-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathFLBEIA_Checking_inputs.Rmd
382 lines (271 loc) · 13.1 KB
/
FLBEIA_Checking_inputs.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
---
title: "Checking FLBEIA inputs"
# author: "Sonia Sanchez and FLBEIA team"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
github_document:
mathjax: TRUE
pdf_document:
fig_width: 6
fig_height: 4
toc: yes
tags: [FLBEIA inputs]
license: Creative Commons Attribution-ShareAlike 4.0 International Public License
bibliography: bibliography.bib
---
```{r, ini, echo=FALSE, results='hide', message=FALSE, warning=FALSE}
# This chunk set the document environment, so it is hidden
library(knitr)
knitr::opts_chunk$set(fig.align="center",
message=FALSE, warning=FALSE, echo=TRUE, cache=FALSE)
options(width=50)
set.seed(1423)
```
```{r echo=FALSE, out.width='20%'}
include_graphics('images/FLBEIA_logo.png')
```
# Aim
**FLBEIA** [@garcia2017] provides a battery of tutorials for learning how to use this software.
This <!-- is the thirth --> tutorial of **FLBEIA** <!-- and it --> is a practical guide about how to
check if **FLBEIA** inputs have been correctly defined.
In this tutorial the functions available for checking input objects of
`FLBEIA` function are presented.
It is recommemded to use these functions prior to do the call to the `FLBEIA` function,
in order to avoid some common errors.
The procedure to create the objects used to run the simulation is described in the **FLBEIA**
manual.
This manual can be downloaded from [GitHub](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf),
within the 'doc' folder of the package installation or typing `help(package = FLBEIA)`
in the R console.
For details on these objects, see [FLBEIA manual, Section 5.2](https://github.com/flr/FLBEIA/blob/master/vignettes/FLBEIA_manual.pdf),
see tutorial on
[FLBEIA - Simple example](http://www.flr-project.org/doc/FLBEIA_A_Simple_Example.html)
or type `?FLBEIA` in the R console.
Nevertheless, it is not neccesary to create the objects to set the simulation because the
datasets `one`, `oneIt` and `multi`, available in FLBEIA package will be used.
To see all the datasets available in the **FLBEIA** package:
```{r, eval=FALSE}
data(package="FLBEIA")
```
# Required packages to run this tutorial
To follow this tutorial you should have installed the following packages:
- FLR: [FLCore](http://www.flr-project.org/FLCore/), [FLFleet](http://www.flr-project.org/FLFleet/)
```{r, eval=FALSE}
install.packages( c("FLCore", "FLFleet", "FLBEIA"),
repos="http://flr-project.org/R")
```
It has to be noted that packages `FLCore`, `FLFleet` and `FLBEIA` have to be installed in this exact order, as alternative orders can cause some problems.
Load all thenecessary packages.
```{r, pkgs, results = "hide"}
library(FLBEIA)
```
# Checking functions
In order to avoid commonly occurring mistakes when conditioning FLBEIA, several functions have been created for checking
the input objects of the `FLBEIA` function.
There are two types of functions to run the checkings. On the one hand, there are specific
functions for some of the input objects of the `FLBEIA` function (e.g. `checkBiols`).
And on the other hand, a function that allows checking all the input objects at the same time
(`checkFLBEIAData`).
## Checking specific input objects one by one:
Available functions for checking an specific input object:
* `checkBiols` : for checking biols argument of FLBEIA function (of class `FLBiols`).
* `checkFleets` : for checking fleets argument of FLBEIA function
(of class `FLFleetsExt`).
* `checkSRs` : for checking SRs argument of FLBEIA function
(list of `FLSRsim` objects).
* `checkBDs` : for checking BDs argument of FLBEIA function
(list of `FLBDsim` objects).
* `checkAdvice` : for checking advice argument of FLBEIA function
(of class `list` with two `FLQuant` elements, TAC and quota.share).
* `checkObsctrl`: for checking obs.ctrl argument of FLBEIA function (of class `list`).
Let's see some examples with the FBLEIA datasets. Firstly, we need to load the datasets.
```{r echo=TRUE, eval=TRUE}
rm(list=ls()) # empty the workspace
data(one) # load the datasets
data(oneIt)
data(multi)
```
In each of the following subsections, the different arguments of the FLBEIA function will be
checked.
### biols (`FLBiols`)
FLBEIA data objects `oneBio`, `oneItBio` and `multiBio` should pass the
checkings.
```{r echo=TRUE}
checkBiols(oneBio)
checkBiols(oneItBio)
checkBiols(multiBio)
```
They do, so let's see some examples with incorrect input data.
