You are given an array of positive integers beans
, where each integer represents the number of magic beans found in a particular magic bag.
Remove any number of beans (possibly none) from each bag such that the number of beans in each remaining non-empty bag (still containing at least one bean) is equal. Once a bean has been removed from a bag, you are not allowed to return it to any of the bags.
Return the minimum number of magic beans that you have to remove.
Input: beans = [4,1,6,5] Output: 4 Explanation: - We remove 1 bean from the bag with only 1 bean. This results in the remaining bags: [4,0,6,5] - Then we remove 2 beans from the bag with 6 beans. This results in the remaining bags: [4,0,4,5] - Then we remove 1 bean from the bag with 5 beans. This results in the remaining bags: [4,0,4,4] We removed a total of 1 + 2 + 1 = 4 beans to make the remaining non-empty bags have an equal number of beans. There are no other solutions that remove 4 beans or fewer.
Input: beans = [2,10,3,2] Output: 7 Explanation: - We remove 2 beans from one of the bags with 2 beans. This results in the remaining bags: [0,10,3,2] - Then we remove 2 beans from the other bag with 2 beans. This results in the remaining bags: [0,10,3,0] - Then we remove 3 beans from the bag with 3 beans. This results in the remaining bags: [0,10,0,0] We removed a total of 2 + 2 + 3 = 7 beans to make the remaining non-empty bags have an equal number of beans. There are no other solutions that removes 7 beans or fewer.
1 <= beans.length <= 105
1 <= beans[i] <= 105
impl Solution {
pub fn minimum_removal(beans: Vec<i32>) -> i64 {
let mut beans = beans.into_iter().map(|x| x as i64).collect::<Vec<_>>();
let mut lsum = 0;
let mut rsum = beans.iter().sum::<i64>();
let mut ret = i64::MAX;
beans.sort_unstable();
for i in 0..beans.len() {
ret = ret.min(lsum + rsum - (beans.len() - i) as i64 * beans[i]);
lsum += beans[i];
rsum -= beans[i];
}
ret
}
}