forked from lanpa/tensorboardX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
onnx_graph.py
78 lines (67 loc) · 2.5 KB
/
onnx_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
from tensorboardX import graph_onnx
dummy_input = Variable(torch.rand(8, 3, 224, 224))
from tensorboardX import SummaryWriter
with SummaryWriter() as w:
model = torchvision.models.alexnet(pretrained=True)
torch.onnx.export(model, dummy_input, "test.proto", verbose=True)
w.add_graph_onnx("test.proto")
with SummaryWriter() as w:
model = torchvision.models.vgg19(pretrained=False)
torch.onnx.export(model, dummy_input, "test.proto", verbose=True)
w.add_graph_onnx("test.proto")
with SummaryWriter() as w:
model = torchvision.models.densenet121()
torch.onnx.export(model, dummy_input, "test.proto", verbose=True)
w.add_graph_onnx("test.proto")
with SummaryWriter() as w:
model = torchvision.models.resnet18()
torch.onnx.export(model, dummy_input, "test.proto", verbose=True)
w.add_graph_onnx("test.proto")
class Mnist(nn.Module):
def __init__(self):
super(Mnist, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.bn = nn.BatchNorm2d(20)
def forward(self, x):
x = F.max_pool2d(self.conv1(x), 2)
x = F.relu(x)+F.relu(-x)
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = self.bn(x)
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
x = F.log_softmax(x)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
# not working
with SummaryWriter() as w:
model = Net()
dummy_input = Variable(torch.rand(8, 1, 28, 28))
print(model(dummy_input))
torch.onnx.export(model, dummy_input, "test.proto", verbose=True)
w.add_graph_onnx("test.proto")