-
Notifications
You must be signed in to change notification settings - Fork 37
/
run_android.py
executable file
·133 lines (106 loc) · 3.8 KB
/
run_android.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding: utf-8
import os
import sys
import subprocess
import time
import random
from PIL import Image
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
SCALE = 1.02
class CNNEncoder(nn.Module):
"""docstring for ClassName"""
def __init__(self):
super(CNNEncoder, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,64,kernel_size=3,padding=0),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer2 = nn.Sequential(
nn.Conv2d(64,64,kernel_size=3,padding=0),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer3 = nn.Sequential(
nn.Conv2d(64,64,kernel_size=3,padding=0),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer4 = nn.Sequential(
nn.Conv2d(64,64,kernel_size=3,padding=0),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer5 = nn.Sequential(
nn.Conv2d(64,64,kernel_size=3,padding=0),
nn.BatchNorm2d(64, momentum=1, affine=True),
nn.ReLU(),
nn.MaxPool2d(2))
self.layer6 = nn.Linear(1600,1)
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = out.view(out.size(0),-1)
out = self.layer6(out)
return out # 64
def pull_screenshot(name="autojump.png"):
process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
screenshot = process.stdout.read()
f = open(name, 'wb')
f.write(screenshot)
f.close()
def preprocess(image):
w, h = image.size
top = (h - w)/2
image = image.crop((0,top,w,w+top))
image = image.convert('RGB')
image = image.resize((224,224), resample=Image.LANCZOS)
normalize = transforms.Normalize(mean=[0.92206, 0.92206, 0.92206], std=[0.08426, 0.08426, 0.08426])
transform = transforms.Compose([transforms.ToTensor(),normalize])
image = transform(image)
return image
def set_button_position(im):
global swipe_x1, swipe_y1, swipe_x2, swipe_y2
w, h = im.size
print(w,h)
left = int(w / 2)
top = int(1584 * (h / 1920.0))
left = int(random.uniform(left-50, left+50))
top = int(random.uniform(top-10, top+10))
swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(press_time):
press_time = int(press_time*SCALE)
cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
x1=swipe_x1,
y1=swipe_y1,
x2=swipe_x2,
y2=swipe_y2,
duration=press_time
)
os.system(cmd)
def main():
# init conv net
net = CNNEncoder()
if os.path.exists("./model.pkl"):
net.load_state_dict(torch.load("./model.pkl",map_location=lambda storage, loc: storage))
print("load model")
net.eval()
print("load ok")
while True:
pull_screenshot("autojump.png") # obtain screen and save it to autojump.png
image = Image.open('./autojump.png')
set_button_position(image)
image = preprocess(image)
image = Variable(image.unsqueeze(0))
press_time = net(image).data[0].numpy()
print(press_time)
jump(press_time)
time.sleep(random.uniform(1.5, 2))
if __name__ == '__main__':
main()