You are given a 2D integer array descriptions
where descriptions[i] = [parenti, childi, isLefti]
indicates that parenti
is the parent of childi
in a binary tree of unique values. Furthermore,
- If
isLefti == 1
, thenchildi
is the left child ofparenti
. - If
isLefti == 0
, thenchildi
is the right child ofparenti
.
Construct the binary tree described by descriptions
and return its root.
The test cases will be generated such that the binary tree is valid.
Input: descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]] Output: [50,20,80,15,17,19] Explanation: The root node is the node with value 50 since it has no parent. The resulting binary tree is shown in the diagram.
Input: descriptions = [[1,2,1],[2,3,0],[3,4,1]] Output: [1,2,null,null,3,4] Explanation: The root node is the node with value 1 since it has no parent. The resulting binary tree is shown in the diagram.
1 <= descriptions.length <= 104
descriptions[i].length == 3
1 <= parenti, childi <= 105
0 <= isLefti <= 1
- The binary tree described by
descriptions
is valid.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def createBinaryTree(self, descriptions: List[List[int]]) -> Optional[TreeNode]:
parents = set()
children = set()
nodes = {}
for parent, child, isleft in descriptions:
parents.add(parent)
children.add(child)
if parent not in nodes:
nodes[parent] = TreeNode(parent)
if child not in nodes:
nodes[child] = TreeNode(child)
if isleft:
nodes[parent].left = nodes[child]
else:
nodes[parent].right = nodes[child]
return nodes[(parents - children).pop()]