Given a square array of integers A
, we want the minimum sum of a falling path through A
.
A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Input: [[1,2,3],[4,5,6],[7,8,9]] Output: 12 Explanation: The possible falling paths are:
- [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
- [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
- [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
impl Solution {
pub fn min_falling_path_sum(a: Vec<Vec<i32>>) -> i32 {
let len = a.len();
let mut dp = a;
for i in 1..len {
for j in 0..len {
dp[i][j] += *dp[i - 1][(j.max(1) - 1)..(j + 2).min(len)]
.iter()
.min()
.unwrap();
}
}
*dp.last().unwrap().iter().min().unwrap()
}
}