diff --git a/examples/memray_plugin/Dockerfile b/examples/memray_plugin/Dockerfile new file mode 100644 index 000000000..65da827a3 --- /dev/null +++ b/examples/memray_plugin/Dockerfile @@ -0,0 +1,27 @@ +FROM python:3.11-slim-bookworm +LABEL org.opencontainers.image.source=https://github.com/flyteorg/flytesnacks + +WORKDIR /root +ENV VENV /opt/venv +ENV LANG C.UTF-8 +ENV LC_ALL C.UTF-8 +ENV PYTHONPATH /root + +WORKDIR /root + +ENV VENV /opt/venv +# Virtual environment +RUN python3 -m venv ${VENV} +ENV PATH="${VENV}/bin:$PATH" + +# Install Python dependencies +COPY requirements.in /root +RUN pip install -r /root/requirements.in + +# Copy the actual code +COPY . /root + +# This tag is supplied by the build script and will be used to determine the version +# when registering tasks, workflows, and launch plans +ARG tag +ENV FLYTE_INTERNAL_IMAGE $tag diff --git a/examples/memray_plugin/README.md b/examples/memray_plugin/README.md new file mode 100644 index 000000000..4a0c71549 --- /dev/null +++ b/examples/memray_plugin/README.md @@ -0,0 +1,20 @@ +(memray_plugin)= + +# Memray Profiling + +```{eval-rst} +.. tags:: Integration, Profiling, Observability +``` + +Memray tracks and reports memory allocations, both in python code and in compiled extension modules. +This Memray Profiling plugin enables memory tracking on the Flyte task level and renders a memgraph profiling graph on Flyte Deck. + +First, install the Memray plugin: + +```bash +pip install flytekitplugins-memray +``` + +```{auto-examples-toc} +memray_example +``` diff --git a/examples/memray_plugin/memray_plugin/__init__.py b/examples/memray_plugin/memray_plugin/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/examples/memray_plugin/memray_plugin/memray_example.py b/examples/memray_plugin/memray_plugin/memray_example.py new file mode 100644 index 000000000..69351a2f0 --- /dev/null +++ b/examples/memray_plugin/memray_plugin/memray_example.py @@ -0,0 +1,66 @@ +# %% [markdown] +# (memray_example)= +# +# # Memray Profiling Example +# Memray tracks and reports memory allocations, both in python code and in compiled extension modules. +# This Memray Profiling plugin enables memory tracking on the Flyte task level and renders a memgraph profiling graph on Flyte Deck. +# %% +from flytekit import workflow, task, ImageSpec +from flytekitplugins.memray import memray_profiling +import time + +# %% [markdown] +# First, we use `ImageSpec` to construct a container that contains the dependencies for the +# tasks, we want to profile: +# %% +image = ImageSpec( + name="memray_demo", + packages=["flytekitplugins_memray"], + registry="", +) + + +# %% [markdown] +# Next, we define a dummy function that generates data in memory without releasing: +# %% +def generate_data(n: int): + leak_list = [] + for _ in range(n): # Arbitrary large number for demonstration + large_data = " " * 10**6 # 1 MB string + leak_list.append(large_data) # Keeps appending without releasing + time.sleep(0.1) # Slow down the loop to observe memory changes + + +# %% [markdown] +# Example of profiling the memory usage of `generate_data()` via the memray `table` html reporter +# %% +@task(container_image=image, enable_deck=True) +@memray_profiling(memray_html_reporter="table") +def memory_usage(n: int) -> str: + generate_data(n=n) + + return "Well" + + +# %% [markdown] +# Example of profiling the memory leackage of `generate_data()` via the memray `flamegraph` html reporter +# %% + + +@task(container_image=image, enable_deck=True) +@memray_profiling(trace_python_allocators=True, memray_reporter_args=["--leaks"]) +def memory_leakage(n: int) -> str: + generate_data(n=n) + + return "Well" + + +# %% [markdown] +# Put everything together in a workflow. +# %% + + +@workflow +def wf(n: int = 500): + memory_usage(n=n) + memory_leakage(n=n) diff --git a/examples/memray_plugin/requirements.in b/examples/memray_plugin/requirements.in new file mode 100644 index 000000000..f4663640b --- /dev/null +++ b/examples/memray_plugin/requirements.in @@ -0,0 +1 @@ +flytekitplugins-memray \ No newline at end of file