forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
strings.Rmd
632 lines (444 loc) · 25.7 KB
/
strings.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# Strings
```{r, results = "asis", echo = FALSE}
status("restructuring")
```
## Introduction
So far, you've used a bunch of strings without learning much about the details.
Now it's time to dive into them, learning what makes strings tick, and mastering some of the powerful string manipulation tool you have at your disposal.
We'll begin with the details of creating strings and character vectors.
You'll then learn a grab bag of handy string functions before we dive into creating strings from data.
Next, we'll discuss the basics of regular expressions, a powerful tool for describing patterns in strings, then use those tools to extract data from strings.
The chapter finishes up with a brief discussion where English language expectations might steer you wrong when working with text from other languages.
This chapter is paired with two other chapters.
Regular expression are a big topic, so we'll come back to them again in Chapter \@ref(regular-expressions).
We'll come back to strings again in Chapter \@ref(programming-with-strings) where we'll think about them about more from a programming perspective than a data analysis perspective.
### Prerequisites
In this chapter, we'll use functions from the stringr package.
The equivalent functionality is available in base R (through functions like `grepl()`, `gsub()`, and `regmatches()`) but we think you'll find stringr easier to use because it's been carefully designed to be as consistent as possible.
We'll also work with the babynames data since it provides some fun strings to manipulate.
```{r setup, message = FALSE}
library(tidyverse)
library(babynames)
```
You can easily tell when you're using a stringr function because all stringr functions start with `str_`.
This is particularly useful if you use RStudio, because typing `str_` will trigger autocomplete, allowing you jog your memory of which functions are available.
```{r, echo = FALSE}
knitr::include_graphics("screenshots/stringr-autocomplete.png")
```
## Creating a string
We've created strings in passing earlier in the book, but didn't discuss the details.
First, there are two basic ways to create a string: using either single quotes (`'`) or double quotes (`"`).
Unlike other languages, there is no difference in behavior, but in the interests of consistency the [tidyverse style guide](https://style.tidyverse.org/syntax.html#character-vectors) recommends using `"`, unless the string contains multiple `"`.
```{r}
string1 <- "This is a string"
string2 <- 'If I want to include a "quote" inside a string, I use single quotes'
```
If you forget to close a quote, you'll see `+`, the continuation character:
> "This is a string without a closing quote
+
+
+ HELP I'M STUCK
If this happen to you and you can't figure out which quote you need to close, press Escape to cancel, and try again.
### Escapes
To include a literal single or double quote in a string you can use `\` to "escape" it:
```{r}
double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"
```
So if you want to include a literal backslash in your string, you'll need to double it up: `"\\"`:
```{r}
backslash <- "\\"
```
Beware that the printed representation of a string is not the same as string itself, because the printed representation shows the escapes (in other words, when you print a string, you can copy and paste the output to recreate that string).
To see the raw contents of the string, use `str_view()`[^strings-1]:
[^strings-1]: You can also use the base R function `writeLines()`
```{r}
x <- c(single_quote, double_quote, backslash)
x
str_view(x)
```
### Raw strings
Creating a string with multiple quotes or backslashes gets confusing quickly.
To illustrate the problem, lets create a string that contains the contents of the chunk where I define the `double_quote` and `single_quote` variables:
```{r}
tricky <- "double_quote <- \"\\\"\" # or '\"'
single_quote <- '\\'' # or \"'\""
str_view(tricky)
```
That's a lot of backslashes!
(This is sometimes called [leaning toothpick syndome](https://en.wikipedia.org/wiki/Leaning_toothpick_syndrome).) To eliminate the escaping you can instead use a **raw string**[^strings-2]:
[^strings-2]: Available in R 4.0.0 and above.
```{r}
tricky <- r"(double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'")"
str_view(tricky)
```
A raw string usually starts with `r"(` and finishes with `)"`.
