Y83MyvF*G?Ootrv^o^uU8CM6m{jSyH-zG7|6HWjvR(gXD>Opu zHmI9Rre>@P4B4di6PZcdX=G+(jr!3W0&G&#St5JX&ZPzF5R{>MrC4s;VPm<(TD9aw zC{hg@=^iuI7PjZj*iPj}f$kU7v8Hw-0_?w6k2GZ=7IatD^h)81+Rs!90U&q)Z zlOzlYS-OFmw;koR!Y&pWtxS0h0|L0=5vvRjQGGWZGLDJvxyLEvf~m|R`fHC2>7l&5 zf>*v79#Az>JqNG*XY3N=O-0)bb00O}(YHV3g}Aw0#&T1Ihk+>yylj^dfIoN02p0p- z%+48=V$!Z#Mi((M4G+v{Z|)*RLy0H1esot{ql+x)m0@TMtAQDYNOWdUhFN2T0hMkB zg9odFao+HZYDrioc|$Q}Y(}DmMWOKkL0foxe8!f>fYcbB114ldOE`1?Bx@j4{gOe4 zbFI&K3$A}e?A>UunTTPNGU)uXs`Vl6@WY201&yRkOCXgQ2a4BvkL1%(OT<#hUg z+ssWp|F0-OD7N%zdS;-gy04~X9v53^&5TUCFN!zT!VfcViU>18Gp*_MBx}Ox1(~%X z!qA18*F}Wxip-^A@}x2|P{g%K%seRKo=?i`B<4D(GwsA=yR1wan{&EuIhoHz3cgD+ zzZ8=X3Nshm3kW%-M$X26l361bb1BO-7=TA*W`sz$U_<6!G5Nt(Bfo98XO@V$Cw3VT z3NZ5rkyza4nSDis{fCXUW!GlXb!wc+3nwyfh`2|;%Dg5rS$#Tlub52yF0+M*yY`1n znSt2V%^r;nz$XF?rx|=2{UU>PcpSn6&#lbC;Mr^>3zwho z^Q*{Cy|reeEo0IROPw@yjTh&4kcY z*OW_E6*ykaN)27jlc(te6GAm!Je(kflQDE>Gm9hx`)Q)g4DrnpE;zNnrk{C?GQsnP z#~*5Jp}(cd7bgtX#I^e`qDXAKWA431QrId|<76JZj8GtGcd$Kc?TvpcG+#(wV!bJ< zHz+k4S6rB^@&7NCjKqK(jr7x4BNZftJ)`c5In$<3G#^QNIfk=*u+|YLRA?eCEXsrc z|GH9B+bFRywgbg>x~Xnvh8?=E)m%5#;Bct_T%&@Xdo^}g{i&vt3lY1tTO-*3O?3%K zNJwK%EugWq3*0%PalwhG8D*-u;Ybygeb?)z`lqDk7z0jO(LSq7S-@lqY{|PMpR}+pI zuQgLm?MuP|VT^}#XDuB9c3mUKXAascHpKOJZdxwIY7Z@!VxE`wfvNUKLw$hO9jjYt z>6VEy@M^C$ZEXP#1fLEQK`Xm0nT>UdePzE^j-bZh}q3?Ru`>wUn@07 zBl1M38dB~CTF*KW2uiOj-5+Hc8)(OZi`(W3}TIq_D844L^3mi68 zn`zopb0!m@E>i1*x_R0e=55T`U{D~a45*R4!L8Xx;W*@D?Oe&2y0Ny}(d9ny;c9Jf z+z_Lco~CMwg4^H!m}VyIDRz46O(?GbZT5;PHXJGJ%# z`@6RZ?62A-us?sdz<$@g+6$&uG#V!y)DB|oFFkI?{%9c3G^qcbZ2S8YTIq#tq);jJ z^RKiMP5I@}2{7aw@q6%;c9>~-J z1AKW)TjoeiL&FM!j{Cd2KQf(+HKxD0!fvfhy_ zt#Hlpl9|p~-l($4n$iS|lYl{uhM$erc3D@=bcjSn`mvdTayZ zO=I(D)V9cye$LB_QCIbJu=Z=FyKp5rPRX>7TXPy!ik@J^P!xhjk(s2rI!&~zk1M;Nm@sy?8G;y!zBLKYA0 zTc>34(4H_Yi--2XGqNmAm9Q3OE3@qIQD|02){%S1ms*{Xw_4jgFooAB=@5tLH{zX_jCNFEUSa5 z=%RyPSB41iQxdJvic*#Wj4&$7pcBU!D?O0fC_C=gTzA#t6&g#!jI zAItJYzoS_-lEIph9!~f=OB%h603ZOpoBU_8H%vH11csiW4M4!fDP;@uT4}0D)@iZe83A)LW6y5JvGPB0^Y(!YmkTpostuz8A{gbtj_2Hje zWY?OOj0WA3az{9OwaSrPJbQ7I#a%tKJFwz?eY3e;zxK=Kc74)6`&)@mQGMy?)jqq< zp4#ZfuY&=B(akKYAjojEj`DC=betq9%ssd8eB87z2UyMjVB&Y%>K$$ zPiiFSk5I_7b5}iT)`& zL?Wb-0AXk$=4N(xJoHPpS(jj>p@rEGvYUa&)bti~eoxjM{P0n>^iaLE%X12`_F1;{ zO(Dwz%5%UTe`lxKT9obGl(SQ!8-kbMW1F0JS(nk*D@WpA3M%%P*h$}lh}hdvZ5L%+T`hdJKBoL;P(a2l3F-w%}Gl#w}f zE7}navMxqnDfjWdgDO344sp5 z?wA3vC@;scF%OB9^a@kP0fgPDa^F{;vr%F}#(Z#Fo8tr#S3mT{kJjfDG=b6_Gq&VN zH$NK6xvz|l8 za=fwI!<=V6kai<)6hvC(?*1=i471KXH_T#*Ks$M4ZgmrwNbH|^$6}j+6t^U|iFUHV z@k?{N*_Q@cj)K~f+zL}Ns9T=<$O&3}mP=o+Rpoj^pU-lAaBo#EU3rl{&(aOMZp@uy z1({U@@AMhzs$k*+OvL z7r7nH;ZXZ!t}S|gnM)se7h}SS+$}PTEJ3D^Pv>qlrQDf)Sp1ElaOk*iabE`^nlIy0JMy z%csf^{qowhHG|@yA$eE)C7CnA@`5qz!@R9FjhRT9F3lUCfu5bPG9_=Xt63&cW*_`= zNnVAI#cGK4q!;d+EAtM&si{`Wb*?UWyehAGdqT8`FYb+QC-UUJ7M}@)Jg{PyNw+Mc|nWJ{ZlZZ_D-mKYtiA&78QaDORp^2+Z5ee z7a!bpbx~j)A#yX-4yT=P72huDjqhz=T;~7@E?q{!99+EV&C(s0S2@`&{&@dl{CNKo z8#;X@sjH}dMg)n7t0ScOlWL#-uw;vAdAbK~$<~qJgNsMOQU9fH@K#aScKI;xX3*`g zr4IP8n#Z3ySK@rcUtAwx2A_LHx}l> zqW1X$-~HO>)6iij z0`s>Nto8Bvo`NhZi#$x*Ur=fTHXiCxFynB+8_|O)rOH=Sisnecr#4WNtrmUc&kfbJIkJQlJY$arh zP8QkXzh?`E%NjFL@qNLv4vo)1<~|lx{}jAWCoCBm;F&$03J*)TLdvW&A)i+`2_yXq zyEbO_1hs1qo&E#|K*^tA)enjWLz zL3yFsAPdQM5^NyMCQvj1vzYPTrouq{eM2GbXJt58x3MtPO+cq)65PeYw)CX~%|251 z77E=BI_xj3w*7CCSC1NsRMr*>?on7<_>E8jFseu>@1}uA#DY-}F=W{{=E3gLl4elr zRph+fuC*7g9=ePU^;yZgXh@rw;RA=RFAKm2?<~^}rR=xLi$d|+tY!0>iw`iTd|6wp zE?YLzlI74a2m{KO&8G*XfH%-f%mgyx(O~o0vX&UKXW3yN%BDd;B&K}3%-Y`YaOdJO z3U?ebh#d~&iawW?&6Wu{y*W2X+{|J*yeC`w$FdQ)^wzQq&SDNy4zRl0JY9Co#!!&; z-#Fo)Wo?^7`-N>r!G6!8BTXm)NeP|l6q%cC=tST5i=tqYe-WLu+oH%77quv&ZP!K! zUTRnLHXT90FoVmBLf~p(QCoPtw%88KyBE>c00Ckg)e(4`wbHrJqkD5)x9NSSPCkZ!ai%N92x=7deq7N+R-uqA0|wv7|7PBna&`F=OOMX z82NKCjfL`yjy0hKW(nTQE8DxFV_{Kq8;ey!ljrD*b~swBLTdlxGL~r^?@r%PG~LO7 z=CZ5k6H5b_>|iKRPFw7~r|7(^hy%@zQqJPzMRZ|=KnKY-e&S$8lpBiIWzu}Wr=)qC zOGO`W^31Ywekm$*Fp%enwvUVag<;;_M@9GT46v9NMIQn+S~IAAUPMFd7@B^t6dyI~ zo)^)nbzB~80hJE*C(RjlH&_i3?_qu3{0T&omykk-P$fyCz8Gr-ri*L9aYF76v zeuvDZxU)6oP_LVS?E;Dej1T+U7q?*#+)-p*iia8>VtW*SWPJGht>S6M2O_!5@BlRK za)Ss|Yw6{qxYXge-;x?G7EM9D7QHkWu;eiH3u9h=vi|xJO zmj5JP*Biq>V>LtCd*g5{o^A(jvnP?~#TR$u&JX1L0kHCDu^15_9xWD|dRlEUISt1S zdb(@@63#p);hA{`wm(;V*WN-Sbnufe7oTdv&X?D;aDm%Lb6mk`Z-Fb8Tq)jTVWGkI zuND7mV^Jy;B^AkFAXa$7r#}} zdqI!K#f~&v8c38ZieLu&$%f>|#jR;r5A0_JAp6OIO9X>`kEx7(L$MPL{(KrJzX1BN zpUp6h{Zv5``&kL4?B`S1M?cW#_hL`D*HG*XIgco1_j|FkMGg4;PF0mc-`}ZSJnVGs zK;@xp0~>xX4u(JeEp7*4BXpf0@DFx+Oho`WAPFCr^k#h6O#kbuM;;fPi3k z$b3q9?