-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRange.v
112 lines (105 loc) · 2.86 KB
/
Range.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
From Coq Require Import NArith Arith Lia List.
Local Open Scope list_scope.
Definition range (offset count: N)
: list N
:= let fix range' (countdown: nat)
:= match countdown with
| O => nil
| S k => cons (offset + count - 1 - N.of_nat k)%N
(range' k)
end
in range' (N.to_nat count).
Local Example range_example:
range 5 3 = (5 :: 6 :: 7 :: nil)%N.
Proof.
trivial.
Qed.
Definition range_nat (offset count: nat)
: list N
:= let fix range' (countdown: nat)
:= match countdown with
| O => nil
| S k => cons (N.of_nat (offset + count - 1 - k))
(range' k)
end
in range' count.
Lemma range_nat_ok (offset count: nat):
range_nat offset count = range (N.of_nat offset) (N.of_nat count).
Proof.
unfold range, range_nat.
rewrite Nat2N.id.
revert offset. induction count. { trivial. }
intro offset. cbn.
assert (IH := IHcount (S offset)). clear IHcount.
f_equal. { f_equal. lia. }
assert (EqLHS:
forall t,
(fix range' (countdown : nat) : list N :=
match countdown with
| 0 => nil
| S k => (N.of_nat (offset + S count - 1 - k)) :: range' k
end) t
=
(fix range' (countdown : nat) : list N :=
match countdown with
| 0 => nil
| S k => (N.of_nat (S offset + count - 1 - k)) :: range' k
end) t).
{
clear IH. intro t.
revert offset. induction t. { easy. }
intro offset.
f_equal. 2:apply IHt.
f_equal. f_equal. lia.
}
rewrite EqLHS. clear EqLHS.
assert (EqRHS:
forall t,
(fix range' (countdown : nat) : list N :=
match countdown with
| 0 => nil
| S k =>
(N.of_nat offset + N.pos (Pos.of_succ_nat count) - 1 - N.of_nat k)%N :: range' k
end) t
=
(fix range' (countdown : nat) : list N :=
match countdown with
| 0 => nil
| S k => (N.of_nat (S offset) + N.of_nat count - 1 - N.of_nat k)%N :: range' k
end) t).
{
clear IH. intro t.
revert offset. induction t. { easy. }
intro offset.
f_equal. 2:apply IHt.
f_equal. f_equal. lia.
}
rewrite EqRHS. clear EqRHS.
apply IH.
Qed.
Lemma range_via_nat (offset count: N):
range offset count = range_nat (N.to_nat offset) (N.to_nat count).
Proof.
rewrite range_nat_ok.
now repeat rewrite N2Nat.id.
Qed.
Lemma range_cons (offset count: N):
range offset (N.succ count) = offset :: range (N.succ offset) count.
Proof.
rewrite range_via_nat.
unfold range_nat.
revert offset. induction count; intros.
{
cbn. replace (Pos.to_nat 1) with 1 by easy.
f_equal. lia.
}
cbn. rewrite Pnat.Pos2Nat.inj_succ.
f_equal. { lia. }
match goal with
|- ?l _ = ?r _ =>
enough (forall x, l x = r x) by easy
end.
intro x. induction x. { trivial. }
f_equal. { lia. }
apply IHx.
Qed.