-
Notifications
You must be signed in to change notification settings - Fork 0
/
lfsr.v
423 lines (346 loc) · 14.7 KB
/
lfsr.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Language: Verilog 2001
`timescale 1ns / 1ps
`default_nettype none
/*
* Parametrizable combinatorial parallel LFSR/CRC
*/
module lfsr #
(
// width of LFSR
parameter LFSR_WIDTH = 31,
// LFSR polynomial
parameter LFSR_POLY = 31'h10000001,
// LFSR configuration: "GALOIS", "FIBONACCI"
parameter LFSR_CONFIG = "FIBONACCI",
// LFSR feed forward enable
parameter LFSR_FEED_FORWARD = 0,
// bit-reverse input and output
parameter REVERSE = 0,
// width of data input
parameter DATA_WIDTH = 8,
// implementation style: "AUTO", "LOOP", "REDUCTION"
parameter STYLE = "AUTO"
)
(
input wire [DATA_WIDTH-1:0] data_in,
input wire [LFSR_WIDTH-1:0] state_in,
output wire [DATA_WIDTH-1:0] data_out,
output wire [LFSR_WIDTH-1:0] state_out
);
/*
Fully parametrizable combinatorial parallel LFSR/CRC module. Implements an unrolled LFSR
next state computation, shifting DATA_WIDTH bits per pass through the module. Input data
is XORed with LFSR feedback path, tie data_in to zero if this is not required.
Works in two parts: statically computes a set of bit masks, then uses these bit masks to
select bits for XORing to compute the next state.
Ports:
data_in
Data bits to be shifted through the LFSR (DATA_WIDTH bits)
state_in
LFSR/CRC current state input (LFSR_WIDTH bits)
data_out
Data bits shifted out of LFSR (DATA_WIDTH bits)
state_out
LFSR/CRC next state output (LFSR_WIDTH bits)
Parameters:
LFSR_WIDTH
Specify width of LFSR/CRC register
LFSR_POLY
Specify the LFSR/CRC polynomial in hex format. For example, the polynomial
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
would be represented as
32'h04c11db7
Note that the largest term (x^32) is suppressed. This term is generated automatically based
on LFSR_WIDTH.
LFSR_CONFIG
Specify the LFSR configuration, either Fibonacci or Galois. Fibonacci is generally used
for linear-feedback shift registers (LFSR) for pseudorandom binary sequence (PRBS) generators,
scramblers, and descrambers, while Galois is generally used for cyclic redundancy check
generators and checkers.
Fibonacci style (example for 64b66b scrambler, 0x8000000001)
DIN (LSB first)
|
V
(+)<---------------------------(+)<-----------------------------.
| ^ |
| .----. .----. .----. | .----. .----. .----. |
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--'
| '----' '----' '----' '----' '----' '----'
V
DOUT
Galois style (example for CRC16, 0x8005)
,-------------------+-------------------------+----------(+)<-- DIN (MSB first)
| | | ^
| .----. .----. V .----. .----. V .----. |
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |--+---> DOUT
'----' '----' '----' '----' '----'
LFSR_FEED_FORWARD
Generate feed forward instead of feed back LFSR. Enable this for PRBS checking and self-
synchronous descrambling.
Fibonacci feed-forward style (example for 64b66b descrambler, 0x8000000001)
DIN (LSB first)
|
| .----. .----. .----. .----. .----. .----.
+->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |--.
| '----' '----' '----' | '----' '----' '----' |
| V |
(+)<---------------------------(+)------------------------------'
|
V
DOUT
Galois feed-forward style
,-------------------+-------------------------+------------+--- DIN (MSB first)
| | | |
| .----. .----. V .----. .----. V .----. V
`->| 0 |->| 1 |->(+)->| 2 |->...->| 14 |->(+)->| 15 |->(+)-> DOUT
'----' '----' '----' '----' '----'
REVERSE
Bit-reverse LFSR input and output. Shifts MSB first by default, set REVERSE for LSB first.
DATA_WIDTH
Specify width of input and output data bus. The module will perform one shift per input
data bit, so if the input data bus is not required tie data_in to zero and set DATA_WIDTH
to the required number of shifts per clock cycle.
STYLE
Specify implementation style. Can be "AUTO", "LOOP", or "REDUCTION". When "AUTO"
is selected, implemenation will be "LOOP" or "REDUCTION" based on synthesis translate
directives. "REDUCTION" and "LOOP" are functionally identical, however they simulate
and synthesize differently. "REDUCTION" is implemented with a loop over a Verilog
reduction operator. "LOOP" is implemented as a doubly-nested loop with no reduction
operator. "REDUCTION" is very fast for simulation in iverilog and synthesizes well in
Quartus but synthesizes poorly in ISE, likely due to large inferred XOR gates causing
problems with the optimizer. "LOOP" synthesizes will in both ISE and Quartus. "AUTO"
will default to "REDUCTION" when simulating and "LOOP" for synthesizers that obey
synthesis translate directives.