>I3Io{3HX(cYzWuk!D}jJ5#B_!L*!UOWfj#Bz z=vYqEy645S;f}MeJyf2V=nlb!Au^~RA7V?9f-16qK~y+iklR>CsOdGC_M`q?JPsOO z5}@+$VmZ9{hf)=mIvUWuAj&Z=MA`Z4Rn6f5dz|CU7-}fo*j?oc){k^OiEiKMXOP* zR|e^VVGC=(R+q}#t=vaX4_M?8Z{ua9TAeqTsWucn~$DdLv-~o{wY)N>x81JNp z$&f3f5*ep+-JydOm9S*ZS!AV~34>S(2W#Dwl`6`LaIWYI+pMYR56nbdY>1{mYnJ6U zx^U>?NU4@GO3nI*hcWt8%b|ZUHEnMW=jJ z(FyK55b|w;H4 zqo>o8$*roKNf%F9BhjNhjNeyGdo6C#EhT|2R4SIaMaE_Nx5tI>?l75Ky6TcN?4E3S zJw*)RD(l}^ieG2_f~EMK*0xGY@r$j!Sc>0n-G-(371x0*#qYTu%u@Wa>rpJlZqAlZ zWhs6G^*okhcUQ}mEXD7lRx34>Qa_smsrc!v(zS*s$nUq^W2S^SUv$sJXc#aCQ4%~_JxUH>QV zz*2lQxED+9V0pt>Y8^|BV<{GPr(DvPDcSSo|1 zHnG$imfFKotF1MZ{E{UN`bf?99mA|eHrZ?C9Xuz9Z!th$a_Y*7JalN1J z3y~Hf(#JuJECe}$9fWSwJ8**P?;LPLD;>>MIM7fLRt4z3Gs}bEzbfo-dt2QF5m4QM z*XFu>=Uopx-riUsE2rIj>>MjQzA<3*mBxoensy9^<6AFLG%EfJFe`Zds`$MwyRX25Z2Ga z4ef)Bq;;F=TwZ0=3VTkUpsuAO4CF0)=?01AL;Up~7}iI(-ykq)5$Z!NS_q6p^wZIP zbgmvI8G{h|0Nr%4c+IjhC&+wPC!=#gNZtp7bQ=w#F?qGyEu5h2MTIC<{oBS?t=&!3 zs7xzCq9;Rj?~5cEWO+coHH7(C`eDX!U4q5R_T@^}&nrPCD|bgS7Oe$KdH|~*seTln ztEQLugKDgfI?;D69Wdd2-Pa<7^iS=-&)Pu%_k3Alk7=Xd1S6H6XDLt*>AI5kswFg|ulU5$1sgul(NK}IO8OHZ z*f3f5lb9LcLj1bT(9sdf>n&|TyUo%Gn@?kn&&!Z5{E@(OMTQLa>xGpc8fc(ymd;9q zlU4e|-5)KR;g55eU2`H#CwMMQcSZ6HMXxN~VSG6m)8F%S^nEDD)U7QgSCs2~@YVv| zr(!1Y?GFu|>6_(=t*q?v^g`W55mNIPd6V{+5-$e!$6q6ucW^>nEMDff{#Gt%qtJ~N zIV30ZhhTdrFF~7YqIDpaVZH!$gRGjt#E-3<1>Opjy2B!vixy&0=?vQ~Djl#WR`;_A zned#1=8z(dRZFP3Lqc7S*BuhUyb&2)tV=ZNfOIC7DL!Q7hz-fi{OWwm{Yt+pwTG~4 z-Y!u5&`O3eX}a|y9iu}T!EW%|u$AsOU(I}^QSMqR;%|1Q?xv7Qr*-KT84QZ)vVL1L z`s6Lhn!cvaG1^i?l)fzl4YYQJx*%(NC_JF^zz%sv^Q`@b_!SCvrGi0=bs-{2?g14` zb$dk?8tuGhnzamm`-m*Q+j+e^t}D!L)MOX?GxP}0tD;JbZrdcdXS0Mexhp$^|qBx z6w9fx=alP4h+u9dLH3nC0`aL35jAr`oWS8`% zVr_F9(TGNFFgPLxY}CtyvJW&SQA zam!;!;J;Jnh_Y(khX&C^ck%U*>OX*Z`Y4S{W(k!qPDZGy046#cn=B9E9h0YRE^ zl7a{kUmA1_q~o>_;9Thr%H32gXMDvmT`!St<@~w2=_+GZ+mFIIEi}qElu|(3Z&DaDSbSzMA1x zhV3>uM&WXqBNUg)JaGSc-Gs(6ognNKeZCU$fGlI$_qtVLL5hc+AjqxKO|ZMsmvr>O z9w%uudJMj-dnsmyCQ)M+U#3=Y^R@P2B-;sLZOc_1eR0GK8pZ{FpxQ&c480%|z2Ted zx?qtZ>OR_n*22~q$J84mO%3xPYTZ`g{I`rwqX;ACpZc@zq)3+sA}ZsH5w~>r#mumK zRE@LW4)8hv1KQ@0oJo*5B3zBOmB?i0GVy0Iy2= z&U~n?y}&{IZ$=KZhxJ_{;C)+nAlAHnY?f70Ll>C=0I$C;7`Bn zz7lb$o!dg)L|Ye_9cC-4#O8@^xTq5DqpIgRFI@6WN1qaMx~vC5%5)QvB>GRaZ4IHh zq>ZaDbazB_?E-3^IX#wBANE|=3aX23UD5wvW8cE9#Eli4_)6yt@&FoPO@FNm5{dU5 zLPMq-A5lc!XQ8hUNm94i5`Ockbi!gQJ-zA>ns~RKX5mhHC-}~;+!OoA^s7a5uE83I zN`G{*(?1h4StB7eQcJNo*93(U7pV5Iqa!z1XJ6)|?=6B2LpL}4$3<@#((v9x+nfxw zYOtLHEDIqvpS$U$;g!OV8#H9w*`n4{Z}1Ej1LL zm6k!R+Rhm?GpPaxKYbqoj5MS&7&v#!o*V7l1+QMvN>3lqalP=7LRFciBM{gQKMc?t zhEu|T%>aRr7L_iT(N<4ma9)sub?Y4bN;~Og=-I)@J~Lo^-O<1>z0oH}7ZGW_$kAR@ z-?%RNVIr-@;Q;s1Ab)#1Jl##dUF5ORJ%d`(n5ETQ_TrtU0RV7hP9-=P1R37 z(!eSk?1bI&phn$9T)r5f-z660a@Op%rv;_WM3;9ePJ{L0khQThAe5d$Kpr$i|CUI$ z_B=&Y}2L>b0VvEJh&32+_Uhl6j+-3&U|c zM^TNxhUz6FE9(9G+tQf4ouf5I%+qfZwPWaH+Co+PN^4Nf*W2T)1;*y#(L@#7j6OnVOMCv;X60o@uG$9JC=TFO4xR9K9#|0H=+b=pL1nNqQ9tJmzPR)0u2VfjQ<`wTV71;E zboEr(Z(6dY_tH$94+$J4lH@kZmGIipi4K9tG>R(3Q9ma)nCR)`fJDeJlj81UC_|UV z`8kR6md-i)ccgUrU`o}G=5bwa=Mc1 z7O&8|LiJuJYJ?I!ec{Vnn_CDobR=+$c_Ux|7>pPU_4q;XYEpgB6(`Xf-&YZrKdn!c&`D%TCPSOwRmecGjXtc8v)|KlG!v!`8hT64y3isB|_NC!eq^?pgopK>T z4Ra8Kt$PVYf_u<-a>okR%WTjO7CC3rXryHzTIJ#5k=@cPyjpJq!K0mN`Zvd!?jMMx zdWtsd&x$yFQberzLeD^o*t2&L$)j6M+k{9s!OTL^>iav4eYHU&UP#~sYzuX3oqdr=iakG)$k(N+4>{-D8h_fWH%xiCN!A~Cb^+x%QkLufCOnqeC9Xcu z7~N!w=HQ}*Y=qHhzRD> z8iLrujkieSJj4$;p{KnWT*EwSad7u&7csDp`pOWxXt$}cEe!2Pp{zGe@FoCPPpe+gNvsyhtX}P$9mKJyiQ*z7UaEC!##pj^rn8`;kP8j+voKr zO9jmQK>NT&46qX}HqlRUoZ2s3tm*wyr6|saKQu8msOeML5-jWA6d z=TstwN2Hl&jwN__(po8-Km$#ny;jz^+u#pwC5ELD9uA8=N(@UByerhcA|1T!<}OCU z@4ZUi9IkPkw+FeqV4Y9N7_sfSHfmQcTk7fI1hlH@jvcy|(A$K@c4aj%6dC$;FPUZ#d^%0? zYkHN~;LgAj!_bS*{3%lgbAk;6)7?QOhDna0bMS+Z5grck(=@7)clQ^1m6(jPYgHaL z*uQUy$v8V?kB1F7rg+$+TmKT1wO7^f$`(L=?~X$TmPqGK7%f> z@F69V)q`%(@W{g&?+q(4Ob~^cCk+Ncb<4v=7{mTKyhJ+tE*(+nCwRN>$P(%54L3d# zlv+pgUWsAq%d8K``sn?Kucr$fe4hq|icuwpMSTnFz9XouXN@T_EJ5)h0THr+(7B$j z!oYjkxF#%==1?x67)hhrB@>J`#5*HlK2+#wjs72$7)G@ej=MuuA(5<|N!@>!$t5OZ zBSRTF>T#8)6P-F%A};+P`LtoO!&)3`W|kO6bd611^@uJ%JoizF;q?Mvp5aSz4KIn0 zxH+a;=A%IEJTjfv_dOj1jxxfGs^)W60?#s-A6r>(u=R4rW*?jS9a(joec>hF8!T8H z2vC%<^`gN;WXU}d!pA`@6K>4)q6<^iq=Tu75_(s}O`m$6PWW}SQCr*=xa-zNm(VMo zC0=5%xTrLgK`Qg6rxUsz_Dm?5Arj`31-D0Dws1qxJp0tSX5$ouhKYeB^`LetCil4=)a^y`tAn8c6fVX=ll}G zD3aa4_9F; zO6Wb^Yj1m)GL^tNB}NYrOniqo>B+;#8MP~nL4eP7-A4F$Vp3^|behY01qc}7<1DPV zM1Eo{@_*>M?!YLErtd*|NOB2~-sl}7(pw@$I)vT?f>Z;Vpnyt^AWBdmD^}iGrdpEp|jo6a)l?@3-@m%c`t%vIwH?es_tr# zo=9gG#j8DGca>K62N`45YE>muv}~9+ zQqg4z+q3~D;AEGmq_Gmpj7UhJfg6DRt1{i{@SF*dcv@F4LB;Xqo4OESPT!o`q$FTc z(LAA+0Bzc8zh5mB7MNnFvO_``wK@Xin}j}kdCpPZA)yIX^-I9#_}etEaFpGvgmNn>B>5$rfI@|X6PZd9c%OW($+80p1k*rC!CVJR>Dj|~MZ zDG1*OrG+Y9rRS4^lBjSEn#_1-eWZ_DUdAuWOU1pIvV<@Jyg#co@}vh$N5QRN7~47L zr~jfinab9uM^oWxlm>EbV@s!37>|{PsIWfQoPvZU*rK;btQlNy7XT@pXhbERA0rAiuTSUiBTf`Y@oY$WUS`ybw6Jk zuq>1LZepa^`)#SVJSh7{VCz(ChkprX|2X){y!Y|_kEPne7j$77l_w`9(9$2*M~H$8 zI#=Yh%z8I8i8j1piW5&>EPYGsUVVEc_wy)R_qbH5&7PDAM3>MgWvV*=N~yBUq)xxl zL3PE%s(|bw_jhUE{M<4w&q%`8&q}q;Q5Ze!yYEWIs^yK+O9}}B%j$TPn)RoDMZIuv zI@T)RN=l`ym7w_N+oeY}iXo5!`-%x_85S4Lp8aJ~ZPD?bZosACw06YPY6ohX!o*>N zNt?cgKd6*+-I30*hPEo4u7-FjC=3qaeVRE#1C(NXId48|DEX))} zZMr8X()pU8_k4s&GxUDsGLN;ENo`W2C{w`7Yv!b6?3TosG*^PlL1`sZ)|BKh@m{P+ z^G>l&j)QG4;*!huHOXmouO5zqw5wyPCP^9ADcGW1)dGMI<4xMcfOo+2_9r)|%9?-p_X)ck2!