But if your string contains `)"` you can instead use `r"[]"` or `r"{}"`, and if that's still not enough, you can insert any number of dashes to make the opening and closing pairs unique, e.g. `` `r"--()--" ``, `` `r"---()---" ``, etc. Raw strings are flexible enough to handle any text.
### Other special characters
As well as `\"`, `\'`, and `\\` there are a handful of other special characters that may come in handy. The most common are `\n`, newline, and `\t`, tab. You'll also sometimes see strings containing Unicode escapes that start with `\u` or `\U`. This is a way of writing non-English characters that works on all systems:
```{r}
x <- c("\u00b5", "\U0001f604")
x
str_view(x)
```
You can see the complete list of other special characters in `?'"'`.
### Vectors
You can combine multiple strings into a character vector by using `c()`:
```{r}
x <- c("first string", "second string", "third string")
x
```
Technically, a string is a length-1 character vector, but this doesn't have much bearing on your data analysis life.
We'll come back to this idea is more detail when we think about vectors from more of a programming perspective in Chapter \@ref(vectors).
Now that you've learned the basics of creating strings by "hand", we'll go into the details of creating strings from other strings.
### Exercises
## Creating strings from data
It's a common problem to generate strings from other strings, typically by combining fixed strings that you write with variable strings that come from the data.
For example, to create a greeting you might combine "Hello" with a `name` variable.
First, we'll discuss two techniques that make this easy.
Then we'll talk about a slightly different scenario where you want to summarise a character vector, collapsing any number of strings into one.
### `str_c()`
`str_c()`[^strings-3] takes any number of vectors as arguments and returns a character vector:
[^strings-3]: `str_c()` is very similar to the base `paste0()`.
There are two main reasons I recommend: it obeys the usual rules for handling `NA` and it uses the tidyverse recycling rules.
```{r}
str_c("x", "y")
str_c("x", "y", "z")
str_c("Hello ", c("John", "Susan"))
```
`str_c()` is designed to be used with `mutate()` so it obeys the usual tidyverse rules for recycling and missing values:
```{r}
df <- tibble(name = c("Timothy", "Dewey", "Mable", NA))
df %>% mutate(greeting = str_c("Hi ", name, "!"))
```
If you want missing values to display in some other way, use `coalesce()` either inside or outside of `str_c()`:
```{r}
df %>% mutate(
greeting1 = str_c("Hi ", coalesce(name, "you"), "!"),
greeting2 = coalesce(str_c("Hi ", name, "!"), "Hi!")
)
```
### `str_glue()`
If you are mixing many fixed and variable strings with `str_c()`, you'll notice that you have to type `""` repeatedly, and this can make it hard to see the overall goal of the code.
An alternative approach is provided by the [glue package](https://glue.tidyverse.org) via `str_glue()`[^strings-4] .
You give it a single string containing `{}`. Anything inside `{}` will be evaluated like it's outside of the string:
[^strings-4]: If you're not using stringr, you can also access it directly with `glue::glue().`
```{r}
df %>% mutate(greeting = str_glue("Hi {name}!"))
```
You can use any valid R code inside of `{}`, but it's a good idea to pull complex calculations out into their own variables so you can more easily check your work.
As you can see above, `str_glue()` currently converts missing values to the string "NA" making it slightly inconsistent with `str_c()`.
We'll hopefully fix that by the time the book is printed: <https://github.com/tidyverse/glue/issues/246>
You also might wonder what happens if you need to include a regular `{` or `}` in your string.
Here we use a slightly different escaping technique; instead of prefixing with special character like `\`, you just double up the `{` or `}`:
```{r}
df %>% mutate(greeting = str_glue("{{Hi {name}!}}"))
```
### `str_flatten()`
`str_c()` and `glue()` work well with `mutate()` because the output is the same length as the input.
What if you want a function that works well with `summarise()`, i.e. something that always returns a single string?
That's the job of `str_flatten()`:[^strings-5] it takes a character vector and combines each element of the vector into a single string:
[^strings-5]: The base R equivalent is `paste()` with the `collapse` argument set.