Settings for common LFSR/CRC implementations:
Name Configuration Length Polynomial Initial value Notes
CRC16-IBM Galois, bit-reverse 16 16'h8005 16'hffff
CRC16-CCITT Galois 16 16'h1021 16'h1d0f
CRC32 Galois, bit-reverse 32 32'h04c11db7 32'hffffffff Ethernet FCS; invert final output
PRBS6 Fibonacci 6 6'h21 any
PRBS7 Fibonacci 7 7'h41 any
PRBS9 Fibonacci 9 9'h021 any ITU V.52
PRBS10 Fibonacci 10 10'h081 any ITU
PRBS11 Fibonacci 11 11'h201 any ITU O.152
PRBS15 Fibonacci, inverted 15 15'h4001 any ITU O.152
PRBS17 Fibonacci 17 17'h04001 any
PRBS20 Fibonacci 20 20'h00009 any ITU V.57
PRBS23 Fibonacci, inverted 23 23'h040001 any ITU O.151
PRBS29 Fibonacci, inverted 29 29'h08000001 any
PRBS31 Fibonacci, inverted 31 31'h10000001 any
64b66b Fibonacci, bit-reverse 58 58'h8000000001 any 10G Ethernet
128b130b Galois, bit-reverse 23 23'h210125 any PCIe gen 3
*/
reg [LFSR_WIDTH-1:0] lfsr_mask_state[LFSR_WIDTH-1:0];
reg [DATA_WIDTH-1:0] lfsr_mask_data[LFSR_WIDTH-1:0];
reg [LFSR_WIDTH-1:0] output_mask_state[DATA_WIDTH-1:0];
reg [DATA_WIDTH-1:0] output_mask_data[DATA_WIDTH-1:0];
reg [LFSR_WIDTH-1:0] state_val = 0;
reg [DATA_WIDTH-1:0] data_val = 0;
integer i, j, k;
initial begin
// init bit masks
for (i = 0; i < LFSR_WIDTH; i = i + 1) begin
lfsr_mask_state[i] = {LFSR_WIDTH{1'b0}};
lfsr_mask_state[i][i] = 1'b1;
lfsr_mask_data[i] = {DATA_WIDTH{1'b0}};
end
for (i = 0; i < DATA_WIDTH; i = i + 1) begin
output_mask_state[i] = {LFSR_WIDTH{1'b0}};
if (i < LFSR_WIDTH) begin
output_mask_state[i][i] = 1'b1;
end
output_mask_data[i] = {DATA_WIDTH{1'b0}};
end
// simulate shift register
if (LFSR_CONFIG == "FIBONACCI") begin
// Fibonacci configuration
for (i = DATA_WIDTH-1; i >= 0; i = i - 1) begin
// determine shift in value
// current value in last FF, XOR with input data bit (MSB first)
state_val = lfsr_mask_state[LFSR_WIDTH-1];
data_val = lfsr_mask_data[LFSR_WIDTH-1];
data_val = data_val ^ (1 << i);
// add XOR inputs from correct indicies
for (j = 1; j < LFSR_WIDTH; j = j + 1) begin
if (LFSR_POLY & (1 << j)) begin
state_val = lfsr_mask_state[j-1] ^ state_val;
data_val = lfsr_mask_data[j-1] ^ data_val;
end
end
// shift
for (j = LFSR_WIDTH-1; j > 0; j = j - 1) begin
lfsr_mask_state[j] = lfsr_mask_state[j-1];
lfsr_mask_data[j] = lfsr_mask_data[j-1];
end
for (j = DATA_WIDTH-1; j > 0; j = j - 1) begin
output_mask_state[j] = output_mask_state[j-1];
output_mask_data[j] = output_mask_data[j-1];
end
output_mask_state[0] = state_val;
output_mask_data[0] = data_val;
if (LFSR_FEED_FORWARD) begin
// only shift in new input data
state_val = {LFSR_WIDTH{1'b0}};
data_val = 1 << i;
end
lfsr_mask_state[0] = state_val;
lfsr_mask_data[0] = data_val;
end
end else if (LFSR_CONFIG == "GALOIS") begin
// Galois configuration
for (i = DATA_WIDTH-1; i >= 0; i = i - 1) begin
// determine shift in value
// current value in last FF, XOR with input data bit (MSB first)
state_val = lfsr_mask_state[LFSR_WIDTH-1];
data_val = lfsr_mask_data[LFSR_WIDTH-1];
data_val = data_val ^ (1 << i);
// shift
for (j = LFSR_WIDTH-1; j > 0; j = j - 1) begin
lfsr_mask_state[j] = lfsr_mask_state[j-1];
lfsr_mask_data[j] = lfsr_mask_data[j-1];
end
for (j = DATA_WIDTH-1; j > 0; j = j - 1) begin
output_mask_state[j] = output_mask_state[j-1];
output_mask_data[j] = output_mask_data[j-1];
end
output_mask_state[0] = state_val;
output_mask_data[0] = data_val;
if (LFSR_FEED_FORWARD) begin
// only shift in new input data
state_val = {LFSR_WIDTH{1'b0}};
data_val = 1 << i;
end
lfsr_mask_state[0] = state_val;
lfsr_mask_data[0] = data_val;
// add XOR inputs at correct indicies
for (j = 1; j < LFSR_WIDTH; j = j + 1) begin
if (LFSR_POLY & (1 << j)) begin
lfsr_mask_state[j] = lfsr_mask_state[j] ^ state_val;
lfsr_mask_data[j] = lfsr_mask_data[j] ^ data_val;
end