(XDVppQ%nIXR8S*n!j@*zEUCYsgizj};2bmH;|!Cw?UOnW+2TWw6$cP^-8x;I`dYim-Cl*nyo>YyU>eU4ov zY?efjZ#p=<|3e)|2h+c&XXVFJVnktQ(;iiHSy4+l6O+4|?y2Hm*j;an?kZSkVLhO4 zjxJ}&Q=iIadK)P{H>amb^OisxWT6ApXqqhJ?QQzE<$#t=pu!>O@=<+FyHr{{lT7Vs z=Od{&wI~I4aeq^#O3>p2O}o_Qve~Ngre=zQAtueC0lYrJ8pTu9=2UF3OIa$*HEHv) zAqA#R5)w@J-bhUq_lExmMZPns31Z_YlQzF$V!Y=xV$O`wi8(gTv{NHSTbZKrNv3#l z=wXwpssxH_QVQbQkug0DwYN!2rK_K#ZR4hxG-KyCr+HJ;@!^jrOm)QHQ>!zj17+FL zk`<;joT1S{jJIH3T0Lc4ES_Z=tdS+pT!2SVSN60Z`gJO5Y&P2@R6c9m!k5~|r6nrd z8vB^WEdg%rQ4zsY?`Yiz$}dd?N2flaiH&G6Pp3cTCC(Eh$`_cPR?D$b;BlK(Gp&{= zdPeIhF=3IeVsewEKP8Q-%tVz<($x{3xYVRg$^D3Oho#4e?L{VS3krxjP~kYJWbW+? z%T1bp=f^9{P}H>aQ~`~xuE1l-+Eh~|6Rqe-CF{~viAi2<`d$?{G-{K^135X)J(nI# zr!3%O@H!LDz_DrYyE5Dg@6mL%lj^KDX(x^RN~GvqdK1}G*t0h2Dx4KhP71CM0lBuA z$Eson{YzEAS4_!huJm?4hmM0MV-*XqT=uC;S2vm&fN5OdZLIL9$`fb-vZiEoRj_q< zS(jFxT4((c1mT#I5hC8(pp)fStPD0jmyxdE{pr;}#rn zR%b>E`vDy}PX6HF#Oh3}$}IM(gY4t?P1+=hwRYLU%vg#xWu_8TQkV86w zI}>NBPGa=E`mssdGt@dagL3y})>CNS`$=HuN}WzQhcX+9tA|YiCtPs$C7OzU%M2H* zj+(T^3Xof$3U6mNQ?R{tT%%Ng(pObhvj5DTe;~15xByw2t<bS%Hj22_`o@Iw8Gj!%7wDHB@S)MurhfFzQL}oaHt39LkwM0>Zz}h+jWrv$ z78PerSf1iU*dI=8N$!{GMeyFrkLRTnGZd~oLmP|2@1)Y=ME0?AelVpdnFRX(W%VyS zwkkE3U(Ag&>$mY^U-GM|PYp^sXU5Hnnf04d+1>h~G^-irKmm|znGd)o5veO z)8Bu8h2sdw1ipXtef%92d)Ai@6dcR>~aX8A1#a5ZfThlx0nHy1g6efsyA2*Cpb~?U@ zG2<8vmtz^sx!bUT7#C;8jF1zhgow;K<^|O=-YZ) zWg6vnFb9dp+v#|@p(vOp0Kp{r-zd3EFt%SB;}n?0yP=aAhd4PScVXu4#to?Um)1D( zKv#3Aih{d{Aw|2Qi0*Cns5NO`7tXdQ&=7ICPk>Zd*Lxd@)%~jXwLD)~kCx485=F)(O;q|!1I+Nd zm_EPi$l2Yblju6wjEOo!-u@1H4T(LK?d|-bW=ymsM3fIR|EK0jqMX}J;wj_rCgCD- zq!|toBVyi_3~1UwI7bJFKOwP|SU1)jFtm}FPK67aVy$?BJ`lL~BxKJ-y~Qj(mCmO1 zg=4b$WtD0cA0*Zz-}a{JhMi-|KZf~ zTA*KSYe-vWnfp*y7B4=kk<gP>&ZF$K$zIyrtVNu-Sz`W7 z#l|hGn%ttkzyWGZ$`uNpkjBU9O%g#CDPEk&IV+B~sIPG6j@8^5!O2L)r$cn zTaI`lrFlWj(Ct!%Fa(Ytu&-^EF3#@M8||kMkfx&I4fAaS)jN!QLsm1V@TEoT$Irvbno+4>Lr(%Z<}%KjPsP&Bd~CJ z307%!6qEN#ZNcEBGaXS>tN%J&{&=%h5E0N=8Fs!k5*!c$b13@rG65s;g-WPx!xKus_gBy(Nwn08zRO>TJZR(jmmGMfikz45v7!`mj}X-(oC5NP>kg> znX%|B+RJEPn`=!MAI4fb$f`3hXwAr*@IZvFRc|!$L3SFJvE|^Z(;qIB5TP(7iv6q!=QDND$+NmDK^DQmiW#KnA0I~6uF2Y%A#HEfFyjuIuWGabhA11DLwj7W!$tD7uQYbsAJrqh;%ORQU=S)#t z2l%@y+vAComhFSYt?mjLeje!=L}j*RLSQpB7#7TWR%@o7Od00(s^eeWTagxSF=yC* zpna&g_mCol+=HB4`9=F^5z}8mr-+;+5y?^F?f}bZNkIVl^@V+~1ut(_@7Ual9U6+V zp%x*N^X7udGKG)=U!!-2aItTgB1Sw|0c$CyjkMsY5F5>X5^4e|EyyPzOOK6Ks?-@` z-O{1CFpg6)OVl!fe0w^m-gUDHmR^!Z9z?*CF1Am!ydyDV5VWJJx4oI--N}|QGLNhs z#c@fiPRA(RRELg!;t`8aBSQn#5_!`U)>g%(yutTQU^cFYh+o+k6K zwkhw@p%%5d*Ad>?Jj)J=mbDf#;(qLV;LouImf^@PpoRaCU>y%lYTYSROkTubMfr07 zdJ8*+(KqMim|Lp!5BI%sQfEBg@@%J2y1o``M{z}#y%HT7oK4={ox((&%%O(B((a5;VS6hO`sa4g)R3-}~=P~_jEZ1a(jNaIz zbCQDjsdbhdiHzy+&FdT{?ya|M(=%4Bx5Ut(6`k=}zZBf6mmmL9SQOI*&$E{#N;?JRKu66ci=?obp+rOec>ph#8cI*p9~vim@3B~A+jxv>un>{)wlZ`BY6%j1_bRH5&3x{Wu4&Y6 z9+dZq_Y~U+`NWROJHY+;(XLon*l#%@aWhSvyXx1jM(X`MW1wQ7Ny30Xn9%Y zR+@YWO1xV}H&ywM_~@T~UNx*+lsJCKBAo?A4Je9jWVhPNDE#76WfbxVi(b$zUQ9Zo z60chjqqAEoO?shQsF;1saztX%a@P?>6^hwoU0N}$2R`q55*b%~p;+F}uUI$4oy>Z8e@UrlP&wL&bm}sxg+6bB?0|Hp#tzs#ZbKMN6vKd!ZWc z@*}{_8O6nF8G$5Kw7Se01vo*vKuQQzE$xBN4gFTly2xbfF^$f5uKlw&i+=7ACEDNk zXKx;OzX!ey5}X}Q&A-6u?M}CJJ<*9uYG)h8`?py^D+&cEF?6hHHVn^Smi{{1a&oiN z#6$Niudt*@-5xU{JA}s1%vOb~r@{IU&%*a+c71WMrd4+;L`kr9zQo9a&;C=@mF!5- zC(O#4f!$-7LU(@yT3(^*9btu2J>@$%)d6qrgwThzto^9V_i(SY%LC;(In9(c<2!M( z+94&FHU&KEGm_e@_cRng*0nxkkbhBQ8EV8yb$C*DbKcl6;gb|A)-wKq-sjCpqj8sDc*mw&?bXl& zfK9ke>jbq(=|>S?=j3)bEfo66uC{TSPAFE zl7=8zCera)4=UsiZf3>u4nqqI+~JC2SNYb1$@FM5tY@EUfv2e$ES9yhMyNTl8noMUf5Ke-V^t*+F4Jj5bhd=oc;=a zGp~3~?O?_HU!iC_uo<`aj1$K@S+UN}iT+;6JmsxTL$~+D#Ugoz^usRIIbWZSRrFL* zUg#ExGV^rL+G13;PGA5^BW=6UQ#}*c??DZvKxbkN-cMF;X0O`fe|`P~2ijAc&Uft< zAwU)uj=2nq*Q5R8dZj3h{Jno5%YZFLj30!-qGZ=tW+czEy=sZ>L;l4wBYpF7FHAmi zt$4`5PZoF|O_@LT3KD0B{|C#M*8m4o<^N!~%SQ$h2#8AHjnM%t6S?E8Sd{WNB|4_J znzLYn6&n}~$-+$-oXP8*Aikfd3tg63j+5NpxVhWDH=dSihpsw5*@|r)E|c*KWC`Fb zg)zoQtT_F`5dVNL8s9rbyfn=^&p_c5lyTdbEHj`avSw?G9)_9L<@hG*Y;Dz}d}yCm z>cn-H>?8^CFHuxA?9+&1e7(a(MZO$eT+Y890WeN&K5kWas-AyLc8r2s-s920xE6aq zHnP?hSaGPF!TwbREl(KU*6NLwlslN{ADSzf${F#DOFF(Vx;Bh%eg$j)&^#+vGa2Ih z7T1LjxN$ehx2aFGXu80P6M9OSX;_;wHt&-x+COc@7NSz)IUqXPy$=?07fPmbA}=$R zckdHry@cz3S(RR+=)Tzc!M|!K{K*?5?q6#C^j{EJn0$-+gwuS14(nZH#gS=$g_BEB zVe{qIgG%C_=d2f0aG4$S6usRiM5I42MMj|vO2>e20f3#r5_7(Y`!kjTS$f^!7=vi%LrX9pY=U;&g