```{r}
str_flatten(c("x", "y", "z"))
str_flatten(c("x", "y", "z"), ", ")
str_flatten(c("x", "y", "z"), ", ", last = ", and ")
```
This makes it work well with `summarise()`:
```{r}
df <- tribble(
~ name, ~ fruit,
"Carmen", "banana",
"Carmen", "apple",
"Marvin", "nectarine",
"Terence", "cantaloupe",
"Terence", "papaya",
"Terence", "madarine"
)
df %>%
group_by(name) %>%
summarise(fruits = str_flatten(fruit, ", "))
```
### Exercises
1. Compare and contrast the results of `paste0()` with `str_c()` for the following inputs:
```{r, eval = FALSE}
str_c("hi ", NA)
str_c(letters[1:2], letters[1:3])
```
2. Convert between `str_c()` and `glue()`
3. How to make `{{{{` with glue?
## Working with patterns
Before we can discuss the opposite problem of extracting data out of strings, we need to take a quick digression to talk about **regular expressions**.
Regular expressions are a very concise language for describing patterns in strings.
Regular expressions can be overwhelming at first, and you'll think a cat walked across your keyboard.
Fortunately, as your understanding improves they'll soon start to make sense.
Regular expression is a bit of a mouthful, and the term isn't that useful as it refers to the underlying body of computer science theory where the meanings of both "regular" and "expression" are somewhat distant to their day-to-day meaning.
In practice, most people abbreviate to "regexs" or "regexps".
We'll start by using `str_detect()` which answers a simple question: "does this pattern occur anywhere in my vector?".
We'll then ask progressively more complex questions by learning more about regular expressions and the functions that use them.
### Detect matches
To learn about regular expressions, we'll start with probably the simplest function that uses them: `str_detect()`.
It takes a character vector and a pattern, and returns a logical vector that says if the pattern was found at each element of the pattern:
```{r}
x <- c("apple", "banana", "pear")
str_detect(x, "e")
str_detect(x, "b")
str_detect(x, "x")
```
`str_detect()` returns a logical vector the same length as the first argument, so it pairs well with `filter()`.
For example, this code finds all names that contain a lower-case "x":
```{r}
babynames %>% filter(str_detect(name, "x"))
```
We can also use `str_detect()` to summarize by remembering that when you use a logical vector in a numeric context, `FALSE` becomes 0 and `TRUE` becomes 1.
That means `sum(str_detect(x, pattern))` will tell you the number of observations that match the pattern, and `mean(str_detect(x, pattern))` will tell you the proportion that match.
For example, the following snippet computes and visualizes the proportion of baby names that contain "x", broken down by year:
```{r, fig.alt = "A timeseries showing the proportion of baby names that contain the letter x. The proportion declines gradually from 8 per 1000 in 1880 to 4 per 1000 in 1980, then increases rapidly to 16 per 1000 in 2019."}
babynames %>%
group_by(year) %>%
summarise(prop_x = mean(str_detect(name, "x"))) %>%
ggplot(aes(year, prop_x)) +
geom_line()
```
(Note that this gives us the proportion of names that contain an x; if you wanted the proportion of babies given a name containing an x, you'd need to perform a weighted mean).
### Introduction to regular expressions
The simplest patterns, like those above, are exact: they match any strings that contain the exact sequence of characters in the pattern:
```{r}
str_detect(c("x", "X"), "x")
str_detect(c("xyz", "xza"), "xy")
```
In general, any letter or number will match exactly, but punctuation characters like `.`, `+`, `*`, `[`, `]`, `?`, often have special meanings[^strings-6].
For example, `.`
will match any character[^strings-7], so `"a."` will match any string that contains an a followed by another character
:
[^strings-6]: You'll learn how to escape this special behaviour in Section \@ref(regexp-escaping)
[^strings-7]: Well, any character apart from `\n`.
