Given an array of positive integers nums
, return the maximum possible sum of an ascending subarray in nums
.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr]
is ascending if for all i
where l <= i < r
, numsi < numsi+1
. Note that a subarray of size 1
is ascending.
Input: nums = [10,20,30,5,10,50] Output: 65 Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Input: nums = [10,20,30,40,50] Output: 150 Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Input: nums = [12,17,15,13,10,11,12] Output: 33 Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Input: nums = [100,10,1] Output: 100
1 <= nums.length <= 100
1 <= nums[i] <= 100
# @param {Integer[]} nums
# @return {Integer}
def max_ascending_sum(nums)
sum = nums[0]
ret = sum
(1...nums.size).each do |i|
sum = nums[i] + (nums[i] > nums[i - 1] ? sum : 0)
ret = [ret, sum].max
end
ret
end
impl Solution {
pub fn max_ascending_sum(nums: Vec<i32>) -> i32 {
let mut sum = nums[0];
let mut ret = sum;
for i in 1..nums.len() {
if nums[i] > nums[i - 1] {
sum += nums[i];
} else {
sum = nums[i];
}
ret = ret.max(sum);
}
ret
}
}