You are given a 0-indexed integer array nums
, where nums[i]
is a digit between 0
and 9
(inclusive).
The triangular sum of nums is the value of the only element present in nums after the following process terminates:
- Let
nums
comprise ofn
elements. Ifn == 1
, end the process. Otherwise, create a new 0-indexed integer arraynewNums
of lengthn - 1
. - For each index
i
, where0 <= i < n - 1
, assign the value ofnewNums[i]
as(nums[i] + nums[i+1]) % 10
, where%
denotes modulo operator. - Replace the array
nums
withnewNums
. - Repeat the entire process starting from step 1.
Return the triangular sum of nums
.
Input: nums = [1,2,3,4,5] Output: 8 Explanation: The above diagram depicts the process from which we obtain the triangular sum of the array.
Input: nums = [5] Output: 5 Explanation: Since there is only one element in nums, the triangular sum is the value of that element itself.
1 <= nums.length <= 1000
0 <= nums[i] <= 9
impl Solution {
pub fn triangular_sum(nums: Vec<i32>) -> i32 {
let mut nums = nums;
while nums.len() > 1 {
nums = (0..nums.len() - 1)
.map(|i| (nums[i] + nums[i + 1]) % 10)
.collect();
}
nums[0]
}
}