You are given a directed graph with n
nodes labeled from 0
to n - 1
, where each node has exactly one outgoing edge.
The graph is represented by a given 0-indexed integer array edges
of length n
, where edges[i]
indicates that there is a directed edge from node i
to node edges[i]
.
The edge score of a node i
is defined as the sum of the labels of all the nodes that have an edge pointing to i
.
Return the node with the highest edge score. If multiple nodes have the same edge score, return the node with the smallest index.
Input: edges = [1,0,0,0,0,7,7,5] Output: 7 Explanation: - The nodes 1, 2, 3 and 4 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 + 3 + 4 = 10. - The node 0 has an edge pointing to node 1. The edge score of node 1 is 0. - The node 7 has an edge pointing to node 5. The edge score of node 5 is 7. - The nodes 5 and 6 have an edge pointing to node 7. The edge score of node 7 is 5 + 6 = 11. Node 7 has the highest edge score so return 7.
Input: edges = [2,0,0,2] Output: 0 Explanation: - The nodes 1 and 2 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 = 3. - The nodes 0 and 3 have an edge pointing to node 2. The edge score of node 2 is 0 + 3 = 3. Nodes 0 and 2 both have an edge score of 3. Since node 0 has a smaller index, we return 0.
n == edges.length
2 <= n <= 105
0 <= edges[i] < n
edges[i] != i
impl Solution {
pub fn edge_score(edges: Vec<i32>) -> i32 {
let mut scores = vec![0; edges.len()];
for i in 0..edges.len() {
scores[edges[i] as usize] += i as i64;
}
(0..edges.len())
.max_by_key(|&i| (scores[i], -(i as i32)))
.unwrap_or(0) as i32
}
}