Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Input: s = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: the subarray [4,3] has the minimal length under the problem constraint.
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
impl Solution {
pub fn min_sub_array_len(s: i32, nums: Vec<i32>) -> i32 {
if nums.iter().sum::<i32>() < s {
return 0;
}
let mut i = 0;
let mut sum = 0;
let mut ret = std::i32::MAX;
for j in 0..nums.len() {
sum += nums[j];
while sum >= s {
ret = ret.min((j - i) as i32 + 1);
sum -= nums[i];
i += 1;
}
}
ret
}
}