    rH9x0VK7en_2Re6Yca!>tTKrgX9K zRgHS`_jO5p-+1xb=74rmUaP)g3jcS#7J!3VXZMW|-q!=9K&;!Y^G;GnZSwnuiZwem zoB~bINR)(7c1hm|1-*Hfv?hMy&u{39r!KA$Nf?5|sdy-%A>mcc^QgylG8eZyAF{=Y8kZ%nI8S+qO)EXbmL`&~$~H5^ z=hX04RSm$`*LG2?X#Jb@Z53Sfh60YKt33f}drkHe7t9-?pfu8;F@uw6=N5n;{=p=fK_z~>k=j1WG^vPvJ_C9OO@TXtp~xEU;s|s<56k}DUsu~GKXOF z8N$0US#C%mz>Nh)C3a2~WHXd9^+Ze``cX}kq>?0+N-_o|P)YotNb3Z`vpIdW)(8y6 zWVIog`P5Jp4WvKR(mM4~od@Ccfs~|^g9*n06jG#8DV#JYQ%uYycv3P^WDX~z2A8|k zOe!+rx+yPO~ryD8hzRK6h}G zNSQ|PyEqX85i)-PloUh^j!@KU(-{OmP^s2S4XraM+EU_Eo7Qs{!Ap`r0cJK=aaY-7 zgGLQ*qo~QZ=MelY#=u%ssUUA~BvlpIW5v103BI9Hf$UQTXBP~P!fk)3^{}}bI|w^) z7{*TzZmfuCrzdqW(FqsX^9lR@j7=YdqWmd2tT_>vuJ9=H2`NxJ2B%Y%b+Fo$bI%0U zllA@JI@U!LM^(om2hocO4jg0Px=^?&LBYdDEd3WGoyy(?`?z(Zi~N$eoDx;ivbsq* z_*BN#r$t_TC_#v^#Z!9sZCc^a-1+zb}@ncTD5$o9NQ6$%Pbw1#jjM`9Bn zuOn>SGh!U9N0nx3LzC7+mC8{uuT&QlsSOC)0Lt(#_*)k0Q|aGp)}&5sw&J_r3SRWE zNBs*ys;thL%4+DJdC zh~+>f-;E(S9Qnf#%#CD^EZ#&o*3M0n@+OM5=;J{S4+4%BiUeKU8Yq8EVNuPY;Z(8P z9w&_32`=k9!!ha8o={Gsmv&M=S~~)ZHMe%s0)zaEw-sJmA8x&7#WQNnhSsJ1pMiyY z-;nl%q2+Jd@RjCfLmLU05|}nl#BxYDy?0S56Hoiw4ORJiXt(Tg&g1)a0bsr?vIJ|67@1n0SB z|MWfkAKh1R3t%45v(BS8{y~hjdu}s@|B2rbjyp11fAf5Ge9h@xQf`=l1NN&5PMHUK z7?Kr-Z{hN|nEw;OZIq?O!kQwZ6K7?#fM;0r(rmL^&8=M2}7ks3P|K%YMlEXFOkPnkGZ)j zmEZiq43fxr+yGo({CJZ|ubv2p?)lsx5q4YJea4QZNF3aK5VDLi%|zB;Jl13x2od(7 z5`4+@(i|9$ad)Ls;WBmP6*l+(bI} z6xtXcY_loZ1?n=WIS)Wy*gcgw6Rb%-yj3Rso7&+vIsTYm4M15|(69vh)eOoSMcQBx z8RBn^EKJ#%!&HMaFv7?4mq^-oRyKo;ifdi(~|6FKHkU%H>>rTdx) zUo#sfXn`n2c?%mHGfw0tBB!d}YPJ4X6H$xW#O7HxSdp~%?5Y(BcwoO4ZE9=lM`;J` z>dZIp0b3DrAGF7jGFg*f;A(SytU77B(9VYA+zf`tltdY;hT}1ZZo|Xr-7WB#e(GSu z4DBD_tga(eCqJgM4evHE82%<~(%s^8+BSQ5Z5n((RC}_e%mvhqQ}@zU{^&s)mQ@*oiC}Fk-mgv+IlXPrWt^CE z3N0zwK0JQC58)Zv4p6liSaRIXi>dkJ~xf1`(<6OH?Fk>Hs-B z7z~f8HkBV9USAXrvYk^B1=t3^oZ&c^8%Fm=V-%GCJRArAmr`x@poDc(;?i$Mc3iKJ+W(Ppa{Mra8*Ln8t1a>-*kEBe z5feS^gI^zu46=>=;HLlGval&rt$QW^EiVZUz1&1_6c{@hbp_r+* zL{WR14HG+tXj3ML+Iu4tsr(O2^dFj`Gh3S?Mau8d;Zj=@43V;*#)Q)3{Ud78j7rGY z{8>_SDaf?Bx1Kv(%+I&My)zkuV~OakVxIi!}? zptdg4Ime`yg^o(5ma`~c?0Z%pvv5!0X8$#^xni&{tdQ1#QTn^CFmV+6CTx_#fyn2j zmgFofnG!A5x@|wGiM+hTb>%i5rTWw(R@<-`A4sXldC8WqHiwtGd}Bw|B}@S0#ErGs zcvrGBAmRv#w-1~o- z14k^E&iiPT>JVg5U@roUPxh=s{XC88U=J94ay*0Yt$nEilSIq|xLV1+&G3}94&$}4 zR=yNb=(UYe6PdKIEw;u=vy)!Yo6VA!)p2w@`P&q_@xQ8-d3={f1q(DxRXBUL*f6)# zsgV9U=<7H-Q<)^r+iHXN$zYy77BwG@8FJszs%mj=`wtOdQVy&et4l8`cHCmPJgYW7PW!k)JbP|;v7#%~4t^xV4`~D%^{^as)p;5PY3U{%%VI->PK8`hy1!d4TFfOXq58hh(fD;IpM zOPFR7AbVA4D4VZUpV%-}R``o$Pl07mjo+;0veL(7GE4RxwP7uqGqN!CJ7ud+8OLnu zFo-&?_a!&E@EcpEqJ-Oiu6L27TwoQVrdp%c5>#AmFE0gtuEn1QEUgvCZ(3xz%RRK6g(N7I3bxCIxQ?hMLU6J{n zZf|teBv3{(Ps)&yI11kwqssEap8~aY$t7DnZQqUcfOQx2_H%d2DyU-b7*%2IxcDEE z#snI>z%%7eI&jH`DI+(6>&~e$Hdze3YQvO~6Ll&HkQ9;qoAl+Bu9B{fFMMo0TKc;! zS}eR~!z_p)>?7rs4#z`{C_|SPQGM~zAGTu(7;A92?;`-fL)als>o3G=TyuDEN%2@Xb~ZFj($t{R)T`<{K9 zirX*4IpfD-<+iJ)s%zG?YkJr}Vvz?oU8Q4HC)gg~z*Tkk;iX==3ez>zt{KvQAU}R_ zl-dC!!|j?PW5Pic9EqgovUjyEY`b%aPbfS>V_gW7ph2P55zwU$(@r z^1hF?tHLZG%(%C$@LVp;XTA`d->w1 z&9HHG#nm=;2s=ZRes6EbjlZQfK_V&B~ zBBSt=aSg3^Ca5N7Tqipg%@`R5P;-&h#ePMJ3oMLg)KEYem(8(Ki{|;4#Y7J~l(NzY zIiSlv8JDGux(hja^ROIPTU7S6C#i_Av(cOi``VMNr=eSC^wH_X<;~`s0Z{Yd;-y;Q zP zS`ou{4jYf}|D`zbAozrUlH%$_`wg{rtOMgo7t|rL^6Y=BiMaS2MysaT+tRWrSh!pB zh#fYT>p;`fl{y6aDnYGIX|`v46IwC_O=$V3)CvKO%c6#&SUnM)q;!?;6~Kype;oh3hhv`OainhUV7)hApU;!FM73FVzn&d~Zu0mw5-PM8=x zEIepJ3o3DAJ-XYA_U$T4JaG_4Pp`LkBJXf*t^DCN0eGmW{{%c;?i;Ai&)2Qf6pJWa zZ{MiVBKMy&M`8)lzsNApY{%4`*_vgwH`a2><|8NWMb4rG@vcql2EyILFv4nKqyomg zPTiiUa@g@?p+vMf*R2gEyekkU^1V7tP&_ibl7Oe zMiq12uae|fr^SIy(gHF>>JF-S4hpW|?+M`oOCy*92S8G&Vk;0?BJmMaLelOITWn7cae`i#c~L*Io9eU2zNE*=5H( zj?4KSbVl9gw}){EY`0Dx3uMkX*xlS~4~Hr{>Y;B3;zq4_F)?vsq-e0$e%nCVHyj1n zb1A7!-uLYN$avGyP(<#t7aFMOwgV?6%N$|CvR~>Y85afRvfmhlzhPq32O5ZS=DET| z$AePoaMt*b?W+uA--Z1TeCRQco_Pz4z3V@*KVgu6@rlYO9no}WCn#xk*p6i>PRyR_ zh!($oCY!|Z=oZK{d+$V}`0c2yNhvu~NvtJ)I4-4<6H6XL;)|b6tSx^0+>RU3GEww6 zX~$|0!^_tLbLv-ixMv*Cs#qT-(!Q2|FdI*h!b%XRZYw}V?VDX zimY?e)H9q{a}&O@83J)fKbjjXUVF(qq0+(L+Z8Ba}kMu-{R#)w7RlLmU*I%4u6c?-PAE=44kHlxc zOUuTUbDy1YPpTyjUbkbRj1zIqGn&ri`J#omq0@o;qS3;0OX_=>NtE2S-%|6-YoeG5 zI)Z7y+mljg=cBl#c;YWRj*&3BZf$_>$P~B?LYx*>4mT<%pzX zM<+#4{ybQN1cO8C=ECjPC_LHc2%)Oz$vB62a#FO2s_B61!^o?Fn@tXg7ohSc!LNz2a|^gwUkW$+61$n0Ap4 z%<8x_OB^W2>I%nMB8@Q)P1t0d5XbYWkNAQ_gII^kJklYeRc!|hijIyMA==c{>F{$0 zEf1m{(|jSKQ^J2VzjB(dw#ZI$U^E9}0@rJfvNo6eT*PIW%dI zgH_=~n+yj|4slLh@G0doM6+Ezy}b~DX!>i_XKu4@MjU1(r%AwuS7tw(naJdo_;T<_!{(Xp9Bl}7SgPMv<5oGkJ>I-robv64LTU}uM_8VIT(T4Z;1 zVD*OKQYndU-SwJzkPWJpXQb}K(9luY4x#3h5Ygg62b?)B$vJ;XM^1EKtmxItv0H`k zaO>AJFPbpiVnv5O4!AC|jCi`Q&Nr5|0sS5DOBfx7V+=JPkQb|P_|bt5oXuc}9B!iH zUD4LO zKV55{K*O)AsAPTOrAHmVYpB;d5^z%57ewxuDd9v7aEkV$*$%8nGE(%N*7x|EBDNGb zs@a+Z;hn1u1Oc_EWtHrs11lYP4}RzrRR_E^-+`I4-W)=6f5@=+shyThZa?re0(r!!OC!fF`;!EE3K&JYq74nW=dUwGFVS$Y&`5_c5)Z` zj0(0do^@y{UK9RkI$P+A6USCKun4b{AB2%Fe8e zDM8{$vCb}5x|J3vw%Z?1i6M;sSn>Ufx?YrB%se6R1nU7$_*6ac!)7XvP4K1NTRiD&!cj`yBAwInK87u^o{4*{?XT$RHE(s)XY= z70$XLZ<7NnNt~aD!z|cRQLshlIkyAmEMPbkY|}=kz`&ZU)-O%FI9uk}pyFeV;(gPh z`596-(do61)Kxm*z*~;Dt5HJl*&o4;6sdmq?s1f<5Z08%Z~t3U(w)tZqzLa`2TrkZ z!>+%l4LQ;^1f8Wd__*oeNAQyPe#iUOaqcYFEdcY0a~hxa1&hre=pDj7M9D$N1+^q| z=xbV23-fb)?)&&hju`sr6L_T`e;jDM&(NAMfjqye1$l66JFylMx!O}>Y1iI*Z1_eW@vKe@Piv})SV6eP<9oF|7WvfMS@X_1 zu(qePN9xG!-@<+8$I5P;ci7aH%7OwAOu9mwY?X-Ac#@v{87YmVvkV6vwnC0<9a zZQ|4GGFOWfpuyMSAEEG6%rM&Bbl^A%{>Bm%78J`pXDGD}nGUU7e|ngxyyftzU@!wm zwQ4xyMcHlHZZ5;!GdR_ymdRO$ZOp36(}Kl^f5~p;JX*nI@yT6jVL1`^+roDraAFZ% z&m({w3X9`ab|(%ggiOarF7Hmmcf-Dc2u21w;Ttj-I?