```{r echo=TRUE, eval=FALSE}
obj1 <- obj2 <- oneBio
mat(obj1$stk1)[1,1,] <- -0.5 # mat < 0
checkBiols(obj1) # returns an error
mat(obj2$stk1)[1,1,] <- 5 # mat > 1
checkBiols(obj2) # returns an error
```
### fleets (`FLFleetsExt`)
We are going now to check if `oneFl`, `oneItFl` and `multiFl` pass the checkings.
```{r echo=TRUE, warning=TRUE}
checkFleets(oneFl)
checkFleets(oneItFl)
checkFleets(multiFl)
```
In this case `multiFl` passess the checkings, but it returns a warning because
there are `NA` values for capacity in some years.
As if we do not fix the effort in the projection, then always an effort threshold is required
(the capacity).
So if you include an additonal argument in the call to the function (`ctrl` argument,
which corresponds to the fleets.ctrl object), then the function checks which is you effort
function in reality and will return an error only if the effort function is different to
fixed effort.
```{r echo=TRUE, eval=FALSE}
checkFleets(multiFl, ctrl = multiFlC) # returns an error
```
In this case we get an error because we have `NA` values for capacity in some of the initial years.
However, if we restrict to the projection period, the object will pass the check.
```{r echo=TRUE}
sim.years <- as.numeric(multiMainC$sim.years)
checkFleets( window(multiFl, start = sim.years[1]-1, end = sim.years[2]),
ctrl = multiFlC)
```
We are going to see some examples with incorrect data that makes the function return an error:
```{r echo=TRUE, eval=FALSE}
obj1 <- obj2 <- obj3 <- obj4 <- multiFl
obj1$fl1@effort[,ac(1990),,1,]
obj1$fl1@metiers$met1@effshare[,ac(1990),,1,] <- NA # sum != 1, but effort = 0
checkFleets(obj1) # pass the check
obj1$fl1@effort[,ac(1999),,1,]
obj1$fl1@metiers$met1@effshare[,ac(1999),,1,] <- 5 # sum != 1, and effort > 0
checkFleets(obj1) # returns an error
obj2$fl1@metiers$met1@catches$stk1@landings.sel[] <-
obj2$fl1@metiers$met1@catches$stk1@discards.sel[] <- 0 # landins.sel + discards.sel != 1
checkFleets(obj2) # returns an error
obj3$fl1@metiers$met1@catches$stk1@landings.wt[,5,] <- NA # landings.wt == NA
checkFleets(obj3) # returns an error
obj3$fl1@metiers$met1@catches$stk1@landings.wt[,5,] <- -0.7 # landings.wt < 0
checkFleets(obj3) # returns an error
obj4$fl1@metiers$met1@catches$stk1@discards.wt[,5,] <- NA # discards.wt == NA
checkFleets(obj4) # returns an error
obj4$fl1@metiers$met1@catches$stk1@discards.wt[,5,] <- -0.1 # discards.wt < 0
checkFleets(obj4) # returns an error
```
### SRs and BDs (list of `FLSRsim` or `FLBDsim`)
We are going now to check if `oneSR`, `oneItSR`, `multiSR` and `multiBD`
pass the checkings.
```{r echo=TRUE, eval=FALSE}
checkSRs(oneSR)
checkSRs(oneItSR)
checkSRs(multiSR)
checkBDs(multiBD)
```
We get errors in some of the cases, but these are due to missing values for uncertainty.
These values are due to missing values in the covariate included in the stock-recruitment
model, that lead to `NA` values in the fitted values.
However, if we just have a look at the simulation period, objects will be ok.
```{r echo=TRUE}
checkSRs(lapply(oneSR, window, start = sim.years[1]-1, end = sim.years[2]))
checkSRs(lapply(oneItSR, window, start = sim.years[1]-1, end = sim.years[2]))
```
Now we follow with some more examples returning an error:
```{r echo=TRUE, eval=FALSE}
# BDs
obj1 <- obj2 <- obj3 <- multiSR
obj1$stk1@proportion[,,,1,] <- -1000 # proportions > 0
checkSRs(obj1) # returns an error
obj1$stk1@proportion[,,,1,] <- 1000 # proportions < 1
checkSRs(obj1) # returns an error
obj2$stk1@proportion[,,,1:4,] <- 0.5 # sum proportions = 1
checkSRs(obj2) # returns an error
obj3$stk1@uncertainty[1,1,,1,] <- -0.5 # uncertainty> 0
checkSRs(obj3) # returns an error
# SRs
obj1 <- obj2 <- obj3 <- multiBD
obj1$stk2@alpha[1,1,] <- 10 # alpha < 1
checkBDs(obj1) # returns an error
obj2$stk2@alpha[1,1,] <- (obj2$stk2@params["p",1,1,] / obj2$stk2@params["r",1,1,]+1) ^
(1/obj2$stk2@params["p",1,1,]) - 1 # alpha > (p/r+1)^(1/p)
checkBDs(obj2) # returns an error
```
### advice (`list`)
We check now if `oneAdv`, `oneItAdv` and `multiAdv` pass the checkings.
