-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_pretrained.py
61 lines (52 loc) · 2.37 KB
/
load_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import numpy as np
import torch
def load_pretrained_weights(
yolo4dmodelfile="yolov5m-4d.pt", yolo5dtrainedmodelfile="yolov5m.pt", save_trained_pt="yolov5m-4d-trained.pt"
):
yolo4d = torch.load(yolo4dmodelfile)
yolo5d = torch.load(yolo5dtrainedmodelfile)
model5d = yolo5d["model"]
model4d = yolo4d["model"]
sd5d = model5d.state_dict()
sd4d = model4d.state_dict()
sd5d_filtered = {k: v for k, v in sd5d.items() if k in sd4d and sd4d[k].shape == v.shape}
sd4d.update(sd5d_filtered)
model4d.load_state_dict(sd4d)
# checks
shape_mismatch_parameters = []
for name, value in yolo4d["model"].state_dict().items():
assert name in yolo5d["model"].state_dict(), f"Parameter : {name} not present in pretrained weights"
o_value = yolo5d["model"].state_dict()[name]
if value.shape != o_value.shape:
print(f"Shape mismatch for : {name} pretrained : {o_value.shape} current : {value.shape}")
shape_mismatch_parameters.append(name)
assert np.allclose(
o_value.cpu().detach().numpy().flatten(), value.cpu().detach().numpy().flatten()
), f"Value mismatch for parameter : {name}"
else:
assert np.allclose(
o_value.cpu().detach().numpy().flatten(), value.cpu().detach().numpy().flatten()
), f"Value mismatch for parameter : {name}"
print(
f"All weights loaded from pretrained file except for : {shape_mismatch_parameters} but values are exactly same."
)
torch.save(yolo4d, save_trained_pt)
print(f"Trained checkpoint .pt file written to : {save_trained_pt}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Load weights to YOLO model from pretrained weights file")
parser.add_argument(
"-m", "--model_file", help="Path to untrained yolo model", default="yolov5m-4d.pt", required=False
)
parser.add_argument(
"-p", "--pretrained_model_file", help="Path to pretrained yolo model", default="yolov5m.pt", required=False
)
parser.add_argument(
"-s",
"--trained_save_file",
help="Path to save the yolo model with trained weights",
default="yolov5m-4d-trained.pt",
required=False,
)
args = parser.parse_args()
load_pretrained_weights(args.model_file, args.pretrained_model_file, args.trained_save_file)