$+4xg&gf2zmDbTr1Rx+er+@ zSPmC?;ZAtDGA^;i;cQxjRNqFv|`u43KR>6ovj=s0k9ES!GLaMmS2f<;xD6D}}gmk%&Gg7?J(q9?4OW-cPYSPvjLD_H2z!SJDz}1bd z|BI_AO=)k>h!;DuoS2a?eVQ=gn_+F8FkcGM73hhmWs*&@%)OPqQ1MnfC)OyLEHoZ& z>VM=EuXWOSsUudX-qyvbiE01@CmQR`45Ix}Sok~9%?a;^@uG?p@lFpX3>U{)K$)1y zPs|Lb*T-TD{6vluDo4w1q$?x9i0oCExqW>LT6s(_r$a5xdJ>%ys^`J+kuG!aF)6u@ zlHJGoq1GI9^XAmPP8BU5F#LIhGe)9~6uJGKuy%p%78L`XSVC43Bhg2o0(WMI&%z^` zb8%Gle}kQ{JPgLvL;;IqL!GdwoamQGE_i(TEIdQ@FqjcK+=&?l=gGZyG_z>v+$DDYCzDvH5>|Nl%CQWr>n!`A7Ju#dv7dWw}P@0cp zkhAk6sBs}$GJ3ib(+s8cvn=5Pc;nT2a40ccJpHH>*G3q=?qSg3n(YkJnul|z0#(*k z82wym_{f^7^Bd+ZJl-Qrb(_^r1|e z@Gf@Z$c$1D15IF{>GG%2A4XUD%)wlLJ(g-~J?q3oLuMC{AWiS;+5-eBxkdU)Cyrlo zM$DSvU~?5x14|u&v21cii^5`k97>HT6Y{zGkG+bg1r%CmtQj>W9UW_qz^)@=;!}S5SMgW|r@<2C}BGc;J zqf#wdCaOrYUjp_kNX;)tj6i>3|Ck%dryy-xoC$RA%g2JnP>*ggphS!!*XM+btFS^| z(`Gf`-GWX&-{5hW!zgHym9OY}R_CjhB~&cjs4GTX--b5d0-0Vm=JC2>(R%O7dls^FXIEJTg}5FdF-u1+_k?_pmt8wK_}Kbly=uc*I)U_ z`KKE94=gT|Rih9ervAivLj~iYFb?D$cH+wlT)gBgdT;YFXA8~n!QYgE(V9DGVD)!!(rL9VHa^!r?D5`#U?pAAL zj@?arB8^<{LXTd*u4xVdvDe7rv9b0Q9|oc{jy3+Q?m0jJ)1HW=vrjz{CaP}ho)C|X z&<(x>@ylP%LDd*1;H2;SS9^PW`$RN8=I{hgCF>((w85qNzyu=awUP{NogPqJ=Nq zrCC+KI+qYyw&lrCu`|-8`AN(d4FW|I<-&3bcjP|`UiCZ~M#-bWyDwv0U#WSdMAL-? zS6zuWf#UCnA5t^UrTL&*ze>WRMOAIRR;g%}#A|h3x>1zQG<+%C6>K~&Lj0ZJ!p%A+ zg*#$wrYl~oPIh6vf)izv1!g|_Adn94Cz|w(Of90kpzqmwo(|ArlAtV z(+yqc)I>Qr1tu4o>d-ihk3#&84!E}nO?|7W3kNe8hc=!Cj?Og#L zI%);v@O+ih$sJvqbI2+aHDF<@?gCX=Ea?1iu(ckb8E>G&*L2l{LKJp)X=W7ij6Rfj zqB|~7rxAy;T>&#h1{Y>82o~Z&*KLDgHyLJFAE(UTu1QpOKiNcg?~mbP$f1+$&uWAuK?!C-tZ zI!p{5>4N*g@vG0eBE^x>t{v6T(a+PKil!ZZEC?5vX<*vJIdi6>WXX6bXB@}X{xBtH zw{lHQfAFviOX>=E2Z&`vgMuOIVv-Bz$QcsT0*GR!xIR^L@Db>#}cUvpj9xRYRk-BlPA&RO&VOu*fz zT;X&)hGwkLwuCr>~(;WWMl|?Sh=ou-b;f@O8Q^Hv;QO2wI#u32iEm&yL0v`V8w9^@6-tK~rF?08EcjArh^MFgH* zuXsrgP=?^Cg)ot~*7c-{2#9OZKqvf}ko7L?^Kd5ao4!t0GL?*97%lFUN{zx0=5-6Z z0tuo0Qx-;wbc@ub48~dTFcD2IICgq=f$Z?^IL;jc#5h;6p}w70qC#oWD~s^X%i9Y> zDEbo@KCbF^^`pZ6+VzU@9@kU&N<@F0y^xpP#jjo${56hqD?{tm#AA`Q7KPF~hrzQO zFU!%(VA)iv^@az0OBUKg)=6L@{EwZW;!_o3q~+oba0(s)b-gL+J}3}U=xJ6t&apc5oO5GI^TT%JM) zBFKYMQeHH_`7W+-%uyu0+t{A0yqtxs|!nSoXDqMk=R73?aTqGs&(uH?BUdU$0FQ^lid6H zeHYfA8I1Rt!{|`?qIy*EF35c9pjHo`DF?SO`72+Ppl~PeV;2@JxSUjZ;+;=i@Sp;# z5x&E6T*^d03SZ5|IBBOda}lN$-;M94pvT-yb){9y6_=%j&sLs`343c>lH&Z<)47r?Oo|2 zB|Ep)4?VJMaX6*_g)A+BKuVMrRN#q-8z+SvWcIYRU^&bQo6>#?J ziz6uGFK}r41*roVn>-RJR$p}Cew;$D)CsAVrE2E59RA|o6&L(Yj`QON(Z9K#Q1eS0 zARO1E@=@^Z0(Fc3aACS9JKg=LJPb$m*&e4D+)o;0 zJWlv(xIa?XJ=v*5&Dm^dBb#tMy$bC2dMMUf)wk~EPO<%T$MMwYRbwcYXL zd1Xns=oI6Ij$sITG+boFy0K`h=M=~Zp31lY<(NG)h)+?SYpGGRv+lA4u{6OA>0~fl z=tXY;Y@D~O4(+Rf1-YbTH`uL|mM>KtNpas+4WZc6(7nn)osZ%r3tY3FLlMXD_FnfU?ga+<7wB-gS{!Za#(>~BZs{gd&JoOm z%Jwa*Ev`0qf2l#_+85e_=_KdG3vc1#ZfiHzJvc6x+eGU9Zsxu3(xV4 zO@RB_yRml0ak;X9w{t;5(NWx@T@+OmA*wpMhpAv*(Vo!7jWvaTWIxuj2+O0#u;%-C zH#cUhN^O#EKpF~r4>$JRIZ-ZpP-PnUTlq{;nrQi;8(tPeViGOkdwNMJ;3(hqEP4`h zmeWUXpu7bv^7^_n)l9hB94;LF-ME%43kfXjtoc_(<>QuMwR<@F=%pcUm^Vf*OA<>)dYlubuyP)`{2<<& zEJaDdi}eOMnour*GN-s>$kqc`8$RNOHsKr~91AeUXQSzI^0SboHXyX`G&inpF_^b2 z(1p0~@yGHI${zG=6zz;#7Dh`K;?UBm8SYn9JS=ot9_+r%)av?XmKzqBk@4!rzI;u5 zskHLc64DKw z^fmVRuRbLQDI?+OT6!#mC~McVwUypjwa{Iv*5Pkt$tpM2;1}z)W9Abspj)sf!-zl_ zyfm3hK1)i zlZ`?VwBzCBVWRGOH)ehc&U(-Y5IpE7j!S_e2o(DJCG_CrxyvI&cS}Ha%$^`JuKCNO zMK1XpBp(1pl_?_Et~ba(c(VxOWs=i9N^OfA9|Ge8OUPWWKWF86T%X&19%l_Jyt?H0 zd#LgN>OJwY8#|R;P~#ao{lN0Nw918V_WrTKjSEQ(M$2)Ob%Q&I7FYVBM8PIqOUhmo z=rvWa#JsI;oWK4xp0VDrTh}rERsxKj{Lw2yg=;v4_QZ0x%>f$8{Qf?8d4WgV_lE zb;#YQ26+x))>3lVJ&BADI22cd;y!bi8A`;5pGo_daSdmCBR^PChu%Bt9zxfzIT}*y zW9~Bg{rTk|ge!Px`e%NVu zBZG{`iB)IZ`Rd=GbMEo#-@@~fGR|-GQ0(y}PbK#^c1w zAKVY9e-HoYo}>Ql_p`*!84g}>W69`;I#zsFGjja{lv$%Bg*yBSC#~uM^;1Oj%CGK^ z>9?LG>S^eUmjKP{qb{k?=*!^iIuUwB@^xf7TDIiKbFuXIRkWfbRp+|R0if4S*?RQXFk zt@WgeWq-N{8K_k)d`+p#9rwe8C;n9La_=2?nnA|nu&nAHqy8O!SGq+qwMI$Cc;K^gkr_2Tqt(C1f;=Ym?~@^(XVkxULp?LpzYD@WbCtiF|BS#pJv+aG z(={u~^8|hNHO343x_6^IUGcEk*RZ1lV?4Xnzj3ji%?29%6R3|4#^(VB)b{kFte>q7 z#h%)pBuvg5petNR! zV|xE_^h{a^pzo&udhAIJ+A7skX4oaprFzgax0=9N-;(t_zB-%k8A4ejNhN+*hNnJW zKpY8TR%Xh!^53xf9taZueXfBA;>CY!H1fEo|+9!^6c^WO<6z40YOio-|POEDW_J;)O(t zZU>61W?{S)wez&cQTu%PIBR>4RsCDg(Nm)QCH$>T9e#YFj_B0c(@upi?IPL9r6Rg{ z;2H7X20bKS`0wl49t=MI+vq{h69)RVzj_LXSs&TJ6HYO`Jd^0-0XS{5zL%$iLH>;u zU-$N47Ri5$9`Zm{@ZU>)J@*Xs!UJmeQOQs1@jmwe&m6kfN$Z@81JHHfk3rXE4D#gB z{;@#3VUVYzLH@TrFC%cO?luYsbq5h?*QdT%MZMvtg@|V^v@H7(6 z8J-7K(3P259mJ=4{{3!jmK$;B=&^uSdzRKb|^ zTjF_&PFCTL$oES;4;bX%SUMVnYT7RIELGy-{UQ%kl>~|OfdfVq)^swYh!%jG_t~ETOD-YeFGEn*CQD0HRQi6 zqdoFVWl%r=Eg6L6KPLlYzD)+p^B2n?D1WC68s)zxgPi1!EzY{=X+!jmT#6pc>W3*1m(XV14I4}CHA5WYUZz061T{pR=!UL;rSLN_Nokm z^X)PS%l8J=;b@tR*2rgK4Ea`?vCq?sIWy7RG+*`*_YZdtcMW$8cMEq4cL{e0cgJ+* zrYtIZh5Lkig!?03_6GOGbmpPV*7KvV`?y2$Wp8lleD^r{S9Sz<19t*<0e8T3X1pxx zm1SR+KO5xFtN5ADyq3VvPax@}{5d6m{)eCG`Ong``!PUwk!Qar%dnD;?}v(CM!)U% zbZ2Q?hk}xh5^l6VCPmX9lM?EWNkR3;q`dlLQf&P(DZT!f6k>nuHQ53FsN|lEN!cu6 zHu_^y!u>HR=>C}GusLRPYWy)dc>FQhcQPgiQHkutW!0jxJN-b}ul|_qR~eIIs)Re(ACo=pkI63g$3~u1 zVsa3cCHWrdKIT}zrmO=>@;?ax9wq+-V@WOKWUacld{4^S+Me#ioy@zc^FpHjt}8SuBYsS9y5ZIO7Q4M z9J`AkS}Oj5q4|Sf2ZDmF^zA{<@(|Noh^(ikhdA3l1WLBB{8PsO`SYlfZP9to_VXv4 zZSkiZ#2)szQPa-Do>BxoKjYv_C75-DV|SEb?NN`@@H{m?2EXNbT5}98;q#Ps+~YD3 z?L96nG$mAc3Jq?ts>0J-HsJLbLLzMsE=~TmD5`X>#-^s9(pn)Vg&KjCI$ZM%V$EI58oQY7R52T> zVzyMpY^sXcRu!