```{r echo=TRUE}
checkAdvice(oneAdv)
checkAdvice(oneItAdv)
checkAdvice(multiAdv)
```
And we see some examples with incorrect data that makes the function return an error:
```{r echo=TRUE, eval=FALSE}
obj1 <- multiAdv
obj1$quota.share$stk1[,1,] <- 2 # sum quota shares != 1
checkAdvice(obj1) # returns an error
```
### obs.ctrl (`list`)
Finally, we will check if `oneObsC`, `oneObsCIndAge`, `oneObsCIndBio`,
`oneItObsC`, `oneItObsCIndAge`, `oneItObsCIndBio` and `multiObsC`
pass the checkings.
```{r echo=TRUE}
checkObsctrl(oneObsC)
checkObsctrl(oneObsCIndAge)
checkObsctrl(oneObsCIndBio)
checkObsctrl(oneItObsC)
checkObsctrl(oneItObsCIndAge)
checkObsctrl(oneItObsCIndBio)
checkObsctrl(multiObsC)
```
And see some examples with incorrect data that makes the function return an error:
```{r echo=TRUE, eval=FALSE}
# Index: total biomass
obj1 <- oneObsCIndBio
obj1$stk1$stkObs$land.bio.error[,1,] <- -0.7 # error < 0
checkObsctrl(obj1) # returns an error
# Index: numbers at age
obj2 <- oneObsCIndAge
obj2$stk1$stkObs$ages.error[1,,,] <- 2 # sum ages.error by age != 1
checkObsctrl(obj2) # returns an error
```
## Checking all the FLBEIA input objects at once:
For checking all the FLBEIA inputs at once, we should use `checkFLBEIAData` function.
In this function, inputs should be the same as the FLBEIA function inputs.
And it just calls internally to all the functions detailed in previous section,
but restricting the objects to the projection period.
For example, lets check the inputs from FLBEIA datasets:
```{r echo=TRUE, eval=TRUE}
checkFLBEIAData( biols = oneBio, SRs = oneSR, BDs = NULL, fleets = oneFl,
covars = oneCv, indices = NULL, advice = oneAdv,
main.ctrl = oneMainC, biols.ctrl = oneBioC, fleets.ctrl = oneFlC,
covars.ctrl = oneCvC, obs.ctrl = oneObsC, assess.ctrl = oneAssC,
advice.ctrl = oneAdvC)
checkFLBEIAData( biols = oneItBio, SRs = oneItSR, BDs = NULL, fleets = oneItFl,
covars = oneItCv, indices = NULL, advice = oneItAdv,
main.ctrl = oneItMainC, biols.ctrl = oneItBioC, fleets.ctrl = oneItFlC,
covars.ctrl = oneItCvC, obs.ctrl = oneItObsC, assess.ctrl = oneItAssC,
advice.ctrl = oneItAdvC)
checkFLBEIAData( biols = multiBio, SRs = multiSR, BDs = multiBD, fleets = multiFl,
covars = multiCv, indices = NULL, advice = multiAdv,
main.ctrl = multiMainC, biols.ctrl = multiBioC, fleets.ctrl = multiFlC,
covars.ctrl = multiCvC, obs.ctrl = multiObsC, assess.ctrl = multiAssC,
advice.ctrl = multiAdvC)
```
# More information
* You can submit bug reports, questions or suggestions on this tutorial at <https://github.com/flr/doc/issues>.
* Or send a pull request to <https://github.com/flr/doc/>
* For more information on the FLR Project for Quantitative Fisheries Science in R, visit the FLR webpage, <http://flr-project.org>.
* You can submit bug reports, questions or suggestions specific to **FLBEIA** to <flbeia@azti.es>.
## Software Versions
* `r version$version.string`
* FLCore: `r packageVersion('FLCore')`
* FLBEIA: `r packageVersion('FLBEIA')`
* FLFleet: `r packageVersion('FLFleet')`
* FLash: `r packageVersion('FLash')`
* FLAssess: `r packageVersion('FLAssess')`
* FLXSA: `r packageVersion('FLXSA')`
* ggplotFL: `r packageVersion('ggplotFL')`
* ggplot2: `r packageVersion('ggplot2')`
* **Compiled**: `r date()`
## License
This document is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-sa/4.0) license.
## Author information
**Sonia Sanchez**. AZTI, Marine Research Unit. Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain. https://www.azti.es/.
**FLBEIA team**. AZTI. Marine Reserach Unit. Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Basque Country, Spain.
http://flbeia.azti.es/. **Mail** flbeia@azti.es
# References