```{r}
str_detect(c("a", "ab", "ae", "bd", "ea", "eab"), "a.")
```
To get a better sense of what's happening, I'm going to switch to `str_view_all()`.
This shows which characters are matched by surrounding it with `<>` and coloring it blue:
```{r}
str_view_all(c("a", "ab", "ae", "bd", "ea", "eab"), "a.")
```
Regular expressions are a powerful and flexible language which we'll come back to in Chapter \@ref(regular-expressions).
Here I'll just introduce only the most important components: quantifiers and character classes.
**Quantifiers** control how many times an element that can be applied to other pattern: `?` makes a pattern optional (i.e. it matches 0 or 1 times), `+` lets a pattern repeat (i.e. it matches at least once), and `*` lets a pattern be optional or repeat (i.e. it matches any number of times, including 0).
```{r}
# ab? matches an "a", optionally followed by a "b".
str_view_all(c("a", "ab", "abb"), "ab?")
# ab+ matches an "a", followed by at least one "b".
str_view_all(c("a", "ab", "abb"), "ab+")
# ab* matches an "a", followed by any number of "b"s.
str_view_all(c("a", "ab", "abb"), "ab*")
```
**Character classes** are defined by `[]` and let you match a set set of characters, e.g. `[abcd]` matches "a", "b", "c", or "d".
You can also invert the match by starting with `^`: `[^abcd]` matches anything **except** "a", "b", "c", or "d".
We can use this idea to find the vowels in a few particularly special names:
```{r}
names <- c("Hadley", "Mine", "Garrett")
str_view_all(names, "[aeiou]")
```
You can combine character classes and quantifiers.
Notice the difference between the following two patterns that look for consonants.
The same characters are matched, but the number of matches is different.
```{r}
str_view_all(names, "[^aeiou]")
str_view_all(names, "[^aeiou]+")
```
Lets practice our regular expression usage with some other useful stringr functions.
### Count matches
A variation on `str_detect()` is `str_count()`: rather than a simple yes or no, it tells you how many matches there are in a string:
```{r}
x <- c("apple", "banana", "pear")
str_count(x, "p")
```
It's natural to use `str_count()` with `mutate()`.
The following example uses `str_count()` with character classes to count the number of vowels and consonants in each name.
```{r}
babynames %>%
count(name) %>%
mutate(
vowels = str_count(name, "[aeiou]"),
consonants = str_count(name, "[^aeiou]")
)
```
If you look closely, you'll notice that there's something off with our calculations: "Aaban" contains three "a"s, but our summary reports only two vowels.
That's because I've forgotten that regular expressions are case sensitive.
There are three ways we could fix this:
- Add the upper case vowels to the character class: `str_count(name, "[aeiouAEIOUS]")`.
- Tell the regular expression to ignore case: `str_count(regex(name, ignore.case = TRUE), "[aeiou]")`. We'll talk about this next.
- Use `str_lower()` to convert the names to lower case: `str_count(to_lower(name), "[aeiou]")`. We'll come back to this function in Section \@ref(other-languages).
This is pretty typical when working with strings --- there are often multiple ways to reach your goal, either making your pattern more complicated or by doing some preprocessing on your string.
If you get stuck trying one approach, it can often be useful to switch gears and tackle the problem from a different perspective.
Note that regular expression matches never overlap, and `str_count()` only starts looking for a new match after the end of the last match.
For example, in `"abababa"`, how many times will the pattern `"abaµ"` match?
Regular expressions say two, not three:
```{r}
str_count("abababa", "aba")
str_view_all("abababa", "aba")
```
### Replace matches
Sometimes there are inconsistencies in the formatting that are easier to fix before you start extracting; easier to make the data more regular and check your work than coming up with a more complicated regular expression in `str_*` and friends.
`str_replace_all()` allow you to replace matches with new strings.
The simplest use is to replace a pattern with a fixed string:
```{r}
x <- c("apple", "pear", "banana")
str_replace_all(x, "[aeiou]", "-")
```
With `str_replace_all()` you can perform multiple replacements by supplying a named vector.