|cDrRd{%;u_?%~UZf*kU$R#cZjH*;Ey?ttw`>p_mnBFBY?R zVs;RUnd8OG@M7k7F|)fE+#V;Zm%c$Uy9UL~>SE?}F*CZD`CQCwE@mzlGn0#%$HmOz zV&-shzGQGQ^S2o6{pPx7d@XhY?hCkvjc?Y&8+%+{mEIO8@K z-*(&6AF&%skaGu9-SxEKj;C8Ksdw@pYJi_JO=w-Rw*eInEWs_KJ~blMX04~&cYtI) z<^09L^M82;D#b1}L9ug9X&8!G|MtWnkMVERzMdv1!KS~lMzWr6{*Bt#(}Q=>+V%AO zUC&^pe0nRCuhW{0^-=B5|ErOx*I4f!+OnQzDZ$QrnAEMO-|k7=mTul*_+9G-X3KeR z&nRxe!gfIQdH4J1+b+Q6GvJH0xzlUn8-~f=5EPwj@D4(--{75$AiainAcFiF-oXgo zuHnr_aI1#5AA$#KdUF-(tPcX^%AU0Tt_N=t*7RloT3OR8o7W=9I}$-rkaskKQ$b#p zkF6d;k@Nj!uP0H~o*>-09vu`ymnQ`InK?e#D;whq_CAc@&tUHarMfo;qU_s)Xl{zP zq17G~N$WzqvB>dqh_^3-UqWQFscWcr8UkOacZAaL{kbT%e%O6fZ@RZF<%D}f!p-@L zJfbmSOrR~y`>0aMrV+?pIFg1$d7F{(ZfJxokqm?r!kH>}IJfUYIG4+gUNNJ#cMkdr@^iDP4Lb@5R&K}h2Y^tZ#M+?M6VpR=M$OxEt9;Xm5wT34NB<6`zUV_ zTIWkx--_-gaKkPqao0SQ?Cp+%&m}XbKTGxwK`c3i$IJ`_O4}pNK=Zv-X;4;VxREj& zV*~15iZ=||!%~^(yi^`kucdNV{FTZ~8J6blfh;9yEZASCu^=@~XIWd2&gG7!d&eP5 z(+qDH1XDA-y%229(CWVTD(YUpiE^^glk5Hp$DOjU2y7swu)KB4^!8DjI&3rYHQRb0 z6&~^?kTEGJp2}NC1mm+Z-dH8alr6~7>9zZ;BfU+jFw=|0xO(0?3asC2fTf`HgG0Rd z(C`ZpVRiMPCADVft@ydL6B54?*nN%~k^fiKl?T+6{qaE??IH#(wj#6)g*K6;5(=S^ zvU|4dh7d!F&_dtm@!Z?UQkKei2C2z1*~v1-Rx&e|VJw*$`|$hR@9CA_Kb`J5-+eph zo_pUt3J~6b9@U^hO(5)P$(k6pl0pU5k9oklegISlBToW`r`ed)ofi%UW~5oNF!h6J%2l17UKZqKG@bej^!B+_<#*jcO1Tf#oCk zv*4%**OyMF4Qc&^G*gn>vda#)VPDm0tIwCDV*nphME5%&PF||;(?*BsY51{d8xEG7 zwj3po+H#b*I&qXNabmH~I58<}XFaLrr6BdHRFDdYPy1S*OGljbKK=VNK+c~N@nqG^ z48MD^F*Bus?b)Xz+eyQPWuBY`T+unDPI^$Bms$N9Q-5wJMF^Ou=K*u#0xh>!^0%EC zejAabNbbyv?rYB`eA%8O+Si3+bAt<4r-v?_P~IJ+AYs?Wzkt-UU%#TN!HAH6EwF<7 zZOC=G1Iu-z1BY~nj#2<3bXrHw%0nHw92s}waunH#OWd|j(ojJ%Sy``-s{D$UPefc< z<>7p+H_3h-B}s-v89=-vVg zPvKQCHhhAKByt=aFNnM%S$*wH2aW}o@WDaVH7NAz0-)3azXw|UB zRGMx~tg;&ubMG#N3n>m*18-HsIylz^Qsj4+Od;g4?i_TVyR*lFy*X=Ay*V^~@#f@d z<0HiaGSP>l=T{%eN6@or0eYA4Bqi_2~svgTB>Tg$3eS;;0ZDkm+d8iS;s&iFo(c=f6u3;Ex3XUX3E3 zud8oo+AFxGs?w$2(oiArlVAWI521j;s5y?CZCdEpo{Rdhb&mJZFD#7*0J35LRZf*$ zDL)cF#ZI_nV@iI_I1?uHWeM{7>Q{Je!T|mO&l;`Up#qf*#vB#UPihK{Bm1#CxAtRq zKJLdU`y{sOaL9x!j`X_ z$S9_RxQQCXC2jX0{Zw;n2{6wrrLYj_85brs`Tu$S;Zh72_=!9J-Kexq!ocq(ws4|>`?Qu9S%{&M5 z)RQupS6>eXvm3h&;roM4L!@ZIFEJUkBG*vQu81$IuEr*KZYniK6!aa+>+6bAw>!7ZX1AYnkumK)9fuM?oJbs7$O-9fcB{Xc$H4!LqVPa>F$HDsH?4Mi1c^%hs1g}p=j^LQwHiG^9cm$8RN9t?iLm6y}vg%Nb z4b~~ek-YxC5y^pQ7o}gfm2U^s_3Y}3S611uDM?W*$nGd+{Z|yvx1C1v)vS@s<;X~` zKMh9lB3ddh4G*?=WXlVirNYUJRKU#_vk=3ja?3*0}`z2B* z$~Va{$u!GoLGl9+7 zTN9)XWA#9-PXnm+nL6aS5XMjayO{;uGi`29snNW~csiEt>@|*W2R4sW*7}*_xv&3t z?%O|}*Z++ta6FBj!1su!CrFbanfpYZW9ChiMhTJJeg!wTn|LCdqhAzvtlPqoWR+wr zAbQ*cL`%GFh|FzAsjXXB)Ce6vNs0l{@=4No5jVZ=0=7-LQp|iPFR6tg6;I*d-ZWWK zLCz`C3<21u5`fP4MSYB$nSn#+lUf+jPg7XOQow<(r%IZQX19uS;DbsbK@+F)*e_GL zv)wdFB`Eqo1x5eAXqLj-%HGb9KD*i3vDE~?z`p?C{!Ee0k1Chi8PKvB%q?O%6E2y~ zgxzLv{w2=ftAA&(2$N^>{82npnhp^<#!0i#Y>VUi`6^DDimT{Z(o8g$W^re$+1$B) zHg|rS&FDktF#3r(jNWA~$NA#9QZ(>x&t>2F&0|j{&Eu=5^Q4Kw2@}ogex(Y+yOp#0 zB2!X3I2hGdp{?^dem~8ZCJ5juRsimAT~}H7;NEt!L*rWD`~{o{jTTCiz%_m$vpc#X%UGCW%h);22`D64q)L#6 zn=6l;RKI$F_8a`_P{eILr;cQv-3sTI?2+(wx*eFvotI-`%A)w?Qmp9s4gU$``~XF; zo^@$?p%V0yT6t85bQVb~q;U*xaxoAXxU0BO7vH(l;)!&VioE^7HL;WVWR)lDioP4@=cV631$sPfmvZR`?pEvYRUc! zHsy)ZV1d?UHSCo|%U4U0qT`qS`Wi=hHYmt1AW34nsP<^nL zZS9?+x3!#t7|NnQQ=|w15x7o@7RL8m0fuEO>MC=56AJTlvZFAsjRs#R{9+waFpK)G zM^t7}&U(Z{7QJ0xEinzRw&Di2#4FA)>h%W<1JH3#S*2ReK=DXCdae6vE*^D_ko%(1H zCydwdBJiRw15a@bb7H)hPcHazu?G7x3^wC3z-E9viXDSl(ysO$Y^rS!(YL_j>7?C) z#X&mV7gw%ZS@mzXqFATX#jUs>U}EtPLCo%Hwbfs4mAK>+u?C|7*^(2LUENq;ulP!`%f@uMl2Wo!09R5)HWo9CxZMGW z9**@y^jST1bEcFXC@(8%(+(`fR#MdtDGtrpozgTkmv^#QuDdYnuB5D8*t%3x#V!z4 zllyK2h?>^!MrBdc_1)a*lmio~DJ};lQq##CDaKrRvp{v*4}2d6)DxNEzR1I#J}&Yw zC&%~OOaQnzm*FqvLIyRt>_M_H+Li%8bBL%GHz1^*J!ubnh*<@Ir}v<`GN4-o08htK zLZReB`G>#J@Aax_`d-*sO~re0Ypf=VeMm0Gh>Qfr^B5{C6&Mz@`8qZ%)O2(oJc$EM z_9MU;vTz(ATaT}&>=$VWMa#qyCBYAVW?A_UirSwLShr=G~8%6zFgy_nF&uqH#* zG^PM|w=7}hT)+k{pq@X2mE*)NxCcG(MQvi3*ad)TvbfpuK={xux}#Esbi0&E9~h`wv(wsHy7@ShK1r{s-I;FzKrafN#8_o|r)r8hY7M%qmY4 za_s17P-`H|gSaDQcZ#9ZXr#k-wVK}P*tC5QA=A{f^$-dg^Ksq?#5I}Ke8NV1b!=3< z*UQ7ZGcg>kfmTYr!*B<@_9j^irq2k2VHyfQBzcj8+DpF%SCh$Mq>P#-9Y!frQ{iFU zD5|OH5zL@!nt24%o|-Nn;gEDZip^&=Ejr4PdG087mzlAg3)E3R5v&7pA8(XvS z%hqXy$Wt}VE9A5*E7XVQfB67ks6(JA>!PwxU7czAG1MzHEjz|JdF2>mbS&aToma&1 zcB+VFXk5%P%q(W1FBM}^iE}`I!t)*$rQ{T7Qz>08k~}HKrF(swFD;}i#ptWEn(RxM$;=XFa<&AuQB94Gvt=e9*XQo$DT* z9BalWxSoWc&}-ZD27njegjbXupOWp~O~`GSx5*c2@!|yLMwUM4Hek2jt&U5;w)_Gt z^(2SG!;@@%uT!`sSJQ@5Y@CWy95`M-V;_Vm**^uPte4fH0!moDP4+ROG1Gi%L-Nkg zjOd9b>Z+i+j%d+)5%OzpMS@vJ0xN3Kfuf9FU^|9m}8_w!HLykDlV>#z}?B#hL z3%I~zNf&tRmbhwpQD0^p91JkUwKAaPMYypJ=;4n&Qmk&PLIQvm|6YH*a>1MBy<8!z8fvS2AqJf9(J|#_grS! zkC!>>L&`Wuv&uM4o|JL!