end
end
end else begin
$error("Error: unknown configuration setting!");
$finish;
end
// reverse bits if selected
if (REVERSE) begin
// reverse order
for (i = 0; i < LFSR_WIDTH/2; i = i + 1) begin
state_val = lfsr_mask_state[i];
data_val = lfsr_mask_data[i];
lfsr_mask_state[i] = lfsr_mask_state[LFSR_WIDTH-i-1];
lfsr_mask_data[i] = lfsr_mask_data[LFSR_WIDTH-i-1];
lfsr_mask_state[LFSR_WIDTH-i-1] = state_val;
lfsr_mask_data[LFSR_WIDTH-i-1] = data_val;
end
for (i = 0; i < DATA_WIDTH/2; i = i + 1) begin
state_val = output_mask_state[i];
data_val = output_mask_data[i];
output_mask_state[i] = output_mask_state[DATA_WIDTH-i-1];
output_mask_data[i] = output_mask_data[DATA_WIDTH-i-1];
output_mask_state[DATA_WIDTH-i-1] = state_val;
output_mask_data[DATA_WIDTH-i-1] = data_val;
end
// reverse bits
for (i = 0; i < LFSR_WIDTH; i = i + 1) begin
state_val = 0;
for (j = 0; j < LFSR_WIDTH; j = j + 1) begin
state_val[j] = lfsr_mask_state[i][LFSR_WIDTH-j-1];
end
lfsr_mask_state[i] = state_val;
data_val = 0;
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
data_val[j] = lfsr_mask_data[i][DATA_WIDTH-j-1];
end
lfsr_mask_data[i] = data_val;
end
for (i = 0; i < DATA_WIDTH; i = i + 1) begin
state_val = 0;
for (j = 0; j < LFSR_WIDTH; j = j + 1) begin
state_val[j] = output_mask_state[i][LFSR_WIDTH-j-1];
end
output_mask_state[i] = state_val;
data_val = 0;
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
data_val[j] = output_mask_data[i][DATA_WIDTH-j-1];
end
output_mask_data[i] = data_val;
end
end
// for (i = 0; i < LFSR_WIDTH; i = i + 1) begin
// $display("%b %b", lfsr_mask_state[i], lfsr_mask_data[i]);
// end
end
// synthesis translate_off
`define SIMULATION
// synthesis translate_on
`ifdef SIMULATION
// "AUTO" style is "REDUCTION" for faster simulation
parameter STYLE_INT = (STYLE == "AUTO") ? "REDUCTION" : STYLE;
`else
// "AUTO" style is "LOOP" for better synthesis result
parameter STYLE_INT = (STYLE == "AUTO") ? "LOOP" : STYLE;
`endif
genvar n;
generate
if (STYLE_INT == "REDUCTION") begin
// use Verilog reduction operator
// fast in iverilog
// significantly larger than generated code with ISE (inferred wide XORs may be tripping up optimizer)
// slightly smaller than generated code with Quartus
// --> better for simulation
for (n = 0; n < LFSR_WIDTH; n = n + 1) begin : loop1
assign state_out[n] = ^{(state_in & lfsr_mask_state[n]), (data_in & lfsr_mask_data[n])};
end
for (n = 0; n < DATA_WIDTH; n = n + 1) begin : loop2
assign data_out[n] = ^{(state_in & output_mask_state[n]), (data_in & output_mask_data[n])};
end
end else if (STYLE_INT == "LOOP") begin
// use nested loops
// very slow in iverilog
// slightly smaller than generated code with ISE
// same size as generated code with Quartus
// --> better for synthesis
reg [LFSR_WIDTH-1:0] state_out_reg = 0;
reg [DATA_WIDTH-1:0] data_out_reg = 0;
assign state_out = state_out_reg;
assign data_out = data_out_reg;
always @* begin
for (i = 0; i < LFSR_WIDTH; i = i + 1) begin
state_out_reg[i] = 0;
for (j = 0; j < LFSR_WIDTH; j = j + 1) begin
if (lfsr_mask_state[i][j]) begin
state_out_reg[i] = state_out_reg[i] ^ state_in[j];
end
end
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
if (lfsr_mask_data[i][j]) begin
state_out_reg[i] = state_out_reg[i] ^ data_in[j];
end
end
end
for (i = 0; i < DATA_WIDTH; i = i + 1) begin
data_out_reg[i] = 0;
for (j = 0; j < LFSR_WIDTH; j = j + 1) begin
if (output_mask_state[i][j]) begin
data_out_reg[i] = data_out_reg[i] ^ state_in[j];
end
end
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
if (output_mask_data[i][j]) begin
data_out_reg[i] = data_out_reg[i] ^ data_in[j];
end
end
end
end
end else begin
initial begin
$error("Error: unknown style setting!");
$finish;
end
end
endgenerate
endmodule
`resetall