The name gives a regular expression to match, and the value gives the replacement.
```{r}
x <- c("1 house", "1 person has 2 cars", "3 people")
str_replace_all(x, c("1" = "one", "2" = "two", "3" = "three"))
```
`str_remove_all()` is a short cut for `str_replace_all(x, pattern, "")` --- it removes matching patterns from a string.
`pattern` as a function.
Come back to that in Chapter \@ref(programming-with-strings).
```{r}
x <- c("1 house", "1 person has 2 cars", "3 people")
str_replace_all(x, "[aeiou]+", str_to_upper)
```
Use in `mutate()`
Using pipe inside mutate.
Recommendation to make a function, and think about testing it --- don't need formal tests, but useful to build up a set of positive and negative test cases as you.
### Pattern control
Now that you've learn about regular expressions, you might be worried about them working when you don't want them to.
You can opt-out of the regular expression rules by using `fixed()`:
```{r}
str_view(c("", "a", "."), fixed("."))
```
Note that both fixed strings and regular expressions are case sensitive by default.
You can opt out by setting `ignore_case = TRUE`.
```{r}
str_view_all("x X xy", "X")
str_view_all("x X xy", fixed("X", ignore_case = TRUE))
str_view_all("x X xy", regex(".Y", ignore_case = TRUE))
```
### Exercises
1. What name has the most vowels?
What name has the highest proportion of vowels?
(Hint: what is the denominator?)
2. For each of the following challenges, try solving it by using both a single regular expression, and a combination of multiple `str_detect()` calls.
a. Find all words that start or end with `x`.
b. Find all words that start with a vowel and end with a consonant.
c. Are there any words that contain at least one of each different vowel?
3. Replace all forward slashes in a string with backslashes.
4. Implement a simple version of `str_to_lower()` using `str_replace_all()`.
5. Switch the first and last letters in `words`.
Which of those strings are still `words`?
## Extract data from strings
Common for multiple variables worth of data to be stored in a single string.
In this section you'll learn how to use various functions tidyr to extract them.
Waiting on: <https://github.com/tidyverse/tidyups/pull/15>
## Locale dependent operations {#other-languages}
So far all of our examples have been using English.
The details of the many ways other languages are different to English are too diverse to detail here, but I wanted to give a quick outline of the functions who's behavior differs based on your **locale**, the set of settings that vary from country to country.
The locale is specified with a two or three letter lower-case language abbreviation, optionally followed by a `_` and a upper region identifier.
For example, "en" is English, "en_GB" is British English, and "en_US" is American English.
If you don't already know the code for your language, [Wikipedia](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) has a good list, and you can see which are supported with `stringi::stri_locale_list()`.
Base R string functions automatically use your locale current locale.
This means that string manipulation code works the way you expect when you're working with text in your native language, but it might work differently when you share it with someone who lives in another country.
To avoid this problem, stringr defaults to the "en" locale, and requires you to specify the `locale` argument to override it.
This also makes it easy to tell if a function might have different behavior in different locales.
Fortunately there are three sets of functions where the locale matters:
- **Changing case**: while only relatively few languages have upper and lower case (Latin, Greek, and Cyrillic, plus a handful of lessor known languages).
The rules are not te same in every language that uses these alphabets.
For example, Turkish has two i's: with and without a dot, and it has a different rule for capitalising them:
```{r}
str_to_upper(c("i", "ı"))
str_to_upper(c("i", "ı"), locale = "tr")
```
- **Comparing strings**: `str_equal()` lets you compare if two strings are equally optionally ignoring case:
```{r}
str_equal("i", "I", ignore_case = TRUE)
str_equal("i", "I", ignore_case = TRUE, locale = "tr")
```
- **Sorting strings**: `str_sort()` and `str_order()` sort vector alphabetically, but the alphabet is not the same in every language[^strings-8].