_+F7b&6Ky{RHeS4gVzf1^tdU>{sE0Bpml&r_4*;64qt)h z@$~r$f;*muT*Zu^M@d&>c{JiWqA`#5U&ks$ zdEHKRITY+%BMn4N4T$a4lrB&1Sv~XRQIB7+L}EaHyn?8@jPG&s!nDl0S2HTU)6;~) z-fc4x5O$*g@p`NQ9zLNyc=vLq=kM{lLmsucA^8cAd*cAIb+Q4aHdAVyU7#hIPv}*% zH=Rd0H=tJ@{dWUvmptbDZLD+#5c1E`QO2cHji%o%HU0J zvc@qtF<&uOi`l?RpH1Nk))>1$Lw#A{(R^ie`U1sc*xBxbZ+zYJ3Dn0pnBQVErrpA7 zDvvJTg5C4T_BP9>y3Gu8ZZpHG+YH(F4tK7)!&kTO;LbIV?CxS)Hjk#X9C}@W`-2?vx`&;v99nP>=s8q$ z4~%l?<2{hhp`c10OBT(!N*=3!AKY^&^ge{op*8oJ%DMYu>^Hs&{*A|0i>uSWF+zji znOOhd8D#D6jBxIEhBWzuuloJLW2?ng=^t2n=8(w)?hJasS8EmBW z@ZD{2_~nk^VCB-sjAphAHm*+0918zS57@69fSW6nsKd9e8u!ER<^}{C=|hjD&8Yy$ zhkLcOEP@9I4++vgQOF_dXDmzjGZt{;Gsy$*$(25ne9ieS;?;iu-{YkLRko9H-|CXw znA|@~4FMDO93hfSna@#t88r1FK)XINpaOF}=*yQO`Y=x>_ZPTzVaOMc0O|Lq0j0fz z;2>&6p~D9>tJW}?&b~kjB$L%k)URZk^b%p7OvhfLt|XIT6_15hAtaMYU4@lUGCiom zW0z!V`3mc}WSaO2cVfwuE3RIMrpw>Rr({a{n~9bGjafLEoc}?gOs0ANz!Ayx<3Grf zWHR{|>5)uP|1zVje=)}=(_jC>|1A8@4-nq-BPIMJIgr$>zcp1 z3AE}R3Me|?L7D{W^d39n3AFY-ZYvU~;yvb(1oHZTIX;0le1M%2=-~%xlpyYF0pd?A zDD|D>O*lWS0i{~XMgZCT5&9<3qmPW>{~r@e`ws;mfnNTHnU-aHZv*sYjSOk|U^p@^ zIur+(QYcPVZX=rjaN8$l{`!+N+LYmU*aChCReh9vsiLr!+n&$xQ3AdB43j5p3YEj~ zS1ZFRo8HUgF)*f%93cd5)*2KRwx)tm9Mf#|IMkkc%p71rc?K-Cd0lxVz^By3XDSk? zxUL+6rhYwn5Sqw(Jf^G1V+{ofcN^;tr%28tahqX7%^wt=j;Gt5+0JigOZ{>E5&(OmUU z59}G?8!kAWy)mt`hV{2o3o|(!%?vX+6iuO-JP=I-b9peD(dKeLG&{`Y{%ESqVW{oo zYXL)TrxXkD-%gJ$B0XpV3nr3BQ@J;q`Ay{k0&7YXu;NEkOJ~K!;#_ZYKv;YYQzug7 z*KlAW<$Wy=HD%^`F@SGN2~Baf5su*&c_>JE#$sqgEZy%8QaDQ6u4W~lNZMwsQdKi} z4mXv}VFPqFM*=0%^X4#aA_cc#5N!)){8(K1+A%_k9fLfwV-O#EMkjkle{3&*Q>TEM zJ0N@tXtDzYE}&x3G;)-q%?cEw+0BP=MR;}Xg9Pi;oCF;ZAR7a`%ux;(aBCL;?!f{o z^Mhk?9Cd5q(*j!95|%5VqLv7y0y1qS2MdItML_s|k)pMua&EH&M&(xW5HY%DF-EQ8 z1v!jjara!Z0Z2$|gn0pNZjBHrptr4|N&yA8;ZAiMWK;n?Ys0L3+R8m~wWKZVQb1?g z%6-vTI>8_Xq;f(;LntSC1R7gs#B2e@II|`8IU|?~=wD}++q)eTOKOKOD4^@@7^G!; zz1lmpkaNg3p@m~R{E$5L?hs6o|KimPShGDdHFSY93Mj&bX=J$|H45mR3yToifi=)} zkcXMF!PjMjq7PZR$exta0%=%4y*nbx3utvm#=q8)~E zgH{OO0y^A@MK*Mm2MX{#`2hDTz>6?2{LA|hDCtV57tk(OrvJCA9E2-hH&%R&8=Ll) z8$zdmJl$F7BzHD+xwvxoU@InjAngk1j)&X_P0Mc>FYX(*e&ILrFu{GsPvBm!1h2Is z*p>5IDXg<>3xr9X*${_2GnEEi*kn;%I4bkIFtN{F|AWC2~hn95SoT=HU#T69G+6i{4Owo6f0j*`z^*;9SHu@Kaa)qK*85xRAk z`wO;1%fR+P8Py2@Tbw-Fl;VP93lO`}oz-mV%?LBS<-r1B`&A(PcU5Fh&EcXH-5CYE zfE;`{h?n}vk+{0)!*Sv6E04z2dS8^n0(#)f*6iTN23X|BY<~7*t2FoLPL)4H9`~2S z1kIMYcS)j4ThgG=t(dmgobdlUo=+z?63Bf27Yw z&^)0}loR3n#G0p}8Fah9JQ-91Lz&UeP!|4EDD#UNz>Izz0260W{ej#$VW2$PoE6(r z*9g0L^^7u&u?pj(2TOj5YEr#O&cFdRtk8x*ELhbb#6t!Jg~?F@d$=*M3yh6umZ2UU zCl^`+=5rVVDT5-yvDnF=!f@2a46+@}+Rht{sLY_tgXJk`x)0$_^$-^R!w`9xpuNBx zw2iE=wrK>~d@P_mRBj54BSTq<#u4%uVV`Z50DWso9#OIfrEVOlf88d7$|7VHFnoq# zYR{l8!&sZo!`RmYhqIk_issXB7Gv}XhAbL^RLP*`ku3N8NR%N69LefCMRDiyDA^uA z;E|)`j%Y4M$?ed*7LCJ5*#%c2BjrwL7LJth8y}KJVpb%&I#R~3)~UfL*$Yk2Q3zY2 zMWf{IXbz5&J_KUxk{5Jt;B z0wK*02y^`@cA?yeaFiWB?21$82&c}O(wJyu3elu!BtFr;Xyg~s`)Ev?%quVesGkBT zU_MYs{k9o*gkxk=fGi#(LB>V%I;_?Vr6eMUyqgj(Torcjb%0NjK$ImOT%%D5I&9}Q^v{oojaWqjmdbv z>N}ptmW$@tcqaBiTzO59@p%cFJ%R0EdBfy2WrRnWETB zIhRd2DolT)O>}D_t7$cfmG+y&I?R~FZjvX-Jq4A!QJ^w*B)LvTf?C}h)3`c;aA4GA zw%z#2GF}-Z&14qs#$@)k)fA@PPc%zKqnpAed@==VULso+>lvplr+!jE+r^)`+icC@z znM_&pK&dD@2IklrV@~$7F^vi^Rsr~!nd@sFr4fyt&LVG_ zjSp}nM3y{gMi-*oVAT3vl`Tz|H2Foug^1B}OpZhtQii2I)47Lm_S!i%Ib$s{=QE(md=5v?`5Zvg z=5ti-p3lbpZNBUwurI9z_Rti(qzdCIhcW5-3|k;~5+Ek)0J2FIk+b{USaZr>z#I-Q z;1GYZfc3Cj$d((nke#_@A)ERh8bQT+L{)yj?_1$M)kJ*4)+* ztp^kcU0y8r62MJ%0$8_`Jmx?+0Nc_>r}6ryT|}efu{0&hiRXO#B_1naBD*DQ%Hc~; z)U}kb1mUBl!%G0EC4;44prt-bA)=O6i>otBu{hL{^)flYT=~_YD&ZiwTIh`MLJGdd zRePwV2k_TOb zL?$=rN+OQ&t@PMZ`$CMCuB}1>X~`mynS>+w8^*|$%| z0$xi?ljT5R#JbNwby<}WUVFeK8@Fh(UFI6*Z?c9>G-M6iZOa#!KrlJ|NBS-l?1PgeXv3u8R|7yuTO|Qrg9YHoY&yFqBX~L2O&*G;zR4O@eBvAcG_4c?Kty(?-^K z?nahSw~=l9b|WhhxCu*TEoE+E*IwPk#%z+wG7ZnfdR9w0nYdMD6SW@!z851YD;Iom zmPeD?*!YIn3QLJuT_CxiKyeuh6dEh6`n=OjafSyCQnNuvs9DZUYLq@LT~f11UvK8* z8M&EFA#KK_p{4T8oEg>{HpOs_>@DaonFad0z7uwJe-vj&Wf~5wn;N#A;})hlbqnjh zcMCS7v}Cgtt5PjZ-OBnEZN=R!>lZj5#Ioj7SPJxWaEt3ytDj2C!E;2*KCicp#R%TU zF_gKDdEDQ|R%D}w`|;WLY*44|EK2lt)-!)Q z+n{Q@+)E_okz6ouw8xmTmLVzmm;RoS>a7ZPHGCEm?XD3=S5P#|9|3zwcc8T6>!AlDi3`Pb~q^=JO&#_UFxQM$2|_ za3t+wj^}ot$4vC^UwVSPLk;9N-Ijn9{4tu^VhY_rES*Y+_j_gcvbt4zI zuE^&-3^HjCBjkzZ%^ptO{(ISf>-RGE^Lyns_*%fry_hU@)OsJ1Tu0HO*}M-T>FC#e zFujg!_GA61qu%@B0Ua$7&7u7~_G&+-JRNn+!?ICFqw=_sWDUe!@W0c@|MP6yy69W6Qlzv!s=0KBB5 z{|+$Q?mys8Nk`*N1}QoW z0dwi`Vc_LbnXDEQ%X4M!nhE)^d|(aEI-g$&uhkUP^0 zk&U@jUMTl5Q$DPsa`MKfYxa6mk0QA#xy@VLjAD)=b{>OBx%BiHmKV9y zr3fPB(!wIRKbH!Nm|wkOxHy-37W3GuV(z?H%pg`j$*%ZxM30|fmuy=26NJyEqdx%w z-;)rHR|zD`rX?jn$flAKu+65=C7_Z`{f87Jfx;>+5uC9<&?8$1kSog*nv z8LRoEHd&rPqGi*%Q%v~UDR?1;KAl2Dq>$IoV3R`ge}-{VsPJbwfL=C}4Kqto;8SQ| zDK;xoD8Cdsq|n<^D4jyyr=dd%Ej-OvM^7{6=hKK!Ae>=x>(Ai!K7}5f0ml^Ta27L* z@_`%GiX{-R-BOCZ1|KP3o+f)oZ9^(Pi&~ySrDu_@DP(&Nk()xH=MXz7wD}xzQ9~Eb z!KfOtJdZsE4b40c`Wh-d52hMwd;zJfp(z)DprJz-;5`k!zko%7h9WLvzd=L$FG3#; zeY`05HB&yWqZ*V9Ng~&h)fH^9h1o1Op}Wl!+Em|bYAEXx!@s!1eEMF76Ew8pGIpjk z^v`8%1L4K1GAw>Hw6hGG9U3ycf?W;`jk|(*7BXC6gwIzPVfb?z*`jzH2-`(H4(X=wQ` zjBxE2X6tkVVWpwzH&~YQH(2;qzoL$4XyLEezthm!U*RqdS=?l^OuETx>Ta?s4Q??) z>@Bux{w=s!L(gxq;XQ6M>4mou2^uQ7jc{a*^0J|k>khhd79M?h1s^o_xg&oKkcc~s zr@q4om1r6^PvRr1`8%QvP_Z08j%Y1CarsD>uoWleY8MIvaZ>Mo*3LtV>R z;`nkl#_4ia-=>1EqAQU7Om;v4$SyuW;g=Q5&RJnb_`q+?