You are given a 2D integer array intervals
where intervals[i] = [starti, endi]
represents all the integers from starti
to endi
inclusively.
A containing set is an array nums
where each interval from intervals
has at least two integers in nums
.
- For example, if
intervals = [[1,3], [3,7], [8,9]]
, then[1,2,4,7,8,9]
and[2,3,4,8,9]
are containing sets.
Return the minimum possible size of a containing set.
Input: intervals = [[1,3],[3,7],[8,9]] Output: 5 Explanation: let nums = [2, 3, 4, 8, 9]. It can be shown that there cannot be any containing array of size 4.
Input: intervals = [[1,3],[1,4],[2,5],[3,5]] Output: 3 Explanation: let nums = [2, 3, 4]. It can be shown that there cannot be any containing array of size 2.
Input: intervals = [[1,2],[2,3],[2,4],[4,5]] Output: 5 Explanation: let nums = [1, 2, 3, 4, 5]. It can be shown that there cannot be any containing array of size 4.
1 <= intervals.length <= 3000
intervals[i].length == 2
0 <= starti < endi <= 108
class Solution:
def intersectionSizeTwo(self, intervals: List[List[int]]) -> int:
intervals.sort(key=lambda interval: (interval[1], interval[0]))
nums = [intervals[0][1] - 1, intervals[0][1]]
for start, end in intervals[1:]:
if start <= nums[-2]:
continue
elif start > nums[-1]:
nums.append(end - 1)
nums.append(end)
elif end > nums[-1]:
nums.append(end)
else:
nums.pop()
nums.append(end - 1)
nums.append(end)
return len(nums)