Here's an example: in Czech, "ch" is a digraph that appears after `h` in the alphabet.
```{r}
str_sort(c("a", "c", "ch", "h", "z"))
str_sort(c("a", "c", "ch", "h", "z"), locale = "cs")
```
Danish has a similar problem.
Normally, characters with diacritic sorts after the plain character.
But in Danish ø and å are letters that come at the end of the alphabet:
```{r}
str_sort(c("a", "å", "o", "ø", "z"))
str_sort(c("a", "å", "o", "ø", "z"), locale = "da")
```
TODO after dplyr 1.1.0: discuss `arrange()`
[^strings-8]: Sorting in languages that don't have an alphabet (like Chinese) is more complicated still.
## Letters
Functions that work with the letters inside of the string.
### Length
`str_length()` tells you the number of characters in the string[^strings-9]:
[^strings-9]: The number of characters turns out to be a surprisingly complicated concept when you look across more languages.
We're not going to get into the details here, but you'll need to learn more about this if you want work with non-European languages.
```{r}
str_length(c("a", "R for data science", NA))
```
You could use this with `count()` to find the distribution of lengths of US babynames, and then with `filter()` to look at the longest names[^strings-10]:
[^strings-10]: Looking at these entries, I'd say the babynames data removes spaces or hyphens from names and truncates after 15 letters.
```{r}
babynames %>%
count(length = str_length(name), wt = n)
babynames %>%
filter(str_length(name) == 15) %>%
count(name, wt = n, sort = TRUE)
```
### Subsetting
You can extract parts of a string using `str_sub(string, start, end)`.
The `start` and `end` arguments are inclusive, so the length of the returned string will be `end - start + 1`:
```{r}
x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
```
You can use negative values to count back from the end of the string: -1 is the last character, -2 is the second to last character, etc.
```{r}
str_sub(x, -3, -1)
```
Note that `str_sub()` won't fail if the string is too short: it will just return as much as possible:
```{r}
str_sub("a", 1, 5)
```
We could use `str_sub()` with `mutate()` to find the first and last letter of each name:
```{r}
babynames %>%
mutate(
first = str_sub(name, 1, 1),
last = str_sub(name, -1, -1)
)
```
### Long strings
Sometimes the reason you care about the length of a string is because you're trying to fit it into a label on a plot or in a table.
stringr provides two useful tools for cases where your string is too long:
- `str_trunc(x, 20)` ensures that no string is longer than 20 characters, replacing any thing too long with `…`.
- `str_wrap(x, 20)` wraps a string introducing new lines so that each line is at most 20 characters (it doesn't hyphenate, however, so any word longer than 20 characters will make a longer time)
```{r}
x <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."
str_trunc(x, 30)
str_view(str_wrap(x, 30))
```
TODO: add example with a plot.
### Exercises
1. Use `str_length()` and `str_sub()` to extract the middle letter from each baby name. What will you do if the string has an even number of characters?
2. Are there any major trends in the length of babynames over time? What about the popularity of first and last letters?
## Other functions
The are a bunch of other places you can use regular expressions outside of stringr.
- `matches()`: as you can tell from it's lack of `str_` prefix, this isn't a stringr fuction.
It's a "tidyselect" function, a fucntion that you can use anywhere in the tidyverse when selecting variables (e.g. `dplyr::select()`, `rename_with()`, `across()`, ...).
- `str_locate()`, `str_match()`, `str_split()`; useful for programming with strings.
- `apropos()` searches all objects available from the global environment.
This is useful if you can't quite remember the name of the function.
```{r}
apropos("replace")
```
- `dir()` lists all the files in a directory.
The `pattern` argument takes a regular expression and only returns file names that match the pattern.
For example, you can find all the R Markdown files in the current directory with:
```{r}
head(dir(pattern = "\\.Rmd$"))
```
(If you're more comfortable with "globs" like `*.Rmd`, you can convert them to regular expressions with `glob2rx()`).