-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtool.lua
232 lines (211 loc) · 5.89 KB
/
tool.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
require 'torch'
require 'image'
function print_log(msg, level)
print(string.format('%s[%s] %s', os.date('%Y-%m-%d %X'), level, msg))
end
function info(msg_tpl, ...)
local arg = {...}
print_log(string.format(msg_tpl, unpack(arg)), 'INFO')
end
function splitByComma(str)
local res = {}
for word in string.gmatch(str, '([^,\n]+)') do
table.insert(res, word)
end
return res
end
function convertToType(output, c_type)
if type(output) == 'table' then
for i=1, #output do
if c_type == 'double' then
output[i] = output[i]:double()
elseif c_type == 'cuda' then
output[i] = output[i]:cuda()
end
end
else
if c_type == 'double' then
output = output:double()
elseif c_type == 'cuda' then
output = output:cuda()
end
end
return output
end
function convertToDouble(output)
return convertToType(output, 'double')
end
function convertToCuda(output)
return convertToType(output, 'cuda')
end
function prepareTensorHolder(batch_size, video_len, dim, height, width, gpu, two)
local h = height
local w = width
local inputs = {}
for i=1, batch_size do
local x = {}
local y = {}
for t = 1, video_len do
if gpu then
table.insert(x, torch.zeros(dim, h, w):cuda())
table.insert(y, torch.zeros(dim, h, w):cuda())
else
table.insert(x, torch.zeros(dim, h, w))
table.insert(y, torch.zeros(dim, h, w))
end
end
local input
if two then
input = { x, y }
else
input = x
end
table.insert(inputs, input)
end
return inputs
end
function _cal_loss_single_match(model, crit, input, target)
local align_tbl = align_seqs(model, input)
local min_dist = model:forward(align_tbl)
local b = torch.Tensor(1)
b[1] = target
-- print('min_dist and target', min_dist[1], target)
return crit:forward(min_dist, b)
end
function cal_loss(model, crit, inputs, targets)
local loss = 0
for i, input in ipairs(inputs) do
local l = 0
if opt.modelname == 'singlematch' then
l = _cal_loss_single_match(model, crit, inputs[i], targets[i])
else
local output = model:forward(input)
output = convertToDouble(output)
l = crit:forward(output, targets[i])
end
loss = loss + l
end
loss = loss / #inputs
return loss
end
function save_model(model, name)
local dirname = './trainedNets'
os.execute("mkdir -p " .. dirname)
local filename = string.format('%s/%s.t7', dirname, name)
torch.save(filename, model)
end
function feature_extract_model(model, modelname)
if modelname == 'wuzifeng' then
return model:get(1):get(1)
end
end
function merge_model(model, modelname)
local ret = nn.Sequential()
if modelname == 'wuzifeng' then
ret:add(model:get(2))
ret:add(model:get(3))
end
return ret
end
function clone_value(val)
if type(val) == 'table' then
local ret = {}
for i=1,#val do
table.insert(ret, val[i]:clone())
end
return ret
else
return val:clone()
end
end
function cal_eer(pro, res)
-- calculate equal error rate
-- frr for false reject rate
-- far for false accept rate
local frr_tbl = {}
local far_tbl = {}
if #pro ~= #res then
error('length of pro and res are different')
end
local f
local true_count = 0
local false_count = 0
for i=1,#res do
if res[i] then
true_count = true_count + 1
end
end
false_count = #res - true_count
for theta=0.000, 1, 0.001 do
local frr_count = 0
local far_count = 0
for i=1,#pro do
if pro[i] > theta and not res[i] then
far_count = far_count + 1
end
if pro[i] < theta and res[i] then
frr_count = frr_count + 1
end
end
local frr = frr_count * 1.0 / true_count
table.insert(frr_tbl, frr)
local far = far_count * 1.0 / false_count
table.insert(far_tbl, far)
end
local eer = 1
local diff = 1
for i=1,#frr_tbl do
local tmp_diff = math.abs(frr_tbl[i] - far_tbl[i])
if tmp_diff < diff then
diff = tmp_diff
eer = (frr_tbl[i] + far_tbl[i]) / 2.0
end
end
return eer
end
function put2one(feature_maps)
local map_count = feature_maps:size(1)
local height = feature_maps:size(2)
local mul = torch.sqrt(map_count)
if mul - math.floor(mul) > 0.0001 then
error('map count is not sqrtable, ' ..map_count)
end
local res = torch.Tensor(1, mul*height, mul*height)
for i=1,map_count do
local start_h = 1 + math.floor((i-1)/mul) * height
local start_w = 1 + (i - math.floor((i-1)/mul)*mul - 1) * height
for h=1,height do
for w=1,height do
local t_h = start_h + h - 1
local t_w = start_w + w - 1
res[1][t_h][t_w] = feature_maps[i][h][w]
end
end
end
return res
end
function diff2img_withorder(img1, img2)
local res = img2 - img1
local clip_zero = (res + torch.abs(res:clone())) / 2
return clip_zero
end
function read_gray_img(filename, height, width)
local img = image.load(filename, 3)
img = image.scale(img, width, height)
img = image.rgb2y(img):type('torch.DoubleTensor')
return img
end
function diff2img_withorder_demo()
cmd = torch.CmdLine()
cmd:option('-img1', '', '')
cmd:option('-img2', '', '')
cmd:option('-savefilename', '', '')
opt = cmd:parse(arg)
print(opt)
local width = 126
local height = 126
local img1 = read_gray_img(opt.img1, height, width)
local img2 = read_gray_img(opt.img2, height, width)
local res = diff2img_withorder(img1, img2)
image.save(opt.savefilename, res)
end