-LHn8Rj`3w?=j7}_t-y0 z_gE=|N|rISk{P8{GWR=`2u2NcxG&E^Bi)x5qiOyd_TXUk-`F%i{l)=j_B&!;L!rO3 z*|z-7r2qJx<#hjpIV|`Co6{_(`X|V_tAspm$WE01P&Ovzi?}swIt?{=!0d-UV41dx ztA`Jmw&z10TlSFoUU(>X^{e^d$Yk%y-fU7;D84qLN-9-8Ig+M?dN+K%qjt3Y;hNDb z3V0;j;YH$Tr8!9PO0$wQN~5O3Xhzn&cvMTEbzuzwep%*94}&krr`L|=D9jJz8GJ47 z;A1toc)#E=_$1IkrP)r?lqQkZC`|$FMl+IkRox#NenDWG8*UVYZo3rnyJNNG|?tu#pDKXE^?=SQn2a+5lBmQcH= z*rb%H-%~6RWSaI=p4exDBEqaPldlpts>b3&So}d6RbTvvj^A#eV~GOsqv*IWus$}v zl@7=L^%V%)K}rWT`3pNod&uuE*}vCOL-FA+g>q_&+1z<^XU?7yJI!^@{7D;uQS^Vq q#<6iz^dp7(5i0siZdU(T&1EGn&Hh6)sNN`lzB>J*(KC6p!T$g|s=K`a diff --git a/v0.13.1/.doctrees/glossary/index.doctree b/v0.13.1/.doctrees/glossary/index.doctree index 94d3fd134f3412fe054fe783023a31e36eb5479e..3c497f6cef2e821a8d99accbebbfa150dbc6c776 100644 GIT binary patch delta 21 ccmew-{ZD#>KO;wlp}AR!SxL#}aK`0409&I6p#T5? delta 21 ccmew-{ZD#>KO={6MRJyDfkFP}aK`0409^qGwEzGB diff --git a/v0.13.1/.doctrees/index.doctree b/v0.13.1/.doctrees/index.doctree index 3ac597be0691ddd5a1e113a339e2f4dc122c6d00..27b25147221352aa6fd0a29e4f58c90514dd5bde 100644 GIT binary patch delta 21 ccmaEt@-AhACnHCNp}AR!SxL#}Kt@?Z0Ai8{q5uE@ delta 21 ccmaEt@-AhACnJY(MRJyDfkFP}Kt@?Z0Auh6wg3PC diff --git a/v0.13.1/.doctrees/tutorial/index.doctree b/v0.13.1/.doctrees/tutorial/index.doctree index b615122062792c8a992cdbd592d8044b9719ad5f..75c758d6b0eba9cfea4888bdd771b72fbe5a6013 100644 GIT binary patch delta 21 ccmca4bxCSNAR|YGp}AR!SxL#}NXDPs099xQoB#j- delta 21 ccmca4bxCSNAR~uyMRJyDfkFP}NXDPs09M8aumAu6 diff --git a/v0.13.1/.doctrees/tutorial/intro.doctree b/v0.13.1/.doctrees/tutorial/intro.doctree index 690ed61886627ffa48cb19bee9517a90810436eb..3a36a1b44f8ca58b14af2771467cef62825b22f2 100644 GIT binary patch delta 21 ccmbOeIVW<15F|iMRJyDfkFOeDaIyk08#b^?EnA( diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/basic-types.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/basic-types.doctree index e241ff6f4a011b9fe51e08862067dd20473b7c66..c1005871492f1972c33326ac822c4bc98006ad30 100644 GIT binary patch delta 23 ecmZ4fn{oMX#trU_92JJIm8Z diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/entity-linking.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/entity-linking.doctree index 4f8f6045a820c0f521f94f67f98dec26241df84b..14c35c734e6e7a265265a33071f7650934b967ff 100644 GIT binary patch delta 21 ccmeA#=r7n%%*at;Xl_I&MB%*at;Xl_Z@VgLXD delta 21 ccmeAQ>I&MB%*bI}k(^~(V35B#n{mE6092+2b^rhX diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree index ce922ff767ba10023311b1347c8337ae8c443366..3c31f30073c345b1c7bc33bc2b875ab2e4f548f6 100644 GIT binary patch delta 21 ccmX?San52xE+a>Up}AR!SxL#}QpTH709!i;_W%F@ delta 21 ccmX?San52xE+dC=MRJyDfkFP}QpTH709=^}3jhEB diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/index.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/index.doctree index 7f6cdc1f3a841b60a0258f385cbb0803855a646b..21dec6e645bc6d4f72e689ed015bb320f6a6313a 100644 GIT binary patch delta 21 ccmdlWvq5Gy diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree index 21f5f40dbafd1057d34f909d74d8204fffa603b9..72fbd6bfa58f825bdb31ab4a4d7f417620181f81 100644 GIT binary patch delta 23 ecmZpg%iJ`Vc|$ZKM}?ueS&3Om$>wB6`Lh6E1PBBG delta 23 ecmZpg%iJ`Vc|$ZKhjB%6mT7@O{^n#x`Lh6FVh9)j diff --git a/v0.13.1/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree b/v0.13.1/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree index 78cc765a0c849be46a80c75927720306ea73f4ac..85118d2e91921f1abd3da8de877a509023451369 100644 GIT binary patch delta 21 ccmaD?@UCD(EF(vSp}AR!SxL#}R7Os70Ay_J(&B#$_08E4i@c;k- delta 21 ccmeB`>y_J(&B$R~k(^~(V35DLm~j>_08Qct1poj5 diff --git a/v0.13.1/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree b/v0.13.1/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree index 03dd92f566e2bbe5dfd3963c5d7fbe1eb8b16a99..aaaf5372f66f8bd8b001556caee2c530aa2a8bd0 100644 GIT binary patch delta 23 fcmbRFoN4BBrVY7_92JJw}U*%|LVV%>ZVi2%7)^ delta 22 dcmZpD$<+FiX+td|hjB%6mT7@O{^C}~%>ZZY2(JJD diff --git a/v0.13.1/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree b/v0.13.1/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree index 26b0d68c6b7dd0728755e9cc3fb57e622bfa9829..35c11a3e66c2a85ae2b98600381967e8abede3c6 100644 GIT binary patch delta 23 fcmX?khVkSX#tp@c92JJ3Mp}AR!SxL#}LPjSg09VHcNB{r; delta 21 ccmdn&zS(_4CL@P&MRJyDfkFP}LPjSg09hpmTmS$7 diff --git a/v0.13.1/.doctrees/tutorial/tutorial-training/index.doctree b/v0.13.1/.doctrees/tutorial/tutorial-training/index.doctree index c1de4db832f3c5a0f6de7c89e9169928bb1933c3..99141ec21eebe1936af4a56bbe4587235a8b0ecb 100644 GIT binary patch delta 21 ccmX>reO7uyDI-UPp}AR!SxL#}TE+k#09Hi@Gynhq delta 21 ccmX>reO7uyDIjdq#FcCL>3Mp}AR!SxL#}LdIxb09B9&DgXcg delta 21 ccmX>jdq#FcCL@P&MRJyDfkFP}LdIxb09Nh?J^%m!