Skip to content

Latest commit

 

History

History
57 lines (48 loc) · 2.4 KB

File metadata and controls

57 lines (48 loc) · 2.4 KB

1457. Pseudo-Palindromic Paths in a Binary Tree

Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf nodes.

Example 1:

Input: root = [2,3,1,3,1,null,1]
Output: 2
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 2:

Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 3:

Input: root = [9]
Output: 1

Constraints:

  • The given binary tree will have between 1 and 10^5 nodes.
  • Node values are digits from 1 to 9.

Solutions (Python)

1. BFS

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def pseudoPalindromicPaths(self, root: TreeNode) -> int:
        def foo(root: TreeNode, x: int) -> int:
            x ^= 1 << root.val

            if not root.left and not root.right:
                return 1 if bin(x).count('1') < 2 else 0
            elif not root.left:
                return foo(root.right, x)
            elif not root.right:
                return foo(root.left, x)
            else:
                return foo(root.left, x) + foo(root.right, x)

        return foo(root, 0)