A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given an grid
of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).
Input: [[4,3,8,4], [9,5,1,9], [2,7,6,2]] Output: 1 Explanation: The following subgrid is a 3 x 3 magic square: 438 951 276 while this one is not: 384 519 762 In total, there is only one magic square inside the given grid.
1 <= grid.length <= 10
1 <= grid[0].length <= 10
0 <= grid[i][j] <= 15
impl Solution {
pub fn num_magic_squares_inside(grid: Vec<Vec<i32>>) -> i32 {
let mut ret = 0;
for i in 2..grid.len() {
for j in 2..grid[0].len() {
if grid[i - 1][j - 1] == 5 &&
grid[i - 2][j - 2] + grid[i][j] == 10 &&
grid[i - 2][j] + grid[i][j - 2] == 10 &&
grid[i - 1][j - 2] + grid[i - 1][j] == 10 &&
grid[i - 2][j - 1] + grid[i][j - 1] == 10 &&
grid[i - 2][j - 2] + grid[i - 2][j - 1] + grid[i - 2][j] == 15 &&
grid[i - 2][j - 2] + grid[i - 1][j - 2] + grid[i][j - 2] == 15 {
let mut nums = Vec::new();
nums.extend_from_slice(&grid[i - 2][(j - 2)..(j + 1)]);
nums.extend_from_slice(&grid[i - 1][(j - 2)..(j + 1)]);
nums.extend_from_slice(&grid[i][(j - 2)..(j + 1)]);
nums.sort_unstable();
if nums == vec![1, 2, 3, 4, 5, 6, 7, 8, 9] {
ret += 1;
}
}
}
}
ret
}
}